
On signed incomplete Cholesky
factorization preconditioners for
saddle-point systems

JA Scott, M Tuma

February 2014

Submitted for publication in SIAM Journal on Scientific Computing

 Preprint
RAL-P-2014-003

RAL Library
STFC Rutherford Appleton Laboratory
R61
Harwell Oxford
Didcot
OX11 0QX

Tel: +44(0)1235 445384
Fax: +44(0)1235 446403
email: libraryral@stfc.ac.uk

Science and Technology Facilities Council preprints are available online
at: http://epubs.stfc.ac.uk

ISSN 1361- 4762

Neither the Council nor the Laboratory accept any responsibility for
loss or damage arising from the use of information contained in any of
their reports or in any communication about their tests or
investigations.

mailto:libraryral@stfc.ac.uk�
http://epubs.stfc.ac.uk/�

On signed incomplete Cholesky factorization preconditioners for

saddle-point systems

Jennifer Scott1 and Miroslav Tůma2

ABSTRACT

Limited-memory incomplete Cholesky factorizations can provide robust preconditioners for sparse

symmetric positive-definite linear systems. In this paper, the focus is on extending the approach to

sparse symmetric indefinite systems in saddle-point form. A limited-memory signed incomplete Cholesky

factorization of the form LDLT is proposed, where the diagonal matrix D has entries ±1. The main

advantage of this approach is its simplicity as it avoids the use of numerical pivoting. Instead, a global

shift strategy involving two shifts (one for the (1, 1) block and one for the (2, 2) block of the saddle-point

matrix) is used to prevent breakdown and to improve performance. The matrix is optionally prescaled

and preordered using a standard sparse matrix ordering scheme that is then post-processed to give a

constrained ordering that reduces the likelihood of breakdown and need for shifts. The use of intermediate

memory (memory used in the construction of the incomplete factorization but subsequently discarded)

is shown to significantly improve the performance of the resulting preconditioner. Some new theoretical

results are presented and for problems arising from a range of practical applications, numerical results are

given to illustrate the effectiveness of the signed incomplete Cholesky factorization as a preconditioner.

Comparisons are made with a recent incomplete LDLT code that employs pivoting.

Keywords: sparse matrices, sparse linear systems, indefinite symmetric systems, saddle-point systems,

iterative solvers, preconditioning, incomplete Cholesky factorization.

AMS(MOS) subject classifications: 65F05, 65F50

1 Scientific Computing Department, Rutherford Appleton Laboratory, Harwell Oxford,

Oxfordshire, OX11 0QX, UK.

Correspondence to: jennifer.scott@stfc.ac.uk

Supported by EPSRC grant EP/I013067/1.

2 Institute of Computer Science, Academy of Sciences of the Czech Republic.

Partially supported by the Grant Agency of the Czech Republic Project No. P201/13-06684 S.

Travel support from the Academy of Sciences of the Czech Republic is also acknowledged.

February 6, 2014

1 Introduction

We are interested in solving linear systems Kx = b where the sparse symmetric matrix K is of the form

K =

(
A BT

B −C

)
. (1.1)

Here A is n × n symmetric positive definite, B is rectangular m × n and of full rank (m ≤ n), and C is

m×m symmetric positive semi-definite. Matrices of the form (1.1) are often called saddle-point matrices

or, in the special case C = 0, KKT matrices, in reference to the Karush-Kuhn-Tucker first-order necessary

optimality conditions for the solution of general nonlinear programming problems. Saddle-point problems

arise frequently in many applications in science and engineering, including in equality and inequality

constrained nonlinear programming, interior point algorithms in both linear and nonlinear optimization,

sparse optimal control, mixed finite-element discretizations of partial differential equations in fields such

as fluid and solid mechanics, and circuit analysis.

Typically, K is large. In some cases it may be possible as well as desirable to use a direct solver;

indeed, a number of sparse direct solvers (including the packages MA57 [16] and HSL MA86 [31] from the

HSL mathematical software library [34]) have been designed with such systems in mind. However, the

memory demands of direct solvers can mean that, for very large K, it is necessary to use an iterative

method, usually a Krylov subspace-based method (see, for example, [62]). Moreover, in some applications

it may not be necessary to solve the system with high accuracy or the linear solve may be part of a nonlinear

iteration and here an iterative method may then be the method of choice. Unfortunately, Krylov methods

tend to converge very slowly when applied to saddle-point systems and a good preconditioner is needed

to accelerate convergence. Over the last 20 years or so, a vast amount of work has been devoted to the

development of effective preconditioners for saddle-point problems. A quick search of the literature reveals

numerous publications incorporating a wide range of application areas; an excellent survey of the work

done up to 2005, together with a comprehensive reference list, is given in Section 10 of [4] (see also [5] for

a later and more concise overview).

As discussed in [4, 5], much effort has focused on the development of block diagonal and block

triangular preconditioners as well as on constraint preconditioners. Comparatively little work appears

to have concentrated on the development of reliable incomplete factorization techniques for saddle-point

systems. Following work done on generating good orderings and scalings for direct solvers for indefinite

systems [19, 53], Hagemann and Schenk [29] proposed using a maximum weighted matching algorithm to

preprocess the matrix. The objective is to permute large entries on to the subdiagonal that can then be

used to form stable 2×2 pivots, allowing the incomplete factorization to avoid the use of dynamic pivoting

(which can add a computational overhead as well as significantly complicating the software development).

If a pivot is found to be too small, breakdown is prevented by adding a small perturbation. In [29], some

good results are reported (sparse factors and lower iteration counts) for tests on saddle-point problems.

Li and Saad [37] developed pivoting strategies for sparse symmetric matrices to improve the robustness

of their Crout variant of ILU preconditioner [38]. They found that incorporating Bunch-Kaufman pivoting

[10] can be efficiently and effectively integrated within an incomplete factorization for sparse symmetric

indefinite matrices and reported some encouraging results for general indefinite problems as well as for

some KKT problems. Using the work of Li and Saad, Greif, He and Liu [28] have recently made available

an incomplete factorization package called SYM-ILDL that is designed for general symmetric indefinite

matrices. This package optionally starts by scaling the matrix to be equilibrated in the maximum norm,

and then preorders using the Reverse Cuthill-McKee algorithm or approximate minimum degree. As in

Li and Saad, there is an option to use Bunch-Kaufman pivoting during the factorization to maintain

stability and avoid breakdown. The user controls the maximum allowed fill within each column and also

the dropping of small entries. Currently, no published results are available for this new code but initial

findings appear consistent with those reported by Li and Saad [27] (see also Section 6 below).

For saddle-point systems, an alternative approach is based on the observation that K can be factored

1

into the form

K =

(
A BT

B −C

)
=

(
L11 0

L21 L22

)(
I 0

0 −I

)(
LT
11 LT

21

0 LT
22

)
, (1.2)

where

A = L11L
T
11

is the Cholesky factorization of A,

L21 = BL−T
11

and

S = C + L21L
T
21 = L22L

T
22

is the Cholesky factorization of the (negative) Schur complement [48, 67]. Note that this factorization

always exists, without pivoting (although numerical stability is not guaranteed). Bridson [9] refers to (1.2)

as a signed Cholesky factorization. If we set

L =

(
L11 0

L21 L22

)
,

then P = LLT can be used as a (split) preconditioner. Since the preconditioned matrix L−1KL−T has

two distinct eigenvalues ±1, a symmetric Krylov subspace method such as MINRES or SYMMLQ [46]

would converge in at most two iterations. In practice, the exact factor L is replaced by an incomplete one.

This can be achieved by first computing an incomplete Cholesky (IC) factorization

A ≈ L̃11L̃
T
11,

which can be done using one of the many available approaches (see, for example, [57] for an historical

overview and a list of references to work done since the 1950s). The second step is to compute a sparse

approximation L̃21 to L21 by solving the upper triangular system

L̃T
11L̃21 = BT (1.3)

and then possibly applying some dropping criteria to preserve sparsity in L̃21. Finally, an IC factorization

of the approximate Schur complement

C + L̃21L̃
T
21 ≈ L̃22L̃

T
22 (1.4)

is computed. The resulting incomplete factor

L̃ =

(
L̃11 0

L̃21 L̃22

)
and its transpose can then be used to define a positive-definite factorized preconditioner P̃ = L̃L̃T . Some

very limited numerical results using the SYMMLQ and Uzawa [22] algorithms are given in [48]; a more

comprehensive study of how this approach performs in practice (and, in particular, how to obtain a good

sparse approximation L̃21 to L21) appears to be currently lacking. This is something we plan to report on

in the future, using our incomplete Cholesky factorization code HSL MI28 [56] to compute each of the two

IC factorizations.

In this paper, we take a different approach to obtain an incomplete factorization. Our idea is to

compute a signed IC factorization. The signed complete Cholesky factorization approach has been used

for saddle-point systems by, for example, Bridson [9] (and see also [54]). A signed IC approach is attractive

for us as it allows us to use a modified version of our existing IC factorization code and, at the same time,

permits the exploitation of more general orderings that are not restricted to ordering the (1, 1) block of the

matrix separately from the (2, 2) block. Allowing the use of more general permutations appears to be a

2

preferable strategy when factorizing KKT systems, as discussed and demonstrated, for example, by Fourer

and Mehrotra in their paper [23] on solving the indefinite linear systems that arise in an interior-point

method. Note that the signed factorization avoids the need to compute an explicit sparse approximation of

L̃21 as this block is part of the global Cholesky-like factor. Importantly, we also avoid the need for pivoting

and the use of 2 × 2 pivots (but see the comments on the stability of this approach below). Performing

threshold partial pivoting at each step of the factorization process not only complicates the implementation

but can add a significant time overhead. See also the related motivation for static pivoting introduced for

LU factorizations in [39].

