On the efficient scaling of sparse
symmetric matrices using an auction
algorithm

JD Hogg, JA Scott

February 2014

Submitted for publication in Numerical Linear Algebra with Applications

RAL Library

STFC Rutherford Appleton Laboratory
R61

Harwell Oxford

Didcot

0OX11 0QX

Tel: +44(0)1235 445384
Fax: +44(0)1235 446403
email: libraryral@stfc.ac.uk

Science and Technology Facilities Council preprints are available online
at: http://epubs.stfc.ac.uk

ISSN 1361- 4762

Neither the Council nor the Laboratory accept any responsibility for
loss or damage arising from the use of information contained in any of
their reports or in any communication about their tests or
investigations.

mailto:libraryral@stfc.ac.uk�
http://epubs.stfc.ac.uk/�

On the efficient scaling of sparse symmetric matrices
using an auction algorithm

Jonathan Hogg and Jennifer Scott
January 28, 2014

Abstract

The well-known HSL software package MC64 is a powerful tool for scaling sparse matrices prior to
the application of direct and iterative methods to solve linear systems Ax = b. It computes a scaling
by using the Hungarian algorithm to solve the maximum weight maximum cardinality matching prob-
lem. However, with the parallelization of the factorization and solve phases of direct solvers, the serial
Hungarian algorithm can represent an unacceptably large proportion of the total solution time for such
solvers.

Recently, auction algorithms and approximation algorithms have been suggested as alternatives for
achieving near-optimal solutions for the maximum weight maximum cardinality matching problem. In
this paper, the efficacy of auction and approximation algorithms as replacements for the Hungarian
algorithm is assessed in the context of sparse symmetric direct solvers when used on problems arising
from a range of practical applications. High cardinality sub-optimal matchings are shown to be as effective
as optimal matchings for the purposes of scaling. However, a higher degree of optimality is required to
effectively use matching-based ordering techniques. The auction algorithm is demonstrated to be capable
of finding such matchings significantly faster than the Hungarian algorithm, but the 1/2-approximation
matching fails to consistently achieve a sufficient cardinality.

1 Introduction
Our aim is to efficiently solve the large sparse linear system
Ax =b.

Our main interest is the use of direct solvers when A is symmetric indefinite. In this case, it is necessary to
incorporate numerical pivoting to maintain stability. This can mean that the pivot sequence chosen during
the analyse phase on the basis of sparsity has to be modified as the numerical factorization proceeds. In
particular, some pivots have to be delayed until they satisfy the stability criteria. Our recent studies [13, 17]
demonstrate that the number of delayed pivots provides a good predictor of the effectiveness of a scaling at
reducing the wall clock time for the factorization. This is because the number of delayed pivots corresponds
to the amount of additional work performed due to the requirements for numerical pivoting. Our work also
demonstrates that, for tough indefinite problems, the widely-used MC64 scaling algorithm [8] is particularly
effective compared to other scalings and techniques tested.

MC64 seeks to find an ordering such that the product of the entries on the diagonal of the reordered
matrix is maximized. The problem is only well defined if a permutation exists such that the diagonal is
zero-free, however the degenerate case can also be treated, see for example our recent work [16]. Stated
mathematically, given a sparse matrix A = {a;;}, we associate a bipartite graph having vertex sets V., V.
corresponding to the rows and columns, and an edge (¢,j) € E joining row ¢ to column j if a;; is nonzero.
An edge subset M C FE is called a matching if no two edges in M are incident to the same vertex. We seek
a matching M of the row vertices to the column vertices such that the cardinality | M| is maximized and
the product of the entries |a;;| for each edge in the matching is maximized. If o is an indicator function

such that o;; = 1 if edge (4,7) € M and is zero otherwise, then we aim to solve the following problem:

max H \aij|0ij (11)

(i)EE
st Y oy=1, VieV, (1.2)
JEVe
Y oy=1 VjeV, (1.3)
i€V
035 € {0, 1}. (14)

The MC64 algorithm applies a transformation to a;; to give an associated (positive) edge weight
wij = logc; —log|aij|, (1.5)

where ¢; = max; |a;;|. The maximization in (1.1) is then equivalent to

min Z W;j045 (16)

(1,7)€EE

By way of a sign change, this is classified as a maximum weight maximum cardinality matching problem
(also known as an assignment problem). In MC64, this is solved using the Hungarian algorithm [18]. From
standard theory, at optimality the following conditions are satisfied for some row and column dual variables
u and v:

Wij — U — Vj =0, V(L]) EM, (17)

wi; — u; — v >0, otherwise. (1.8)

The matching M provides a permutation that, in the unsymmetric case, can be used to achieve a zero-
free diagonal with large entries. In the symmetric case it can be used to permute large entries on to the
subdiagonal [9, 11, 24, 25]. The dual variables u and v can be used to calculate a scaling as follows. Define
the diagonal scaling matrices D,., D, and S with diagonal entries

& = expluy),

dj = exp(v; —¢j),
Si = 4/ d:df

Then D1 AD; is such that the largest entry in each row and column is exactly one and all other entries are
less than or equal to one. If A is symmetric, SAS has the same property. The permutation and scaling can
be used independently if required, and it is especially common in the symmetric case to use only the scaling.

There are two potential problems with MC64: (i) the run time is hard to predict and can vary significantly
when the data is permuted; and (ii) an application of MC64 can represent a significant fraction of the total
factorization time when using a direct solver, particularly when the solver is run in parallel (see Table 4.5 in
Section 4). The latter point is compounded by Amdahl’s Law, as MC64 is a serial code whilst the factorization
obtains good parallel speedups on a modest number of cores. The main issue lies with the Hungarian
algorithm that MC64 uses to solve the assignment problem. This seeks optimal augmenting paths through
the matrix from an unmatched row to an unmatched column. In those cases where performance is poor it
is because of the need to scan a significant portion of the entire matrix while proving optimality for each
augmenting path.

We note that it may be possible to parallelize the Hungarian algorithm using similar techniques to those
used for the unweighted case [2, 7]. However, we expect the speedups to be significantly more limited because
at each stage optimal independent augmenting paths must be found, whereas in the unweighted case any
augmenting path will do.

In this paper, we relax the requirement for a maximum cardinality matching to allow us to use algorithms
that deliver near-optimal results in weight and cardinality. The solution hence does not provide the zero-free
diagonal often desired by unsymmetric solvers, but does allow the majority of large entries to be permuted
to the subdiagonal for symmetric matrices and, as we shall demonstrate, still provides a high quality scaling
for most of our test matrices which are taken from practical applications.

The main contribution of this paper is a comparison of the performance and effectiveness of two alternative
algorithms for the relaxed maximum weight maximum cardinality matching problem with that of the MC64
implementation of the Hungarian algorithm when the resulting scaling is used prior to the factorization of
sparse symmetric matrices. These alternatives are an auction algorithm and a %—approximation algorithm.
Both solve the problem approximately whilst claiming to offer significantly better parallel speedups than
the Hungarian algorithm for large problems [12, 23]. We assess performance in terms of time to find the
matching and its effectiveness when used as a scaling and/or ordering heuristic for a sparse direct symmetric
linear solver.

