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Abstract

The VDM+B project is developing the underpinnings
for an integration of VDM and B enabling their co-
use within one formal development. In this paper, we
describe the objectives for the project, the approach
being undertaken and the current status of the work.

1 Introduction

VDM]2] and BJ[1] are among the few formal methods
currently in use by industry and supported by com-
mercial tools. Both are model-oriented methods for
the development of sequential systems based on first
order calculi and set theory. Both have a set of proof
rules defined for formal verification and validation.
Both have a formal semantics: for B this is defined in
terms of weakest preconditions, for VDM it is deno-
tational. As yet, neither set of proof rules has been
verified with respect to the semantics.

In earlier studies [10, 6, 12] we have noted that
VDM and B have different focuses: VDM is pri-
marily concerned with high level design and data
refinement, whereas B in practice is most suited
to low level design, algorithm refinement and the
generation of code. We have undertaken applica-
tion experiments and development scenarios to de-
termine the feasibility and potential benefits of het-
erogeneous development: using VDM, supported by
the VDM-toolbox|[24], for early lifecycle specification
and validation activities; and B, supported by the
B-Toolkit[4], for later design and verification tasks.
The VDM+B project is consolidating this work by
developing the formal underpinnings for a combined
method employing VDM and B in heterogeneous de-
velopment.

In this paper, we review the context and motivations
for the VDM+B project, discuss the major issues for
establishing the formal foundation of the integration,
and review current progress and plans for their
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resolution.

Figure 1: The lifecycle identified for heterogeneous
development using VDM and B

2 Context

VDM and B are two of the most industrially used for-
mal methods. Both have been used for a variety of
applications and are supported by commercial toolk-
its. VDM'’s origins lie in the definition of program-
ming language semantics in the 1970s, but it has for
many years been used in systems specification and
development generally[25]. A development of VDM
and Z, Jean-Raymond Abrial originated B whilst at
the Programming Research Group at Oxford Univer-
sity in the early 1980s.

Although VDM and B have the same expressive
power in theory, a comparison undertaken during the
B User Trials project! observed [10] that VDM en-
courages a style of specification where implicit invari-
ants and explicit frames are employed with postcondi-
tions to describe operations as abstractly as possible
whereas the representation of operations with explicit
invariants and implicit frames employed in B encour-

1The B User Trials project (1992-1995) [[ED4/1/2182]
was a collaborative project between RAL, Lloyds Register of
Shipping, Program Validation Limited and the Royal Military
College of Science and played a major part in bringing the B-
Toolkit up to industrial quality. A summary of the project is
in [7].



ages overspecification and the introduction of imple-
mentation bias reducing possible non-determinism.
This difference arises from the different focus of the
two methods and has led to the development of dif-
ferent functionality in the supported forms of the
methods. The first project to bring VDM and B
together to exploit their different strengths was the
MaFMeth?. which assessed a methodology covering
the whole life cycle combining the use of VDM for
early development with B for refinement and code
generation, the development lifecycle depicted in Fig-
ure 1. The project demonstrated the commercial via-
bility of the use of formal methods by collecting quan-
titative evidence of the benefits in terms of both fewer
faults made in development and their earlier detec-
tion. The translation between notations was how-
ever conducted informally and the results show that
this translation was error prone, not only because
of its manual nature but also because of the lack of
clarity in the correspondence between the notations.
However, it was found that animation, test case gen-
eration and proof are all cost-effective ways to find
faults in formal texts [6]. The Spectrum project® was
a feasibility study into the commercial viability of
integrating the VDM-Toolbox and B-Toolkit. The
evaluation was being undertaken from three perspec-
tives: the industrial benefit of using the combined
tool, the technical feasibility of the combination of
the two tools and the commercial case for the devel-
opment, of a combined tool. The project developed
heuristic methods for systematic transformation be-
tween specifications in VDM and B which could form
the basis of machine support[9]. However, within the
feasiblity study there was little scope for the research
necessary to unify the two methodologies in terms of
their underlying semantics and proof rules.