Before describing our approach in more detail, we briefly mention similar concepts for obtaining an

unreduced Cholesky-like factorization, that is, the factorization algorithm is applied to the whole matrix

K, not preceded by the null-space or range-space transformations of the matrix blocks used in segregated

approaches [4]. If the full rank condition for the B block in (1.1) is replaced by positive definiteness of the C

block we get a class of symmetric quasi-definite (SQD) matrices. Vanderbei [63] shows that SQD matrices

are strongly factorisable, i.e., a signed Cholesky factorization exists for such matrices under any symmetric

permutation; this is a stronger result than we have for our saddle-point matrix K. Further, a stability

analysis related to the factorization of SQD matrices is given by Gill et al [24] (see also [25]), which shows

the importance of the effective condition number of K for the stability of the factorization. In particular,

the effective condition number is small if the maximum of the norms ||BTA−1B|| and ||BTC−1B|| is small

with respect to the norm of K. Also note that the analysis of a symmetric indefinite factorization based

on the related generalized QR factorization in [49] points out that conditioning of the principal leading

submatrices may be determined by other factors such as the number of sign changes in the diagonal of the

signed factorization. In practice, neither the SQD condition or the full rank condition for the block B needs

to be satisfied. Instead, the existence of a signed Cholesky factorization can be forced by “regularization”,

that is, by modifying the diagonal entries. Saunders and Tomlin [52] used fixed regularization parameters

(diagonal shifts) for the blocks A and −C to ensure stability a priori. After regularization of both blocks,

the signed Cholesky factorization always exists and they used this approach to successfully solve test

problems from the Netlib collection (http://www.netlib.org/lp/data/) via the barrier method using

a sparse direct Cholesky solver. Dynamic regularization by perturbing diagonal entries in the signed

Cholesky factorization that results in a SQD matrix was proposed by Altman and Gondzio [2]. This

strategy seems to introduce less perturbation to the logarithmic barrier method used to solve optimization

problems: see also numerical comparisons and notes on signed Cholesky and indefinite factorizations in

[1, 6, 8]. While Altman and Gondzio use a complete signed Cholesky factorization within the HOPDM

optimization code [26], the diagonal entry modification in case of a wrong sign (the modification should

enforce positive definiteness of A and negative definiteness of −C) or an entry of small magnitude is based

on that originally proposed by Kershaw [36]. Another regularization strategy combined with reorderings

restricted to blocks (priority minimum degree) of the saddle-point problem was proposed by Vanderbei

and Shannon [65] and implemented in the optimization code LOQO [64]. They shift the diagonal of the

block corresponding to the primal variables by adding a multiple of a unit matrix. Moreover, in order to

get a strong (complete) factorization of the regularized matrix, they allow both increases and decreases

to the shifts in a manner that is similar to the strategy proposed by Manteuffel [41] and as implemented,

for example, by Lin and Moré [40], see also [56]. Thus the signed Cholesky factorization has attracted

attention because of its simplicity and because of the systems to be solved, often obtained in sequence,

may need regularization. More sophisticated and expensive dynamic reorderings that combine symbolical

and numerical phases may be then considered as an overkill. Note that the complete signed Cholesky

implementation was also popular in solving indefinite systems within shift-and-invert based eigensolvers,

especially in engineering communities. An example is the implementation of SKYPACK [42] for the block

Lanczos eigenvalue software BLZPACK (http://crd-legacy.lbl.gov/~osni/#Software), where part of

the motivation to use a signed Cholesky factorization comes from the choice of skyline data structure for

the sparse matrices.

Let us summarize the reasons leading us to develop a state-of-the-art approach to solve a large class of

3

indefinite systems. Firstly, as already mentioned, we are interested in preconditioned iterative methods in

order to be able to solve very large problems. Secondly, we want to exploit orderings that are as general

as possible since general orderings are often claimed to lead to the most efficient solvers. Furthermore,

an important number of real-world problems need to be regularized and algebraic modifications seem to

be very natural. Our previous project [56, 57] considered a large spectrum of different application areas

leading to linear systems with symmetric positive-definite system matrices and found that regularization

by flexible strategies based on the Manteuffel shifts [41] is preferable to ad-hoc modifications. We are

keen to use such a strategy in a signed IC code. Lastly, but not least, we want preconditioners based on

incomplete factorizations that are not only time and memory efficient but also robust.

The rest of the paper is organised as follows. In Section 2, we briefly recall the signed Cholesky

factorization approach using the description given by Bridson. Then in Section 3, we summarize our limited

memory IC factorization for positive-definite problems. This is extended to a signed IC factorization in

Section 4. In Section 5, some theoretical results for the signed IC approach are given. Numerical results,

including comparisons with SYM-ILDL, are presented in Section 6 and concluding remarks are made in

Section 7.

2 Constrained ordering and signed IC factorizations

In this section, we consider the case of a complete factorization of the matrix (1.1). The aim of a constrained

ordering is to find a permutation Q such that QKQT can be factorized stably without the need for

numerical pivoting and without modifying the entries in K, while still limiting the number of entries in

the factor. This problem has been examined for special classes of matrices by a number of authors. Of

practical interest is the class of F matrices, where each column of B has exactly two entries which sum to

zero and C = 0. These arise in, for example, Stokes flow problems. Tůma [60] and De Niet and Wubs [15]

present methods for these problems while Bridson [9] proposed a constrained ordering for more general

saddle-point problems.

We use the terminology of Bridson and divide the nodes of the adjacency graph of the matrix K

into two disjoint sets: those that correspond to the diagonal entries of A are known as A-nodes and the

remaining nodes as C-nodes. The ordering constraint proposed in [9] is extremely simple: a C-node can

only be ordered after all its A-node neighbours in the graph of K have been ordered. Bridson has the

following result, which is included here for completeness.

Theorem 2.1. Let A be positive definite, C be positive semi-definite and B be of full row rank. Then if

a C-node is ordered only after all its A-node neighbours, the signed Cholesky factorization

PKPT = LDLT

exists, where P is a permutation matrix corresponding to the ordering of the nodes, L is a lower triangular

matrix with positive diagonal entries and D is a diagonal matrix with entries ±1.

Proof: First observe that the inverse of a saddle-point matrix satisfying the above conditions can be

expressed as (
A BT

B C

)−1

=

(
A−1 −A−1BTS−1BA−1 A−1BTS−1

S−1BA−1 S−1

)
, (2.1)

where the negative Schur complement S given by

S = C +BA−1BT

is positive definite.

4

We now proceed by induction. The first node to be eliminated must be an A-node with pivot d1 =

a11 > 0. Assume i − 1 steps of the factorization have been performed. Partitioning the first i − 1 nodes

into A-nodes and C-nodes, the i-th principal submatrix of (a permutation of) K is

(
Ki−1 kTi,:
ki,: kii

)
=

 Ai−1 BT
i−1 uT

Bi−1 −Ci−1 vT

u v kii

 , (2.2)

where ki,: denotes the first i−1 entries in row i. Since Ai−1 is a principal submatrix of the positive-definite

matrix A, it must also be positive definite. The ordering constraint implies that all the non zeros in the

rows of B corresponding to already ordered C-nodes must appear in Bi−1 (otherwise there would be a

C-node ordered before i with an A-node neighbour ordered at i or later). Since B is assumed to have full

row rank, Bi−1 also has full row rank: Bi−1 is a subset of the rows of B with possibly some fully zero

columns deleted. Thus Ki−1 satisfies the same conditions as K.

Case 1: node i is an A-node. It follows from the ordering constraint that i can have no

previously ordered C-node neighbours and so v = 0 in equation (2.2). Using the form of the inverse in

equation (2.1), the pivot is

dii = kii − (u 0)

(
Ai−1 BT

i−1

Bi−1 −Ci−1

)−1(
uT

0

)
= kii − u(A−1

i−1 −A
−1
i−1B

T
i−1S

−1
i−1Bi−1A

−1
i−1)uT

= (kii − uA−1
i−1u

T) + uA−1
i−1B

T
i−1S

−1
i−1Bi−1A

−1
i−1u

T . (2.3)

Note that (
Ai−1 uT

u kii

)
is a principal submatrix of the positive-definite matrix A and hence is positive definite. It follows that its

final pivot kii − uA−1
i−1u

T is positive. Furthermore, since the negative Schur complement Si−1 is positive

definite, the second term in (2.3) is also positive. Therefore, dii > 0.

Case 2: node i is a C-node. In this case, we join the i-th row and column to the other C-

nodes in the partition (2.2). This i × i matrix also satisfies the rank condition and thus its inverse is of

the form (2.1). The i-th pivot is the reciprocal of the (i, i) entry of the i × i principal submatrix, which

in this case comes from the diagonal of the negative definite matrix −Si−1. Thus dii < 0.

As both cases give non zero pivots, by induction the ordering constraint ensures the LDLT factorization

exists. Moreover, the pivots associated with the A-nodes are guaranteed to be positive and those associated

with C-nodes are guaranteed to be negative. By rescaling, L ← L|D|1/2 and D ← sign(D) = diag(±1),

the diagonal matrix is fully determined in advance by the structure of the problem, independent of the

numerical values. This gives a signed Cholesky factorization of K. �

The signed Cholesky factorization allows Bridson to modify a Cholesky factorization code to perform

the factorization of the indefinite matrix K without numerical pivoting. A stability analysis is missing but

Bridson reports that numerical experiments indicate, for well-scaled problems, the constrained ordering

is generally sufficient to avoid numerical pivoting; this was supported by additional experiments given by

Scott [54]. The hope is that, if an initial ordering is chosen to reduce fill in L, the additional fill that

results from modifying the ordering to a constrained ordering will be modest. If the constrained ordering

is close to the initial ordering, the potential benefits include a fast factorization and, importantly, the

5

analyse phase of the direct solver can accurately predict the size of the factors and other data structures

required during the numerical factorization.

For a direct solver, choosing a fill-reducing ordering is essential (both for the memory needed and

for the flop count). Bridson proposed two approaches to computing a constrained ordering. The first

modifies the minimum degree algorithm (or one of its variants) to incorporate the constraint within it.

