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Summary of the talk

motivation and examples

solving the explicit problem

solving the implicit problem by factorization

solving the implicit problem by iteration

comments and conclusions
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History

Secular (adj.) 3. astronomy, of or denoting slow changes in the motion

of the sun or planets (c.f. 1. not connected with religious or spiritual

matters) (O.E.D.)

early use of the term secular equation in papers by Cauchy and

Sylvester refer to equations from which the eigenvalues of a real

symmetric matrix may be obtained

Hilbert (1924) and E.T. Browne (1930) explicitly refer to the

characteristic equation as a secular equation

Golub (SIAM Review, 1973) gives a number of examples of more

general secular equations (to follow). See also Golub & Meurant

(Matrices, Moments and Quadrature with Applications, 2010)
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Secular equations

given real symmetric A and B and real vector b

let x(λ) be a solution of the linear system

(A + λB)x(λ) = b

for given real scalar λ
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Secular equations

given real symmetric A and B and real vector b

let x(λ) be a solution of the linear system

(A + λB)x(λ) = b

for given real scalar λ

find values of λ that solve the secular equation

θ(x(λ)) = τ(λ)

for given real secular functions θ : IRn → IR and τ : IR → IR
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Secular equations

given real symmetric A and B and real vector b

let x(λ) be a solution of the linear system

(A + λB)x(λ) = b

for given real scalar λ

find values of λ that solve the secular equation

θ(x(λ)) = τ(λ)

for given real secular functions θ : IRn → IR and τ : IR → IR

often impose extra conditions that identify particular λ
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Examples

eigenvalues of a symmetric bordered matrix

eigenvalues following a symmetric rank-one change

the trust-region subproblem

regularization of quadratic minimization

global optimization

total least squares
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Eigenvalues of a symmetric bordered matrix

given real symmetric A, vector b and scalar β, find the eigenvalues of
(

A b

bT β

)

require eigenvalues λ for which
(

A b

bT β

)(

v

ξ

)

= λ

(

v

ξ

)
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Eigenvalues of a symmetric bordered matrix

given real symmetric A, vector b and scalar β, find the eigenvalues of
(

A b

bT β

)

require eigenvalues λ for which
(

A b

bT β

)(

v

ξ

)

= λ

(

v

ξ

)

if ξ = 0 =⇒ Av = λv

otherwise x = −v/ξ =⇒

(A − λI)x(λ) = b and bTx(λ) = β − λ
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Eigenvalues of a symmetric bordered matrix

given real symmetric A, vector b and scalar β, find the eigenvalues of
(

A b

bT β

)

require eigenvalues λ for which
(

A b

bT β

)(

v

ξ

)

= λ

(

v

ξ

)

if ξ = 0 =⇒ Av = λv

otherwise x = −v/ξ =⇒

(A − λI)x(λ) = b and bTx(λ) = β − λ

secular functions

θ(x) = bTx and τ(λ) = β − λ
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Eigenvalues following a symmetric rank-one change

given real symmetric A, vector b and scalar β, find the eigenvalues of

A + βbbT

prime example: Divide & Conquer method for tridiagonal eigenproblem

(Cuppen, 1981)

require eigenvalues λ for which

(A + βbbT )v = λv
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Eigenvalues following a symmetric rank-one change

given real symmetric A, vector b and scalar β, find the eigenvalues of

A + βbbT

prime example: Divide & Conquer method for tridiagonal eigenproblem

(Cuppen, 1981)

require eigenvalues λ for which

(A + βbbT )v = λv

if bT v = 0 =⇒ Av = λv,

otherwise with x = −v/βbT v =⇒

(A − λI)x(λ) = b and bTx(λ) = −1/β

SIAM UKIE, UCL, 9th January 2014 – p. 7/24



Eigenvalues following a symmetric rank-one change

given real symmetric A, vector b and scalar β, find the eigenvalues of

A + βbbT

prime example: Divide & Conquer method for tridiagonal eigenproblem

(Cuppen, 1981)