3 Issues

In recognition of the pragmatic nature of the ear-
lier approaches to heterogeneous development using
VDM and B, the VDM +B* project aims to establish
a formal foundation of heterogeneous development in
VDM and B. In this section we discuss some issues
relevant to this objective.

The core elements of the two languages are very sim-

2The MaFMeth project (1994-1995) [EC ESSI 1061] be-
tween Bull SA, B-Core UK Ltd, and RAL. A summary of the
key results of the project is in [6].

3The Spectrum project (1997) [EC ESPRIT 23173] be-
tween RAL, GEC Marconi Avionics, Dassault Electronique,
Space Science Italia, CEA, IFAD and B-Core UK Ltd [9].

“The integration of two industrially relevant formal
methods. (VDM+B) (1998-2001) [EPSRC GR/L68452 and
GR/L68445] between RAL and Imperial College London

ilar. Both expression languages are based on sets,
sequences, tuples and relations. Both define abstract
machines in terms of state, invariant and operations.
Both have explicit preconditions for operations. How-
ever, VDM defines state transitions via relational
postconditions, whereas B uses generalised substitu-
tions. Both languages have formal semantics. For B,
this is given by Abrial [1] in terms of weakest precon-
ditions. For VDM, it is denotational [2]. A transla-
tion between these two forms is given in [1]; however,
for our purposes this needs to be extended to cover a
wider class of expressions.

An obvious point of concern is the foundational differ-
ences in the languages. VDM is based on the 3-valued
Logic of Partial Functions (LPF) whereas B is based
on classical First Order Predicate Calculus. Work
on developing proof support for VDM [3] has shown
that in a framework with dependent types, such as
PVS [31], most specifications which employ partial
functions for their expressivity can be directly trans-
lated to functions which are total over a subdomain.
The remaining uses of partiality represent a particu-
lar form of lazy concurrent disjunction which is built
into LPF but not available in B.

Although the two notations are founded on a differ-
ent logic, the proof rules in the B-Toolkit do have
a flavour more akin to those of VDM where typing
hypotheses are used as guards to the expression con-
struct introduction and elimination rules.

Both languages have a comprehensive set of proof
rules defined and supported. For B, they are defined
in [1] and built into the B-Toolkit. For VDM, they
were developed in the Mural system[11] and pub-
lished in [8].

In the absence of a standard form for proofs that
would enable proofs developed in one system to be
checked with another, it is important for the certifi-
cation of formal developments to be able to “second
source” the theorem proving capability. This will al-
low proof support to be developed in a number of
systems and contribute to the certification of theo-
rem proving capability for use in safety critical sys-
tems. Current support for the languages has not been
certified in this way.

A further area of difference is higher level modular
structuring. Several approaches to modularisastion
exist for VDM. The VDM standard language, VDM-
SL, has no structuring mechanism although a form
of modularisation is given as an informative annex.
The IFAD VDM Toolbox supports a simple form of
modules and VDM++ [27] has an object-oriented no-
tion of structuring based on classes. On the other
hand, the ability to incrementally present a specifi-
cation is central to B where implementations can be



constructed in a structured way by composing imple-
mentations of separate components [29].

Thus transformations between structured specifica-
tions in the two formalisms should, in some sense,
preserve the locality of information. For example,
in moving from a single module of VDM where the
structure is based around a hierarchical definition of
record types, we would hope to achieve a B specifica-
tion which used machines to mirror the structure of
the records. The danger is that in “coding up” such a
complex refinement into the translation we put at risk
the soundness of the translation. One possible ap-
proach [29] is for the translation to result in two lev-
els of B specification and a refinement between them.
In this way the translation is kept simple, whilst the
complexity of the refinement is localised within the
one formalism and hence more amenable to verifica-
tiomn.

