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ABSTRACT

The worst-case complexity of the steepest-descent algorithm with exact linesearches for uncon-

strained smooth optimization is analyzed, and it is shown that the number of iterations of this

algorithm which may be necessary to find an iterate at which the norm of the objective function’s

gradient is less that a prescribed ǫ is, essentially, a multiple of 1/ǫ2, as is the case for variants of

the same algorithms using inexact linesearches.
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1 Introduction

The worst-case analysis of optimization algorithms for finding unconstrained stationary points of

nonlinear non-convex functions has recently been considered in a number of contributions (see

Nesterov, 2004, Nesterov and Polyak, 2006, Cartis, Gould and Toint, 2011a, 2011b, 2011c, 2012a,

2012b, 2012c, Vicente, 2010, Bian, Chen and Ye, 2012, Gratton, Sartenaer and Toint, 2008, or

Jarre, 2011, to cite a few). In particular, the study of the steepest-descent method, the most

archetypal method for unconstrained nonlinear optimization, was considered by several authors,

whose analysis differ primarily by the particular technique used for (possibly approximately)

minimizing the objective function along the steepest-descent direction. An upper bound on the

number of iterations required to obtain an approximate stationary point was given by Nesterov

(2004) using a variant of the algorithm where the step is computed using the knowledge of a

global Lipschitz constant on the gradient of the objective function. He showed that at most

O(ǫ−2) iterations might be needed to find an iterate at which the Euclidean norm of the gradient

is below a generic tolerance ǫ > 0. As it turns out, his result also applies to the “pure” steepest-

descent algorithm, that is the variant using exact linesearches. A lower complexity bound was

also obtained by Cartis, Gould and Toint (2010), where it was shown that the bound of O(ǫ−2)

iterations is essentially tight for a version using a Goldstein type linesearch. However, this result

depends on a one-dimensional counter-example where the objective function is monotonically

decreasing, in which case an exact linesearch would obviously give much better results. The

purpose of this short paper is to close the remaining conceptual gap, that is to show that the lower

bound of O(ǫ−2) iterations also holds for the steepest-descent algorithm with exact linesearches

when applied on functions with globally Lipschitz continuous gradient.

The next section recalls the algorithms and the assumptions required for our complexity

analysis. Section 3 proposes an example of worst-case behaviour for the method, while Section 4

is devoted to verifying that the example does satisfy the assumptions stated. A few words of

conclusion are presented in Section 5.

2 The steepest-descent method with exact linesearches

We consider the unconstrained minimization problem

min
x∈IRn

f(x) (2.1)

where f(x) is a smooth function from IRn into IR. One of the simplest and oldest algorithm for

solving this problem is the steepest-descent method by Cauchy (1847), whose iterates are defined,

for a given initial guess x0, by the simple iteration

xk+1 = argmin
t≥0

f(xk − tgk), (k ≥ 0) (2.2)

where gk = ∇xf(xk) and where ties are broken by choosing the first minimizer of f(xk − tgk) if

there is more than one (say). This choice is of course most often numerically unrealistic, except

for special functions f(x) such as quadratics, where the minimizer can be determined analytically.

But it remains an ideal that numerically sounder techniques attempt to imitate, justifying our

curiosity.

The assumptions we make on problem (2.1) are as follows.
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A1 f(x) is bounded below on IRn, that is there exists a constant κlbf such that, for all

x ∈ IRn,

f(x) ≥ κlbf.

A2 f(x) is continuously differentiable on IRn.

A3 g(x) = ∇xf(x) is Lipschitz continuous on IRn, that is there exists a constant Lg ≥ 0

such that, for all x, y ∈ IRn,

‖g(x) − g(y)‖ ≤ Lg‖x− y‖.

Here and below, ‖ · ‖ stands for the Euclidean norm.

We now briefly recall the upper complexity bound for algorithm (2.2) by suitably reformulating

the result of Nesterov (2004).

Theorem 2.1. Suppose that AF.0–AF.2 hold. Then there exists a constant κupp depending

on x0 and possibly on n such that, for all ǫ ∈ (0, 1) at most

⌈

κupp

ǫ2

⌉

(2.3)

iterations of method (2.2) are needed to obtain an iterate xk such that ‖gk‖ ≤ ǫ.