require eigenvalues λ for which

(A + βbbT )v = λv

if bT v = 0 =⇒ Av = λv,

otherwise with x = −v/βbT v =⇒

(A − λI)x(λ) = b and bTx(λ) = −1/β

secular functions

θ(x) = bTx and τ(λ) = −1/β
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The trust-region subproblem

given real symmetric H , vector g & radius ∆ > 0

minimize
x∈IR

n

q(x) = 1

2
xTHx + gTx subject to ‖x‖2 ≤ ∆

fundamental subproblem in trust-region-based optimization

SIAM UKIE, UCL, 9th January 2014 – p. 8/24



The trust-region subproblem

given real symmetric H , vector g & radius ∆ > 0

minimize
x∈IR

n

q(x) = 1

2
xTHx + gTx subject to ‖x‖2 ≤ ∆

fundamental subproblem in trust-region-based optimization

critical point of q(x) subject to 1

2
‖x‖22 ≤ 1

2
∆2 =⇒

(H + λI)x(λ) = −g (∗)
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The trust-region subproblem

given real symmetric H , vector g & radius ∆ > 0

minimize
x∈IR

n

q(x) = 1

2
xTHx + gTx subject to ‖x‖2 ≤ ∆

fundamental subproblem in trust-region-based optimization

critical point of q(x) subject to 1

2
‖x‖22 ≤ 1

2
∆2 =⇒

(H + λI)x(λ) = −g (∗)

Theorem: any global minimizer x∗ = x(λ∗) of q(x) subject to

‖x‖2 ≤ ∆ satisfies (∗) where H + λ∗I � 0, λ∗ ≥ 0 and

λ∗(‖x∗‖2 − ∆) = 0. If H + λ∗I ≻ 0, x∗ is unique.

(Gay, Moré, Sorensen, 1981-3)
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The trust-region subproblem

given real symmetric H , vector g & radius ∆ > 0

minimize
x∈IR

n

q(x) = 1

2
xTHx + gTx subject to ‖x‖2 ≤ ∆

fundamental subproblem in trust-region-based optimization

critical point of q(x) subject to 1

2
‖x‖22 ≤ 1

2
∆2 =⇒

(H + λI)x(λ) = −g (∗)

Theorem: any global minimizer x∗ = x(λ∗) of q(x) subject to

‖x‖2 ≤ ∆ satisfies (∗) where H + λ∗I � 0, λ∗ ≥ 0 and

λ∗(‖x∗‖2 − ∆) = 0. If H + λ∗I ≻ 0, x∗ is unique.

(Gay, Moré, Sorensen, 1981-3)

if ‖x∗‖2 = ∆, need to find largest root of (∗) with secular functions

θ(x) = ‖x‖2 and τ(λ) = ∆
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Regularization of quadratic minimization

given real symmetric H , vector g weight σ > 0 & index p ≥ 2

minimize
x∈IR

n

r(x) = 1

2
xTHx + gTx + 1

p
σ‖x‖p2

fundamental subproblem in optimal-complexity optimization
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Regularization of quadratic minimization

given real symmetric H , vector g weight σ > 0 & index p ≥ 2

minimize
x∈IR

n

r(x) = 1

2
xTHx + gTx + 1

p
σ‖x‖p2

fundamental subproblem in optimal-complexity optimization

critical point of r(x) =⇒

Hx + g + σ‖x‖p−2
2 x = 0 =⇒

(H + λI)x(λ) = −g and λ = σ‖x(λ)‖p−2
2 (∗)
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Regularization of quadratic minimization

given real symmetric H , vector g weight σ > 0 & index p ≥ 2

minimize
x∈IR

n

r(x) = 1

2
xTHx + gTx + 1

p
σ‖x‖p2

fundamental subproblem in optimal-complexity optimization

critical point of r(x) =⇒

Hx + g + σ‖x‖p−2
2 x = 0 =⇒

(H + λI)x(λ) = −g and λ = σ‖x(λ)‖p−2
2 (∗)

Theorem: Any global minimizer x∗ = x(λ∗) of r(x) satisfies

(∗) where H + λ∗I � 0. If H + λ∗I ≻ 0, x∗ is unique.