4 Progress to date

To date, attention has been focused on underpining
the co-use of VDM and B by the application of a gen-
eral framework for integrating heterogeneous logics.
Macroscopically, our approach to the integration of
support for VDM and B, or indeed various other for-
mal notations, can be divided into three interdepen-
dent steps: (1) Specifying the intended interrelations
at the syntactical level of the formal notation. (2) Es-
tablishing compatible interrelations between the ax-
iomatic (logical) semantics and between the denota-
tional semantics of the formal notations. (3) Inte-
grating the consequence systems that accommodate
the axiomatic (logical) semantics of the interrelated
formal notations into one compound consequence sys-
tem. This integration should locally conserve each en-
tailment, and keep proof and denotational semantics
distinct and local to each component.

Investigations for stage 1, designing (partial) transla-
tions between the VDM and B notations, have been
conducted in the Spectrum and MaFMeth projects.
(See [12, 29, 6].) In the current project, we have
focussed on developing sound logical and mathemat-
ical foundations for steps 2 and 3, providing a “uni-
fying” framework for formally presenting the logi-
cal (axiomatic) semantics of formal notations, and
a method to synthesise the integrated logical (ax-
iomatic) semantics. The main idea of the latter is,
on the one hand, to produce a common logical frame-
work where each formal notation can be faithfully in-
terpreted and, on the other hand, to reuse the proof
calculi and denotational semantics of each formal no-
tation and hence avoid (re)building those for the inte-
grated system. As far as proof support is concerned,
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Figure 2: A pictorial overiview of our approach to the
integration of support for VDM and B.

in particular, we do not intend to replace the purpose-
built proof support of the existing tools with a more
complex (and probably less efficient) general purpose
theorem prover that could be used by all components.
Our intention s to build a compound logical system
which can accommodate the existing axiomatic se-
mantics for all the component notations, and hence
support their interoperability, while keeping proof
(and denotational semantics) distributed and localised
to each component. Of course, the mathematically
sound and pragmatically meaningful integration of
the components’ entailments also depends on the cor-
rect interrelation of the components’ (denotational)
semantics and affects the interoperability of the asso-
ciated proof mechanisms.

In our study of the problem of integrating hetero-
geneous formal notations with emphasis on the inte-
gration of the axiomatic (logical) semantics, we have
blended together concepts and methods from formal
logic, categorical algebra and institution theory. We
use Meseguer’s General Logics [30] as a “unifying”
presentation of the logical (axiomatic) and the deno-
tational semantics of a formal notation, related via
a soundness condition. We also use from [14] the
concept of a non-plain mapping of Logics (which is a
slight adaptation of Meseguer’s “(simple) map of log-
ics” in [30]) as the basic correctness preserving means
of relating Logics.®

The semantics of a formal notation, such as VDM or
B, is expressed in a logic. First of all, the grammar

5A map of Logics encodes a correctness preserving covariant
interpretation of the entailment component of the source Logic
into the target Logic coupled with a contravariant mapping at
the model level. A non-plain map of Logics relativises these
interpretations to the area bounded by a family of structural
azioms.



of the logic is used to specify the built-in types and
operations of the formal notation and to interpret the
user defined types and operations. Secondly, the en-
tailment (logical consequence) of the logic provides
the basis for describing the axiomatic semantics of
the specifications and for proving theorems entailed
by the specifications with respect to this axiomatic se-
mantics. Finally, the models of the logic provide the
structures on top of which the denotational seman-
tics of the formal notation are defined. The interrela-
tion of formal notations is grounded oun the interrela-
tion of the underlying logics describing their seman-
tics. In particular, the logical (axiomatic) semantics
of a VDM specificaton is provided by an LPF-theory
which is a consistent extension of the join (colimit) of
the LPF-theories describing the basic types, type con-
structions and operations of the specification. Anal-
ogously the axiomatic semantics of a B specification
are provided by a theory in classical logic which is a
consistent extension of the join (colimit) of the the-
ories describing the abstract machine structure and
the types and operations of the B specification. In
general, the logical semantics of VDM specifications
are provided by the colimit objects (theories) of finite
diagrams in the finitely cocomplete category of LPF
theory presentations while the logical semantics of B
specifciations are provided by the colimit objects of
finite diagrams in the finitely cocomplete category of
first order specifications.