The remainder of this paper is laid out as follows. In Section 2, we describe the auction algorithm
and associated work; both serial and parallel versions are discussed. Then, in Section 3, we describe the
approximation algorithm. Section 4 provides a comparison of the effectiveness of these algorithms, both
in terms of performance and numerical improvement to the scaled matrix; comparisons are made with the

Hungarian algorithm. Finally, in Section 5, our conclusions are presented.

2 The Auction Algorithm

The auction algorithm for the maximum weight matching problem was first proposed by Bertsekas [3] and
since then has been studied in a number of papers, including [4, 5, 22]. Most recently, Sathe et al. [23]
showed that the algorithm can quickly find high quality matchings and is readily parallelizable.

The auction algorithm solves the following maximum weight matching problem

max Z W;j045 (21)

(i,j)€E

st. Y o<1, VieV, (2.2)
JEVe
Y oy<l, VeV (2.3)
i€V,
055 € {0, 1} (24)

To transform (1.1) to (2.1), in place of (1.5), we use the related transformation
w;; = a+ loglai;| + (a — ¢), (2.5)

where ¢; = max; log|a;;| and o = max; j{c; —log|a;;|}. The transformation log |a;;| + (a — ¢;) is sufficient
to transform the maximum product into a scaled maximum sum over positive weights. The extra a term
transforms the objective from a maximum weight to maximum weight maximum cardinality because « is
greater than each individual log |a;; |4+ (a—c;) term, only a maximum cardinality solution can be optimal (this
trick has been used by other authors previously, for example in LEDA [20]). A corresponding unsymmetric
scaling of A is then given by

a = expla—w)

d; = exp(a—uv;—cj),

which can again be symmetrized using

S; =/ d:df

For each nonzero entry a;; of A, w;; —u; is the increase in the objective obtained by augmenting M with
(i,7), displacing any edge currently in M that contains row ¢ or column j. The auction algorithm starts
with the row dual variables, u = {u;}, initialised to zero and proceeds by scanning each unmatched column
7 to find the row index i such that

1= arg max {wr; —uk}.

If wi; —u; > 0, column j “bids” for row i. The highest bid for row ¢ wins, say in column j;, the matching
M is augmented by adding the edge (7, ;1) and any column previously matched with row 4 is returned to
the pool of unmatched columns. The dual variable u; is updated to be the cost of using the second best
row: that is, u; is the (first order) reduction in the objective if j; was not matched to i. For this reason, the
dual vector w is also referred to in some contexts as the vector of “reduced costs”. By adding € > 0 to u;, a
minimum increase in the objective can optionally be required. This accelerates convergence of the algorithm
by ignoring opportunities for trivial improvement. € is chosen to be small but much larger than machine
precision and it is increased as the algorithm proceeds.

We note that for the serial algorithm, the (average) number of iterations and cost per iteration can be
reduced by treating every bid as immediately winning. This reduces the cost per iteration, as there is no
longer the need to determine the highest bid (each bid wins) and the data needed for the resulting update
are already in cache. Further, if a bid by column j for row ¢ wins immediately, any existing k£ such that
(i, k) € M becomes available for rematching in the current iteration.

We have implemented both the serial and OpenMP versions of the auction algorithm, which we outline as
Algorithms 1 and 2, respectively. The serial algorithm declares a bid to have won immediately (as previously
described), whilst the parallel version must split the work into separate bid generation and reconciliation
phases, as bids must now be communicated between threads. As the process is memory bound, this additional
phase essentially doubles the time, so significant speedup is required for the parallel code to outperform the
serial code.

The termination conditions for both algorithms are the same, and the basis for these is illustrated in
Figures 2.1 and 2.2. These show the convergence of the serial auction algorithm for two symmetric problems
taken from our test set (see Section 4 for details) that are chosen to demonstrate typical behaviour (one
converges almost immediately while the other takes a substantial number of iterations). We define the
effectiveness of a matching M as the reduction in the number of delayed pivots compared to the reduction
for an optimal matching M™* calculated using MC64. That is, we use the following formula

delay , — ndela;
Yoeffectiveness = 100 x ndelayy — ndelayam

ndelay, — ndelay .’

where ndelay is the number of delayed pivots and ¢ is the empty set and denotes no scaling. The figures
demonstrate that | M| and the effectiveness of the matching do not correlate well. However, in all our tests
we observed that a matching of high cardinality was sufficient to achieve high effectiveness (but we could
stop much earlier in some cases). With the further observation that later iterations are much cheaper than
earlier iterations as they involve many fewer unmatched columns, convergence to a high cardinality matching
is a good stopping criterion.

Our preliminary experiments showed the quality of the matching to be sensitive to the choice of € at each
iteration. The strategy described in the algorithms is based on one used by Sathe et al. [23] (which differs
by initializing € = 16/(n + 1)) and was found to be effective.

Finally, the question arises as to the scaling to apply to unmatched rows and columns. We first comment
that the transform (2.5) can lead to large entries in D, and small entries in D, that (by construction) cancel
to give a moderate scaling of A. However, this prevents us from merely working in the a;; space and choosing
u = 0 or v = 0 for unmatched rows or columns: if the unmatched row contains an entry in a matched column
(or vice versa) it ends up very poorly scaled. Thus, values for unmatched rows and columns must be specified
in w;; space and transformed back to a;; space.

We observe that the pval = w;; — u; value calculated most recently for a column j makes a good guess
for v;, as it corresponds to the value of the dual variable for a recent trial matching. Each column has such

Algorithm 1 Serial auction algorithm

Input: Size n, positive weights w;;, iteration limit maxitr
Output: Matching M, dual variables u
Initialise: M = ¢; u =0; ¢ = 0.01
for itr = 1, maxitr do
if (terminate()) exit
e =min(1.0,e + 1/(n + 1))
for each unmatched column j that is not unmatchable do
Find ¢ = argmaxy {wy; — ux}, pval = w;; — u; and qual = maxy.; {wg; — uk}
if (pval > 0) then
! Bid for row i and win immediately
u; = u; + pval — qual + €
Add (i,7) to M
f ((i,k) € M for some k) mark k£ as unmatched and remove (i, k) from M
else
! No bid is worthwhile
Mark column j as unmatchable
end if
end for
end for

terminate(): ! Returns true if algorithm should terminate

if (JM| = n) return true

if (JM| unchanged for 10 iterations and |[M|/n > 0.9) return true
if (JM| unchanged for 100 iterations) return true

return false

number of delays

Figure 2.1: Convergence behaviour of the serial auction algorithm on the Schenk IBMNA /c-62 matrix.