(Cartis, G., Toint, 2011)
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Regularization of quadratic minimization

given real symmetric H , vector g weight σ > 0 & index p ≥ 2

minimize
x∈IR

n

r(x) = 1

2
xTHx + gTx + 1

p
σ‖x‖p2

fundamental subproblem in optimal-complexity optimization

critical point of r(x) =⇒

Hx + g + σ‖x‖p−2
2 x = 0 =⇒

(H + λI)x(λ) = −g and λ = σ‖x(λ)‖p−2
2 (∗)

Theorem: Any global minimizer x∗ = x(λ∗) of r(x) satisfies

(∗) where H + λ∗I � 0. If H + λ∗I ≻ 0, x∗ is unique.

(Cartis, G., Toint, 2011)

need to find largest root of (∗) with secular functions

θ(x) = ‖x(λ)‖2 and τ(λ) = (λ/σ)1/(p−2)
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Global Lipschitz optimization

given a C2 function f(x) with Lipschitz Hessian, Taylor =⇒

cL(s) ≡ f(x) + sT g(x) + 1

2
sTH(x)s − 1

3
σ‖s‖32 ≤

f(x + s) ≤ f(x) + sT g(x) + 1

2
sTH(x)s + 1

3
σ‖s‖32 ≡ cU(s)

where g/H are the gradient/Hessian of f & σ is the Lipschitz constant

global mimima of cL and cU over S = {s : ‖s‖2 ≤ ∆} provide lower

and upper bounds for global minimum of f(x + s) over S

partition “space of interest” for f into overlapping hyper-spheres and

apply branch and bound to find global minimizer in this space

global mimima of cL and cU over S each has associated secular

equation =⇒ tractable (Cartis, Farmer, Fowkes, G.,2012)
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Simplification of secular equations

without loss of generality consider

(A ± λI)x(λ) = b and θ(x(λ)) = τ(λ)

for real, symmetric A, where for simplicity

θ(x) = bTx or θ(x) = ‖x‖2
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Simplification of secular equations

without loss of generality consider

(A ± λI)x(λ) = b and θ(x(λ)) = τ(λ)

for real, symmetric A, where for simplicity

θ(x) = bTx or θ(x) = ‖x‖2

suppose that eigen-decomposition A = QΛQT is known, with

Λ = Diag(λi): λi ≤ λi+1 & orthogonal Q, and that b̄ = QT b
=⇒ x(λ) = Qx̄(λ):

(Λ ± λI)x̄(λ) = b̄ and θ̄(x̄(λ)) = τ(λ)

and, e.g.,

θ̄(x̄) = b̄T x̄ or θ̄(x̄) = ‖x̄‖2
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Type-I secular equations

(Λ − λI)x̄(λ) = b̄ and θ1(λ) ≡ b̄T x̄(λ) = τ(λ) =⇒

θ1(λ) =

n
∑

i=1

b̄2i
λi − λ
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θ1(λ)

The type-I secular function θ1(λ)
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Type-I secular equations

(Λ − λI)x̄(λ) = b̄ and θ1(λ) ≡ b̄T x̄(λ) = τ(λ) =⇒

θ1(λ) =

n
∑

i=1

b̄2i
λi − λ
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θ1(λ)
τ (λ) = 1 − λ

The type-I secular equation for the eigenvalues of a symmetric bordered matrix
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Type-I secular equations

(Λ − λI)x̄(λ) = b̄ and θ1(λ) ≡ b̄T x̄(λ) = τ(λ) =⇒

θ1(λ) =

n
∑

i=1

b̄2i
λi − λ
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θ1(λ)
τ (λ) = −1

The type-I secular equation for the eigenvalues following a symmetric rank-one change
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Type-II secular equations

