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Abstract

With development of micro/nano-devices, low speed rarefied gas flows have attracted significant

research interest where successful numerical methods for traditional high speed flows including

the direct simulation of Monte Carlo method become computationally too expensive. Since the

Knudsen number is usually up to the order of unity in a micro/nano flow, one approach is to

use continuum methods including the Navier-Stokes-Fourier, Burnett/super Burnett equations,

and 13 momments models. Limited success has been achieved because of theoretical difficulties

and/or numerical problems. Recent developed lattice Boltzmann equation (LBE) could be another

fundmentally different approach close to the kinetic methods but with significantly smaller compu-

tational cost. However, despite lattice Boltzmann method is an appealing method for rarefied gas

flows at micro/nano scales, there are some hurddles need to be overcome, e.g. capturing velocity

slip and temperature jump, predicting stresses and heat flux acurately.

The success of recent attempts of applying LBE model for rarefied gas motion has been mainly

focused on isothermal flows. In this paper, thermal rarefied gas flows will be tackled. Because

of unique feature of micro/nano flows, a simplified thermal lattice Boltzmann model with two

distribution functions can be used. In addition, the kinetic theory boundary condition for the

number density distribution function can be extended to construct thermal boundary condition.

The model has been validated in the slip flow regime against the solutions of the Navier-Stokes-

Fourier equations for shear and pressure driven flows between two planar plates. Moreover, the

present thermal LBE model can capture some unique flow characteristics that the Navier-Stokes-

Fourier equations fail to predict. The present work indicates that the thermal lattice Boltzmann

model is a computationally economic method that is particularly suitable to simulate low speed

thermal rarefied gas flows.

PACS numbers: 05.10.-a, 47.45.-n, 47.60.+i
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I. INTRODUCTION

In micro/nano-devices, gas flows are characterised rarefied and low speed, i.e. the Knud-

sen number can be up to the order of unity while the Mach number is negligibly small.

Traditionally, research interest for rarefied gas flows has always been for high speed applica-

tions where directly solving the Boltzmann equation or the direct simulation Monte Carlo

(DSMC) method can offer accurate numerical solutions. However, for low speed gas flows,

these methods become computationally too expensive and DSMC suffers large statistical

scatter and direction solution of the Boltzmann equation is very complex [1, 2]. Mean-

while, continuum methods such as the Navier-Stokes equations, 13 moment method and

the Burnett equations have failed to produce satisfactory results for low-speed gas flows

in the transition regime [3]. Despite significant progress has been made in coupling the

Navier-Stokes-Fourier (NSF) equations with the BGK model [4], developing the Informa-

tion Preservation (IP) method for DSMC [5, 6], reducing the statistical scatter associated

with Monte Carlo methods [7, 8], no comprehensive and numerically-economical model exists

for gas micro/nano-flows with Knudsen numbers up to unity. There is an urgent demand

for an efficient and accurate numerical method for low speed rarefied gas flows as often

encountered in micro/nano-systems.

Recently, the lattice Boltzmann method has attracted significant interest for simulating

micro/nano-flows where the microscopic and macroscopic behaviors are coupled [9–20]. It

retains a computational efficiency comparable to Navier-Stokes-Fourier solvers, and is po-

tentially a more accurate model for gas flows over a broad range of Knudsen numbers. While

Guo, Zhao and Shi [21] argued that current lattice Boltzmann models cannot be valid in

the transition flow regime (0.1 < Kn < 10), Sbragaglia et al. [22] have shown that lattice

Boltzmann equation (LBE) can be valid for rarefied gas flows with the Knudsen number up

to the order of unity. Shan, Yuan and Chen [23] have developed a theroretical framework

for higher-order LBE models based on an expansion of the Boltzmann distribution func-

tion. However, most work has focused on developing new slip velocity boundary conditions

for isothermal flows. Here, we investigate whether a LBE model can produce sufficiently

accurate solution for the thermal rarefied gas flows.
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II. THERMAL LBE MODEL

Unlike the success of isothermal (athermal) LBE models, thermal LBE models have not

been satisfactory in dealing with realistic thermal flows [24]. Because of broad application

of thermal flows, continuous effort has been made to construct thermal LBE models and

increase numerical stabilities. However, thermodynamically consistent thermal LBE models

are still expected, while numerical instability of the current thermal LBE models also defers

the model application. Current thermal LBE models may be divided into three categories:

multispeed models [25–30], two distribution function models [31–39] and hybrid scheme [40–