Proof. We first note that AF.1, Taylor’s expansion at xk and AF.2 give that, for each

k ≥ 0,

f(xk)− f(xk − tgk) ≥ f(xk)− f(xk) + t‖gk‖2 − 1
2
t2Lg‖gk‖2

for any t ≥ 0. Maximizing the right-hand side of this inequality with respect to t, we obtain

that

f(xk)− f(xk −
1

Lg
gk) ≥

1

2Lg
‖gk‖2 ≥

ǫ2

2Lg
(2.4)

for each iteration k, as long as ‖gk‖ > ǫ.

But (2.2) ensures that the slope of f(xk − tgk) must be zero at xk+1 = xk − tkgk, giving that,

for all k,

0 = 〈gk, g(xk+1)〉 = ‖gk‖2 + 〈gk, g(xk − tkgk)− gk〉 ≥ ‖gk‖2(1− Lgtk),

where we used the Cauchy-Schwartz inequality and AF.2. This implies that tk, the argument

of the (first) minimum in (2.2), is such that tk ≥ 1/Lg and therefore, because of (2.4), that,

for each k,

f(xk)− f(xk − tkgk) ≥ f(xk)− f(xk −
1

Lg
gk) ≥

ǫ2

2Lg

as long as ‖gk‖ > ǫ. Thus a maximum number of
⌈

2Lg(f(x0)− κlbf)

ǫ2

⌉

def
=

⌈

κupp

ǫ2

⌉

such iterations may take place before xk is found such that ‖gk‖ ≤ ǫ. 2



On the complexity of the steepest-descent with exact linesearches 3

The purpose of the present paper is to show that the bound (2.3) is essentially tight, which

cannot be deduced from the one-dimensional example of Cartis et al. (2010). The next section

describes how to build a new two-dimensional example where algorithm (2.2) essentially requires

O(ǫ−2) iterations to achieve ‖gk‖ ≤ ǫ.

3 Constructing a counter-example

Because, as in Cartis et al. (2010), our example is based on polynomial Hermite interpolation,

we first state and prove crucial properties of this type of interpolation.

Theorem 3.1. Assume that real values f0, g0, h0, fT , gT , hT and T > 0 are known. Then

there exists a fifth order polynomial p(t)
def
= c0 + c1t + c2t

2 + c3t
3 + c4t

4 + c5t
5, t ∈ [0, T ],

such that

p(0) = f0, p′(0) = g0 and p′′(0) = h0,

p(T ) = fT , p′(T ) = gT and p′′(T ) = hT .

The coefficients of this polynomial are given by

c0 = f0, c1 = g0, c2 = 1
2
h0, c3 =

1

T
(10r0 − 4r1 + 1

2
r2),

c4 =
1

T 2
(−15r0 + 7r1 − r2) and c5 =

1

T 3
(6r0 − 3r1 + 1

2
r2),

(3.5)

where

r0 =
1

T 2
(fT − f0 − g0T − 1

2
h0T

2), r1 =
1

T
(gT − g0 − h0T ) and r2 = hT − h0.

Moreover, if there are non-negative constants κ0, κ1 and κ2 such that

|r1| ≤ κ0, |r1| ≤ κ1 and |r2| ≤ κ2, (3.6)

Then there exists κf ≥ 0, κg ≥ 0 and κh ≥ 0 only depending on κ0, κ1 and κ2 such that, for

all t ∈ [0, T ],

|p(t)| ≤ |f0|+ |g0|T + 1
2
|h0|T 2 + κfT

2, (3.7)

|p′(t)| ≤ |g0|+ 1
2
|h0|T + κgT, and |p′′(t)| ≤ |h0|+ κh. (3.8)

Proof. (See Cartis et al., 2011c.) Using the form of p(t), we write the desired interpolation

conditions as

p(0) = c0 = f0, p′(0) = c1 = g0, p′′(0) = 2c2 = h0 (3.9)