(Λ + λI)x̄(λ) = b̄ and θ2(λ) ≡ ‖x̄(λ)‖2 = τ(λ) =⇒

θ2(λ) =

√

√

√

√

n
∑

i=1

(

b̄i

λi + λ

)2
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θ2(λ)

The type-II secular function θ2(λ)
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Type-II secular equations

(Λ + λI)x̄(λ) = b̄ and θ2(λ) ≡ ‖x̄(λ)‖2 = τ(λ) =⇒

θ2(λ) =

√

√

√

√

n
∑

i=1

(
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)2
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θ2(λ)
τ (λ) = 2

The type-II secular equation for the trust-region subproblem
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Type-II secular equations

(Λ + λI)x̄(λ) = b̄ and θ2(λ) ≡ ‖x̄(λ)‖2 = τ(λ) =⇒

θ2(λ) =

√

√

√

√

n
∑

i=1

(

b̄i
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θ2(λ)
τ (λ) = λ

The type-II secular equation for cubic regularization of quadratic minimization
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Explicit vs Implicit

In general most secular equations occur as one of two types:

Type I secular equation:

(A − λI)x(λ) = b and θ1(λ) ≡ bTx(λ) = τ(λ)

usually more than one—maybe all—roots required

often eigenvalues/vectors known =⇒ reduces to explicit solution of

n
∑

i=1

di

λi − λ
= τ(λ) with di > 0
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Explicit vs Implicit

In general most secular equations occur as one of two types:

Type I secular equation:

(A − λI)x(λ) = b and θ1(λ) ≡ bTx(λ) = τ(λ)

usually more than one—maybe all—roots required

often eigenvalues/vectors known =⇒ reduces to explicit solution of

n
∑

i=1

di

λi − λ
= τ(λ) with di > 0

Type II secular equation:

(A + λI)x(λ) = b and θ2(λ) ≡ ‖x(λ)‖2 = τ(λ)

usually just one—the largest—root required

usually eigenvalues/vectors unknown
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Explicit vs Implicit

In general most secular equations occur as one of two types:

Type I secular equation:

(A − λI)x(λ) = b and θ1(λ) ≡ bTx(λ) = τ(λ)

usually more than one—maybe all—roots required

often eigenvalues/vectors known =⇒ reduces to explicit solution of

n
∑

i=1

di

λi − λ
= τ(λ) with di > 0

Type II secular equation:

(A + λI)x(λ) = b and θ2(λ) ≡ ‖x(λ)‖2 = τ(λ)

usually just one—the largest—root required

usually eigenvalues/vectors unknown

τ(λ) usually a low-order (constant or linear) polynomial
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Solving the explicit Type-I problem

Possible ways to find root ∈ (λj , λj+1) of

p1(λ) + p2(λ) ≡
j
∑

i=1

di

λi − λ
+

n
∑

i=j+1

di

λi − λ
= τ(λ) with di > 0

construct low-order rational approximations r
(k)
1 and r

(k)
2 to p1 and p2

with poles λj and λj+1

find appropriate root λ(k) of low-order polynomial equation

r
(k)
1 (λ) + r

(k)
2 (λ) = τ(λ)

appropriate approximations lead to global quadratic convergence of λ(k)

from left or right of root, or locally from either side

(Bunch, Nielsen, Sorensen, 1978, Li, 1994)
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Solving the explicit Type-I problem (continued)

Possible ways to find root ∈ (λj , λj+1) of

n
∑

i=1

di

λi − λ
= τ(λ) with di > 0

use nonlinear change of variable λ = λj + 1/µ

apply standard fast method (Newton, Gragg, Halley, . . . ) to problem in

transformed variable (better-behaved problem)

superlinear to cubic global convergence established (Melman, 1995-97)
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Solving the explicit Type-I problem (continued)