43]. The multi-speed models use a large set of discrete velocity with higher-order velocity

terms in the equilibrium distribution function. Therefore, the macroscopic energy conser-

vation equation can be obtained correctly. These models, however, have suffered numerical

instability and the single relaxation time leads to an unphysical fixed Prandtl number. The

hybrid schemes employ other methods including a finite difference scheme to solve the tem-

perature equation while the velocity field is determined by the LBE model. This approach

does not take advantage of the mesoscopic feature of the LBE methods. The two relaxation

time schemes which use two sets of distribution functions for particle number and energy

densities to trace velocity and temperature evolution, so that the problems associated with

multi-speed models become amenable.

He, Chen and Doolen [35] have established a two-distribution function model which relates

the energy density distribution function to the number density distribution function. In

addition, viscous heating and compression work are considered in their model. Recently,

Shi, Zhao and Guo [38] have proposed an improved model which simplifies the numerical

algorithm of He, Chen and Doolen. Whether thermal LBE models are applicable with

reasonable acuracy to simulate thermal rarefied gas flows as general and micro/nano flows

in particular still remain unknown. Here, a modified two-distribuition function model based

on refs [35, 38] will be examined to test whether it is suitable to simulate low speed rarefied

gas flows. In addition, a kinetic boundary condition for the energy density distribution

function will be proposed.

The evolution of both number and energy density distribution functions are given by [35]

∂fk

∂t
+ eki

∂fk

∂xi

= −fk − f eq
k

λ
+

(eki − ui)Fi

c2
sρ

f eq
k , (1)
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and
∂gk

∂t
+ eki

∂gk

∂xi

= −gk − geq
k

λt

− fkq, (2)

where fk and gk are the distribution functions for the number and energy densities, f eq
k

and geq
k are the distribution functions at equilibrium, eki is the lattice velocity, ui is the

macroscopic velocity, cs is the lattice speed of sound, ρ is the density, λ and λt are the

relaxation times for the number and energy density distribution functions respectively, and

q is given by

qk = (eki − ui) ·
[

∂ui

∂t
+ ej

∂ui

∂xj

]

. (3)

The relation between two distribution functions is

g =
(ei − ui)

2

2
f. (4)

The density distribution function at the equilibrium is given by

f eq = ρ(2πRT )−D/2e−(ei−ui)
2/2RT , (5)

where R is the gas constant and D is the flow dimension. The equilibrium distribution

function for the energy density is

geq =
(ei − ui)

2

2
f eq. (6)

The macroscopic properties can then be recovered by

ρ =
∫

fdei,

ρui =
∫

feidei,

ρǫ =
∫

gdei, (7)

where ǫ = DRT/2.

In discretization of Eqs. (1, 2), He, Chen and Doolen [35] used a second-order temporal

scheme to avoid inconsistence of viscosity in the discretized evolution equations for the

number and energy density distribution functions. The resulting lattice Boltzmann equations

are:

f̄k(x + ekδt, t + δt) − f̄k(x, t) = − 1

τ + 0.5
[fk(x, t) − f eq

k (x, t)] +
τ

τ + 0.5

(eki − ui)Fi

c2
sρ

f eq
k (x, t),

(8)
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and

ḡk(x + ekδt, t + δt) − ḡk(x, t) = − 1

τt + 0.5
[ḡk(x, t) − geq

k (x, t)] − τt

τt + 0.5
fk(x, t)qk. (9)

where τ = λ/δt and τt = λt/δt are the nondimensional relaxation times and δt is the time

step. Moreover, two new variables are introduced in order to have an explicit scheme, i.e.

f̄k = fk +
1

2τ
(fk − f eq

k ) − δt

2

(eki − ui)Fi

c2
sρ

f eq
k . (10)

ḡk = gk +
1

2τt

(gk − geq
k ) +

δt

2
fkqk. (11)