(which immeditaley gives the desired values for c0, c1 and c2) and

p(T ) = c0 + c1T + c2T
2 + c3T

3 + c4T
4 + c5T

5 = fT ,

p′(T ) = c1 + 2c2T + 3c3T
2 + 4c4T

3 + 5c5T
4 = gT ,

p′′(T ) = 2c2 + 6c3T + 12c4T
2 + 20c5T

3 = hT .
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These conditions can the be re-expressed as a linear system with unknowns c3, c4 an c5, whose

solution exists and turns out to be






c3
c4
c5






=







1
T

0 0

0 1

T2 0

0 0 1

T3













10 −4 1
2

−15 7 −1

6 −3 1
2













1

T2 [fT − f0 − g0T − 1
2
h0T

2]
1
T
[gT − g0 − h0T ]

hT − h0






,

completeing the proof of (3.5). Taking absolute values in this relation, we obtain that







|c3|
|c4|
|c5|






≤







1
T
[10κ0 + 4κ1 + 1

2
κ2]

1

T2 [15κ0 + 7κ1 + κ2]
1

T3 [6κ0 + 3κ1 + 1
2
κ2]







def
=







κc3/T

κc4/T
2

κc5/T
3






.

As a consequence, we have that, for all t ∈ [0, T ],

|p(t)| ≤ |f0 + g0T + 1
2
h0T

2|+ (κc3 + κc4 + κc5)T
2, (3.10)

which gives (3.7) with κf
def
= κ0 + κc3 + κc4 + κc5. Similarly, we obtain that, for all t ∈ [0, T ],

|p′(t)| ≤ |g0 + h0T |+ (3κc3 + 4κc4 + 5κc5)T (3.11)

yieldling the first part of (3.8) with κg
def
= κ1 + 3κc3 + 4κc4 + 5κc5, and

|p′′(t)| ≤ |h0|+ (6κc3 + 12κc4 + 20κc5), (3.12)

from which the second part of (3.8) finally follows with κh
def
= κ2 + 6κc3 + 12κc4 + 20κc5. 2

We now turn to construction our worst-case example for the steepest-descent method (2.2).

The idea is to fix an arbitrary τ ∈ (0, 1
3
] and then to define f(x, y), the objective function in the

example as the sum of f1(x) and f2(x, y). As in Cartis et al. (2010), f1(x) is defined by piecewise

Hermite polynomial interpolation between the sequence of iterates

x0 = 0, xk+1 = xk + σk (k ≥ 0) (3.13)

of the values

f1(x0) = ζ(1 + 2η), f1(xk+1) = f1(xk)− σ2
k, f ′(xk) = −σk, and f ′′

1 (xk) = 0, (3.14)

where ζ(·) is the Riemann zeta function and

η = η(τ)
def
=

1

2− τ
− 1

2
=

τ

4− 2τ
∈ (0, 1

2
) and σk

def
=

(

1

k + 1

) 1
2
+η

. (3.15)

From (3.5), we then find that, for x ∈ [xk, xk+1] and t = (x− xk)/σk,

f1(x) = f1(xk)− σ2
kt+ σk(σk − σk+1)[− 4t3 + 7t4 − 3t5],

f ′
1(x) = −σk + (σk − σk+1)[− 12t2 + 28t3 − 15t4], (3.16)

and

f ′′
1 (x) =

σk − σk+1

σk
[− 24t+ 84t− 60t3]. (3.17)
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It is easy to verify that, for t ∈ [0, 1]

−12t2 + 28t3 − 15t4 = −t2[12− 28t+ 15t2] ≤ 1

and thus, using (3.16), that

f ′
1(x) ≤ −σk+1 < 0 for all x ∈ [xk, xk+1]. (3.18)

In addition, taking into account that

0 <
σk − σk+1

σk
= 1−

(

k + 1

k + 2

)
1
2
+η

< 1,

for k ≥ 0 and that t ∈ [0, 1] if x ∈ [xk, xk+1], we obtain by a straightforward majoration in (3.17)

that

|f ′′
1 (x)| < 168 (3.19)

for x ∈ [xk, xk+1], which in turn implies that f ′′
1 (x) is uniformly bounded for all x ≥ 0. The

behaviour of f1(x) and of its first and second derivatives are pictured in Figure 3.1 on this page.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
2.4998