Possible ways to find root ∈ (λj , λj+1) of

n
∑

i=1

di

λi − λ
= τ(λ) with di > 0

use nonlinear change of variable λ = λj + 1/µ

apply standard fast method (Newton, Gragg, Halley, . . . ) to problem in

transformed variable (better-behaved problem)

superlinear to cubic global convergence established (Melman, 1995-97)

clever methods used to get good starting points for all methods

accumulated evidence of good performance in practice (3-5 iterations

for high accuracy)
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Solving the explicit Type-I problem (continued)

Possible ways to find root ∈ (λj , λj+1) of

n
∑

i=1

di

λi − λ
= τ(λ) with di > 0

use nonlinear change of variable λ = λj + 1/µ

apply standard fast method (Newton, Gragg, Halley, . . . ) to problem in

transformed variable (better-behaved problem)

superlinear to cubic global convergence established (Melman, 1995-97)

clever methods used to get good starting points for all methods

accumulated evidence of good performance in practice (3-5 iterations

for high accuracy)

O(n) approximation methods for all roots related to multi-level integral

transform evaluation (Livne, Brandt, 2002)
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Solving the implicit Type-II problem

Find the largest root ≥ max(0,−λ1) of

θ2(λ) ≡ ‖x(λ)‖2 = τ(λ) where (A + λI)x(λ) = b

usually τ(λ) is convex, increasing for positive λ
=⇒ unique root in [max(0,−λ1),∞), but generally λ1 unknown

need to use effective rootfinder that “understands” structure of θ2(λ)

need to evaluate θ2(λ) and its derivatives
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Solving the implicit Type-II problem

Find the largest root ≥ max(0,−λ1) of

θ2(λ) ≡ ‖x(λ)‖2 = τ(λ) where (A + λI)x(λ) = b

“degenerate” hard case if b ⊥ eigenvector(s) q1 for λ1
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θ2(λ)
τ (λ) = λ

The type-II secular equation for cubic regularization of quadratic minimization - easy case
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Solving the implicit Type-II problem

Find the largest root ≥ max(0,−λ1) of

θ2(λ) ≡ ‖x(λ)‖2 = τ(λ) where (A + λI)x(λ) = b

“degenerate” hard case if b ⊥ eigenvector(s) q1 for λ1
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θ2(λ)
τ (λ) = λ

The type-II secular equation for cubic regularization of quadratic minimization - moderate case
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Solving the implicit Type-II problem

Find the largest root ≥ max(0,−λ1) of

θ2(λ) ≡ ‖x(λ)‖2 = τ(λ) where (A + λI)x(λ) = b

“degenerate” hard case if b ⊥ eigenvector(s) q1 for λ1
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θ2(λ)
τ (λ) = λ

The type-II secular equation for cubic regularization of quadratic minimization - hard case
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Solving the implicit Type-II problem

Find the largest root ≥ max(0,−λ1) of

θ2(λ) ≡ ‖x(λ)‖2 = τ(λ) where (A + λI)x(λ) = b

“degenerate” hard case if b ⊥ eigenvector(s) q1 for λ1

solution in hard case is x(−λ1) + αq1 where α satisfies

‖x(−λ1) + αq1‖2 = τ(−λ1)
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Solving the implicit Type-II problem

Find the largest root ≥ max(0,−λ1) of

θ2(λ) ≡ ‖x(λ)‖2 = τ(λ) where (A + λI)x(λ) = b

may equivalently find the largest root ≥ max(0,−λ1) of

π(λ) ≡ ‖x(λ)‖22 = τ2(λ) ≡ ρ(λ) where (A + λI)x(λ) = b

since derivatives of π(λ) are easy to find
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Calculating the secular function and its derivatives

Need to compute

π(λ) ≡ ‖x(λ)‖22 = xT (λ)x(λ) where (A + λI)x(λ) = b

and its derivatives

derivatives x(k)(λ) of x(λ)

(A + λI)x(1) = −x, (A + λI)x(2) = −2x(1)
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Calculating the secular function and its derivatives