One significant difference of (non-plain) maps of log-
ics compared to other approaches to relating logi-
cal consequence systems or satisfaction systems, is
that a map of logics correlates each signature 3 in
the source logic with a theory presentation £(X) =
(£42(2), £ (2)) in the target logic — instead of just a
signaturein the target logic, as is common in the liter-
ature®. In many applications of formal logic in infor-
mation systems engineering, plain morphisms which
map signatures to signatures are not flexible enough.
It is often necessary to map built-in elements of one
logic into explicitly specified (sometimes precisely de-
fined) elements of another logic. The (non-plain)
maps of logic overcome such problems by support-
ing the interpretation of theorems over a signature 3
of the source logic into theorems over the correspond-
ing signature £*) () in the target logic with a set of
structural azioms £(% (X)) in the language of £{3)(X).
These structural axioms assist in interpreting some
features of the source consequence that can be speci-
fied in the target logic but not simulated directly by
the target consequence.

Intuitively, this form of correctness preservation
states that the translation of a theorem proved in the

6See [28] for a comparison of various mappings between
Institutions, and further references.

source logic A results in a lemma in the target logic
B, and can be therefore used for proving theorems
in B, only when some explicitly specified structural
conditions hold. In fact, this weaker version of cor-
rectness preservation again appears to be an instance
of a more general conditional correctness preservation
property, another instance of which was observed by
Fiadeiro and Maibaum in [21] and [19] while build-
ing calculi to support concurrent and object-oriented
system specifications. This analogy is further empha-
sised in [13] where we show why, where and when the
structural axioms that support interrelating a collec-
tion of logics are “internalised” into locality axioms
which support formal reasoning inside the integrated
logic. (See also Appendix D. of [14] for a more de-
tailed technical analysis.)

Using the above described framework, we have mod-
elled in [13] the interpretation of LPF into classical
(infinitary) logic introduced by Jones and Middelburg
in [26] to provide an indicative example of an inter-
esting non-plain mapping of Logics. We have also
studied a general method for integrating a collection
of interrelated Entailment Systems, the logical conse-
quence oriented component of Logics. This method is
presented in [13]. It is related to the “fattening” of
indexed categories analysed by Tarlecki, Goguen and
Burstall in [37] and extends a method that was first
introduced in [14] using the Grothendieck construc-
tion [23, 5] in an essential way.

The basic advantages of this method for the correct-
ness preserving integration of the logical semantics of
inter-dependent specification formalisms include the
following: a compound consequence system is pro-
duced which can accommodate the axiomatic seman-
tics of each component formalism; remote interentail-
ment reasoning along non-plain mappings is trans-
formed into internal reasoning along language trans-
lations; the grammar and the entailment underpin-
ning the axiomatic semantics of each component for-
malism are locally conserved in the result of the in-
tegration; hence, (i) the existing proof support for
each component formalism can be reused; (ii) the
denotational semantics for each component formal-
ism are not affected by the integration and they can
be reused; (iii) theorems proved in one formalism X
can be used as lemmata in a proof conducted in a
compatible signature of an interrelated formalism Y,
provided that the corresponding locality (structural)
axioms are satisfied. In particular, to keep the proofs
local and distributed to each component while facili-
tating the interoperability of the proof support in the
integrated system, seems to be an advantageous alter-
native to redesigning a more complex, and probably
less efficient, proof calculus for the compound system.
A detailed description of this method is given in [13].



Another interesting outcome of this research has been
to provide a sufficiently clear basis for explaining why,
where and when the structural axioms, that may as-
sist in interpreting built-in elements of a “source”
logic into explicitly specified artefacts over a “tar-
get” logic, give rise to locality azioms that assist in
logical reasoning along language translations inside
the integrated Entailment System. We are currently
analysing the pragmatic impact of these results and
investigating how this can be applied to assist the in-
tegration of tool support for interrelated formal no-
tations. We focus on how we intend to apply this
method to facilitate the co-use of existing support for
the VDM and B formal methods over an integrated
axiomatic semantics.