2.4998

2.4998

2.4999

2.5

2.5

2.5
x 10

4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−1.3

−1.2

−1.1

−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 3.1: The function f1(x) and its first two derivatives (from top to bottom and left to right)

on the first 8 intervals

We now turn to the specification of the function f2(x, y), whose role is to limit the iterates

in the y-direction to a progressively narrower “corridor”, thereby forcing the iteration path to

oscillate between its lower and upper limits. We have already prescribed that the x-components

of the successive iterates are given by (3.13), and f2(x, y) will be constructed in such a way
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that its gradient at the iterates is equal in norm to that of f1(x) but alternating in sign, thus

generating the necessary orthogonality conditions and the oscillating iteration path.

More specifically (and in accordance with (3.13)), define, for all k ≥ 0,

(

x0
y0

)

=

(

0

0

)

,

(

xk+1

yk+1

)

=

(

xk
yk

)

+

(

σk
(−1)kσk

)

with

σk = −f ′
1(xk), (3.20)

defining the zig-zaging piecewise linear iteration path y(x) illustrated in Figure 3.2.

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 3.2: The iteration path y(x) (plain), the upper and lower boundaries ylow(x) and yup(x)

(dashed) and ymid(x) (dotted) for k = 1, . . . , 8 and η = 10−5.

We now define the lower and upper boundaries of the “corridor” containing the iterates. This is

achieved by defining the lower boundary ylow(x) as a twice continuously differentiable curve that

interpolates the y coordinates of the iterates of index 2k (k ≥ 0) and is constant on the intervals

[x2k−1, x2k], yielding

ylow(x2k−1) = ylow(x2k) = y2k.

Polynomial Hermite interpolation is used to twice continuously connect the constants parts. The

upper boundary yup(x) is defined in the same way to interpolate the y coordinates of the iterates

of index 2k + 1 (k ≥ 0), being constant on [x2k, x2k+1], yielding

yup(x2k) = yup(x2k+1) = y2k+1.

Both ylow(x) and yup(x) are shown on Figure 3.2, as well as their average ymid(x) = 1
2
(yup(x) +

ylow(x)). If we define

δ(x)
def
= yup(x)− ylow(x), (3.21)

(the corridor width at x), we note that, by construction,

δ(xk) = σk for all k ≥ 0. (3.22)

Moreover, since the interpolation conditions defining yup(x) are given (for x ∈ [x2k−1, x2k], say)

by

yup(x2k−1) =
2k−2
∑

i=0

(−1)iσi and yup(x2k) = yup(x2k+1) =
2k
∑

i=0

(−1)iσi, (3.23)
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y′up(x2k−1) = y′up(x2k) = 0 and y′′up(x2k−1) = y′′up(x2k) = 0, (3.24)

a closer inspection of the interpolating polynomial (see (3.5)) reveals that, for x ∈ [x2k−1, x2k],

yup(x) = yup(x2k−1)− (σ2k−1 − σ2k)[10t
3 − 15t4 + 6t5], (3.25)

where t = (x− x2k−1)/σ2k−1. Symmetrically, we have that, for x ∈ [x2k, x2k+1],

ylow(x) = ylow(x2k) + (σ2k − σ2k+1)[10t
3 − 15t4 + 6t5], (3.26)

where t = (x − x2k)/σ2k. We thus obtain from (3.25) and (3.26), using (3.22) and defining

t = (x− xk)/σk, that, for x ∈ [xk, xk+1]

δ(x) = σk − (σk − σk+1)[10t
3 − 15t4 + 6t5] (3.27)

and

ymid(x) = ymid(xk) + 1
2
(−1)k(σk − σk+1)[10t

3 − 15t4 + 6t5]. (3.28)