Need to compute

π(λ) ≡ ‖x(λ)‖22 = xT (λ)x(λ) where (A + λI)x(λ) = b

and its derivatives

derivatives x(k)(λ) of x(λ)

(A + λI)x(1) = −x, (A + λI)x(2) = −2x(1)

. . . (A + λI)x(k) = −kx(k−1)
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Calculating the secular function and its derivatives

Need to compute

π(λ) ≡ ‖x(λ)‖22 = xT (λ)x(λ) where (A + λI)x(λ) = b

and its derivatives

derivatives x(k)(λ) of x(λ)

(A + λI)x(1) = −x, (A + λI)x(2) = −2x(1)

derivatives π(k)(λ) of π(λ)

π(1) = 2x(1)Tx, π(2) = 2x(2)Tx + 2x(1)Tx(1) = 6x(1)Tx(1)
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Calculating the secular function and its derivatives

Need to compute

π(λ) ≡ ‖x(λ)‖22 = xT (λ)x(λ) where (A + λI)x(λ) = b

and its derivatives

derivatives x(k)(λ) of x(λ)

(A + λI)x(k) = −kx(k−1)

derivatives π(k)(λ) of π(λ)

π(1) = 2x(1)Tx, π(2) = 6x(1)Tx(1)

. . . π(2k+1) = 2αkx
(k)Tx(k+1), π(2k+2) = αk+1x

(k+1)Tx(k+1)

where αk+1 = 2(2k + 3)αk/(k + 1)
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Calculating the secular function and its derivatives

Need to compute

π(λ) ≡ ‖x(λ)‖22 = xT (λ)x(λ) where (A + λI)x(λ) = b

and its derivatives

derivatives x(k)(λ) of x(λ)

(A + λI)x(1) = −x

derivatives π(k)(λ) of π(λ)

π(1) = 2x(1)Tx, π(2) = 6x(1)Tx(1)

given the Cholesky factorization A + λI = LLT and

Ly(1) = −x, LTx(1) = y(1) =⇒

π(1) = −2‖y(1)‖22, π(2) = 6‖x(1)‖22
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Calculating the secular function and its derivatives

Need to compute

π(λ) ≡ ‖x(λ)‖22 = xT (λ)x(λ) where (A + λI)x(λ) = b

and its derivatives

derivatives x(k)(λ) of x(λ)

(A + λI)x(k) = −kx(k−1)

derivatives π(k)(λ) of π(λ)

π(2k+1) = 2αkx
(k)Tx(k+1), π(2k+2) = αk+1x

(k+1)Tx(k+1)

where αk+1 = 2(2k + 3)αk/(k + 1)

given the Cholesky factorization A + λI = LLT and

Ly(k) = −kx(k−1), LTx(k) = y(k) =⇒

π(2k+1) = −2βk‖y(k)‖22, π(2k+2) = αk+1‖x(k)‖22
where βk = 2αk/(k + 1) and αk+1 = (2k + 3)βk

one triangular solve per order of derivative
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Taylor-series approximations

Let pi(λ) by the ith order Taylor approximation to π(λ) at λc > −λ1 =⇒

p2k+1(λ) underestimates π(λ) for λ > −λ1 for all k

pk(λ) underestimates π(λ) for −λ1 < λ < λc for all k
(G., Robinson, Thorne, 2011)
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Let pi(λ) by the ith order Taylor approximation to π(λ) at λc > −λ1 =⇒

p2k+1(λ) underestimates π(λ) for λ > −λ1 for all k

pk(λ) underestimates π(λ) for −λ1 < λ < λc for all k
(G., Robinson, Thorne, 2011)
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Taylor-series approximations

Let pi(λ) by the ith order Taylor approximation to π(λ) at λc > −λ1 =⇒

p2k+1(λ) underestimates π(λ) for λ > −λ1 for all k

pk(λ) underestimates π(λ) for −λ1 < λ < λc for all k
(G., Robinson, Thorne, 2011)
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Algorithm overview

