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Abstract

A review of the calculation of the radiative opacity of hot dense material
is presented. An attempt is made to describe some of the approximations and
assumptions implicit in current calculations and to indicate areas in which

improvements may be made.
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Properties of Hot Dense Matter)



1. Introduction

The calculation of photoabsorption by hot dense material was first of
interest in astrophysical studies, particularly in the calculation of
stellar structure. More recently a knowledge of the opacity of
high-temperature air has been required (used for example in the calculation
of atmospheric re-entry heat transfer) and in the last few vyears the
opacity of laboratory (particularly laser-produced) plasmas has been of
interest. Although these plasmas cannot always be considered to be in Local
Thermodynamic Equilibrium (L.T.E.), the complex subject of the departure
from L.T.E. is not considered here. However, much of the paper is relevant

to both L.T.E. and non-L.T.E. plasmas.

Calculations of laboratory plasma opacities have presented different
problems to those of astrophysical plasmas principally because of the much
wider range of material involved. In particular whereas medium and high-Z
elements occur as low concentration impurities in astrophysical situations,
they are increasingly being cogsidered as major constituents of laser- and

ion-beam targets.

Because of the lack of experimental opacity data (except for cold material)
calculated values have to be relied upon. Several excellent papers have
appeared in the literature which have reviewed the subject (Huebner (1964),
Cox (1965), Carson, Mayers and Stibbs (1968), Rozsnyai (1982)) and it is
not the purpose of the present paper to go over this ground, but rather to
bring out the underlying assumptions of the various methods used in opacity
calculations and to suggest areas in which further work is still needed. In
this paper we shall only consider temperatures which are sufficiently high
that molecular absorption is negligible (a few eV) and photon energies low

enough (less than about 1 MeV) that high-energy absorption processes such



as pair-production and nuclear photoabsorption can also be ignored. Only
electronic transitions in the field of the ions are considered
(bound-bound,bound-free and free-free) and these constitute the major
absorption processes for most conditions of interest in both stellar and

laboratory plasmas.



2. The one-electron average-atom model

Because the calculation of photoabsorption requires a knowledge of both the
absorption strength of each species in the plasma as well as the
concentration of that species, both a quantum-mechanical and
statistical-mechanical description of the plasma is required. Instead of
constructing a full quantum-statistical model, the usual approach has been
to consider an ‘'average-atom' in the plasma. The calculation involves
computing an average-atom potential from which a set of orbitals is
obtained by solution of the one-electron wave equation. Non-integer
populations are then assigned to each orbital and the ‘'one-electron'
interaction with the radiation field is calculated. Finally account is
taken of the departure from the average values occurring in a real plasma
and in this way it is hoped that an approximation to a full
quantum-statistical treatment is recovered. An opacity calculation
therefore naturally divides into two parts; the first being the calculation
of average one-electron quantities (orbital populations, orbital energies,
oscillator strengths etc.) and the second ,which is less well understood,
being the correction due to the distributions about the average values

occurring in a real plasma.

Different workers have calculated the average-atom potential by a variety
of methods. The screened-Coulomb potential is a popular choice because of
its simplicity. Some of the quantum-mechanical properties of an electron in
a Coulomb field can be expressed in a simple form (for example eigenvalues
and orbital radii). Other properties have been calculated exactly, for
example bound-bound electric-dipole oscillator strengths have been computed
by Menzel and Pekeris (1935) and by Green, Rush and Chandler (1957),the
bound-free and free-free Gaunt factors were given by Karzas and Latter

(1961) while Naqvi (1964) gives expressions for Slater integrals of Coulomb



field orbitals. The use of a non-Coulomb potential was first considered by
Grant (1958) and Green (1958) who looked at the calculation of free-free
Gaunt factors. Carson, Mayers and Stibbs (1968) presented calculations of
stellar opacities using a Thomas-Fermi average-atom potential from which
numerical wavefunctions were calculated. There are in certain cases large
differences between their opacity values and those calculated using a
screened-Coulomb model. The calculation of free-free and bound-free
photoabsorption cross-sections in different statistical potentials has been
considered recently by Shalitin et al. (1982) and by Feng and Pratt (1982)
for bound-free and by Green (1981), Lamoureux et al. (1982) and Feng et al.
(1983) for free-free transitions. Rozsnyai (1972) and Liberman (1979,1982)
have developed models in which average-atom orbitals are obtained‘using
self-consistent-field procedures and such orbitals were used by Rozsnyai

(1973) in calculations of bound-free photoabsorption cross-sections.