These two last relations yield that

δ′(x) = 2(−1)k+1y′
mid

(x) = −30
σk − σk+1

σk
[t2 − 2t3 + t4] ≤ 0, (3.29)

and also that

δ′′(x) = 2(−1)k+1y′′mid(x) = −60
σk − σk+1

σ2
k

[t− 3t2 + 2t3]. (3.30)

The last inequality in (3.29) results from the decreasing nature of σk and the fact that 1−2t+t2 =

(1−t)2 ≥ 0 for t ∈ [0, 1]. It immediately implies, with (3.22) and (3.29), that δ(x) is non-increasing

and that

σk = δ(xk) ≥ δ(x) ≥ δ(xk+1) = σk+1 for x ∈ [xk, xk+1]. (3.31)

The next step is to define, for each x, f2(x, y) as a twice continuously differentiable function

of y whose value is small between ylow(x) and yup(x) and first increases before levelling off when

the distance of y to the corridor increases, thereby keeping the iterates within the corridor. The

details of f2(x, y) are given by

f2(x, y) =











8 δ(x)2 if y ≤ ylow(x)− 1

(y − ymid(x))
2 if y ∈ [ylow(x), yup(x)]

8 δ(x)2 if y ≥ yup(x) + 1

(3.32)

where Hermite interpolation is once more used to twice continuously connect the first and second

interval, as well as the second and third. In the first of these intervals, f2(x, y) is thus defined

by a fifth order polynomial translated to [0, 1], with boundary conditions on this latter interval

given by

p(0) = 8 δ(x)2, p′(0) = 0, p′′(0) = 0

and

p(1) = (ylow(x)− ymid(x))
2, p′(1) = 2(ylow(x)− ymid(x)) = −δ(x) and p′′(1) = 2.

The interpolation conditions on the second interval are symmetrically defined. Figure 3.3 shows

the shape of f2(x, y) for fixed x.
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−1 −0.5 0 0.5 1 1.5 2

0

0.2

0.4

Figure 3.3: The shape of f2(x, y) for x = x2 and η = 10−5, the vertical lines indicating the values

of ylow(x2) and yup(x2).

Note that f2(x, y) is symmetric in y with respect to ymid(x) by construction. Note also that,

using (3.21), the definition of ymid(x) and (3.22),

∂f2
∂y

(x2k, y2k) =
∂f2
∂y

(x2k, ylow(x2k)) = 2(ylow(x2k)− ymid(x2k)) = −δ(x2k) = −σ2k (3.33)

and, similarly,
∂f2
∂y

(x2k+1, y2k+1) =
∂f2
∂y

(x2k+1, yup(x2k+1))

= 2(yup(x2k+1)− ymid(x2k+1))

= δ(x2k+1)

= σ2k+1.

(3.34)

Note also that, because of (3.32) and (3.29) taken at x = xk (i.e. t = 0),

∂f2
∂x

(xk, yk) = −2(yk − ymid(xk))y
′
mid(xk) = 0. (3.35)

We finally define the objective function of our minimization problem (2.1) by

f(x, y)
def
=















1√
2
[f1(x) + f2(x, y)] for x ≥ 0, y ∈ IR,

1√
2
[f1(0) + xf ′

1(0) + f2(0, y)] for x < 0, y ∈ IR,
(3.36)

whose contour lines, superimposed on the path of iterates, are shown in Figure 3.4.

We thus obtain, using (3.14), (3.33)-(3.34) and (3.35), that

gSD2(xk, yk) = − 1√
2

(

σk
(−1)kσk

)

, (3.37)

and therefore that

‖gSD2(xk)‖ = σk.

Because of the definition of σk in (3.15), this implies that the algorithm will require, for any

ǫ ∈ (0, 1), at least
⌊

1

ǫ2−τ

⌋

(3.38)

iterations to produce an iterate xk such that ‖gk‖ ≤ ǫ. This allows us to conclude, as desired,

that the evaluation complexity bound of O(ǫ−2) is essentially sharp, provided we can show that

f(x, y) is bounded below and has a globally Lipschitz continuous gradient, and that the slope of

f(x, y) is always non-positive along the trajectory. This is the object of the next section.
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Figure 3.4: The countour lines of f(x, y) and the path of iterates for η = 10−5.