An alternative approach is to post-process a given fill-reducing ordering to satisfy the constraint. If a

C-node is the next node in the supplied ordering, it is only included in the modified ordering once all its

A-node neighbours have been ordered (that is, a C-node is postponed until after all its A-node neighbours).

For many large problems, orderings based on nested dissection are frequently recommended in preference

to those based on minimum degree. The advantages of the post-processing approach are that it can be

applied to any fill-reducing ordering and it is very cheap and straightforward to implement. Hogg and

Scott [33, 54] considered this approach and compared using it to compute a signed Cholesky factorization

(with no pivoting for stability) with using a fill-reducing ordering with a solver designed to factorize

indefinite matrices with threshold pivoting incorporated for stability. Their reported results showed that

the constrained ordering leads to significantly denser factors and higher flop counts so that it is unlikely

to be competitive in practice for a direct solver.

The situation in the incomplete case is potentially somewhat different since, while it is known that the

ordering used can be important (see, for example, the numerical results reported in [56] and the references

therein), the choice of ordering is generally less crucial than in the complete factorization. This is because,

in the incomplete case, the number of entries in the factor is determined not by the ordering but by user-

defined parameters that may include the amount of fill allowed in each column and drop tolerances. Thus

our aim is to combine using a constrained ordering with a (modified) IC factorization code to compute a

signed IC factorization that we can use with an iterative solver.

We remark that Rehman et al [61] propose an a priori ordering of the nodes in their development of

incomplete factorization preconditioners for the (unsymmetric) saddle-point systems that arise from the

finite-element discretization of incompressible Navier-Stokes equations. They employ a level-based band-

or profile-reduction ordering, which they post-process level-by-level so that, at each level, the A-nodes

precede the C-nodes.

3 A limited-memory IC factorization

We now summarize the limited-memory IC factorization algorithm that is implemented within the HSL

package HSL MI28. We assume here that A is a symmetric and positive-definite matrix for which an IC

factorization is required. For such A, HSL MI28 computes an IC factorization (QL)(QL)T , where Q is

a permutation matrix, chosen to preserve sparsity. The matrix A is optionally scaled and, if necessary,

following the approach of Manteuffel [41], shifted to avoid breakdown of the factorization. Thus the

incomplete factorization of Ā = SQTAQS + αI is computed, where S = {si} is a diagonal scaling matrix

and α is a positive shift. The user supplies the lower triangular part of A in compressed sparse column

format and the computed L is returned to the user in the same format; a separate entry performs the

preconditioning operation y = Pz, where P = (L̄L̄T)−1, L̄ = QS−1L, is the incomplete factorization

preconditioner.

The algorithm implemented by HSL MI28 is a limited memory Tismentsky-Kaporin approach. The

Tismenetsky scheme is based on a matrix factorization of the form

Ā = (L+R)(L+R)T − E, (3.1)

where L is a lower triangular matrix with positive diagonal entries that is used for preconditioning, R is

a strictly lower triangular matrix with small entries that is used to stabilize the factorization process, and

E has the structure

E = RRT . (3.2)

6

The Tismenetsky incomplete factorization does not compute the full update and thus a positive semidefinite

modification is implicitly added to A.

Following the ideas of Kaporin [35], HSL MA28 uses drop tolerances to limit the memory required in

the computation of the incomplete factorization. The user controls the dropping of small entries from

L and R and the maximum number of entries within each column of L and R (and thus the amount of

memory for L and the intermediate work and memory used in computing the incomplete factorization).

The parameters lsize and rsize must be set by the user to the maximum number of fill entries in each

column of L and the number of entries in R, respectively. Further details are given in [56, 57].

We present a summary outline of our left-looking incomplete factorization as Algorithm 3.1. It shows

the basic steps but, for simplicity, omits details of our sparse implementation. Here A:,j , L:,j and R:,j

denote the j−th columns of the lower triangular parts of A, L and R, respectively, and nj is the number

of entries in column j of A. The scalar small is used to determine whether a diagonal entry is sufficiently

large; if at any stage a diagonal entry is less than small, the factorization is considered to have broken

down and in this case, the shift α is increased and the factorization restarted. droptol1 > droptol2 ≥ 0

are chosen drop tolerances. The user may choose to supply a positive initial shift αin.

The factorization proceeds column-by-column. At each stage j ≥ 2, updates from the previously

computed columns 1 to j − 1 of L and R are applied to column j of A. The update operations are as

follows:

for k < j and Lj,k 6= 0 do

Aj:n,j ⇐ Aj:n,j − Lj:n,k ∗ Lj,k ! LLT updates

Aj:n,j ⇐ Aj:n,j −Rj:n,k ∗ Lj,k ! RLT updates

end

for k < j and Rj,k 6= 0 do

Aj:n,j ⇐ Aj:n,j − Lj:n,k ∗Rj,k ! LRT updates

end

The diagonal entries of columns j+1 to n are also updated. This allows us to detect a potential breakdown

as soon as possible. Once a breakdown is detected, the shift α is increased (the strategy for doing this is

explained in [56]) and then the factorization of the shifted matrix A+ (α− α0)I is restarted, where α0 is

the previous shift.

Algorithm 3.1. Outline of the HSL MI28 incomplete Cholesky algorithm for positive-definite A

Input: Symmetric positive definite A ∈ Rn×n;

lsize, rsize, droptol1, droptol2, initial shift αin

Output: Incomplete Cholesky factor L, final shift αout

Compute a sparsity-preserving ordering Q for A and permute: A← QTAQ

Compute a diagonal scaling S and scale: A← SAS

Set breakdown = false and α = αin, α0 = 0

Loop over shifts

do

Set A← A+ (α− α0)I and d(1 : n) = (a11, a22, ..., ann)

for j = 1 : n do

Apply LLT , RLT and LRT updates from columns 1 : j − 1 to A:,j and d(j + 1 : n)

if min(d(j + 1 : n) < small then

Set breakdown = true, α0 = α and increase α

exit (Restart factorization with larger shift)

7

end if

Sort entries of A:,j by magnitude

Keep nj + lsize entries of largest magnitude in L:,j,

provided each is at least droptol1

Keep the rsize entries that are next largest in magnitude in R:,j,

provided each is at least droptol2

end do

if breakdown = false then

Set αout = α− α0 and return (Breakdown-free factorization complete)

end if

end do

Note that the widely-used ICFS code of Lin and Moré [40] implements a special case in which ordering

is not incorporated, droptol1 = droptol2 = 0 and rsize = 0 (so that there is no dropping of entries by size,

no intermediate memory is used and only LLT updates are applied).

4 Signed incomplete Cholesky factorization

We now discuss how to modify Algorithm 3.1 for saddle-point systems while avoiding the need to

incorporate pivoting. Our signed IC factorization is listed as Algorithm 4.1 (again, the sparse

implementation details are omitted). Here Nj is the number of entries in column j of K. This algorithm

is implemented within a new package HSL MI30.

Algorithm 4.1. Outline of the HSL MI30 signed incomplete Cholesky algorithm for saddle-point K

Input: Symmetric saddle-point matrix K ∈ RN×N with N = n+m;

lsize, rsize, droptol1, droptol2, initial shifts αin(1 : 2)

Output: Incomplete signed Cholesky factor L, diagonal D with n positive and m negative entries,

final shifts αout(1 : 2)

Compute a sparsity-preserving ordering Q for K

Post-process the ordering Q̂← Q (see Section 2)

Permute the matrix: K ← Q̂TKQ̂

Compute a diagonal scaling S and scale: K ← SKS

Set breakdown = false and α(1 : 2) = αin(1 : 2), α0(1 : 2) = 0

Loop over shifts

do

Set K ← K +G where G is diagonal with Gii =

{
α(1)− α0(1) if i is an A node

−α(2) + α0(2) if i is a C node
Set d(1 : N) = (k11, k22, ..., kNN)

for j = 1 : N do

Apply LLT , RLT and LRT updates from columns 1 : j − 1 to K:,j and d(j + 1 : N)

if min(d(i) : i is an A node) < small then

Set breakdown = true, α0(1 : 2) = α(1 : 2) and increase α(1)

exit (Restart factorization with larger α(1))

else if max(d(i) : i is a C node) > −small then

8

Set breakdown = true, α0(1 : 2) = α(1 : 2) and increase α(2)

exit (Restart factorization with larger α(2))

end if

Sort entries of K:,j by magnitude

Keep Nj + lsize entries of largest magnitude in L:,j,

provided each is at least droptol1

Keep the rsize entries that are next largest in magnitude in R:,j,

provided each is at least droptol2

end do

if breakdown = false then

Set αout(1 : 2) = α(1 : 2)− α0(1 : 2) and return (Breakdown-free factorization complete)

end if

end do

In addition to the step that post-processes the computed ordering so that a C-node is never ordered

before its A-node neighbours, the key difference between the two algorithms is that, for the saddle-point

case, we employ two shifts, α(1 : 2). Both are non-negative. The first, α(1), is increased each time

the incomplete factorization breaks down on an A-node while the second, α(2) is increased each time

the incomplete factorization breaks down on a C-node. For simplicity of notation, assuming the natural

ordering is used (so that Q = I), the incomplete factorization of the scaled and shifted matrix

K̄ = S

(
A BT

B −C

)
S +

(
α(1)I 0

−α(2)I

)
is computed. We note that, recently, Chen et al [11] used a perturbation of the (2, 2) block in a zero-level

fill incomplete factorization; they refer to this as a stabilized incomplete factorization. In their study, they

use a fixed shift α(2) = −4 (with α(1) = 0). Furthermore, in their paper on incomplete factorization

preconditioners for Navier-Stokes solvers, Rehman et al [61] comment that convergence can sometimes be

improved by perturbing the (2, 2) block.