For a two dimensional nine velocity lattice model (D2Q9), the equilibrium energy distribu-

tion functions are

geq
0 = −2ρǫ

9

u2
i

c2
s

,

geq
k =

ρǫ

9

[

3

2
+

1

2

ekiui

c2
s

+
1

2

(ekiui)
2

c4
s

− 1

2

u2
i

c2
s

]

, k = 1 − 4,

geq
k =

ρǫ

36

[

3 + 2
ekiui

c2
s

+
1

2

(ekiui)
2

c4
s

− 1

2

u2
i

c2
s

]

, k = 5 − 8. (12)

The above complicated scheme is the consequence of eliminating inconsistency of viscousity

in the momentum equation and the viscous heating term in the energy equation [35]. In

addition, the equilibrium energy distribution function at rest is always negative.

For the gas flows in micro/nano devices considered here, the flow speed is typically very

low, i.e. Ma << 1. Therefore, both compression work and viscous heating are negligibly

small. Consequently, the above scheme can be simplified, which has been attempted by

Peng, Shu and Chew [44]. However, the equilibrium energy density distribution functions

are the same as given by Eq. (12), so that they are negative at rest. Recently, Shi, Zhao

and Guo [38] proposed another similar thermal LBE model but with simplified equilibrium

distribution function for the energy density. Although the inconsistence of the viscosity in

the momentum and energy equations may still remain if viscous heating is not negligible as

for high speed gas flows, the simplification approach can be applied for low speed rarefied gas

flows. Another advantage of adopting this approach is that the kinetic boundary condition

for the energy density distribution at the solid wall can be readily implemented that will be

shown later. Following the simplication approach of Shi, Zhao and Guo [38], we can get a

thermal LBE model for rarefied gas flows in micro/nano devices, which are given below:

fk(x + ekδt, t + δt) − fk(x, t) = −1

τ
[fk(x, t) − f eq

k (x, t)] + δt
(eki − ui)Fi

c2
sρ

f eq
k (x, t), (13)
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and

gk(x + ekδt, t + δt) − gk(x, t) = − 1

τt

[gk(x, t) − geq
k (x, t)]. (14)

If we take D2Q9 model as an example, the lattice velocities are

e0 = 0,

ek = c(cos[(k − 1)π/2], sin[(k − 1)π/2]), k = 1 − 4,

ek =
√

2c(cos[(k − 5)π/2 + π/4], sin[(k − 5)π/2 + π/4]), k = 5 − 8, (15)

where c =
√

3RT . And the equilibrium distribution functions for the number density are:

f eq
k = ρωk[1 +

ekiui

c2
s

+
(ekiui)

2

2c4
s

− uiui

2c2
s

],

ω0 =
4

9
; ωk =

1

9
, k = 1 − 4, ωk =

1

36
, k = 5 − 8. (16)

The equilibrium function for the energy density distribution is:

geq
k = ǫf eq

k . (17)

In the procedure of deriving above equilibrium energy density distribution functions, the

thermal diffusivity α has been modified from D+2
D

(τt − 0.5)c2
sδt to (τt − 0.5)c2

sδt [38]. The

resulting thermal conductivity k is D
2
Rρ(τt−0.5)c2

sδt. The viscosity ν is (τ −0.5)c2
sδt so that

the second order trancation error is absorbed [35]. Similarly, the second order trancation

error is also absorbed by changing thermal diffusivity from τtc
2
sδt to (τt − 0.5)c2

sδt. The

Prandtl number can then be determined as (τ − 0.5)/(τt − 0.5).

Towards the incompressible limit, the deviatoric stresses are evaluated by the non-

equilibrium part of the density distribution function [45]

τij = (1 − 1

2τ
)
∑

k

[fk(x, t) − f eq
k (x, t)] (ekiekj −

1

2
ekiekiδij). (18)

The heat flux Q can also be calculated by the non-equilibrium part of the energy distribution

function as

Qi = (1 − 1

2τt

)
∑

k

[gk(x, t) − geq
k (x, t)] eki. (19)

In the rarefied gas flow, we determine the relaxation time from the Knudsen number.