4 Verifying the example

We start by a useful auxiliary result.

Lemma 4.1. The values of

f2(x, y),
∂f2
∂x

(x, y),
∂f2
∂y

(x, y),
∂2f2
∂x2

(x, y),
∂2f2
∂y2

(x, y) and
∂2f2
∂x∂y

(x, y)

are uniformly bounded (in absolute value) for all x ≥ 0 and y ∈ [ylow(x) − 1, ylow(x)] ∪
[yup(x), yup(x) + 1].

Proof. Because, for each x and y ∈ [ylow(x) − 1, ylow(x)] , f2(x, y) is a polynomial in y on

an interval of length one, its values and that of its first and second derivatives with respect to

y are uniformly bounded (in absolute value) provided its coefficients are uniformly bounded,

which is the case (see (3.5) with T = 1 in Theorem 3.1, page 3) if the quantities

|8 δ(x)2 − (yup(x)− ymid(x))
2 − 0− 1

2
0| and |δ(x) − 0− 0| (4.39)

are themselves uniformly bounded (the third component of the right-hand side of (3.5) being

identically equal to 2). But this is the case for the first term in (4.39) since

|8 δ(x)2 − (yup(x)− ymid(x))
2| = |8 δ(x)2 − 1

4
δ(x)2| < 8δ(x)2 ≤ 8,

and for the second because of (3.31) and the bound σk ≤ 1. What about the derivatives with

respect to x (for y ∈ [ylow(x) − 1, ylow(x)])? Since f2(x, y) is defined, in this interval, as a
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polynomial in y shifted to [0, 1], the dependence in x is entirely captured by the coefficients

c0, . . . c5 of this polynomial, themselves depending on the boundary conditions

c0 = 8 δ(x)2, c1 = 0 and c2 = 0 (4.40)

and (3.5). The boundedness of the first and second derivatives of c0, . . . , c5 (as functions

of x) are then implied by (4.42) and the boundedness of the two terms in (4.39), which

we already verified. Finally, the second derivative of f2(x, y) with respect to x and y (for

y ∈ [ylow(x)− 1, ylow(x)]) is also a polynomial on an (shifted) interval of length one, obtained

by differentiating c1, . . . , c5 with respect to x in the polynomial corresponding to the derivative

of f2(x, y) with respect to y. Because we just verified that the first derivatives of c0, . . . , c5
with respect to x are themselves uniformly bounded in x, this must also be the case of the

cross-derivatives of f2(x, y). By symmetry, the conclusion of the lemma also holds for all

x ≥ 0 and y ∈ [yup(x), yup(x) + 1]. 2

Theorem 4.2. The function f(x, y) is uniformly bounded below on IR2.

Proof. Observe first that (3.18) implies that f1(x) is bounded below because

∞
∑

i=0

[f1(xk)− f1(xk+1)] =
∞
∑

i=0

σ2
k = ζ(1 + 2η) < ∞.

Moreover, it also results from this last observation that f1(x) ≥ 0 for all x ≥ 0 (and thus

also for all x ∈ IR). The fact that f2(x, y) is also uniformly bounded below results from its

definition in (3.32) and Lemma 4.1. The desired conclusion then follows from (3.36). 2

The verification that the gradient of f(x, y) admits a uniform Lipschitz constant is a more

lengthy calculation, which is the object of the next theorem. It depends on the observation that

0 ≤ σk − σk+1 =

(

1

k + 1

) 1
2
+η

−
(

1

k + 2

) 1
2
+η

≤ ( 1
2
+ η)

(

1

k + 2

)− 1
2
+η ( 1

k + 1
− 1

k + 2

)

= ( 1
2
+ η)

(

1

k + 2

) 1
2
+η ( 1

k + 1

)

≤ ( 1
2
+ η)σ2

k

(4.41)

where we used the bound η < 1
10

< 1
2
and the resulting concavity of t

1
2
+η.