It is clear that the changes that must be made to the Cholesky code are minimal; it is essentially only

necessary to distinguish between A and C-nodes. We observe that we did experiment with using a single

shift (so that α(1) = α(2)) but found that this gave us significantly poorer results.

Note that this algorithm differs from that described in Section 1 since, even with the natural ordering,

we do not compute an incomplete factorization of A on its own and then solve (1.3) before computing an

incomplete factorization of the approximate Schur complement (1.4). Rather, we work with the columns

of length N = n+m of the matrix (
A

B

)
.

This has the advantage that the sparsity of the (2,1) block of the incomplete factor is dealt with as

the factorization of the (1,1) block proceeds. Furthermore, it is not necessary to limit the factorization

exclusively to the A-nodes before proceeding to the C-nodes; we only require that a C-node is ordered

after all its A-node neighbours. This gives greater flexibility in the ordering of the factorization.

Finally, we remark that Orban [45] has recently proposed a limited-memory incomplete LDLT

factorization for the important class of SQD matrices. His algorithm is a generalization of that of Lin

and Moré [40]. It can be regarded as a special case of Algorithm 4.1 with droptol1 = droptol2 = 0,

rsize = 0 and α(1) = α(2) and, as it is for SQD matrices, there is no requirement to post-process the

sparsity-preserving ordering.

9

5 Theoretical results

This section presents some results that may lead to a better theoretical understanding of limited memory

incomplete factorizations. Our results closely follow those in [44, 45]. However, unlike the SQD case that

was recently considered by Orban [45], for our saddle-point systems, we cannot assume that the matrices

have non zero diagonal entries and so we are not able to exploit the results summarized, for example, in

[7].

Early analysis of incomplete factorizations was built on theory for special matrices, such as M - and

H-matrices, that correspond naturally to the early stages of solving linear systems by preconditioned

iterative methods. For example, the proof of the breakdown-free property of incomplete factorizations for

M -matrices is an important component of the seminal paper of Meijerink and van der Vorst [43] (see also

[41, 66]).

Definition 5.1. A non singular real square matrix A with non positive off diagonal entries is called an

M -matrix if all the entries of its inverse are non negative. A non singular real square matrix A is called

an H-matrix if its comparison matrix M(A) = {M(A)ij} defined as

M(A)ij =

{
|aij | (i = j)

−|aij | (i 6= j)

is an M -matrix.

Note that H-matrices are very close to strictly diagonally dominant matrices [7] (they are so-called

generalized diagonally dominant matrices). The following basic result can be found in [7].

Lemma 5.1. The Schur complement of an M -matrix (respectively, an H-matrix) is an M -matrix

(respectively, an H-matrix). Furthermore, for real square matrices, if A is an H-matrix and element-

wise B satisfies M(B) ≥M(A), then B is also an H-matrix.

We start by considering a single step of three possible factorization approaches: the complete

factorization (which we denote as CO), the limited memory approach of Lin and Moré and Orban (LM)

[40, 45], and our proposed incomplete symmetric Tismenetsky approach (TI). Assuming d1 = a11 is non

zero, we can write one step of the factorization of a symmetric matrix A in the form

A =

(
d1 wT

w F

)
≡

d1 lT rT

l FLL FLR

r FRL FRR

 . (5.1)

For a CO factorization, we have the Schur complement

SCO = F − d−1
1

(
l

r

)(
lT rT

)
. (5.2)

The LM factorization keeps only part of the pivot column (part l in (5.1), assuming the rows that

correspond to the retained entries are ordered first). Further, Lin and Moré update only FLL and,

importantly, the diagonal entries of FRR. The TI approach updates FLL, FRL and FLR and possibly

also the diagonal entries of FRR. The following result is closely related to results in [40, 44, 45].

Lemma 5.2. Let A be a symmetric H-matrix with d1 = a11 non zero. Denote the Schur complements

for the CO, LM and TI factorizations after one step with pivot d1 by SCO, SLM and STI , respectively.

Further, let the Schur complement of M(A) be SM(A). Then, element-wise, SM(A) is not larger than any

of M(SCO), M(STI) and M(SLM).

Proof: From (5.1), the comparison matrix of A is

M(A) =

 |d1| −|l|T −|l|T
−|l| M(FLL) M(FLR)

−|r| M(FRL) M(FRR)

 .

10

After one step of the CO factorization, the Schur complement of M(A) is equal to

SM(A) =

(
M(FLL)− |d−1

1 ||l||l|T M(FLR)− |d−1
1 ||l||r|T

M(FRL)− |d−1
1 ||r||l|T M(FRR)− |d−1

1 ||r||r|T

)
(5.3)

and from (5.2), the comparison matrix of the Schur complement of A is

M(SCO) = M

(
F − d−1

1

(
l

r

)(
lT rT

))
.

Setting s = {si} =

(
l

r

)(
lT rT

)
, the entries of M(SCO) can be expressed as

M(SCO)ij =

{
|fii − d−1

1 s2i | i = j

−|fij − d−1
1 sisj | i 6= j.

Using the triangle inequality element-wise for the diagonal and the off diagonal entries separately, we

obtain

|fii − d−1
1 s2i | ≥ |fii| − |d1|−1s2i (5.4)

and

−|fij − d−1
1 sisj | ≥ −|fij | − |d1|−1|si||sj | (5.5)

for i = j and i 6= j, respectively. From (5.3) it follows that SM(A) ≤M(SCO) element-wise. Consider now

the comparison matrices M(STI) and M(SLM). The Schur complement update in both replaces some of

the off diagonal updates sisj by zeros because of dropping. But even in this case the inequalities (5.4) and

(5.5) remain valid and the required result may be deduced. Note that the proof does not provide a partial

ordering among off diagonal entries of M(SCO), M(STI) and M(SLM). �

Results of this kind for M - or H-matrices, as well as stronger results that typically assume non zero

diagonal entries, are useful as well as popular. However, the fact that we can get such results for a wide class

of incomplete factorization methods potentially indicates that the resulting accuracy may be poor [12]. In

the other words, lower bounds for the sequence of the Schur complements may be weak and we may obtain a

factorization for a problem that is far from the original. We also know that the size of the modification may

determine the efficiency of the preconditioned iterative method [18, 21, 56], but see the note in [40] stating

that it is not clear whether this conclusion transfers to limited memory preconditioners. We conclude that

it is still necessary to have a good choice of incomplete factorization and its implementation. This idea

will hopefully remain a driving force for the development new approaches.

We now consider the TI factorization of the saddle-point matrix (1.1) (without drop tolerances).

Theorem 5.1. Consider the incomplete TI factorization of the symmetric saddle-point matrix (1.1), with

a pivot sequence such that a C-node is only ordered after all its A-node neighbours. Assume that for an

A-pivot, all its C-node neighbours are in L and for a C-pivot, all its C-node neighbours are in R. Then

all the entries of the diagonal factor D are ±1 and the factorization is breakdown-free.

Proof: Assume i−1 steps have succeeded and consider the i-th pivot kii. As in Theorem 2.1, we consider

the partitioned i-th principal submatrix Ai−1 BT
i−1 uT

Bi−1 −Ci−1 vT

u v kii

 .

Recall that, at each step, the TI factorization is based on adding a positive semidefinite matrix to the

matrix that is being factorized (see [57]). Under the stated assumptions, at the i-th step a positive

semidefinite matrix has only been added to Ai−1; let ∆ denote this positive semidefinite matrix.

11

Case 1: node i is a A-node. In this case, the proof is very similar to that of the complete

factorization. As in Theorem 2.1, the ordering implies that v is equal to zero. Further, the update of kii
includes just two terms as in (2.3). The first of these terms equal to u(Ai−1 + ∆)−1uT . Again, as in (2.3),

the second term updating kii is based on the Schur complement Si−1 = −Ci−1 −Bi−1(Ai−1 + ∆)−1BT
i−1

and it is equal to −u(Ai−1 + ∆)−1BT
i−1S

−1
i−1Bi−1(Ai−1 + ∆)−1uT and thus it is also positive.

Case 2: node i is a C-node. The update of kii can be split into two steps. First, we subtract

from kii the positive value u(Ai−1 + ∆)−1uT and so kii remains negative. Second, kii should be updated

using the Schur complement Si−1 = −Ci−1 − Bi−1(Ai−1 + ∆)−1BT
i−1. But Si−1 corresponds to C-nodes

and, because of the assumption that all C-node neighbours of a C-pivot are in R and the TI factorization

does not perform RRT updates, kii is not updated further and is thus negative. �

Remark 5.1. The result in Theorem 5.1 proposes a modification of the signed factorization that safeguards

the existence of the IC factorization, even for saddle-point matrices with zero diagonal entries. Note that,

in practice, when developing a fill-in efficient implementation, we generally need to relax the theoretical

conditions. For example, the diagonal entries of the (2, 2) block could be modified by adding a negative

semidefinite (diagonal) matrix.

Remark 5.2. Theorem 5.1 does not hold for the LM factorization, even when K is a symmetric saddle-

point H-matrix. In this case, even when we have the monotonicity property in the sequence of the Schur

complements as described in Lemma 5.2, there is no guarantee that the diagonal C-node entries will be

non zero.

For the LM factorization, we require more stringent assumptions.

Theorem 5.2. Assume that the symmetric saddle-point matrix (1.1) is an H-matrix and that the

constraint ordering is as in Theorem 5.1. Assume further that all the A-nodes are fully updated, that

is, they correspond to the CO factorization. Then the LM factorization that updates all the diagonal

entries at each stage is breakdown-free.

Proof: The complete factorization of the A-nodes with the diagonal updates of all the nodes is necessary

to ensure the diagonal C-node entries become nonzero. The H-matrix property explained in Lemma 5.2

can then be applied for all the subsequent Schur complements. �

While the theoretical results presented here appear promising, as already observed, practical

implementations almost invariably employ further relaxations and extend solvability from (relatively weak,

as we mentioned above) special matrices to more general ones. The real challenge is thus (1) to minimize

the fill-in in the computed factors, (2) to use as much information on the problem as possible for the

computation, and (3) to restrict the memory use. The breakdown-free property can then be forced by

scaling and moving the scaled matrix closer to a related H-matrix through the use of diagonal shifts [40].