1000000 100% 0.01
0 matche:
number of delays -----_{ gg9 0.009
- 80% 0.008
100000
- 70% 0.007
- 60% 0.006
=
10000 50% 5 0.005
b4
4 40% ' 0.004
4 30% 0.003 { _
1000
------------------------------------- - 20% 0.002 |- -
{0 oot i daged = |
% effective -----
100 1 1 1 1 0% 0 1 1 1 1
0 10 20 30 40 50 0 10 20 30 40
iteration iteration

50

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Algorithm 2 Parallel auction algorithm

Input: Size n, positive weights w;;, iteration limit mazitr
Output: Matching M, dual variables u
Running on P threads, DEFAULT (private), SHARED (n, w;;, mazitr, M)
Initialise: M = ¢; u =0; € = 0.01
Partition the columns equally between the threads
for itr = 1, mazitr do
if (terminate()) exit
e =min(1.0,e +1/(n + 1))
generate_bids()
—BARRIER—
determine_winners()
—BARRIER—
Reassign columns so that each thread has approximately (n — |M|)/P columns
end for

generate_bids():
for each unmatched column j owned by this thread do
Find ¢ = arg maxg{wg; — ug}, pral = w;; — u; and qual = maxyz; {wk; — uk}
if (pval > 0) then
u; = u; + pval — qual + €
Delete any existing bid by this thread for 1.
Record bid (i, 5) and w;.
end if
end for

determine_winners():
for all rows ¢ do
Find highest bid (¢, j) with value pval among all threads
Add (i,7) to M
if((i, k) € M for some k) mark k as unmatched and remove (i, k) from M
Update local u; = pval
end for

number of delays

Figure 2.2: Convergence behaviour of the serial auction algorithm on the GHS_indef/ncvxqp5 matrix.

1000000 T T 100% 0.18 T
F % matched —— [T T
number of delays ----- 4 90% 016 L7 e 2
1 s0% 0.14 §
d 70% u

% 0.12 | ,'
- 60% ’f -
Z 01 F
100000 - 50% 5 E
F g 008 |
\ - 40% B
N 0.06 |-
Y - 30% -
N 1 20w 004 | |
\\
N L Time elapsed -------
e - 10% 0.02 % matched —— 7
N e] ; % effective -----
10000 L L L L 0% 0k L L L L
0 100 200 300 400 500 0 100 200 300 400

iteration iteration

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%
0%

a pual calculated at least once during the execution of the algorithm (unless the column is empty, in which
case its scaling is irrelevant). However, storing this value creates additional memory traffic that may not be
desirable, particularly in the parallel case where false sharing may be an issue (v; can always be calculated
during post processing for matched columns). Regardless, u; for unmatched rows cannot be found as a
side-effect of execution in this fashion. We found that most reasonable values for such dual variables work,
but for simplicity our code initialises u; = 0 and v; = max; w;; (note that we found u; = 0,v; = 0 performed
considerably less well in our tests).

3 The Approximation Algorithm

We start with some definitions that we require in our description of the approximation algorithm. We assume
that all edge weights w;; are positive and define W(M) = Z(i,j)eM w;; be the total weight of a matching
M for a graph G. Let M™* be an optimal matching, then an a-approximation matching algorithm is defined
to be a matching algorithm that guarantees to find M such that W(M) > oW (M*). An edge (i,7) of G
with weight w;; is defined to be locally dominant if arg maxy, {wy;} = arg maxy, {wg; } = w;;.

The greedy approach of Avis [1] provides a simple %—approximation algorithm. This matches the heaviest
edges in decreasing order if they are locally dominant (this is roughly equivalent to a single round of the
auction algorithm). In this paper, we use the more advanced parallel implementation of Halappanavar et
al. [12]. Rather than the sorting-based approach of Avis, a queue-based mechanism is used, as originally
proposed by Preis [21]. The central concept is that, at each iteration, locally dominant edges are added to the
matching; the matched edges and their vertices are removed and the resulting reduced graph is considered
at the next iteration. The algorithm is outlined as Algorithm 3. Here adj(j) denotes the set of vertices that
are neighbours of the vertex j.

The algorithm has two phases. In the first, a list of the locally dominant edges in G is made. This is
done in parallel by passing through the graph data twice. On the first pass, for each vertex j the neighbour
p; that maximises wy; is found (ties are broken by taking the lowest such p;). The edge (j,p;) is held as the
candidate locally dominant edge for vertex j. A second pass confirms whether a candidate edge is a locally
dominant edge by checking if p,, = j. Each locally dominant edge (j, p;) is added to the matching, and the
vertex j is added to the list Q of vertices to be removed from G for the next iteration. Observe that k = p;
will be added to this list when vertex k is processed.

The second phase of the algorithm consists of a number of iterations, each of which removes vertices
from G and, for each remaining vertex i that is a neighbour of a vertex in Q, updates its candidate locally
dominant edge. The list of vertices for removal can be iterated over in parallel as long as updates to the
list of candidate edges and additions to the vertex removal list Q' for the next iteration are performed
atomically. The unmatched neighbours of each vertex j that is to be removed must be checked. Specifically,
any unmatched neighbour ¢ for which (7, j) was the candidate edge must have its candidate edge updated
to the edge (i,p;), where p; is the unmatched neighbour of ¢ that maximises wg;. If edge (i,p;) is locally
optimal in the reduced graph, it is added to the matching and vertices ¢ and p; are included in the removal
list that is to be used on the next iteration.

A simple example to illustrate the approximation algorithm in given in Figure 3.1. Here the vertices are
A to F and the integers are the edge weights. The arrows from each vertex indicate which is the candidate
locally dominant edge. Thus, on the first pass of phase 1, the edge (A, B) is the candidate for vertices A
and B, (C, A) is the candidate for vertex C, (F, C) is the candidate for F, and so on. On the second pass of
phase 1, the candidate edge (A, B) is confirmed as a locally dominant edge (since it is the local candidate
for both A and B). This edge is added to the matching M (denoted by the double line) and the vertices A
and B are added to the vertex removal list. On the first iteration of phase 2, the candidate edges for vertices
C and E are recomputed; the edge (C, F) is found to be locally dominant and added to M, with C and F
added to the removal list. Finally, on the second iteration, the candidate edge for vertex D is recomputed,
the edge (D, E) is locally dominant and added to M. The final matching has total W(M) = 11+9+3 = 23.
Note that this is not the optimal matching, which has W(M) =10+ 7+ 9 = 26.