✲ λ

✻

‖x(λ)‖2
2

0 −λ1 λ∗

N ✲✛ L ✲✛ G

τ
2(λ) = 4λ2

iterate root of p2k+1(λ) = τ2(λ) within L =⇒ globally convergent

with Q-order 2k + 2 (G., Robinson, Thorne, 2011)
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Algorithm overview

✲ λ

✻

‖x(λ)‖2
2

0 −λ1 λ∗

N ✲✛ L ✲✛ G

τ
2(λ) = 4λ2

iterate root of p2k+1(λ) = τ2(λ) within L =⇒ globally convergent

with Q-order 2k + 2 (G., Robinson, Thorne, 2011)

safeguarded bisection to locate L

λ ∈ N ⇐⇒ H + λI 6≻ 0

λ ∈ G when π(λ) < τ2(λ) =⇒ root of pk(λ) = τ2(λ) /∈ G
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Nonlinear transformation

for λ > −λ1: ‖x(λ)‖β2 convex for β > 0, concave for β ∈ [−1, 0)

solve instead ‖x(λ)‖β2 = τβ(λ) (Reinsch, 1971)
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Nonlinear transformation

for λ > −λ1: ‖x(λ)‖β2 convex for β > 0, concave for β ∈ [−1, 0)

solve instead ‖x(λ)‖β2 = τβ(λ) (Reinsch, 1971)
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Clockwise from top left: β = 2, 1,−0.5,−1

Taylor approximation p1(λ) to ‖x(λ)‖β2 for β ≥ −1 underestimates

root for λ ∈ (−λ1, λ∗) (G., Robinson, Thorne, 2011)
SIAM UKIE, UCL, 9th January 2014 – p. 21/24



Solving the implicit problem by iteration

What if factorization of H + λI is not possible?

pick n × k matrices Qk with orthonormal columns

look for approximation to the root x = Qkxk, where

(H + λI)Qkxk(λ) = b and ‖Qkxk(λ)‖2 = τ(λ)
=⇒

(QT
kHQk + λI)xk(λ) = QT

k b and ‖xk(λ)‖2 = τ(λ)
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Solving the implicit problem by iteration

What if factorization of H + λI is not possible?

pick n × k matrices Qk with orthonormal columns

look for approximation to the root x = Qkxk, where

(H + λI)Qkxk(λ) = b and ‖Qkxk(λ)‖2 = τ(λ)
=⇒

(QT
kHQk + λI)xk(λ) = QT

k b and ‖xk(λ)‖2 = τ(λ)

if Qk is generated by the Lanczos method (G., Lucidi, Roma, Toint, 1999)

QT
kHQk = tridiagonal Tk and QT

k b = ‖b‖2e1
(Tk + λI)xk(λ) = ‖b‖2e1 and ‖xk(λ)‖2 = τ(λ)
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What if factorization of H + λI is not possible?
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k b = ‖b‖2e1
(Tk + λI)xk(λ) = ‖b‖2e1 and ‖xk(λ)‖2 = τ(λ)

Cholesky factorization of Tk + λI possible in O(k) flops
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Solving the implicit problem by iteration

What if factorization of H + λI is not possible?

pick n × k matrices Qk with orthonormal columns

look for approximation to the root x = Qkxk, where

(H + λI)Qkxk(λ) = b and ‖Qkxk(λ)‖2 = τ(λ)
=⇒

(QT
kHQk + λI)xk(λ) = QT

k b and ‖xk(λ)‖2 = τ(λ)

if Qk is generated by the Lanczos method (G., Lucidi, Roma, Toint, 1999)

QT
kHQk = tridiagonal Tk and QT

k b = ‖b‖2e1
(Tk + λI)xk(λ) = ‖b‖2e1 and ‖xk(λ)‖2 = τ(λ)

Cholesky factorization of Tk + λI possible in O(k) flops

‖(H + λkI)Qkxk − b‖2 = γke
T
k xk, where γk = (Tk)k,k−1
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Solving the implicit problem by iteration