6 Numerical experiments

6.1 Test environment

All the numerical results reported on in this paper are performed (in serial) on our test machine that has

two Intel Xeon E5620 processors with 24 GB of memory. The ifort Fortran compiler (version 12.0.0) with

option -O3 is used. The implementations of the SYMMBK algorithm and the GMRES(100) algorithm

(with right preconditioning) offered by the HSL routines HSL MI02 and MI24, respectively, are employed,

with starting vector x0 = 0, the right-hand side vector b computed so that the exact solution is x = 1, and

stopping criteria

‖Kx̂− b‖2 ≤ 10−8‖b‖2, (6.1)

12

where x̂ is the computed solution. In addition, for each test we impose a limit of 1000 iterations.

Our test problems are real indefinite matrices taken from the University of Florida Sparse Matrix

Collection [14]. The first set (Test Set 1) has zero (2, 2) block (C = 0); they are listed in Table 6.1.

The second set (Test Set 2) are interior-point optimization matrices with C = 10−8I; they are listed in

Table 6.2. Here we give the order n of the (1, 1) block A, the order m of the (2, 2) block C and the

number nz(K) of entries in the lower triangular part of K. In addition, we use the direct solver HSL MA97

[32] to compute the number of entries in the complete factor of K. For the HSL MA97 runs, we use the

scaling from a symmetrized version of the package MC64 [17, 19]. We remark that this scaling has been

found to work well for direct solvers when used to solve “tough” indefinite systems [30, 33]. We also

use the default ordering (which is either approximate minimum degree or nested dissection, and this is

selected automatically following [20]), except for the problems marked ∗. For these, we found we obtain a

sparser complete factorization by using a matching-based ordering. We report fillL to be the ratio of the

number of entries in the factor to nz(K). This statistic is reported for later comparison with the fill for

the incomplete factorizations.

Table 6.1: Test problems with C = 0 (Test Set 1). n and m denote the order of A and C (see 1.1), nz(K)

is the number of entries in the lower triangular part of K, fillL is the ratio of is the number of entries in

the complete factor of K to nz(K). QP = quadratic programming problem, FE = finite-element, PDE =

partial differential equation. ∗ denotes matching-based ordering is used.

Identifier n m nz(K) fillL Description/Application

GHS indef/aug3dcqp 27543 8000 77829 18.3 3D PDE

GHS indef/boyd1 93261 18 652246 1.00 Convex QP

GHS indef/brainpc2∗ 13807 13800 96601 3.61 Biological model

GHS indef/cont-201∗ 40397 40198 239596 20.1 Convex QP

GHS indef/cont-300∗ 90597 90298 539396 22.1 Convex QP

GHS indef/d pretok 129160 53570 885416 17.3 Mixed FE model

GHS indef/darcy003 234128 155746 1167685 7.86 Mixed FE model

GHS indef/mario001 23130 15304 114643 6.51 FE model Stokes problem

GHS indef/ncvxqp9∗ 9004 7500 31547 11.4 Nonconvex QP

GHS indef/oslenski0 61030 27233 402623 12.1 Mixed FE model

GHS indef/qpband 15000 5000 30000 1.67 Convex QP

GHS indef/sit100 7142 3120 34094 13.7 Mixed FE model

GHS indef/stokes64 8450 4096 74242 8.98 FE model Stokes problem

GHS indef/stokes128 33282 16384 295938 10.7 FE model Stokes problem

GHS indef/tuma1 13360 9607 50560 10.9 Mixed FE model

GHS indef/tuma2 7515 5477 28440 10.5 Mixed FE model

GHS indef/turon m 133814 56110 912345 15.7 Mixed FE model

Following [55], in our experiments we define the efficiency of the preconditioner P to be

efficiency = iter × nz(L), (6.2)

where iter is the iteration count for P = (LDLT)−1. The lower the value of (6.2), the better the

preconditioner. We also define the fill in the incomplete factor to be the ratio

fillIC = (number of entries in the incomplete factor)/nz(K), (6.3)

6.2 Results for C = 0

In Table 6.3, we present results for Test Set 1. The values of the shifts αout(1 : 2) are reported, together

with fillIC , the efficiency and the number of iterations. We use the natural ordering (so that all A-nodes

are ordered ahead of the C-nodes) and symmetrized MC64 scaling. The drop tolerances are droptol1 = 10−3

and droptol2 = 10−4 (which are the default values for HSL MI28). We ran GMRES(100) for each problem

13

Table 6.2: Interior-point test problems (Test Set 2). n and m denote the order of A and C (see 1.1), nz(K)

is the number of entries in the lower triangular part of K, fillL is the ratio of is the number of entries in

the complete factor of K to nz(K).

Identifier n m nz(K) fillL
GHS indef/c-55 19121 13659 218115 21.5

GHS indef/c-59 23813 17469 260909 17.6

GHS indef/c-63 25505 18729 239469 13.7

GHS indef/c-68 36546 28264 315408 29.2

GHS indef/c-69 38432 29026 345714 10.9

GHS indef/c-70 39302 29622 363955 13.7

GHS indef/c-71 44814 31824 468096 37.1

GHS indef/c-72 47950 36114 395811 11.7

Schenk IBMNA/c-big 201877 143364 1343126 39.0

with lsize = rsize =1, 5, 10 and 20 and selected the best result (in terms of the lowest value of the efficiency

(6.2)). For problems GHS indef/cont-201 and GHS indef/cont-300, we did not achieve convergence with

these settings but did get convergence by choosing droptol1 = droptol2 = 0.0, lsize = rsize = 20 and

running SYMMBK.

Table 6.3: GMRES(100) convergence results for Test Set 1. ∗ indicates SYMMBK was used.

Identifier lsize rsize αout(1) αout(2) fillIC efficiency iters

GHS indef/aug3dcqp 1 1 0.0 0.0 1.35 1.0×105 1

GHS indef/boyd1 1 1 0.0 0.0 0.82 3.8×106 7

GHS indef/brainpc2 1 1 0.0 2.56×10−1 1.28 1.6×107 132

GHS indef/cont-201∗ 20 20 0.0 1.00×10−3 7.89 3.9×108 207

GHS indef/cont-300∗ 20 20 0.0 1.00×10−3 7.87 1.6×109 390

GHS indef/d pretok 5 5 0.0 2.56×10−1 1.96 4.8×107 28

GHS indef/darcy003 20 20 0.0 0.0 5.44 2.8×108 44

GHS indef/mario001 20 20 0.0 0.0 5.37 9.9×106 16

GHS indef/ncvxqp9 10 10 0.0 4.19×103 4.01 2.5×105 2

GHS indef/olesnik0 20 20 0.0 0.0 4.43 4.8×107 27

GHS indef/qpband 1 1 0.0 0.0 1.17 3.5×104 1

GHS indef/sit100 20 20 0.0 0.0 3.61 1.7×106 14

GHS indef/stokes64 10 10 0.0 0.0 2.73 3.2×107 157

GHS indef/stokes128 10 10 0.0 0.0 2.73 4.3×108 539

GHS indef/tuma1 20 20 0.0 0.0 5.79 5.9×106 20

GHS indef/tuma2 20 20 0.0 0.0 6.55 3.4×106 18

GHS indef/turon m 20 20 0.0 1.60×10−2 4.36 2.2×108 56

In the positive-definite case, we found that using intermediate memory (rsize > 0) was beneficial

[56, 57]. To assess whether it is also helpful for the signed IC factorization, we run with the same settings

(except rsize = 0) and report the results in Table 6.4. We observe that, with rsize = 0, more problems

require a non-zero shift αout(2) and that the value of the non-zero αout(2) is greater than for rsize > 0.

Furthermore, with the same lsize, the fill ratio fillIC is generally greater and the efficiency poorer.

For a number of problems, including GHS indef/brainpc2 and GHS indef/stokes64, the iteration count is

significantly higher with rsize = 0 and for problems GHS indef/cont-300 and GHS indef/stokes128, we

fail to achieve the requested accuracy within the limit of 1000 iterations. We conclude that, overall, using

intermediate memory improves the quality of the incomplete factorization.

It may be important to limit the amount of fill so in Table 6.5 we present results with lsize = 5,

rsize = 10. We omit the first six problems and GHS indef/qpband because they either fail to converge with

14

Table 6.4: GMRES(100) convergence results for Test Set 1 with rsize = 0. ∗ indicates SYMMBK was

used. – denotes failure to converge within 1000 iterations.

Identifier lsize rsize αout(1) αout(2) fillIC efficiency iters

GHS indef/aug3dcqp 1 0 0.0 0.0 1.56 1.2×105 1

GHS indef/boyd1 1 0 0.0 0.0 0.82 3.8×106 7

GHS indef/brainpc2 1 0 0.0 4.10 1.43 7.2×107 519

GHS indef/cont-201∗ 20 0 0.0 1.60×10−2 7.89 1.3×109 710

GHS indef/cont-300∗ 20 0 0.0 1.60×10−2 7.87 – –

GHS indef/d pretok 5 0 0.0 0.0 2.09 5.9×107 32

GHS indef/darcy003 20 0 0.0 0.0 6.13 3.1×108 43

GHS indef/mario001 20 0 0.0 0.0 6.00 1.0×107 15

GHS indef/ncvxqp9 10 0 0.0 4.19×103 6.44 4.1×105 2

GHS indef/olesnik0 20 0 0.0 0.0 5.45 6.8×107 31

GHS indef/qpband 1 0 0.0 0.0 1.17 3.5×104 1

GHS indef/sit100 20 0 0.0 0.0 4.36 2.4×106 16

GHS indef/stokes64 10 0 0.0 1.60×10−2 2.74 5.9×107 289

GHS indef/stokes128 10 0 0.0 1.60×10−2 2.73 – –

GHS indef/tuma1 20 0 0.0 1.60×10−2 8.22 6.6×106 16

GHS indef/tuma2 20 0 0.0 1.60×10−2 7.93 3.2×106 14

GHS indef/turon m 20 0 0.0 2.56×10−1 5.22 3.5×108 73

Table 6.5: GMRES(100) convergence results for Test Set 1 with lsize = 5, rsize = 10.