Recall that our interest is in the problem (1.1) but the approximation algorithm addresses the maximum

Algorithm 3 Parallel %—approximation algorithm

Input: Graph G with positive edge weights w;;
Output: Matching M
Running on P threads, DEFAULT (private), SHARED (w;;, M, Q, Q', p)
Initialise: M =¢; Q = ¢
Partition vertices equally between threads
! Phase 1: Identify locally dominant edges in original graph
! First establish candidate locally dominant edges (in parallel)
for each vertex j do
Find p; = argmax; {w;;} ! Tie break by lowest index
end for
—BARRIER—
! Confirm choice where candidates agree (in parallel)
for each vertex j do
if pp, = j then
! Edge (j,p;) is locally dominant
Add (j,p;) to the matching M
Add j to the vertex removal list Q
end if
end for
! Phase 2: Reduce graph by removing vertices in Q, finding new locally dominant edges as we go
while Q # ¢ do
Q' = ¢ ! Removal list for next iteration
—BARRIER—
for all j € Q do
! Remove vertex j and update candidate locally dominant edges of its neighbours (done in parallel)
for each i € adj(j) such that p;, = j do
ProcessVertex(i, Q')
end for
end for
—BARRIER—
Q + Q' I Set remowval list for next iteration
end while

ProcessVertex(i, Q'):
! Update candidate edge for vertex i
Find p; = arg maxggaq {wri} ! Tie break by lowest index
if p,, =i then
! After update, edge (i,p;) is now locally dominant
Add (i,p;) to the matching M
Add 7 and p; to the removal list Q’
end if

Figure 3.1: Approximation algorithm example (on a general graph G rather than a bipartite graph).

Phase 1, Pass 1

Phase 1, Pass 2

Phase 2, Iteration 1

Phase 2, Iteration 2

Figure 4.1: Description of machine used for numerical experiments

Processor 2 X Intel Xeon E5-2687TW

Physical Cores 16

Memory 64GB

Compiler ifort 12.1.0

BLAS MKL 10.3 update 6

L1/L2 cache (per core) 32KB / 256KB

L3 cache (shared) 20MB

Compiler flags ifort -03 -xAVX -no-prec-div -ip -openmp

weight maximum cardinality problem. Applying the transformation
wij = log lag| + (o = ¢5),

where o = max; j{c; —log |a;;|} and ¢; = max; log |a;;|, we obtain w;; > 0 and the final matching provides
an approximate solution to (1.1). As the approximation algorithm does not use dual variables, we define

U; = 0 Vi,
Vi = Wiy, (ivj)eMv
J ¢j, otherwise.

This guarantees the equality condition w;; — u; — v; = 0 for edges in M. The choice v; = ¢; for unmatched
columns ensures that the largest entry in the column is scaled towards 1, and that the scaling is appropriate
after the w;; transformation is reversed.

4 Computational Experiments

For the purposes of our experiments, we use four sets of of symmetric indefinite test problems drawn from the
University of Florida Sparse Matrix Collection [6] and detailed in Table 4.1. Test Sets 1 and 2 are matrices
that do not significantly benefit from an MC64 scaling compared to no scaling or the application of a cheap
norm equilibration algorithm. The purpose of these sets is to assess the cost of applying a scaling algorithm
when scaling is not actually needed. For the problems in Test Set 1, the time to run MC64 is high, while for
those in Test Set 2, MC64 represents a much smaller overhead in the solver time. Test Sets 3 and 4 are drawn
from our recent paper on pivoting techniques for difficult problems [17]. Test Set 3 is a set of problems
for which using the MC64 scaling is sufficient to reduce the number of delayed pivots to reasonable levels,
while Test Set 4 comprises those problems that require a matching-based ordering and scaling to achieve
this (further details on matching-based orderings are given in Section 4.3).

All our tests are performed on the 16 core machine detailed in Figure 4.1. All times and results are based
on HSL_MC64 version 2.4.0 and the sparse direct solver HSL_MA97 version 2.2.0 [14, 15]. Both are run with
default settings, except where otherwise stated. We use the letters OOM to indicate a problem ran out of
memory during the factorization phase of HSL_MA97 because of the generation of too many delayed pivots.

4.1 Scalability

Figure 4.2 shows the speedup of our implementation of the parallel auction algorithm against our imple-
mentation of the serial auction algorithm. The problems in the four test sets have been amalgamated into
a single set and then rearranged in order of increasing number of entries in A. It is clear that the matrix
must have a large number of entries before parallelization is worthwhile (a significant speedup is required to
overcome the overhead of the separate bid generation and reconciliation phases). Based on these results, we
only recommend the parallel algorithm if nz(A) > 2 x 10°.

We found that no appreciable parallel speedup was achieved by running the approximation algorithm in
parallel (however, slowdown was observed on the smallest problems).

10

Table 4.1: Test sets used for testing. nz(A) denotes the number of entries in the lower triangular part of A;
nz(L) and nflops denote the number of entries and floating-point operations, respectively, returned by the
analyse phase of the HSL_MA97 solver.

Test Set 1

Identifier n nz(A) nz(L) nflops Description/Application
Schenk TBMNA /c-54 31793 385987 1.0374 x 10° 7.6222 x 107 Non-linear optimization
Boeing/pcrystk02 13965 968583 4.3969 x 10° 1.9128 x 10° Crystal vibration
HB/bcsstk30 28924 1036208 3.9946 x 10° 9.3470 x 108 Off-shore generator platform
GHS_indef/boyd1 93279 1211231 6.5262 x 10° 4.6722 x 108 Convex QP
Rothberg/gearbox 153746 9080404 3.8829 x 107 2.1001 x 10'® Aircraft flap actuator
Gupta/gupta3 16783 9323427 6.3516 x 10° 3.1067 x 10° Linear programming
Andrianov/mip1l 66463 10352819 4.5317 x 107 1.4552 x 10'! Mixed integer programming
DNVS /fullb 199187 11708077 7.6518 x 107 1.0081 x 10'* Full-breadth barge
DNVS/troll 213453 11985111 6.6466 x 107 5.6414 x 10*® Structural problem
Chen/pkustk14 151926 14836504 1.0945 x 10° 1.4796 x 10'! Tall building
Test Set 2

Identifier n nz(A) nz(L) n flops Description/Application
GHS_indef/copter2 55476 759952 1.0444 x 107 5.4949 x 10° CFD helicopter rotor blade
Cunningham/qa8fk 66127 1660579 2.4259 x 107 2.1322 x 10'° 3D acoustic FE stiffness matrix
Boeing/crystk03 24696 1751178 9.8413 x 105 5.7087 x 10° Crystal vibration
Lin/Lin 256000 1766400 1.1359 x 108 2.7918 x 10! Structural eigenvalue problem
Boeing/bcesstk39 46772 2060662 7.0169 x 10° 1.6613 x 10° Rocket booster
Boeing/pct20stif 52329 2698463 1.1952 x 107 9.1960 x 10° Engine block
Oberwolfach /filter3D 106437 2707179 2.0099 x 107 7.6986 x 10° 3D heat transfer PDE
Oberwolfach/t3dh 79171 4352105 4.8137 x 107 6.9077 x 10° Micropyros thruster
Koutsovasilis/F2 71505 5294285 2.1290 x 107 1.1450 x 10'° Piston rod
PARSEC/Ge99H100 112985 8451395 6.5419 x 10% 7.0120 x 10'? Density function theory
Test Set 3

