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Numerical Analysis Group at RAL

I Part of Scientific Computing Department (SCD) of the
Science and Technology Facilities Council (STFC).

I STFC is a research council with the mission to
I “maximise the impact of our knowledge, skills, facilities and

resources for the benefit of the United Kingdom and its
people.”

I World-class research

I World-class innovation

I World-class skills
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Numerical Analysis Group at RAL

I SCD provides world-class expertise and support for UK
theoretical and computational science communities, in both
academia and industry.

I Approx. 160 staff based at Daresbury (Warrington) and
Rutherford.

I NA Group is part of the Technology Division.

I Group has existed since late 1950s
(originally at Harwell, moved to RAL in 1990).

I Group currently mainly funded by 4-year ESPRC grant.
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Numerical Analysis Group at RAL

Jennifer Scott (Group leader) Sparse linear algebra,
high-performance computing.

Iain Duff Sparse linear systems, high-performance
computing.

Nick Gould Nonlinear systems, iterative methods,
optimization.

Jonathan Hogg Parallel linear algebra, optimization.

Evgueni Ovtchinnikov Sparse linear algebra, GPUs.

Tyrone Rees Numerical linear algebra, PDE constrained
optimization

Sue Thorne Numerical linear algebra, iterative methods,
preconditioning.
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Numerical Analysis Group at RAL

Plus

Mario Arioli Numerical linear algebra, numerical solution
of PDEs, error analysis. Retiring but still
working!

John Reid Sparse matrices, automatic differentiation,
Fortran. Honorary Scientist.



Robust limited-memory IC Jennifer Scott

Numerical Analysis Group at RAL

Main areas of expertise:

I Sparse linear algebra Ax = b, Ax = λBx

I Direct and iterative methods

I Large-scale optimization

I High-quality software
I HSL - emphasis on sparse linear algebra

(especially sparse direct solvers). Celebrating 50 years!

I GALAHAD - nonlinear optimization

I CUTEr - testing environment for optimization
and linear algebra solvers
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Sparse Solvers

We want to solve
Ax = b

where A ∈ Rn×n is large and sparse.

Direct Methods: Factorize A = LU, solve Ly = b,Ux = y .
Black-box, robust.
Memory-hungry⇒ unsuitable for very large problems.

Iterative Methods: CG, GMRES, BiCGStab, etc.
Matrix-free. Fast? Efficient? .
Non-robust, performance depends on preconditioner.

Hybrid Methods: Lots of combinations ...
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Background

An ideal preconditioner should be:

I cheap to compute (time and memory)

I sparse and fast to apply

I provide sufficient approximation of the algebraic problem

I result in rapidly converging preconditioned iterative method

Key target for library software is robustness
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Background

Incomplete Cholesky factorization

A ' LLT

Some entries that occur in complete factorization are ignored.

But which to keep?

Long history (> 50 years) and many possible variants:

I Structure-based IC (`): potential fill entries allowed only if
their level of fill is less than `.

I Threshold-based IC (τ): entries smaller than τ dropped.

I Memory-based IC (p): dropping of entries based on memory
available.
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IC (`)

I Location of permissible fill entries using sparsity pattern of A
prescribed in advance.

I Aim to mimic how pattern of A is developed during complete
factorization.

I But although entries of E = A− LLT are zero inside
prescribed sparsity pattern, outside can be large.

I Increasing ` can be prohibitive (storage requirements and
time to compute and apply the preconditioner).
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IC (τ)

I Entries of computed factors or intermediate quantities that
are less than drop tolerance τ discarded.

I Success depends on suitable τ : highly problem dependent.

I Trade-off between sparsity and quality.

I Memory not predictable.
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IC (p)

I Prescribe maximum number of entries allowed in each column
of L and retain only largest entries.

I Memory predictable.

I Example is widely-used dual threshold ILUT (p, τ) (Saad ’94).
I Designed for non symmetric problems.

I Combines use of drop tolerance τ with prescribed maximum
column and row counts.

I Ignores symmetry in A (if A symmetric, patterns of L and UT

normally different).
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ICFS

ICFS code of Lin and Moré ’99:

I Widely used for large-scale trust region subproblems.