Identifier αout(1) αout(2) fillIC efficiency iters

GHS indef/darcy003 0.0 0.0 2.69 1.1×109 349

GHS indef/mario001 0.0 0.0 2.68 2.7×107 89

GHS indef/ncvxqp9 0.0 1.05×103 3.34 3.2×105 3

GHS indef/olesnik0 0.0 0.0 2.13 6.9×107 81

GHS indef/sit100 0.0 0.0 2.12 4.0×106 55

GHS indef/stokes64 0.0 0.0 1.90 2.9×107 204

GHS indef/stokes128 0.0 0.0 1.89 4.1×108 730

GHS indef/tuma1 0.0 0.0 2.78 8.3×106 59

GHS indef/tuma2 0.0 0.0 2.91 4.4×106 50

GHS indef/turon m 0.0 0.0 2.08 2.3×108 119

15

these settings (problems GHS indef/cont-201 and GHS indef/cont-300) or the results already presented

in Table 6.3 use less memory. We see that the fill is now less than 3.0 but, for some problems (including

GHS indef/darcy003 and GHS indef/mario001), the quality of the preconditioner, in terms of the efficiency

as well as the iteration count, is significantly poorer.

We have also considered varying lsize and rsize while keeping lsize + rsize constant. Results for a

subset of our test problems for a range of pairs of values (lsize, rsize) are given in Table 6.6. We see that,

as lsize increases, the level of fill increases and the iteration count reduces. However, as rsize increases,

breakdown is avoided and the efficiency can improve. Thus we conclude that reducing the memory used

for the factor while increasing the intermediate memory by a corresponding amount can be beneficial.

Table 6.6: GMRES(100) convergence results for problems from Test Set 1 with lsize+ rsize = 20.

Identifier (lsize, rsize) αout(1) αout(2) fillIC efficiency iters

GHS indef/mario001 (20, 0) 0.0 0.0 6.00 1.0×107 15

(15, 5) 0.0 0.0 4.71 1.3×107 24

(10, 10) 0.0 0.0 3.84 1.5×107 35

(5, 15) 0.0 0.0 2.68 2.7×107 87

GHS indef/stokes64 (20, 0) 0.0 0.0 4.42 3.6×107 110

(15, 5) 0.0 0.0 3.57 4.1×107 154

(10, 10) 0.0 0.0 2.73 3.2×107 157

(5, 15) 0.0 0.0 1.90 2.6×107 182

GHS indef/tuma1 (20, 0) 0.0 1.60×10−2 8.22 6.7×106 16

(15, 5) 0.0 0.0 4.90 6.7×106 27

(10, 10) 0.0 0.0 3.90 7.2×106 37

(5, 15) 0.0 0.0 2.77 8.3×106 59

GHS indef/turon m (20, 0) 0.0 2.56×10−1 5.22 3.5×108 73

(15, 5) 0.0 2.56×10−1 3.78 2.3×108 67

(10, 10) 0.0 0.0 3.01 2.3×108 83

(5, 15) 0.0 0.0 2.09 2.1×108 113

In Table 6.7 we present results for different orderings. In each case, the ordering algorithm is applied to

the sparsity pattern of K and then post-processed, as described in Section 2. The lsize and rsize values

are the same as in Table 6.3. The orderings tested are the profile reduction ordering of Sloan [47, 58, 59] (as

implemented by the HSL package MC61), Reverse Cuthill McKee (RCM) [13] (again, implemented within

MC61), and approximate minimum degree (AMD) [3] (HSL MC68). Generally, the Sloan ordering appears to

be the best, although it did not lead to the required convergence for GHS indef/brainpc2 and the tough

GHS indef/cont problems (for these, the natural order, which forces all the C-nodes after all the A-nodes,

gives the best results).

In Table 6.8 we present results for different scalings. The scalings tested are symmetrized MC64,

equilibration scaling using MC77 [50, 51], and l2 scaling, in which the entries in column j of K are normalised

by the 2-norm of column j. We also report results for no scaling. We see that some problems are well-scaled

and each of the three scalings has little effect on the iteration count (for example, GHS indef/darcey003

and GHS indef/mario001). However, whereas we achieved convergence in all cases using MC64 or MC77

scaling, we had a number of failures if no scaling was used and also we had failures with the l2 scaling.

While no strategy is consistently the best, in these tests, MC64 generally gives lower iteration counts than

MC77 and the difference is sometimes large (for example, GHS indef/brainpc2 and GHS indef/stokes128).

6.3 Results for C = 10−8I

In Table 6.9, we present results for Test Set 2 (interior-point matrices). We use lsize = rsize =10 with

the Sloan ordering, symmetrized MC77 scaling and drop tolerances droptol1 = 10−3 and droptol2 = 10−4.

In these tests, we use initial shifts αin(1 : 2) = 0.01 to regularize the problem [52]. The iteration counts

16

Table 6.7: GMRES(100) iteration results for Test Set 1 run with different orderings. The lowest iteration

count for each problem is in bold. ∗ indicates SYMMBK was used. – denotes failure to converge within

1000 iterations.

Identifier lsize rsize Natural Sloan AMD RCM

GHS indef/aug3dcqp 1 1 1 1 1 1

GHS indef/boyd1 1 1 7 1 10 10

GHS indef/brainpc2 1 1 132 – – 251

GHS indef/cont-201∗ 20 20 207 – 741 –

GHS indef/cont-300∗ 20 20 390 – – –

GHS indef/d pretok 5 5 28 93 122 96

GHS indef/darcy003 20 20 44 37 46 46

GHS indef/mario001 20 20 16 14 17 16

GHS indef/ncvxqp9 10 10 2 1 2 2

GHS indef/olesnik0 20 20 27 23 27 27

GHS indef/qpband 1 1 1 1 1 1

GHS indef/sit100 20 20 14 11 12 12

GHS indef/stokes64 10 10 157 70 97 97

GHS indef/stokes128 10 10 539 197 444 444

GHS indef/tuma1 20 20 20 12 13 12

GHS indef/tuma2 20 20 18 12 11 11

GHS indef/turon m 20 20 56 35 48 38

Table 6.8: GMRES(100) iteration results for Test Set 1 run with different scalings. The lowest iteration

count for each problem is in bold. ∗ indicates SYMMBK was used. – denotes failure to converge within

1000 iterations.

Identifier lsize rsize MC64 MC77 l2 None

GHS indef/aug3dcqp 1 1 1 1 – 79

GHS indef/boyd1 1 1 7 57 3 1

GHS indef/brainpc2 1 1 132 238 186 100

GHS indef/cont-201∗ 20 20 207 246 209 –

GHS indef/cont-300∗ 20 20 390 475 – –

GHS indef/d pretok 5 5 28 41 44 144

GHS indef/darcy003 20 20 44 44 42 41

GHS indef/mario001 20 20 16 16 16 16

GHS indef/ncvxqp9 10 10 2 1 1 1

GHS indef/olesnik0 20 20 27 28 27 23

GHS indef/qpband 1 1 1 1 1 1

GHS indef/sit100 20 20 14 17 15 12

GHS indef/stokes64 10 10 157 171 78 149

GHS indef/stokes128 10 10 539 980 – 568

GHS indef/tuma1 20 20 20 19 18 18

GHS indef/tuma2 20 20 18 17 17 16

GHS indef/turon m 20 20 56 52 50 50

17

for the same settings but lsize = 10, rsize = 0 (no intermediate memory) are also reported. We see that

using intermediate memory generally leads to a significant improvement in the preconditioner quality. In

each case, our choice αin(2) = 0.01 was not large enough and we had to increase the C-shift and restart.

Table 6.9: GMRES(100) convergence results for Test Set 2 with lsize = rsize = 10 and αin(1 : 2) = 0.01.

The figures in parentheses are the iteration counts for lsize = 10, rsize = 0.

Identifier αout(1) αout(2) fillIC efficiency iters

GHS indef/c-55 0.01 0.64 2.08 5.3×107 117 (147)

GHS indef/c-59 0.01 0.64 2.10 6.0×107 110 (129)

GHS indef/c-63 0.01 0.64 2.30 4.8×107 87 (166)

GHS indef/c-68 0.01 1.28 2.32 2.7×107 37 (43)

GHS indef/c-69 0.01 0.32 2.35 5.4×107 67 (73)

GHS indef/c-70 0.01 0.32 2.33 6.0×107 71 (72)

GHS indef/c-71 0.01 0.02 2.17 7.9×107 78 (88)

GHS indef/c-72 0.01 0.32 2.39 6.3×107 67 (78)

Schenk IBMNA/c-big 0.01 0.64 2.63 3.8×108 109 (268)

For these interior-point problems, we found it was beneficial to regularize by using non-zero initial

shifts: if we set αin(1 : 2) = 0.0, in our tests the factorization did not break down on an A-node (so that

αout(1) = 0.0) but it was necessary to significantly increase the C-shift, leading to a much poorer quality

preconditioner. This is illustrated in Table 6.10.

Table 6.10: GMRES(100) convergence results for Test Set 2 with lsize = rsize = 10 and αin(1 : 2) = 0.0.

– denotes failure to converge within 1000 iterations.