5 Conclusion

This project has been investigating the formal un-
derpining of the co-use of interrelated heterogeneous
specification formalisms. We have blended together
concepts and methods from specification theory, for-
mal logic and categorical algebra in order to: intro-
duce an abstract mathematical framework for uni-
formly presenting the axiomatic and denotational se-
mantics of specification formalisms, and interrelating
such presentations by means of correctness preserving
mappings; provide a general method for integrating
the heterogeneous consequence systems that accom-
modate the axiomatic semantics of interrelated spec-
ification formalisms; and to explain why and when
the integrated consequence system may need the ad-
ditional support of structural axioms in order to sup-
port multilogical reasoning.

It is important to stress that our intention has not
been to blend selected features of different formalisms
into a new single formalisin, but to develop a unifying
framework for integrating heterogeneous formalisms
into one compound formalism with respect to the
structure of the component entailments and the (ex-
plicitly specified) interpretations between them.

Future work in this project will continue this devel-
opment and also address the other issues outlined in
section 3.

With respect to proof support, we believe that the
integrated axiomatic semantics should enable the in-
terpretations of VDM and B to be expressed as seper-
ate modules within one supporting system. The in-
termodular translations and the associated locality
axioms would then be realised by a third interfacing
module.

With respect to structuring, we plan to interpret a
structured specification as a diagram in the category

[S24

of theory presentations over the logic that is used
Different structuring
mechanisis give rise to distinctly shaped diagrams of

for the axiomatic semantics.

theory presentations with different types of theorem
preserving morphisms as arcs. Under some generally
weak assumptions, theory presentation diagrams can
also be treated as formal objects in a (functor) cat-
egory, which are related to each other by diagram
morphisms built from compatible families of theory
presentation morphisms[35] equipped with a notion
of parallel composition which facilitates the orthogo-
nally modular horizontal and vertical refinement and
structuring of complex specifications.”  Somewhat
similar diagrammatic specifications can also be used
for describing the structured theories of Maude [17].
In fact, Durdn and Meseguer have recently proposed
in [18] a method to construct an Institution S(Z)
on top of an Institution I, such that structured Z-
theories are treated as ordinary theories of S(7). We
intend to investigate the applicability of this frame-
work in our work. Also the use of parametric theory
presentation diagrams, originally proposed by Dimi-
trakos in [15, 14] and more recenlty extended by Dim-
itrakos and Maibaum in [16], supports the incremen-
tal construction of complex parameter specifications
from simpler modules. It allows the explicit specifi-
cation of special relations between the possibly inter-
connected, but yet individually distinct, constituent
specification modules of the parameter and the body
specification. The ability to induce an instantiation
from a compatible family of parallel morphisms re-
duces the instantiation effort: the instantiation of a
complex parameter is decomposed to a family of sim-
pler parallel morphisms from the constituents of the
parameter. It also provides the basis for synthesis-
ing the instantiation of a complex parameter from
the instantiations of its constituent modules, and it
facilitates the compatible instantiation of nested pa-
rameterisations. In recognition of the fact that this
is a more problematic aspect of both formalisms, we
hope that this approach may contribute to the devel-
opment of elegant and useful structuring mechanisms
for both formalisms.

In recent years there is an increasing recognition of
the fact that no single formalism is likely to be best
suited to all formal development tasks, just as no
single programming language is ideal for all applica-
tions [36, 32, 33]. Our overarching aim in this project
is to integrate useful formalisms without necessitat-
ing the abandonment of existing methods and tools.

"Diagrammatic presentations and diagram morphisins
based on compatible families of parallel theory interpretations
have been successfully applied in state-of-the art formal soft-
ware development environments such as SPECWARE [34] built
at Kestrel Institute, California.
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