Triple store evaluation

Vasily Bunakov, STFC

EUDAT MetaData TaskForce meeting Amsterdam, 13-15 January 2014

Test environment

- 3k records harvested from eudat-jmd.dkrz.de
 = about 100k RDF triples
- Scaled up to 600k EUDAT-like records = 20M RDF triples
- Uploaded in Jena TDB triple store: a part of an open source Java framework <u>http://jena.apache.org</u>

Ingest productivity

for 600K EUDAT-like records resulted in 20M RDF triples = 3Gb RDF graph

	Laptop 2 Gb	Desktop 2 Gb	Desktop 4Gb
Upload time for the whole set, sec	2018	2741	729
Upload rate, RDF triples / catalogue records per sec	1056 / 311	7403 / 229	27842 / 862

Laptop 2Gb = Ubuntu (64 bit) 2Gb VM on Intel Core i3 2.2GHz Desktop 2 Gb = Ubuntu (64 bit) 2Gb VM on Intel Core i5 3.3GHz Desktop 4 Gb = Ubuntu (64 bit) 4Gb VM on Intel Core i3 3.3GHz

Requests productivity

	Laptop 2 Gb	Desktop 2 Gb	Desktop 4Gb
Count languages ordered by their names, sec	48.5	2.5	2.5
Count languages ordered by their popularity, sec	47.9	2.6	2.4
(unordered) Retrieve first 20 records associated with a specific language, sec	0.1	0.05	0.05
(ordered by title) Retrieve first 20 records associated with a specific language, sec	42	2.6	2.3

Effect of Jena TDB optimizer

	Laptop 2 Gb no optimizer	Laptop 2 Gb with optimizer	Desktop 2 Gb no optimizer
Count languages ordered by their names, sec	48.5	3.7	2.5
Count languages ordered by their popularity, sec	47.9	3.5	2.6
(unordered) Retrieve first 20 records associated with a specific language, sec	0.1	0.1	0.05
(ordered by title) Retrieve first 20 records associated with a specific language, sec	42	3.4	2.6

RDF advantages

- High data portability
- High interoperability (on data level)
- Potential for integration with various data and reference material
- Scalability on logical level
- Scalability on physical level

Possible technology stack

Blue: tried out components

Grey: to be considered

TDB comparison to other triple stores (as per <u>Berlin SPARQL Benchmark</u>)

	100M	200M	1B
BigData	12512.278	10059.940	-
BigOwlim	14029.453	9170.083	1669.899
TDB	15381.857	10573.858	-
Virtuoso6	37678.319	32969.006	8984.789
Virtuoso7	47178.820	-	27933.682

Queries per hour; the larger number means better performance

Testing was done in April 2013 on the cluster of 8 machines as the following: 2 x Intel(R) Xeon(R) CPU E5-2650, 2.00GHz (8 cores & hyperthreading), memory 256GB

Suggestions

- Keep using CKAN as current MD catalogue and as a producer of RDF data
- As an experimental service, offer triple store and a few normalized vocabularies such as locations or languages (along with CKAN)
- Continue scalability experiments
- Develop basic GUI atop of triple store

Thank you!