I Given p, retains nj + p largest entries in the lower triangular
part of Lj , where nj is number of entries in lower triangular
part of Aj .

I But, as we will see, efficiency of resulting preconditioner not
very sensitive to choice of p.
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Breakdown?

I Problem with IC factorization: it may breakdown
(that is, reach a point where the diagonal entry of the pivot
column is zero).

I Kershaw ’78 locally perturbed zero or negative diagonal
entries to prevent breakdown so method more widely
applicable. Straightforward but can give large growth and
unstable preconditioner.

I Alternative remedy: use global diagonal shift so that
A + αI factorized for some α > 0 (Manteuffel ’80).

I This is used in ICFS.

Are there other things we can do?
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Positive semi-definite modifications I

I Diagonal modification scheme first introduced by
Jennings and Malik ’77,’78 (also Ajiz and Jennings ’84).

I Every time off-diagonal entry discarded, corresponding
diagonal entries modified by adding SPSD matrix

i j

i

j



. . .

|aij | −|aij |
. . .

−|aij | |aij |
. . .


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Jennings-Malik approach

I Breakdown-free factorization that can be expressed as

A = LLT − E

where error matrix E is sum of SPSD matrices.

I But modifications to A can be significant.

I Popular in some engineering applications.
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Positive semi-definite modifications II

I More sophisticated modification scheme due to
Tismenetsky ’91 (and Kaporin ’98).

I Introduces use of intermediate memory that is employed
during construction of L but then discarded.

I Shown to be very robust but it “has unfortunately attracted
surprisingly little attention” (Benzi ’02).

I Suffers from a serious drawback: memory requirements can be
prohibitively high.
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Our aims

I Develop generalisation of ICFS such that efficiency of
preconditioner improves with prescribed memory.

I Develop memory-efficient variant of Tismenetsky-
Kaporin approach using global shifts to avoid breakdown.

I Combine in “black-box” IC factorization code that is
demonstratively robust, efficient and flexible.

New package is HSL MI28.
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Tismenetsky approach

Based on matrix decomposition of form

A = (L + R)(L + R)T − E ,

I L is lower triangular with positive diagonal entries used for
preconditioning,

I R is strictly lower triangular with small entries that is used to
stabilise the factorization process, and

I E has the structure
E = RRT .
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Tismenetsky approach

I On j-th step, decompose col. 1 of Schur complement S into

lj + rj with |lj |T |rj | = 0,

where entries of lj are retained in incomplete factorization and
those in rj are discarded.

I On next step, S updated by subtracting

(lj + rj)(lj + rj)
T .

I Tismenetsky omits the term

Ej = rj r
T
j . (1)

I Thus, SPSD matrix implicitly added to A.
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Kaporin’s use of drop tolerances

I Obvious choice for rj are smallest off-diagonal entries in col j .

I Controls size of L but not memory required to compute it.

I Kaporin ’98: entries of magnitude at least τ1 kept in L and
those smaller than τ2 are dropped from R.

I Now E has structure

E = RRT + F + FT ,

F strictly lower triangular matrix that is not computed;
R used in computation of L but discarded.



Robust limited-memory IC Jennifer Scott

Problems of Tismenetsky-Kaporin approach

I How to choose tolerances τ1 and τ2? Problem dependent.

I Method not guaranteed breakdown free ... combine with
diagonal compensation or global shift.

I With no restriction on size of L and R, can achieve high
quality preconditioner but memory demands high.

I Also too expensive. Impractical for the very large problems
iterative methods designed for.

Remedy: impose memory limit on L and R .
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Limited memory Tismenetsky-Kaporin approach

I lsize: max. number of fill entries in each col. of L

nz(L) ≤ nz(A) + lsize ∗ (n − 1)

I rsize: max. number of entries in each col. of R.
Amount of intermediate memory and work involved in
computing preconditioner depends on rsize.
Note: if rsize = 0, R not used.

I Retain largest entries in lj , provided at least τ1 in magnitude.

