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Abstract 
An experiment is proposed that uses a pair of RF cavities 
as a source and detector of hidden sector photons (HSP). 
HSP's are hypothetical low-mass dark matter candidates 
with coupling to ordinary photons. SRF cavities are 
favoured in this experiment as they are able to store a 
high number of photons for a given input power due to 
the high Q available. When powered, such a cavity will 
act as a source of HSP’s, while an empty cavity will be 
able to capture any HSP's decaying back into RF photons. 
Such an experiment (CASCADE) is being developed at 
the Cockcroft Institute using single cell 1.3 GHz cavities 
previously utilised for manufacturing and BCP (Buffered 
Chemical Polishing) studies. The aims of the CASCADE 
project are detailed, along with the system specification. 

INTRODUCTION 
Many extensions of the Standard Model (SM) predict the 
existence of a hidden sector. The particles in the hidden 
sector interact only very weakly with the particles of the 
SM. Because of this, the detection of these particles is 
very difficult [1].  
In one model a hidden sector photon (HSP) is 
hypothesised. The HSP does not couple to SM matter 
[2,3], but the  introduction of HSP terms to the SM 
Lagrangian can give rise to photon – HSP oscillations.  
Since the HSP does not interact with matter, it can 
traverse obstacles that would normally be impenetrable to 
standard light. The “light shining through wall” (LSW) 
experiment utilise this phenomenon. Oscillation of a 
photon to HSP allows it to bypass the obstacle and then 
oscillate back into a photon for detection. 
Typical LSW-type experiments are optical precision 
measurements that utilize lasers [4-6]. In these 
experiments, laser light is shone on to a ‘wall’ and 
photons reappearing behind the wall are monitored. The 
same principle can be applied at other wavelengths, and 
hence microwave cavities can be used in a photon 
regeneration experiment to search for HSPs. This type of 
setup consists of two resonance-matched cavities that are 
isolated from each other and from external RF sources. 
One of the cavities is powered and a small portion of the 
photons inside the cavity will oscillate into HSPs. Since 
the HSPs do not interact with the cavity walls, they can 
radiate freely towards the second cavity, the detector 
cavity. If some of these HSPs then oscillate back into 
photons inside the detector cavity, a signal could be 
detected. 

The probability of transmission from an emitting cavity to 
a detector cavity is [7]: 
 Ρ௧௥௔௡௦ = ௉೏೐೟௉೐೘೔೟ = ߯ସܳ௘௠௜௧ܳௗ௘௧ ௠ംᇲఴఠംఴ  ଶ    (1)|ܩ|

where Pdet and Pemit are the powers inside the respective 
cavities, χ is the ‘kinetic mixing’ parameter (a free 
parameter in the HSP model), Q is the quality factor of 
the cavity, mγ’ is the HSP mass and ωγ is the angular 
frequency of the photons. G is a dimensionless function 
that encodes the geometric setup of the two-cavity system 
[7]: 
ܩ  ൬௞ംᇲ௞ം ൰ = ݇ఊଶ ׬ ׬ ୣ୶୮൫௜௞ംᇲ|࢞ି࢟|൯ସగ|࢞ି࢟| ௘௠௜௧ሺ࢟ሻ࡭ ⋅	௏೏೐೟	௏೐೘೔೟࡭ௗ௘௧ሺ࢞ሻ݀ଷ࢞݀ଷ࢟      (2) 
 
where V is the respective volume of a cavity, kγ and kγ’ are 
the photon and HSP wavenumbers and A is the 
normalized spatial part of the resonant electromagnetic 
field inside the cavities. 
The idea of using microwave cavities in LSW 
experiments was originally proposed for axion searches 
[8] requiring an additional magnetic field, and was later 
applied to  HSP measurements [9,10]. So far the latter 
have been performed with normal-conductive cavities at 
room temperature or even by heating up the cavities to 
reduce the thermal fluctuations. The resonance 
frequencies in these experiments have been 3.9 GHz or 
higher. 
The CASCADE collaboration is studying the possibilities 
of using two superconducting cavities in HSP searches in 
the 1.3 GHz region. The limitations in using normal-
conductive cavities are the low Q value and relatively low 
input power. By replacing the normal-conductive cavities 
by two superconducting cavities, the overall Q of the 
system can be increased significantly. Also at 
superconducting temperatures the amount of thermal 
noise interfering with the measurement is minimized. 
Fig. 1 shows the possible exclusion that could be reached 
with two superconducting cavities utilizing the TM010 
mode at 1.3 GHz. In the plot the cavities are expected to 
have Q = 1010 and input power of 100 W for the emitting 
cavity. In the absence of signal, this would give a 5 
standard deviation exclusion limit of χ = 10-11.4 when mγ’ 
= ωγ = 5.37 µeV when running for 20 days. The 
sensitivity to χis impaired due to non-optimal positioning 
of the cavities. In the calculations the cavities are placed 
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