The screened-Coulomb model is still used extensively where speed of
calculation 1s essential, an example being the XSN package (Lokke and
Grasberger (1977)), which is designed to provide values of opacity in-line
with target simulations. It is found to work least well when the
temperature is low enough that only a small fraction of the electrons are
ipnised and the potential in the outer part of the atom is far from
Coulombic. For example, the bound-bound oscillator strengths for An=+1
transitions calculated for Gold in a Coulomb and a Thomas-Fermi potential
(figure 1) show that although for a temperature of 1 keV (where Z*/Z ~ 0.7)
the Coulombic and non-Coulombic oscillator strengths are very similar, at
100eV (where Z*/Z-v 0.2), the oscillator strengths calculatéd in the
Thomas-Fermi potential are considerably lower for transitions involving the
f and g orbitals which because of their non-penetrating character are
particularly sensitive to the potential in the outer part of the atom.

Further comparison between the wuse of Coulombic and non-Coulombic



potentials in the calculation of opacity can be found in the work of Carson

and Hollingsworth (1968).

For low-Z elements of astrophysical interest, relativistic corrections to
electronic motion are not large. However for high-Z elements of interest in
laboratory plasmas, the effect of relativity is known to be important
(Grant (1970)) and the inclusion of relativistic corrections to the
Shroedinger equation or the use of the Dirac equation 1is required. The
effect of relativity is to make one-electron orbitals more tightly bound.
The effect becomes smaller the larger the principal quantum number and the
energy of An=+1 transitions increases with increasing Z. Figure 2 shows the
change for the 1s%2p transitions for which this increase 1is greatest. In
the non-relativistic approximation the electric-dipole hydrogen-like
oscillator strength is independent of Z. Rose (1982) shows that for An=+1
transitions the effect of relativity is to decrease the oscillator
strengths of hydrogen-like ions and the effect is shown in figure 2 for the

1s+2p transitions.

The average-atom model allows non-integer orbital occupancies. Mayer (1947)
noted that the energy of interaction between electrons cannot be taken as
negligible and the usual statistics of independent fermions cannot be
applied. Mayer (1947) (see also Green (1964), appendix 1) proved a
high-temperature expansion for the probability of occupancy of orbital 1,

p, .to be
2

_ 1 L of(H)
Pi eEi/kT~ﬂ i 4 kT

The first term is just the independent electron expression with the
eigenvalue €, appearing in place of the independent electron energy. The
correction term involves some measure of the inter-electron interaction,

denoted H. Green (1964), in a model problem and more recently More (1981),



in a set of more realistic calculations showed that the first term was a

reasonable approximation to p, over a range of H/KT.

In calculating the absorption strength resulting from a transition i»f, in
addition to requiring knowledge of the orbital occupancy which for level i
is simply o.p,, (where w,; is the degeneracy of level i) it is also
necessary to know the probability that there will be a hole in the final

orbital f, q, where

gy = 1—P; .

The possibility qfﬁl is always considered for bound-bound transitions.
However it is not necessary for it to be considered for bound-free and
free-free absorption unless the free electrons are degenerate. For
photoabsorption involving a discrete edge, the multiplicative correction

factor to the non-degenerate photoabsorption cross-section is just

1 1
q 1 + o ®AT-Din >

where hv is the photon energy and I is the ionisation potential of the
level in question (figure 3). Free-free Coulombic Gaunt factors including

the effects of degeneracy have been calculated by Green (1960).



3. Beyond the one-electron average atom model

The one-electron average-atom model is a very useful approximation because
it allows opacity calculations to be performed in an acceptable length of
time. However, because each one-electron orbital is associated with a
single energy, the model predicts only one energy for each one-electron
transition. In reality transitions occur between different energy levels of
the ions in the plasma and in general many transitions, each occurring at a
different energy, involve the same one-electron transition. It is possible
to consider the transitions occurring between configurations or at a more
detailed level, between terms resulting from the configurations. As first
pointed out by Mayer (1947) this splitting of the one-electron transition
energy is particularly important for the calculation of the Rosseland mean
opacity which is very sensitve to 'windows' in the absorption spectrum. The
contribution to the Rosseland opacity from a single 1line below an
absorption edge can be considerably different from that of a number of
different lines, slightly different from one another in energy, absorbing
in roughly the same part of the spectrum. The same effect occurs for
absorption edges; instead of one edge for each one-electron energy level, a
number .of edges slightly different in energy are found. With the exception
of a few cases (for example the calculation of the opacity of air performed
by Armstrong, Holland and Meyerott (1958) and calculations of the opacity
of highly ionised iron where only H- and He-like ions have a significant
abundance (Rozsnyai (1982)), 'term-splitting' has not been included and the
usual method (Cox (1965), Carson, Mayers and Stibbs (1968), Argo and
Huebner (1976)) is to consider transitions  between different
configurations. In order to calculate the contribution to the opacity of
the transition between configuration « and e for which the orbital