Identifier n nz(A) nz(L) n flops Description/Application
GHS_indef/ncvxgpl 12111 73963 1.6839 x 10° 7.2793 x 10 Non-convex QP
GHS_indef/cvxqp3 17500 122462 3.1398 x 10° 1.7670 x 10° Convex QP
GHS_indef/ncvxqp5 62500 424966 1.2052 x 107 9.7223 x 10° Non-convex QP
GHS_indef/ncvxqp3 75000 499964 1.9007 x 107 2.0692 x 10'° Non-convex QP
GHS_indef/stokes128 49666 558594 2.9813 x 10° 3.6881 x 108 FE model Stokes problem
Schenk IBMNA /c-62 41731 559341 8.4562 x 10° 8.0164 x 10° Optimization problem
Schenk_ IBMNA /c-64 51035 707985 1.6971 x 10° 1.3801 x 108 Optimization problem
GHS_indef/boyd2 466316 1500397 2.5854 x 10° 1.5582 x 107 Optimization problem
Test Set 4

Identifier n nz(A) nz(L) nflops Description/Application
GHS_indef/bratu3d 27792 173796 6.2769 x 10° 4.4174 x 10° Optimization
GHS_indef/cont-201 80595 438795 4.7815 x 10° 8.6513 x 108 Convex QP
GHS_indef/ncvxqp7 87500 574962 2.4731 x 107 3.0939 x 10'° Non-convex QP
GHS_indef/cont-300 180895 988195 1.1744 x 107 2.9559 x 10° Convex QP
GHS_indef/darcy003 389874 2101242 8.1587 x 10° 5.5664 x 10% Mixed FE model Darcy’s equation
TSOPF/TSOPF_FS_b300.c2 | 56814 8767466 2.1433 x 107 8.9629 x 10° Optimal power flow

11

Figure 4.2: Speedup of the parallel auction algorithm against the serial auction algorithm. Matrices from

all four test sets are ordered by increasing nz(A).

—_—— — -

comgemna
R T et

1 thread —+—

4 threads

8 threads
16 threads

fy|

o

¥
IO»N«

oS
< 0 M 0 A0
o (o] — (@)

WI)HLI0S8[R [eLIes snsioa dnpooadg

12

Table 4.2: Cardinality of the matching obtained using each algorithm as a percentage of the entries matched.
Cardinalities less than 99% are in bold. Numbers in brackets give deficiencies.

Problem Hungarian sAuction pAuction Approx
Schenk IBMNA /c-54 100 98.89 (353) 98.85 (367) 99.33 (213)
Boeing/pcrystk02 100 99.68 (44) 99.69 (43) 98.22 (249)
HB /besstk30 100 99.57 (124) 99.64 (105) 97.22 (803)
GHS_indef/boyd1 100 99.99 (8) 99.99 (9) 99.99 (11)
Rothberg/gearbox 100 99.88 (180) 99.84 (252) 97.85 (3303)
Gupta/gupta3 100 99.79 (36) 99.65 (58) 96.57 (576)
Andrianov/mip1l 100 99.60 (263) 99.67 (217) 97.01 (1985)
DNVS/fullb 100 99.89 (218) 99.89 (217) 97.63 (4726)
DNVS/troll 100 99.89 (242) 99.91 (195) 97.85 (4593)
Chen/pkustk14 100 99.84 (249) 99.81 (287) 98.33 (2533)
GHS_indef/copter2 100 99.78 (123) 99.77 (127) 94.79 (2890)
Cunningham/qa8fk 100 100 100 100
Boeing/crystk03 100 100 100 100
Lin/Lin 100 100 100 100
Boeing/bcsstk39 100 100 100 99.54 (214)
Boeing/pct20stif 100 99.61 (202) 99.75 (129) 97.33 (1399)
Oberwolfach/filter3D 100 100 100 100
Oberwolfach/t3dh 100 100 100 100
Koutsovasilis/F2 100 100 100 100
PARSEC/Ge99H100 100 100 100 100
GHS_indef/ncvxqpl 100 96.28 (450) 96.28 (450) _ 61.08 (4714)
GHS_indef/cvxqp3 100 98.06 (340) 98.05 (341) 57.14 (7500)
GHS_indef/ncvxqp5 100 99.84 (100) 99.82 (112) 83.50 (10315)
GHS_indef/ncvxqp3 100 96.00 (3000) 96.00 (3000) 68.84 (23367)
GHS_indef/stokes128 100 99.87 (67) 99.88 (62) 67.01 (16384)
Schenk IBMNA /c-62 100 99.68 (133) 99.74 (109) 84.42 (6502)
Schenk IBMNA /c-64 100 99.04 (488) 99.06 (479) 93.78 (3173)
GHS_indef/boyd2 100 100 100 93.38 (30857)
GHS_indef/bratu3d 100 100 100 94.53 (1519)
GHS_indef/cont-201 100 100 100 99.75 (199)
GHS_indef/ncvxqp7 100 98.06 (1700) 98.06 (1700) 61.02 (34109)
GHS_indef/cont-300 100 100 100 99.83 (299)
GHS_indef/darcy003 100 99.98 (63) 99.98 (77) 99.90 (383)
TSOPF/TSOPF_FS_b300_c2 | 100 99.93 (38) 99.93 (40) 75.03 (14187)

4.2 Effectiveness of algorithms: scaling only

Table 4.2 provides results on the quality of the matching achieved by each of the matching algorithms in
terms of cardinality, while Table 4.3 measures the effectiveness of the associated scaling by counting the
number of delayed pivots when the orderings are run with the HSL_MA97 solver. Table 4.4 compares the
runtime of each algorithm to achieve this. For the parallel auction algorithm, results are given for running
on 16 threads.

These tables show that while the approximation algorithm is the fastest, it fails to provide an alternative
to the Hungarian algorithm, both in terms of finding a high cardinality matching and reducing the number
of delayed pivots. On the other hand, both our serial and parallel auction codes lead to a similar number
of delayed pivots as for the Hungarian algorithm on all but one problem (GHS_indef/ncvxqpl), where they
perform slightly worse.

The ncvxgpl discrepancy is an example where our stopping conditions for the auction algorithm cause it
to terminate with a 96.3% match after 101 iterations, taking approximately 0.004 seconds. If we instead run
for 383 iterations (which takes 0.007 seconds), we achieve a 96.6% match resulting in only 10,986 delayed
pivots, which is comparable to the Hungarian algorithm. However, this run includes 268 iterations where
the matching is stuck at 96.3%. Note that, for this problem, a complete matching requires 12,368 iterations
and takes 0.013 seconds.