Theorem 4.3. The gradient of function f(x, y) is uniformly Lipschitz continuous on IR2.
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Proof. Let us consider the functions δ(x) and ymid(x). Remembering (3.29), (3.30) and

(4.41) and using the fact that t ∈ [0, 1] when x ∈ [xk, xk+1], we easily deduce that, for x in

this interval,

max [|δ′(x)|, |δ′′(x)|, |y′
mid

(x)|, |y′′
mid

(x)|] ≤ 360( 1
2
+ η)

def
= κdy. (4.42)

We now turn to the analysis of the second derivatives of f2(x, y).

• Consider first the case where y ∈ [ylow(x), yup(x)]. In this interval, we obtain, for x ∈
[xk, xk+1], that

∂2f2
∂y2

(x, y) = 2. (4.43)

Moreover
∂f2
∂x

(x, y) = −2(y − ymid(x))y
′
mid(x) (4.44)

and thus
∂2f2
∂x2

(x, y) = 2y′
mid

(x)2 − 2(y − ymid(x))y
′′
mid

(x).

Taking absolute values and noting that, because of the definition of ymid(x) and (4.42),

|y − ymid(x)| ≤ 1
2
δ(x) ≤ 1

2
σk (4.45)

for x ∈ [xk, xk+1] and y ∈ [ylow(x), ysup(x)], we obtain, for x and y in these intervals, that

∣

∣

∣

∣

∣

∂2f2
∂x2

(x, y)

∣

∣

∣

∣

∣

≤ 2κ2
dy

+ σkκdy ≤ 2κ2
dy

+ κdy, (4.46)

where we also used (4.42) and the bound σk ≤ 1. Finally, for x and y in the same intervals,

we have that
∣

∣

∣

∣

∣

∂2f2
∂x ∂y

(x, y)

∣

∣

∣

∣

∣

= | − 2y′
mid

(x)| ≤ 2κdy

where we used (4.44) and (4.42). Considering this last relation together with (4.43) and

(4.46), we thus conclude that the second derivatives of f2(x, y) are uniformly bounded for all

x ≥ 0 and all y ∈ [ylow(x), ysup(x)].

• The case where y ∈ [ylow(x)− 1, ylow(x)] ∪ [yup(x), yup(x) + 1] is covered by Lemma 4.1.

• To conclude our analysis, we are thus left with checking the boundedness of the second

derivatives of f2(x, y) for y ≥ yup + 1 and y ≤ ylow − 1. In these intervals, f2(x, y) = 8 δ(x)2,

whose second derivatives are bounded because of (4.42). We may therefore finally assess that

the second derivatives of f2(x, y) are bounded for all x ≥ 0 and all y. (Figure 4.5 shows the

second derivative of f2(x, y) with respect to y for x = x2.)

We may now combine this last conclusion with (3.19) and (3.36) to deduce that f(x, y) has

uniformly bounded second derivatives for all (x, y) ∈ IR2. The desired Lipschitz continuity of

its gradient then follows. 2
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Figure 4.5: The second derivative of f2(x2, y), for η = 10−5.

We conclude the construction of our example by verifying that the sequence of iterates can

indeed be obtained from the steepest-descent method with exact linesearches.

Theorem 4.4. The iterate (xk+1, yk+1) is the first minimizer along the steepest descent

direction from (xk, yk).

Proof. The theorem statement is equivalent to verifying that the slope

ω(x) =

〈

∇f(x, y(x)), 1√
2

(

1

(−1k)

)〉

= 1
2

[

f ′
1(x) +

∂f2
∂x

(x, y) + (−1)k
∂f2
∂y

(x, y)

]

of f(x, y) on [xk, xk+1], which is given by

ω(x) = 1
2
f ′
1(x) + [y(x)− ymid(x)][(−1)k − y′mid(x)], (4.47)

is always non-positive and is zero only at the iterates (the corners of the trajectory).