Identifier αout(1) αout(2) fillIC efficiency iters

GHS indef/c-55 0.0 16.4 2.06 1.3×108 281

GHS indef/c-59 0.0 32.8 2.17 2.2×108 382

GHS indef/c-63 0.0 32.8 2.30 2.1×108 383

GHS indef/c-68 0.0 131 2.34 2.9×108 398

GHS indef/c-69 0.0 65.5 2.39 2.4×108 288

GHS indef/c-70 0.0 32.8 2.31 3.2×108 379

GHS indef/c-71 0.0 32.8 2.16 3.7×108 362

GHS indef/c-72 0.0 65.5 2.39 4.5×108 471

Schenk IBMNA/c-big 0.0 262 – – –

To illustrate the effects of using larger lsize and rsize values, in Table 6.11 we present results for

lsize = rsize = 30. If we compare these with Table 6.9 (lsize = rsize = 10), we see that the fill increases

(but is still much less than for a complete factorization) while the value of the C-shift is reduced. This

leads to a reduction in the iteration count (by around 50 per cent for many of the problems) and an

improvement in the efficiency for most cases.

6.4 Comparisons with SYM-ILDL

It is of interest to consider how the performance of our signed incomplete factorization preconditioner

compares with that of an incomplete indefinite factorization that incorporates pivoting. The package we

use for comparison is SYM-ILDL by Greif and Liu. As discussed in Section 1, this is based on the earlier

work by Li and Saad [37] and performs an incomplete factorization of sparse symmetric indefinite matrices

with Bunch-Kaufman pivoting [10] used for numerical stability (and to prevent breakdown). Thus it

computes an incomplete factorization of the form LDLT , where D is block diagonal, with blocks of order 1

and 2, corresponding to 1×1 and 2×2 pivots. The matrix is preordered using AMD or RCM and optionally

18

Table 6.11: GMRES(100) convergence results for Test Set 2 with lsize = rsize = 30 and αin(1 : 2) = 0.01.

Results are also given for the code SYM-ILDL run with fill = 12.0 and tol = 0.003. – denotes failure to

converge within 1000 iterations.

Identifier Signed IC SYM-ILDL

αout(1) αout(2) fillIC efficiency iters fillIC efficiency iters

GHS indef/c-55 0.01 0.08 3.37 3.0×107 41 4.35 7.4×107 78

GHS indef/c-59 2.5 × 10−3 0.01 3.67 3.9×107 41 4.33 1.1×108 97

GHS indef/c-63 0.01 0.02 3.79 4.3×107 47 4.46 6.5×107 61

GHS indef/c-68 0.01 0.01 4.06 1.8×107 14 4.31 8.3×107 61

GHS indef/c-69 2.5 × 10−3 0.01 4.00 4.1×107 30 3.81 5.5×107 42

GHS indef/c-70 0.01 0.01 3.88 6.3×107 45 3.61 2.9×107 22

GHS indef/c-71 0.01 0.01 3.51 8.7×107 53 4.03 7.0×107 37

GHS indef/c-72 0.01 0.01 3.91 5.7×107 37 4.02 9.7×107 61

Schenk IBMNA/c-big 0.01 0.01 4.44 3.3×108 56 4.47 – –

prescaled to be equilibrated in the maximum norm. The input parameters that can be set by the user to

control the number of entries within L are fill and tol. Each column of the computed incomplete factor L

is guaranteed to have fewer than fill ·ne(K)/n entries, where ne(K) is the number of entries in K (upper

and lower triangular parts). It has default value 1.0. The parameter tol controls the aggressiveness of the

dropping of small entries. In each column k of L, entries that are less than tol · ||Lk+1:n,k||1 in magnitude

are discarded. The default setting for tol is 0.001.

Table 6.11 includes results for SYM-ILDL for the Test Set 2 problems run with the settings fill = 12.0

and tol = 0.003. With these choices, the level of fill is similar to that for the signed IC factorization. We

see that, in some cases (in particular, c-70), SYM-ILDL produces a higher quality preconditioner but, for

other problems (including c-63 and c-68) the preconditioner computed by our signed IC factorization is

better.

We next consider Test Set 1 (C = 0). Results are given in Table 6.12. The input parameter fill for

SYM-ILDL is chosen for each problem to give good performance with a level of fill in the factor that is

generally similar to that for the signed IC factorization; the drop tolerance tol = 0.001 is used. Problems

GHS indef/cont-201 and GHS indef/cont-300 are omitted as SYM-ILDL did not converge. The signed

IC results are reproduced from Table 6.3. Again, we see that the signed IC approach can outperform

SYM-ILDL but for some problems (such as GHS indef/brainpc2), the latter produces a higher quality

preconditioner. We are not able to predict for which problems which approach will give the better results.

7 Concluding remarks

In this paper, we have looked at extending the robust limited-memory incomplete Cholesky factorization

algorithm of [56, 57] to sparse symmetric indefinite systems in saddle-point form. By using two diagonal

shifts to prevent breakdown, we are able to compute a signed incomplete Cholesky factorization of the form

LDLT , where the diagonal matrix D has entries ±1. Some new theoretical results have been given and

numerical results presented to illustrate the effectiveness of the approach. The effects of different orderings

and scalings on the preconditioner have also been investigated. As in the positive-definite case, we have

shown that the use of intermediate memory can improve the quality of the preconditioner. Furthermore,

the use of regularization parameters (that is, non-zero initial diagonal shifts) for the blocks A and −C
has been found to substantially improve performance for interior-point optimization matrices. We have

developed a new software package HSL MI30 that implements our signed IC factorization algorithm; this

Fortran package (which also offers a MATLAB interface) is part of the HSL mathematical software library

[34].

19

Table 6.12: GMRES(100) convergence results for Test Set 1. The settings for the signed IC code are as

for Table 6.3.

Identifier Signed IC SYM-ILDL

fillIC efficiency iters fill fillIC efficiency iters

GHS indef/aug3dcqp 1.35 1.05×105 1 1.0 1.61 1.2×105 1

GHS indef/boyd1 0.82 3.76×106 7 1.0 0.86 1.3×107 23

GHS indef/brainpc2 1.28 1.64×107 132 1.0 0.72 1.5×106 22

GHS indef/d pretok 1.96 4.85×107 28 1.0 1.96 2.7×108 156

GHS indef/darcy003 5.44 2.80×108 44 10.0 4.84 2.3×108 40

GHS indef/mario001 5.37 9.86×106 16 4.0 4.25 1.2×107 24

GHS indef/ncvxqp9 3.98 2.51×105 2 3.0 3.64 7.0×104 61

GHS indef/olesnik0 4.43 4.82×107 27 4.0 4.81 6.6×107 34

GHS indef/qpband 1.17 3.50×104 1 0.5 1.67 3.5×104 1

GHS indef/sit100 3.61 1.72×106 14 5.0 3.24 6.2×106 56

GHS indef/stokes64 2.73 3.19×107 157 2.0 3.73 1.1×108 379

GHS indef/stokes128 2.73 4.35×108 539 4.0 5.86 1.3×109 740

GHS indef/tuma1 5.79 5.86×106 20 15.0 4.91 3.2×106 13

GHS indef/tuma2 6.55 3.36×106 18 15.0 4.66 1.4×106 11

GHS indef/turon m 4.36 2.23×108 56 6.0 5.58 3.5×108 67

We have presented some numerical results for the recent SYM-ILDL package, which uses Bunch-

Kaufman pivoting to avoid breakdown. In the case of a direct solver, it has been reported [54] that a

signed Cholesky factorization code in general performs less well than a carefully engineered indefinite code

that incorporates threshold partial pivoting. However, our results show that our limited-memory signed IC

approach can be competitive with SYM-ILDL. It is now our intention to develop an incomplete indefinite

factorization code that incorporates pivoting and also uses intermediate memory.

Acknowledgements

We are grateful to Chen Greif and Paul Liu for discussions around their code SYM-ILDL and for advice

on computing the numerical results for SYM-ILDL that are reported in Sections 6.3 and 6.4. Thanks

also to Chen for carefully reading and commenting on a draft of this paper. The version of SYM-ILDL

used was downloaded from https://github.com/inutard/matrix-factor on 10 December 2013. All

results were performed using the HSL implementations of SYMMBK and GMRES (available from http:

//www.hsl.rl.ac.uk/catalogue/).

References

[1] G. Al-Jeiroudi, J. Gondzio, and J. Hall. Preconditioning indefinite systems in interior point methods for large

scale linear optimisation. Optimization Methods and Software, 23(3):345–363, 2008.

[2] A. Altman and J. Gondzio. Regularized symmetric indefinite systems in interior point methods for linear

and quadratic optimization. Optimization Methods and Software, 11/12(1-4):275–302, 1999. Interior point

methods.

[3] P. R. Amestoy, T. A. Davis, and I. S. Duff. Algorithm 837: AMD, an approximate minimum degree ordering

algorithm. ACM Transactions on Mathematical Software, 30:381–388, 2004.

[4] M. Benzi, G.H. Golub, and J. Liesen. Numerical solution of saddle point problems. Acta Numerica, 14:1–137,

2005.

[5] M. Benzi and A. Wathen. Some preconditioning techniques for saddle point problems. In Model Order

Reduction: Theory, Research Aspects and Applications, volume 13 of Mathematics in Industry, pages 195–211.

Springer, 2008.

20

[6] L. Bergamaschi, J. Gondzio, and G. Zilli. Preconditioning indefinite systems in interior point methods for

optimization. Computational Optimization and Applications, 28(2):149–171, 2004.

[7] A. Berman and R. J. Plemmons. Nonnegative Matrices in the Mathematical Sciences. Academic Press, New

York, 1979.

[8] S. Bonettini and V. Ruggiero. Some iterative methods for the solution of a symmetric indefinite KKT system.

Computational Optimization and Applications, 38(1):3–25, 2007.

[9] R. Bridson. An ordering method for the direct solution of saddle-point matrices, 2007. Unpublished preprint

available from http://www.cs.ubc.ca/~rbridson/kktdirect/.