For D2Q9 lattice BGK model, the relation between the Knudsen number and the relaxation

time is Kn =
√

8
3π

τ−0.5
NH

, where NH is the number of lattice across the characteristic length
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of the flow domain [14]. For a given Prandtle number, we can get the thermal relaxation

time. According to the kinetic theory, the mean free path can be related to the viscosity

and the mean molecular velocity by

ν = ac̄l, (20)

where a = 0.499 [46], and c̄ =
√

8RT/π. The temperature dependent viscousity can be

described by:

ρν ∝ T ω, (21)

where the value of ω depends on the molecular interaction model, which is between 0.5 for

hard sphear interaction and 1 for Maxwellian interaction [46]. Combining Eqs. (20, 21), the

influence of temperature variation on the mean free path can be given by

l

lref

=
ρref

ρ
(

T

Tref

)ω−0.5, (22)

where lref and ρref are the mean free path and density at the reference temperature. There-

fore, the local temperature dependent Knudsen number can be determined which couples

the lattice Boltzmann equations for the number and energy density distribution functions.

III. BOUNDARY CONDITIONS

In the recent effort on applying LBE models to simulate rarefied gas flows, the focus is on

developing slip boundary conditions rather than constructing new LBE models. Currently,

there are many types of slip velocity boundary conditions have been used, for examples,

bounce-back, specular reflection or a combination of the two [9, 10, 13, 17, 47], kinetic

theory boundary conditions [11, 48–50], and a virtual wall collision scheme [18]. For hydro-

dynamic flows without temperature jump, the bounce back scheme and the nonequilibrium

extrapolation method were used as thermal boundary conditions [15, 35, 38]. In this work,

we will use the kinetic boundary conditions for diffuse reflection as developed by [11, 48, 51]

for slip velocity boundary condition. In addition, we will extend the kinetic boundary con-

dition for the temperature jump at the solid wall.

The kinetic boundary condition for the slip velocity at the wall can be summarised as

below:

|(ek − uw) · n| fk =
∑

(ek′−uw)·n<0

|(ek′ − uw) · n|Rf (ek′ → ek)fk′ , (23)
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where k and k′ are the reflected and incident directions of the particles, uw and ρw are the

velocity and density at the wall, and the scattering kernel is

Rf (ek′ → ek) =
AN

ρw

[(ek − uw) · n]f eq
k |u=uw

. (24)

AN is a coefficient given by

AN = ρw

∑

k |(ek − uw) · n| fk

|(ek − uw) · n| f eq
k |u=uw

∑

k |(ek′ − uw) · n| fk′

. (25)

In the present thermal LBE model, the equilibrium distribution function for the energy

density is given by Eq. (17). The above Maxwellian diffuse reflection at the wall assumes

that the reflected particles are in the equilibrium state. Therefore, the reflected energy

density distribution function at the wall can be simply related to the reflected number

density distribution function by

gk =
DR

2
Twfk. (26)

where Tw is the temperature at the solid wall.

IV. RESULTS AND DISCUSSIONS

The present thermal LBE model for gas micro/nano flows is simple in terms of numerical

implementation and boundary conditions. In this section, the model will be examined

for both shear and pressure driven flows between two infinitely long parallel plates. The

0.0 0.2 0.4 0.6 0.8 1.0

L

0.0

0.2

0.4

0.6

0.8

1.0

U

Kn=0.01 (LBE)
Kn=0.01 (NSF)
Kn=0.05 (LBE)
Kn=0.05 (NSF)
Kn=0.1 (LBE)
Kn=0.1 (NSF)

FIG. 1: Nondimensional velocity profiles for planar Couette flow at Knudsen numbers of 0.01, 0.05

and 0.1. Comparison of LBE solution with the NSF slip flow solution.
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T
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Kn=0.01 (LBE)
Kn=0.01 (NSF)
Kn=0.05 (LBE)
Kn=0.05 (NSF)
Kn=0.1 (LBE)
Kn=0.1 (NSF)

FIG. 2: Nondimensional temperature profiles for planar Couette flow at Knudsen numbers of 0.01,

0.05 and 0.1. Comparison of LBE solution with the NSF slip flow solution.

kinetic boundary conditions given by Eqs. (23, 24, 25, 26) will be used for the gas molecule

interactions with the solid wall, while the periodic boundary condition will be used at the

inlet and outlet so that only three grid points are needed in the stream direction.