To prove this property, we first observe that, because of (3.29),

(−1)k − y′
mid

(x) = (−1)k [1− |y′
mid

(x)|] (4.48)

Observe now that (4.41) and the decreasing nature of σk together give that, for k > 0,

∣

∣

∣

∣

σ2k − σ2k−1

σ2k−1

∣

∣

∣

∣

≤ ( 1
2
+ η)σ2k−1 < 1

2
+ η ≤ 0.6.

where the last inequality follows from the bound η ≤ 1
10
. Hence, recalling (3.29) and using

the fact that maxt∈[0,1] t
2(1− t)2 = 1

16
, we obtain that, for x ∈ [x2k−1, x2k],

|y′
mid

(x)| < 15× 0.6 max
t∈[0,1]

t2(1− t)2 < 0.57. (4.49)
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Similarly, (4.41) and the decreasing nature of σk imply that, for k > 0,

∣

∣

∣

∣

σ2k+1 − σ2k
σ2k

∣

∣

∣

∣

≤ ( 1
2
+ η)σ2k < 1

2
+ η ≤ 0.6

while, for k = 0,
∣

∣

∣

∣

σ1 − σ0
σ0

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(

1

2

) 1
2
+η

− 1

∣

∣

∣

∣

∣

< 0.6.

This thus gives that

|y′mid(x)| < 15× 0.6 max
t∈[0,1]

t2(1− t)2 < 0.57 (4.50)

for x ∈ [x2k, x2k+1]. Combining (4.49) and (4.50), we obtain that |y′mid(x)| < 1 for all x ≥ 0,

and therefore, using (4.48), that

|(−1)k − y′mid(x)| ≤ 1,

for all x ∈ [xk, xk+1], where the inequality is strict except at xk and xk+1 since y′mid(xk) =

y′
mid

(xk+1) = 0. Hence we obtain, using (4.45), that, for x ∈ [xk, xk+1],

|[y(x)− ymid(x)] [(−1)k − y′
mid

(x)]| ≤ 1
2
δ(x). (4.51)

Moreover, since, at the leftmost boundary of [x2k−1, x2k],

y(x2k−1)− ymid(x2k−1) = 1
2
δ(x2k−1) = 1

2
σ2k−1

and, at the leftmost boundary of [x2k, x2k+1],

y(x2k)− ymid(x2k) = − 1
2
δ(x2k) = − 1

2
σ2k

(where we used (3.31)), we deduce from (4.48) that the inequality in (4.51) can only hold as

an equality at xk+1.

Our penultimate step to is note that (3.16) and (3.27) together give that, for x ∈ [xk, xk+1]

and t = (x− xk)/σk,

f ′
1(x) + δ(x) = (σk − σk+1)[− 12 t2 + 18 t3 − 6 t5] ≤ 0, (4.52)

where, again, the inequality is strict in the interior of the interval (see Figure 4.6).

Combining finally (4.47), (4.51) and (4.52), we obtain that, for all k ≥ 0,

ω(x) < 0 for x ∈ [xk, xk+1), (4.53)

and (xk+1, yk+1) is indeed the first local minimizer of f(x, y) along the steepest-descent di-

rection at iterate (xk, yk). 2

This last theorem is illustrated in Figure 4.7, and completes the construction of our example.
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Figure 4.6: The polynomial −12 t2 + 18 t3 − 6 t5 on [0, 1].
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Figure 4.7: The behaviour of ω(x) for η = 10−5.

5 Conclusions

We have constructed an example where, for an arbitrary τ > 0, the steepest-descent method with

exact linesearches takes at least a multiple of ǫ−2+τ iterations to find an approximate stationary

point at which ‖gk‖ ≤ ǫ, for any ǫ ∈ (0, 1). This result closes the gap left by Cartis et al. (2010)

who could not accomodate this type of linesearch corresponding to the archetypal, if very often

impractical, definition of the method. Given that we have shown in this last paper that it is

impossible to obtain an O(ǫ−2) worst-case complexity for all ǫ, this is probably the best result

that can be obtained.

As was the case in this last paper, our example may furthermore be adapted to cover the

case where the level sets of the objective are finite by extending f(x, y) beyond the approximate

minimizer. This is achieved by smoothly prolongating f1(x) beyond this point with a suitably

increasing function and by, say, keeping the width of the “corridor” constant in this part of the

plane. Such an example may therefore be constructed for every ǫ ∈ (0, 1).
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