Table 4.5 summarises the numbers in Table 4.4 by showing the fraction of the total factorization time
spent in the scaling for each algorithm. The total factorization is taken to be the time to compute the
scaling and then to factorize the scaled matrix (the time for pre- and post-processing the matrix data is
not included, but is relatively small and easily parallelized). It shows that the use of the auction algorithm
generally reduces the proportion of the time spent in scaling the matrix, especially for problems in Test Sets

13

Table 4.3: Number of delayed pivots reported by HSL_MA97 with different scalings

Problem None Hungarian sAuction pAuction Approx
Schenk_IBMNA /c-54 6355 1281 2566 2615 11203
Boeing/pcrystk02 11 11 11 11 11
HB/bcsstk30 16 16 16 16 16
GHS_indef/boyd1 OOM 0 0 0 43671
Rothberg/gearbox 102 101 103 103 110
Gupta/gupta3 41 33 34 33 36
Andrianov/mip1 122 50 51 52 100
DNVS/fullb 145 145 145 144 150
DNVS/troll 150 147 146 146 167
Chen/pkustk14 102 102 101 100 113
GHS_indef/copter2 87 86 72 75 80
Cunningham /qa8fk 0 0 0 0
Boeing/crystk03 0 0 0 0 0
Lin/Lin 0 0 0 0 0
Boeing/bcsstk39 0 0 0 0 32
Boeing/pct20stif 43 40 41 41 40
Oberwolfach/filter3D 0 0 0 0 0
Oberwolfach/t3dh 0 0 0 0 0
Koutsovasilis/F2 0 0 0 0 0
PARSEC/Ge99H100 3 3 3 3 1
GHS_indef/ncvxgpl 124018 10303 31462 31462 76197
GHS_indef/cvxqp3 312033 26039 26058 26051 120608
GHS_indef/ncvxqp5b 544291 11858 11944 11798 522545
GHS_indef/ncvxgp3 1446194 65161 66027 66014 0
GHS_indef/stokes128 30509 5502 5502 5502 5502
Schenk IBMNA /c-62 135154 594 669 692 180979
Schenk IBMNA /c-64 32356 574 570 570 120103
GHS_indef/boyd2 27077 0 0 0 39339
GHS_indef/bratu3d 59569 59657 59590 59657 59650
GHS_indef/cont-201 88299 88276 88276 88276 88284
GHS_indef/ncvxgp7 1697334 272146 273327 273371 1673909
GHS_indef/cont-300 148526 148509 148509 148509 148512
GHS_indef/darcy003 44900 44900 44900 44900 44900
TSOPF/TSOPF_FS_b300_c2 100652 45306 46175 48642 97031

14

Table 4.4: Time (in seconds) to compute different scalings and the HSL_MA97 time to compute the factorization
on 16 cores.

Scaling Factor

Hungarian sAuction pAuction Approx None Hungarian sAuction pAuction Approx
Schenk IBMNA /c-54 0.20 0.01 0.01 0.00 0.09 0.06 0.05 0.05 0.09
Boeing/pcrystk02 0.16 0.01 0.01 0.00 0.07 0.07 0.05 0.05 0.07
HB /bcsstk30 0.70 0.03 0.01 0.01 0.12 0.12 0.11 0.10 0.12
GHS_indef/boyd1 1.85 0.00 0.01 0.00 | OOM 0.06 0.06 0.06 145
Rothberg/gearbox 1.96 0.19 0.06 0.04 0.42 0.42 0.40 0.41 0.42
Gupta/gupta3 1.61 0.06 0.03 0.03 0.39 0.37 0.35 0.35 0.38
Andrianov/mipl 4.71 0.25 0.09 0.03 2.34 2.28 2.26 2.26 2.33
DNVS/fullb 2.27 0.27 0.08 0.05 1.82 1.87 1.78 1.80 1.82
DNVS/troll 2.05 0.26 0.08 0.05 0.68 0.68 0.65 0.66 0.67
Chen/pkustk14 7.61 0.25 0.08 0.06 1.61 1.59 1.57 1.51 1.60
GHS_indef/copter2 0.06 0.02 0.02 0.01 0.15 0.14 0.14 0.14 0.14
Cunningham/qa8fk 0.00 0.00 0.00 0.00 0.36 0.36 0.34 0.34 0.35
Boeing/crystk03 0.00 0.00 0.00 0.00 0.14 0.14 0.12 0.11 0.13
Lin/Lin 0.01 0.00 0.02 0.01 4.57 4.64 4.44 4.62 4.63
Boeing/bcsstk39 0.01 0.00 0.00 0.01 0.17 0.16 0.15 0.14 0.16
Boeing/pct20stif 0.69 0.05 0.02 0.01 0.29 0.29 0.26 0.26 0.28
Oberwolfach/filter3D 0.01 0.01 0.01 0.01 0.14 0.14 0.13 0.13 0.14
Oberwolfach/t3dh 0.01 0.01 0.01 0.01 0.83 0.80 0.80 0.79 0.82
Koutsovasilis/F2 0.01 0.01 0.01 0.01 0.62 0.63 0.59 0.59 0.63
PARSEC/Ge99H100 0.02 0.01 0.01 0.02 259 262 259 261 261
GHS_indef/ncvxqpl 0.09 0.00 0.01 0.00 2.84 0.17 0.37 0.37 0.97
GHS_indef/cvxqgp3 0.17 0.02 0.03 0.00 18.2 0.43 0.39 0.39 2.15
GHS_indef/ncvxqp5 0.41 0.17 0.12 0.00 69.1 0.77 0.71 0.73 90.5
GHS_indef/ncvxqgp3 3.76 0.20 0.15 0.00 329 2.48 2.53 2.45 408
GHS_indef/stokes128 0.05 0.01 0.01 0.00 0.08 0.05 0.03 0.03 0.05
Schenk_ IBMNA /c-62 0.05 0.02 0.02 0.00 6.85 0.44 0.39 0.39 17.0
Schenk_-IBMNA /c-64 0.16 0.02 0.02 0.01 1.02 0.05 0.04 0.04 16.1
GHS_indef/boyd2 0.03 0.01 0.05 0.01 15.5 0.09 0.09 0.09 57.6
GHS_indef/bratu3d 0.00 0.00 0.00 0.00 0.86 0.86 0.83 0.85 0.86
GHS_indef/cont-201 0.00 0.00 0.00 0.00 0.19 0.19 0.16 0.16 0.16
GHS_indef/ncvxqgp7 2.23 0.21 0.16 0.00 146 14.4 14.4 14.6 174
GHS_indef/cont-300 0.01 0.00 0.02 0.01 0.31 0.31 0.30 0.29 0.31
GHS_indef/darcy003 0.18 0.26 0.22 0.02 0.10 0.10 0.08 0.08 0.11
TSOPF/TSOPF_FS_b300_c2 0.23 0.23 0.11 0.02 1.62 0.48 0.39 0.37 1.54

15

Table 4.5: Percentage of the total factorization time spent in the scaling algorithm on 16 cores.