I Retain next largest entries in rj , provided at least τ2 in
magnitude.
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Left-looking algorithm outline

Input: A, lsize, rsize, τ1, τ2

Set w(1 : n) = 0
for j = 1 : n do

Scatter col. Aj into w
Apply LLT + RLT + LRT updates from columns 1 : j − 1 to w
(Partially) sort entries in w by magnitude
Keep nj + lsize entries of largest magnitude in lj provided

they are at least τ1
Keep rsize additional entries that are next largest in magnitude

in rj provided they are at least τ2
Reset entries of w to zero
end do

end do

Output: L
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Coping with breakdown

I When using limited memory (and/or dropping),
factorization may breakdown.

I We hold a copy of diagonal entries and, at each step j , keep
them updated. If any becomes zero or negative, restart
factorization with

A← A + αI

for some positive α.

I More than one restart may be required.
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Test environment

I Problems from University of Florida Collection.

I Selected all non-diagonal SPD matrices with n > 1000.

I Removed those with duplicate sparsity patterns.

I Following initial experiments, 8 problems discarded as unable
to achieve convergence without large amount of fill.

I Test set of 139 problems.

I CG used with x0 = 0, b computed so that x = 1, and
stopping criteria

‖Axk − b‖ ≤ 10−10‖b‖

with limit of 2000 iterations.
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Test environment (continued)

I What to measure? iteration counts? timings? sparsity of L?

I We define the efficiency of preconditioner to be

iter × nz(L)

I Performance profiles (Moré, Dolan ’02) used to assess
performance.

I All software written in Fortran.
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Efficiency performance profile, rsize=0
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Note: rather insensitive to choice of lsize (ICFS).
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Efficiency (= iteration) performance profile, lsize=5
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rsize=-1 is unlimited memory for R (not practical).
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Efficiency performance profile lsize+rsize constant
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Pairs (lsize+rsize)=10
Intermediate memory (rsize > 0) can compensate for lsize.
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Effect of scaling on efficiency (lsize = rsize = 10)
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With scaling: 1 failure. No scaling: 10 failures.

HSL MI28 default is l2 scaling.
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Effect of dropping on efficiency (lsize = rsize = 5)
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Often advantageous to use small drop tolerance.

Default τ1 = 0.001.
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Effect of ordering on efficiency
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Sloan profile-reduction ordering is the winner.
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How many shifts? How to pick?

Problem α0 = 0.01 α0 = 0.001 α0 = 0.0001

msc01440 40 (4, 1.56 ∗ 10−4) 40 (3, 2.50 ∗ 10−4) 39 (2, 2.00 ∗ 10−4)
ex33 427 (2, 1.00 ∗ 10−2) 415 (3, 8.00 ∗ 10−3) 460 (5, 1.28 ∗ 10−2)
bcsstk17 112 (3, 2.50 ∗ 10−3) 151 (3, 8.00 ∗ 10−3) 136 (5, 6.40 ∗ 10−3)
oilpan 817 (3, 2.50 ∗ 10−3) 698 (2, 1.00 ∗ 10−3) 708 (3, 1.60 ∗ 10−3)
offshore 69 (2, 1.00 ∗ 10−2) 71 (3, 1.60 ∗ 10−2) 72 (4, 6.40 ∗ 10−3)

I α0 is first non-zero shift.

I How to pick? Too large: try and reduce.
Too small: must increase.

I Generally, want shift as small as possible
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Comparison with level-based approach (IC (3))
Efficiency (left) and iterations (right).
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IC(3)
MI28, lsize=rsize=5
MI28, lsize=20, rsize=10
MI28, lsize=40, rsize=20
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HSL MI28 solved all problems; IC (3) failed to give convergence for
19 problems
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Comparison with direct solver HSL MA97
Total time: all problems (left) and large problems (right).
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HSL MI28 can sometimes compete with direct solver
(and succeeds when HSL MA97 runs out of memory).
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Concluding remarks

I We have developed a new IC code HSL MI28 that may be
used as a “black box” or tuned for a particular problem.

I Memory usage is under the user’s control.

I Using restricted intermediate memory improves efficiency.

I The intermediate memory can compensate for the
preconditioner size.

I Based on extensive experimentation, HSL MI28 appears
robust and efficient.

I Next step: the indefinite case. Pivoting challenge



Thank you!

HSL MI28 is available as part of HSL 2013.

Technical Reports RAL-P-2013-004 and RAL-P-2013-005
(to appear in SISC and TOMS)
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