occupation numbers are



ng =n? k=1 or f

it is necessary to know both the transition energy AEdep and also the
probability of configuration « occurring in the plasma. The transition

involves the one-electron jump i*f and has energy

AE., =1(f) —10) + 2 (ng — 6,) [H(tk) ~ Hk) -

I(a) is the expectation value of the one-electron operator and for the

non-relativistic case is given (in a.u.) by
_ 192 Z
I(a) = <a|]— 4V~ L |a>

H(a,b) 1is the average-of-configuration interaction energy between an
electron in shell a and one in b and is given for non-relativistic orbitals
by
0 | W o l.k lb2 X
H(a)b) = F’(ab) _Zzgm 00 o] Glab)
k>0 :

where Fk(a,b) and Gk(a,b) are the usual Slater integrals. Some workers do
not include the terms for which k>0, approximating the interaction by the
direct spherically symmetric term. For screened-Coulombic calculations the
interaction energy is approximated by the use of screening constants. The
prbbability of an ion being found in configuration « can be evaluated from

the statistical-mechanical expression (Cox (1965), More (1983))

s a

The degeneracy factor D,is simply

Ple) =

D - OJi!
* :E[ Ilf" (0)1— nf‘) '



E(x) is the energy of an ion in configuration and F is the free energy of
the n;“. free electrons in the average atomic volume where
ng.=2Z- 2n;.
k
A simpler expression has been used, for example, by Carson, Mayers and
Stibbs (1968)

o w;! | n&  w—
Pla) = H ne (w,— n?) ! P3

which assumes that the electrons are not statistically correlated. The
subject of statistical correlation between electrons in a partially ionised

plasma has been investigated by Green (1964) and Grimaldi (1983).

There are plainly several areas in which further work needs to be
performed. The most obvious is that of the inclusion of term-splitting. In
this context it is worthwhile to note that Moszkowski (1962) has given a
general expression for the distribution of 1lines resulting from
term-splitting. Secondly configuration-interaction has not yet  been
included in any opacity calculation. It is expected that this will predict
the appearance of one-photon two-electron absorption processes and detailed
calculations are needed to assess their effect. Finally the error incurred
because the average-atom orbital set is not optimal for any of the levels
in the plasma has not been investigated. The effect of this is expected to
become more important as the number of bound electrons increases and could
be assessed by comparison  between average-atom and Hartree-Fock
calculations. With the inclusion of all of these effects, the simplicity
gained by starting with a one-electron average-atom model may be lost and
it may prove easier to begin the opacity calculation with individual 1ionic

structure calculations.



4. Spherical symmetry

In average-atom opacity calculations the appoximation is made that the
effects of plasma neighbours can be represented as a spherically symmetric
alteration to the central potential. One possible improvement is to solve
the wave equation in the field of more than one fixed nucleus and then
average over the possible nuclear positions. The electrons are then shared
between more than one ion. This approach has been investigated by Rose
(1983) who shows that consideration of transitions of an electron in the
field of more than one nucleus predicts contributions to the opacity not
arising in the usual single-centre treatment which couple radiation to
ionic kinetic energy. The multi-centre analysis also 1leads to the
prediction of photoabsorption occurring by an electron making a transition
from an orbital centred mainly on one nucleus to one centred principally on
a neighbouring one. Such ‘charge-transfer!’ transitions are also not
predicted by the wusual single-centre analysis. Detailed calculations of

these effects have still to be performed.



5. Conclusions

In this paper it has not been possible to cover every aspect of the
calculation of opacities and many important topics,such as the subject of
line-shapes, have not been mentioned. It has been shown however that
although much progress has been made there are still areas of uncertainty
particularly regarding how to include accurately the variety of ions
existing in the plasma and also how to treat neighbouring plasma particles.
Although accurate values of opacity are needed for many applications there
still remain many uncertainties in the modelling and without experimental

information it is very difficult to assess their importance.
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Figure captions

Figure 1. One-electron relativistic electric-dipole oscillator strengths

for Gold calculated using Coulombic and non-Coulombic potentials.

Figure 2. The dependence of the fractional increase in transition energy
(AE,-AE, )/0E,, and of the electric-dipole oscillator strength f on the

nuclear charge Z for the 1s,, #2p,, and ls, *2py, hydrogen-like transitions.

Figure 3. The dependence of g (the correction factor to the non-degenerate
photoelectric cross-section) on degeneracy parameter » and on ionised

electron energy hv-I.
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