Since experimental data are rare for rarefied gas flows in micro/nano devices, the nu-

merical results of DSMC and directly solving the linearized Boltzmann equation are usually

used for model validation. However, for flows with both small Knudsen number and low

speed, these methods become not only expensive but also inaccurate. When the Knudsen

number is less than 0.1, the Navier-Stokes-Fourier equations with slip boundary conditions

can provide results with reasonable accuracy. Therefore, we mainly compare the present

thermal LBE solution with the solutions of the Navier-Stokes-Fourier equations in order to

test whether the present thermal LBE is valid in the slip flow regime (0.001 < Kn < 0.1).

The NSF equations for gas flows are summarised below [52]:

∂ρ

∂t
+ ∇ · ρui = 0, (27)

ρ
Dui

Dt
= − ∂p

∂xi

+
∂

∂xj

[

2µ(φij −
1

3
φkkδij)

]

, (28)

ρ
Dǫ

Dt
= −pφii +

∂

∂xi

(k
∂T

∂xi

) + 2µ(φijφij −
1

3
φkkφii), (29)

where φij = 1
2
( ∂ui

∂xj
+ ∂uj

∂xi
), δij is the Krunecker delta function. Here, both viscosity and

thermal conductivity are strongly temperature dependent.

There are velocity slip and temperature jump at the solid surface for nonequilibrium gas

flows. The first order slip velocity and temperature jump boundary conditions where the

10



0.0 0.2 0.4 0.6 0.8 1.0
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-1.0

-0.75
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0.0

St
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Shear Stress (LBE)
Shear Stress (NSF)

Kn=0.01

FIG. 3: Nondimensional deviatoric stresses profiles for planar Couette flow at a Knudsen number

of 0.01. Comparison of LBE solution with the NSF slip flow solution.

0.0 0.2 0.4 0.6 0.8 1.0

L

-1.5

-1.25

-1.0

-0.75

-0.5

St
re

ss

Kn=0.01 (LBE)
Kn=0.01 (NSF)
Kn=0.05 (LBE)
Kn=0.05 (NSF)
Kn=0.1 (LBE)
Kn=0.1 (NSF)

Shear Stress

FIG. 4: Nondimensional shear stress profiles for planar Couette flow at Knudsen numbers of 0.01,

0.05 and 0.1. Comparison of LBE solution with the NSF slip flow solution.

gas molecule-wall interactions are assumed diffusely are [53]:

us − uw = l
∂u

∂n
, (30)

Ts − Tw =
2γ

Pr(γ + 1)
l
∂T

∂n
, (31)

where us and Ts are the slip velocity and temperature of the gas at the wall, n is the normal

direction of the wall, γ is 5
3

for a gas without communicable internal energy. Note, the

velocity slip and temperature jump coefficients are only weakly correlated with the molecule

model[54]. The effect of the molecule model is implemented through the viscosity temper-

ature power law as given by Eq. (21). Through the Prandtl number, the influence of the
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FIG. 5: Nondimensional heat flux profiles for planar Couette flow at a Knudsen number of 0.05.

Comparison of LBE solution with the NSF slip flow solution.

temperature on the thermal diffusivity can also be determined. For consistent comparisons,

the Maxwellian molecule model will be used for both thermal LBE and Navier-Stokes-Fourier

simulations.

In the simulations, the temperature difference at the two plates is ∆T and the mean

temperature is Tref . The temperatures at the upper and lower plates are Tref + 1
2
∆T

and Tref − 1
2
∆T respectively. L is nondimensional distance defined as L = x/H. U is

nondimensional velocity, which is defined as U = u/Uplate where Uplate is the constant moving

velocity of the upper plate while the lower plate remains stationary. The velocity of the upper

plate is negligibly small in comparison with the sound speed, so that the viscous heating

and compression work can be ignored. In the following figures, if not explicitly noted, the

temperatures of the lower and upper plates are 0.9Tref and 1.1Tref respectively.

As shown in Fig. (1), the predictions for the velocity profiles at different Knudsen numbers

of the present thermal LBE model and the NSF equations are in excellent agreement. The

present thermal LBE can predict not only the slip velocities but also the increasing slip

motion with the Knudsen number. In Fig. (2), the profile of the nondimensional temperature

T−non, which is (T −Tref )/Tref , is shown. When the Knudsen number is samll at 0.01, both

thermal LBE model and NSF equations give almost the identical solutions. However, the

discrepancy increases with the Knudsen number, especially in the near wall region.