Problem Hungarian sAuction pAuction Approx
Schenk_IBMNA /c-54 76.1 10.4 12.4 1.7
Boeing/pcrystk02 69.0 12.4 9.8 5.9
HB/bcesstk30 85.4 19.3 10.0 6.6
GHS_indef/boyd1 96.9 5.4 17.3 <0.1
Rothberg/gearbox 82.2 32.0 12.3 8.8
Gupta/gupta3 81.2 13.7 8.0 6.8
Andrianov/mip1 67.4 9.8 3.7 1.4
DNVS/fullb 54.9 13.3 4.2 3.0
DNVS/troll 75.2 28.2 10.3 7.6
Chen/pkustk14 82.7 13.6 4.8 3.5
GHS_indef/copter2 30.4 14.9 12.4 3.9
Cunningham/qa8fk 1.0 0.7 0.9 1.3
Boeing/crystk03 2.2 2.0 1.4 3.1
Lin/Lin 0.2 0.1 0.3 0.2
Boeing/bcesstk39 3.5 2.8 3.1 3.9
Boeing/pct20stif 70.6 16.0 6.0 4.3
Oberwolfach /filter3D 7.2 6.7 7.3 6.1
Oberwolfach/t3dh 1.5 1.3 0.7 1.3
Koutsovasilis/F2 2.1 2.0 1.0 2.0
PARSEC/Ge99H100 <0.1 <0.1 <0.1 <0.1
GHS_indef/ncvxqgpl 33.7 1.0 2.2 <0.1
GHS_indef/cvxqgp3 28.9 5.7 7.6 <0.1
GHS_.indef/ncvxgp5 34.9 19.4 13.9 <0.1
GHS_indef/ncvxqp3 60.3 7.4 5.8 <0.1
GHS_indef/stokes128 53.0 22.6 18.8 4.0
Schenk IBMNA /c-62 9.5 4.3 3.8 <0.1
Schenk_IBMNA /c-64 75.1 33.3 33.8 <0.1
GHS_indef/boyd2 24.7 10.0 33.9 <0.1
GHS_indef/bratu3d 0.1 0.1 0.2 0.1
GHS.indef/cont-201 1.1 0.8 2.8 1.4
GHS_indef/ncvxqp7 13.4 1.4 1.1 <0.1
GHS_indef/cont-300 1.7 1.0 5.1 1.7
GHS_indef/darcy003 64.2 76.8 73.7 13.2
TSOPF/TSOPF_FS_b300_c2 32.9 36.9 23.1 1.2

1 and 3. The approximation algorithm spends a very small proportion of its time in scaling because the
factorization time is so much larger.

4.3 Effectiveness of algorithms: ordering and scaling

We now consider the effectiveness of using a matching-based ordering combined with the matching-based
scaling. As these techniques are known to be expensive [17], we only consider their application to problems
in Tests Sets 3 and 4.

A matching-based ordering involves using a matching to identify 2 x 2 pivots, compressing the adjacency
graph of the matrix such that the sparsity patterns of both members of the 2 x 2 pivot are merged into a
single column before running a fill-reducing ordering on the compressed graph [10, 11]. There are thus three
times to consider, (i) the time to run the matching algorithm (given in Table 4.4 of the previous section), (ii)
the time to run the whole matching-based ordering routine, including the preprocessing, matching algorithm,
graph compression and ordering and (iii) the factorization time using the calculated scaling and ordering.
Table 4.6 reports the latter two times, while Table 4.7 demonstrates their ability to reduce the number of
delayed pivots required during factorization.

We again see the approximation algorithm does not provide a sufficiently good matching for this approach
to be effective. For most of our test problems, the Hungarian algorithm and the serial and parallel auction
algorithms give comparable results and are extremely effective in substantially reducing the delayed pivots.
However, for the ncvxqp/cvxqp problems, the Hungarian algorithm gives the best results, even for those
problems for which the auction algorithms gave quality scalings of comparable quality (Table 4.3). These
nevxqp/cvxqp problems correspond exactly to those for which the cardinality of the auction algorithm
matching was less than 99% (Table 4.2). Additional experiments show that by running the serial auction
algorithm until a 100% cardinality matching is reached, results comparable to the Hungarian algorithm can

16

Table 4.6: Matching-based ordering and scaling: Time (in seconds) to compute the ordering and to compute
the factorization on 16 cores.

Problem Ordering and scaling Factor

Hungarian sAuction pAuction Approx | Hungarian sAuction pAwuction Approx
GHS_indef/ncvxqpl 0.12 0.04 0.04 0.07 0.42 0.62 0.69 1.45
GHS_indef/cvxqp3 0.23 0.08 0.09 0.09 0.99 0.86 0.90 2.15
GHS_indef/ncvxqpb 0.66 0.41 0.36 0.29 1.66 1.97 1.86 177
GHS_indef/ncvxqp3 4.00 0.49 0.45 0.39 6.67 12.5 11.8 OOM
GHS_indef/stokes128 0.23 0.19 0.19 0.26 0.04 0.03 0.03 0.02
Schenk IBMNA /c-62 0.25 0.22 0.21 0.26 2.42 1.87 2.13 130
Schenk IBMNA /c-64 0.37 0.22 0.22 0.28 0.14 0.11 0.11 74.4
GHS_indef/boyd2 17.4 17.6 17.5 17.2 0.10 0.10 0.11 81.2
GHS_indef/bratu3d 0.06 0.05 0.05 0.06 0.18 0.16 0.16 0.16
GHS_indef/cont-201 0.12 0.12 0.12 0.16 0.05 0.04 0.04 0.03
GHS_indef/ncvxqp7 2.51 0.53 0.49 0.50 8.68 10.5 8.02 OOM
GHS_indef/cont-300 0.28 0.27 0.29 0.38 0.10 0.09 0.09 0.08
GHS_indef/darcy003 1.07 1.15 1.12 1.19 0.11 0.10 0.10 0.11
TSOPF/TSOPF_FS_b300_c2 1.68 1.67 1.57 2.91 0.41 0.38 0.36 1.38

Table 4.7: Matching-based ordering and scaling: Number of delayed pivots returned by HSL_MA97.

Problem Hungarian sAuction pAuction Approx
GHS_.indef/ncvxgpl 40 28034 29010 82297
GHS_indef/cvxqp3 69 1675 1290 120608
GHS_indef/ncvxqp5 100 130 246 796466
GHS_indef/ncvxqp3 260 15722 16578 OOM
GHS_indef/stokes128 7 4 15 9322
Schenk_IBMNA /c-62 1 0 0 617535
Schenk IBMNA /c-64 1 22 0 313480
GHS_indef/boyd2 0 0 0 41748
GHS_indef/bratudd 340 340 340 1450
GHS_indef/cont-201 0 0 0 0
GHS_indef/ncvxqp7 226 9866 7987 OOM
GHS_indef/cont-300 0 0 0 1
GHS_.indef/darcy003 121 105 95 339
TSOPF/TSOPF_FS_b300_c2 2429 1403 779 148164

17

be obtained, while still offering a substantial time saving.

5 Conclusions

We have demonstrated that the auction algorithm fulfills its promise and provides comparable quality to the
Hungarian algorithm in the context of scaling and ordering sparse symmetric matrices for use with direct
solvers while being significantly faster. By contrast, the very fast %-approximation algorithm does not at
present represent a reasonable alternative.