What if factorization of H + λI is not possible?

pick n × k matrices Qk with orthonormal columns

look for approximation to the root x = Qkxk, where

(H + λI)Qkxk(λ) = b and ‖Qkxk(λ)‖2 = τ(λ)
=⇒

(QT
kHQk + λI)xk(λ) = QT

k b and ‖xk(λ)‖2 = τ(λ)

if Qk is generated by the Lanczos method (G., Lucidi, Roma, Toint, 1999)

QT
kHQk = tridiagonal Tk and QT

k b = ‖b‖2e1
(Tk + λI)xk(λ) = ‖b‖2e1 and ‖xk(λ)‖2 = τ(λ)

Cholesky factorization of Tk + λI possible in O(k) flops

‖(H + λkI)Qkxk − b‖2 = γke
T
k xk, where γk = (Tk)k,k−1

good starting guess for λk+1 from kth problem
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How the secular equation evolves

(Tk + λI)xk(λ) = ‖b‖2e1 and ‖xk(λ)‖2 = τ(λ)
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How the secular equation evolves

(Tk + λI)xk(λ) = ‖b‖2e1 and ‖xk(λ)‖2 = τ(λ)
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How the secular equation evolves

(Tk + λI)xk(λ) = ‖b‖2e1 and ‖xk(λ)‖2 = τ(λ)
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How the secular equation evolves

(Tk + λI)xk(λ) = ‖b‖2e1 and ‖xk(λ)‖2 = τ(λ)
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How the secular equation evolves

(Tk + λI)xk(λ) = ‖b‖2e1 and ‖xk(λ)‖2 = τ(λ)
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How the secular equation evolves

(Tk + λI)xk(λ) = ‖b‖2e1 and ‖xk(λ)‖2 = τ(λ)
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How the secular equation evolves

(Tk + λI)xk(λ) = ‖b‖2e1 and ‖xk(λ)‖2 = τ(λ)
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How the secular equation evolves

(Tk + λI)xk(λ) = ‖b‖2e1 and ‖xk(λ)‖2 = τ(λ)
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How the secular equation evolves
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How the secular equation evolves

(Tk + λI)xk(λ) = ‖b‖2e1 and ‖xk(λ)‖2 = τ(λ)
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How the secular equation evolves

(Tk + λI)xk(λ) = ‖b‖2e1 and ‖xk(λ)‖2 = τ(λ)

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

Iteration k = 12 for trust-region problem (τ(λ) = 1)

SIAM UKIE, UCL, 9th January 2014 – p. 23/24



How the secular equation evolves

(Tk + λI)xk(λ) = ‖b‖2e1 and ‖xk(λ)‖2 = τ(λ)
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How the secular equation evolves

(Tk + λI)xk(λ) = ‖b‖2e1 and ‖xk(λ)‖2 = τ(λ)
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How the secular equation evolves

(Tk + λI)xk(λ) = ‖b‖2e1 and ‖xk(λ)‖2 = τ(λ)
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Conclusions

many important problems involve secular equations

nonlinear transformation of variables and/or equations very useful

high-order methods often pay off

can be solved by either factorization or subspace iteration

future advances to both large-scale linear equation and eigen solvers will

be beneficial

SIAM UKIE, UCL, 9th January 2014 – p. 24/24



Conclusions

many important problems involve secular equations

nonlinear transformation of variables and/or equations very useful

high-order methods often pay off

can be solved by either factorization or subspace iteration

future advances to both large-scale linear equation and eigen solvers will

be beneficial

freely available optimization software as part of GALAHAD

TRS/RQS for direct solution of trust-region/regularization

subproblems (G., Robinson, Thorne, 2011)

GLTR/GLRT for iterative solution of trust-region/regularization

subproblems (G., Lucidi, Roma, Toint, 1999, Cartis, G., Toint, 2011)

LSTR/LSRT/L2RT for iterative solution of trust-region/regularization

of least-squares subproblems (Cartis, G., Toint, 2010)
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