Normal and shear stresses are discussed in Fig. (3), where the Knudsen number is 0.01

and the stresses are nondimensionized by µrefUplate/H (µref is the viscosity at the reference
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FIG. 6: Nondimensional normal heat flux profiles for planar Couette flow at Knudsen numbers of

0.01, 0.05 and 0.1. Comparison of LBE solution with the NSF slip flow solution.
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FIG. 7: The effect of temperature variation on the nondimensional velocity and temperature profiles

for planar Couette flow at a Knudsen number of 0.01. Comparison of LBE solution with the NSF

slip flow solution.

temperature). Both thermal LBE model and NSF equations predict a zero normal stress,

which is also true for flows with other Knudsen numbers. If there is no slip motion at the

wall, the nondimensional shear stress will be unity. Because of slip motion, the magnitude

of the shear stress is now less than 1.0 despite it is still constant across the two plates. As

shown in Fig. (4), the magnitude of the shear stresses decreases with increasing Knudsen

number which is due to increasing slip velocity. Again, excellent agreements have been

observed for the stresses profiles predicted by the thermal LBE and the NSF equations.

In Fig. (5) and Fig. (6), the temperature is nondimensionized by kref∆T/H, where kref

13



is the thermal conductivity at the reference temperature. Fig. (5) shows that the tangential

heat flux, which is the heat flux in the flow direction, is zero because the viscous heating

and compression work are negligible. Therefore, only heat flux in the normal direction is

compared in Fig. (6). When Kn is 0.01, the solution of the thermal LBE model agrees well

with the prediction of the NSF equations. However, the discrepancy grows with increasing

Knudsen number. Again, becasue of temperature jump at the wall, the magnitude of heat

flux in the normal direction is smaller than otherwise unity. In addition, both thrermal LBE

model and NSF equations can predict a decreasing magnitude of the normal heat flux with

increasing Knudsen number, i.e. increasing temperature jumps.

Becasue both viscosity and thermal conductivity depend strongly on the temperature, we

have examined the effect of the temperature on the velocity and temperature profiles in Fig.

(7). The temperatures at the upper and lower plates are 0.9Tref and 1.1Tref in the Case 1,

and 0.7Tref and 1.3Tref in the Case 2. It is clearly demonstrated that the large temperature

drop between the two plates will cause the maximum velcoity to be shifted towards the cold

plate and a larger deviation of the temperature profile from the linear one. This test case

shows that the present thermal LBE model is capable of simulating thermal flows with large

temperature variation.

Overall, the present thermal LBE performs well in the slip flow regime for the Couette

flows. Since the NSF equations become inappropriate when the Knudsen number is beyond

0.1, the diviation from the solutions of the NSF equations at large Knudsen number needs

further investigation.

V. CONCLUSIONS

The present thermal LBE model has advantages of simple algorithm and numerical effi-

ciency for low speed rarefied gas flows. The model results are in excellent agreement with

the solutions of the NSF equations in the slip flow regime. Moreover, the present model can

capture high-order rarefaction effect in the heat flux which the NSF equations fail. There-

fore, it offers an ideal numerical simulation tool for low speed rarefied gas system simulation

as encountered in micro/nano devices. In the next step, we will investigate whether a ther-

mal LBE model based on the present work can be applied to simulate low speed rarefied gas

flow in the transition regime with the Knudsen number up to the order of unity.

14



VI. ACKNOWLEDGEMENTS

This work is financially supported by UK Engineering and Physical Sciences Research

Council (EPSRC) under grant reference no. GR/S82978/01. Additional support was pro-

vided by EPSRC under the auspices of Collaborative Computational Project 12 (CCP12).

[1] N. G. Hadjiconstantinou, A. Garcia, M. Bazant, and G. He, J. Comput. Phys. 187, 274

(2003).

[2] F. Sharipov, L. M. G. Cumin, and D. Kalempa, Euro. J. Mech. B-Fluid 23, 899 (2004).

[3] C. L. Bailey, R. W. Barber, and D. R. Emerson, in European Congress on Computational

Methods in Applied Sciences and Engineering, ECCOMAS 2004, edited by P. Neittaanmäki,
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