Our results further show that high quality scalings can be obtained using a sub-optimal matching. How-
ever, the matching-based orderings generally require the matching to be of high cardinality to be fully
effective in limiting the number of delayed pivots.

As the parallel auction algorithm requires additional work compared to the serial version, we recommend
that the user is asked to choose which to use. In our tests, we were able to achieve consistent speedups with
the parallel version on matrices that have in excess of two million entries; for smaller problems, it is more
efficient to use the serial code.

In this paper, the emphasis has been on sparse symmetric systems. However, matchings are commonly
used in the unsymmetric case to permute the matrix in order to obtain a zero-free diagonal of large elements
to reduce the need for pivoting (see, for example, the parallel solver SuperLU_DIST [19]). We suspect that
this will have similar behavior to that found in the symmetric case when permuting large entries to the sub-
diagonal: specifically that the sub-optimal termination required to obtain a small run time of the matching
algorithm may not provide a matching of sufficient quality to avoid pivoting. Further, the failure to obtain a
matching of maximum cardinality could necessitate some additional manipulation to ensure pivot candidates
exist at the end of the factorization. A future objective is to investigate how effective the auction algorithm
is for unsymmetric solvers and, in particular, whether a parallel implementation can reduce the time for the
scaling and ordering without having a detrimental effect on the subsequent factorization (see also [22]).

Finally, we remark that an efficient implementation of the Hungarian algorithm is complicated whereas
that of both the serial and parallel versions of the auction algorithm are much more straightforward. We
plan to include such implementations within our mathematical software libraries.

Acknowledgements

We would like to thank Mahantesh Halappanavar and Alex Pothen for providing access to their MatchBox
Software used for the %—approximation matching. Thanks also to Sherry Li from Lawrence Berkeley National
Laboratory and our colleague Tain Duff for commenting on a draft of this report.

References

[1] D. Avis, A survey of heuristics for the weighted matching problem, Networks, 13 (1983), pp. 475-493.

[2] A. AzaD, M. HALAPPANAVAR, S. RajamaNIiCKAM, E. G. BoMAN, A. KHAN, AND A. POTHEN,
Multithreaded algorithms for maximum matching in bipartite graphs, in International Parallel and Dis-
tributed Processing Symposium, IEEE Computer Society, 2012, pp. 860-872.

[3] D. P. BERTSEKAS, A distributed asynchronous relazation algorithm for the assignment problem, in 24th
IEEE Conference on Decision and Control, vol. 24, IEEE, 1985, pp. 1703-1704.

[4] D. P. BERTSEKAS AND D. A. CASTANON, Parallel synchronous and asynchronous implementations of
the auction algorithm, Parallel Computing, 17 (1991), pp. 707-732.

[5] L. Bu§ anD P. TVRDIK, Towards auction algorithms for large dense assignment problems, Computer
Optimization and Applications, 43 (2009), pp. 411-436.

18

[6]

[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

22]

[23]

[24]

T. Davis AND Y. Hu, The University of Florida sparse matrixz collection, ACM Transactions on Math-
ematical Software, 38 (2011), pp. Article 1, 25 pages.

M. Devecl, K. Kavya, B. Ucar, aNnD U. V. CATALYUREK, GPU accelerated mazimum cardinality
matching algorithms for bipartite graphs, in Euro-Par 2013 Parallel Processing, F. Wolf, B. Mohr, and
D. Mey, eds., vol. 8097 of Lecture Notes in Computer Science, Springer, 2013, pp. 850-861.

I. DUFF AND J. KOSTER, On algorithms for permuting large entries to the diagonal of a sparse matriz,
STAM J. Matrix Analysis and Applications, 22 (2001), pp. 973-996.

I. DUFF AND S. PRALET, Strategies for scaling and pivoting for sparse symmetric indefinite problems,
SIAM J. Matrix Analysis and Applications, 27 (2005), pp. 313-340.

——, Strategies for scaling and pivoting for sparse symmetric indefinite problems, STAM J. Matrix
Analysis and Applications, 27 (2005), pp. 313 — 340.

M. HAGEMANN AND O. SCHENK, Weighted matchings for preconditioning symmetric indefinite linear
systems, STAM J. Scientific Computing, 28 (2006), pp. 403-420.

M. HALAPPANAVAR, J. FEO, O. VILLA, A. TUMEO, AND A. POTHEN, Approzimate weighted match-

ing on emerging manycore and multithreaded architectures, International Journal of High Performance
Computing Applications, 26 (2012), pp. 413-430.

J. Hoca AND J. ScoTtT, The effects of scalings on the performance of a sparse symmetric indefinite
solver, Technical Report RAL-TR-2008-007, Rutherford Appleton Laboratory, 2008.

———, HSL_MA97: a bit-compatible multifrontal code for sparse symmetric systems, Technical Report
RAL-TR-2011-024, Rutherford Appleton Laboratory, 2011.

——, New parallel sparse direct solvers for multicore architectures, Algorithms, 6 (2013), pp. 702-725.
Special issue: Algorithms for Multi Core Parallel Computation.

——, Optimal weighted matchings for rank-deficient sparse matrices, STAM J. Matrix Analysis and
Applications, 34 (2013), pp. 1431-1447.

——, Pivoting strategies for tough sparse indefinite systems, ACM Transactions on Mathematical Soft-
ware, 40 (2013). Article 4, 19 pages.

H. KunN, The Hungarian method for the assignment problem, Naval Research Logistics Quarterly, 2
(1955), pp. 83-97.

X. L1 AND J. DEMMEL, SuperLU_DIST: A scalable distributed-memory sparse direct solver or unsym-
metric linear systems, ACM Transactions on Mathematical Software, 29 (2003), pp. 110-140.

K. MEHLHORN AND S. NAHER, The LEDA Platform of Combinatorial and Geometric Computing,
Cambridge University Press, 1999.

R. PREIS, Linear time %-appromimation algorithm for mazimum weighted matching in general graphs,
in 16th Symposium on Theoretical Aspects of Computer Science (STACS), 1999, pp. 259-269.

J. RIEDY, Making Static Pivoting Scalable and Dependable, PhD thesis, EECS Department, University
of California, Berkeley, Dec 2010.

M. SATHE, O. SCHENK, AND H. BURKHART, An auction-based weighted matching implementation on
massively parallel architectures, Parallel Computing, 38 (2012), pp. 595-614.

O. ScHENK AND K. GARTNER, On fast factorization pivoting methods for symmetric indefinite systems,
Electronic Transactions on Numerical Analysis, 23 (2006), pp. 158-179.

19

[25] O. SCHENK, A. WACHTER, AND M. HAGEMANN, Matching-based preprocessing algorithms to the solu-

tion of saddle-point problems in large-scale nonconver interior-point optimization, Computer Optimiza-
tion and Applications, 36 (2007), pp. 321-341.

20

	RAL-P-2014-002-cover.pdf
	RAL-P-2014-002-report