[10] J. R. Bunch and L. Kaufman. Some stable methods for calculating inertia and solving symmetric linear

systems. Mathematics of Computation, 31:162–179, 1977.

[11] X. Chen, K.-K. Phoon, and K.-C. Toh. Performance of zero-level fill-in preconditioning techniques for iterative

solutions with geotechnical applications. International Journal of Geomechanics, 12:596–605, 2012.

[12] E. Chow and Y. Saad. Experimental study of ILU preconditioners for indefinite matrices. J. of Computational

and Applied Mathematics, 86(2):387–414, 1997.

[13] E. H. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric matrices. In Proceedings 24th

National Conference of the ACM, pages 157–172. ACM Press, 1969.

[14] T. A. Davis and Y. Hu. The University of Florida sparse matrix collection. ACM Transactions on Mathematical

Software, 38(1), 2011.

[15] A. C. de Niet and F. W. Wubs. Numerically stable LDLT -factorization of F-type saddle point matrices. IMA

Journal of Numerical Analysis, 29:208–234, 2009.

[16] I. S. Duff. MA57– a new code for the solution of sparse symmetric definite and indefinite systems. ACM

Transactions on Mathematical Software, 30:118–154, 2004.

[17] I. S. Duff and J. Koster. On algorithms for permuting large entries to the diagonal of a sparse matrix. SIAM

J. on Matrix Analysis and Applications, 22:973–996, 2001.

[18] I. S. Duff and G. A. Meurant. The effect of ordering on preconditioned conjugate gradients. BIT Numerical

Mathematics, 29:635–657, 1989.

[19] I. S. Duff and S. Pralet. Strategies for scaling and pivoting for sparse symmetric indefinite problems. SIAM

J. on Matrix Analysis and Applications, 27:313–340, 2005.

[20] I. S. Duff and J. A. Scott. Towards an automatic ordering for a symmetric sparse direct solver. Technical

Report RAL-TR-2006-001, Rutherford Appleton Laboratory, 2005.

[21] V. Eijkhout. Analysis of parallel incomplete point factorizations. Linear Algebra and its Applications,

154/156:723–740, 1991.

[22] H. C. Elman and G. H. Golub. Inexact and preconditioned Uzawa algorithms for saddle point problems. SIAM

J. on Numerical Analysis, 31:1645–1661, 1994.

[23] R. Fourer and S. Mehrotra. Solving symmetric indefinite systems in an interior-point method for linear

programming. Math. Programming, 62(1, Ser. B):15–39, 1993.

[24] P. E. Gill, M. A. Saunders, and J. R. Shinnerl. On the stability of Cholesky factorization for symmetric

quasidefinite systems. SIAM J. Matrix Anal. Appl., 17(1):35–46, 1996.

[25] G. H. Golub and C. F. Van Loan. Unsymmetric positive definite linear systems. Linear Algebra and its

Applications, 28:85–97, 1979.

[26] J. Gondzio. HOPDM (version 2.12) - a fast LP solver based on a primal-dual interior point method. European

Journal of Operational Research, 85(1):221–225, 1995.

[27] C. Greif. Preconditioners for linear systems arising from interior-point methods. Presentation at the

International Conference On Preconditioning Techniques for Scientific and Industrial Applications, The

University of Oxford, 2013.

[28] C. Greif, S. He, and P. Liu. SYM-ILDL: C++ package for incomplete factorizations of symmetric indefinite

matrices. https://github.com/inutard/matrix-factor, 2013.

21

[29] M. Hagemann and O. Schenk. Weighted matchings for preconditioning symmetric indefinite linear systems.

SIAM J. on Scientific Computing, 28(2):403–420, 2006.

[30] J. D. Hogg and J. A. Scott. The effects of scalings on the performance of a sparse symmetric indefinite solver.

Technical Report RAL-TR-2008-007, Rutherford Appleton Laboratory, 2008.

[31] J. D. Hogg and J. A. Scott. An indefinite sparse direct solver for large problems on multicore machines.

Technical Report RAL-TR-2010-011, Rutherford Appleton Laboratory, 2010.

[32] J. D. Hogg and J. A. Scott. HSL MA97: a bit-compatible multifrontal code for sparse symmetric systems.

Technical Report RAL-TR-2011-024, Rutherford Appleton Laboratory, 2011.

[33] J. D. Hogg and J. A. Scott. Pivoting strategies for tough sparse indefinite systems. ACM Transactions on

Mathematical Software, 40, 2013. Article 4, 19 pages.

[34] HSL. A collection of Fortran codes for large-scale scientific computation, 2013. http://www.hsl.rl.ac.uk.

[35] I. E. Kaporin. High quality preconditioning of a general symmetric positive definite matrix based on its

UTU + UTR + RTU decomposition. Numerical Linear Algebra with Applications, 5:483–509, 1998.

[36] D. S. Kershaw. The incomplete Cholesky-conjugate gradient method for the iterative solution of systems of

linear equations. J. of Computational Physics, 26:43–65, 1978.

[37] N. Li and Y. Saad. Crout versions of ILU factorization with pivoting for sparse symmetric matrices. Electronic

Transactions on Numerical Analysis, 20:75–85, 2005.

[38] N. Li, Y. Saad, and E. Chow. Crout versions of ILU for general sparse matrices. SIAM J. on Scientific

Computing, 25(2):716–728, 2003.

[39] S. X. Li and J. W. Demmel. Making parallel gaussian elimination scalable by static pivoting. In Proceedings

of SuperComputing’98, November 7–13, 1998, Orlando, FL, pages 519–523, 1998.

[40] C.-J. Lin and J. J. Moré. Incomplete Cholesky factorizations with limited memory. SIAM J. on Scientific

Computing, 21(1):24–45, 1999.

[41] T. A. Manteuffel. An incomplete factorization technique for positive definite linear systems. Mathematics of

Computation, 34:473–497, 1980.

[42] O. Marques. Skypack user’s guide. Technical Report, National Energy Research Scientific Computing Center

(NERSC), Lawrence Berkeley National Laboratory, 2009.

[43] J. A. Meijerink and H. A. van der Vorst. An iterative solution method for linear systems of which the coefficient

matrix is a symmetric M -matrix. Mathematics of Computation, 31(137):148–162, 1977.

[44] A. Messaoudi. On the stability of the incomplete LU -factorizations and characterizations of H-matrices.

Numerische Mathematik, 69(3):321–331, 1995.

[45] D. Orban. Limited-memory LDLT factorization of symmetric quasi-definite matrices. GERAD Technical

Report G-2013-87, 2013.

[46] C. C. Paige and M. A. Saunders. Solution of sparse indefinite systems of linear equations. SIAM J. on

Numerical Analysis, 12(4):617–629, 1975.

[47] J. K. Reid and J. A. Scott. Ordering symmetric sparse matrices for small profile and wavefront. International

J. of Numerical Methods in Engineering, 45:1737–1755, 1999.

[48] W. Ren and J. Zhao. Iterative methods with preconditioners for indefinite systems. J. of Computational

Mathematics, 17:89–96, 1999.

[49] M. Rozložńık, A. Smoktunowicz, and F. Okulicka-D lużewska. Indefinite orthogonalization with rounding

errors, submitted for publication. 2013.

[50] D. Ruiz. A scaling algorithm to equilibrate both rows and columns norms in matrices. Technical Report

RAL-TR-2001-034, Rutherford Appleton Laboratory, Chilton, Oxfordshire, England, 2001.

[51] D. Ruiz and B. Uçar. A symmetry preserving algorithm for matrix scaling. Technical Report INRIA RR-7552,

INRIA, Grenoble, France, 2011.

[52] M. A. Saunders and J. A. Tomlin. Solving regularized linear porograms using barrier methods and KKT

systems. Technical Report SOL-96-4, SOL, Department of Operations Research, Stanford University, 1996.

22

[53] O. Schenk and K. Gärtner. On fast factorization pivoting methods for symmetric indefinite systems. Electronic

Transactions on Numerical Analysis, 23:158–179, 2006.

[54] J. A. Scott. A note on a simple constrained ordering for saddle-point systems. Technical Report RAL-TR-

2009-007, Rutherford Appleton Laboratory, 2009.

[55] J. A. Scott and M. Tůma. The importance of structure in incomplete factorization preconditioners. BIT

Numerical Mathematics, 51:385–404, 2011.

[56] J. A. Scott and M. Tůma. HSL MI28: an efficient and robust limited memory incomplete Cholesky factorization

code. ACM Transactions on Mathematical Software, 2014. To appear.

[57] J. A. Scott and M. Tůma. On positive semidefinite modification schemes for incomplete Cholesky factorization.

SIAM J. on Scientific Computing, 2014. To appear.

[58] S. W. Sloan. An algorithm for profile and wavefront reduction of sparse matrices. International J. of Numerical

Methods in Engineering, 23:239–251, 1986.

[59] S. W. Sloan. A Fortran program for profile and wavefront reduction. International J. of Numerical Methods

in Engineering, 28:2651–2679, 1989.

[60] M. Tůma. A note on the LDLT decomposition of matrices from saddle-point problems. SIAM J. on Matrix

Analysis and Applications, 23(4):903–915, 2002.

[61] M. ur Rehman, C. Vuik, and G. Segal. A comparison of preconditioners for incompressible navier-stokes

solvers. International J. for Numerical Methods in Fluids, 57:1731–1751, 2008.

[62] H. A. van der Vorst. Iterative Krylov Methods for Large Linear Systems. Cambridge Monographs on Applied

and Computational Mathematics, Cambridge University Press, Cambridge, UK, 2003.

[63] R. J. Vanderbei. Symmetric quasidefinite matrices. SIAM J. on Optimization, 5(1):100–113, 1995.

[64] R. J. Vanderbei. LOQO user’s manual—version 3.10. Optimization Methods and Software, 11/12(1-4):485–514,

1999.

[65] R. J. Vanderbei and D. F. Shanno. An interior-point algorithm for nonconvex nonlinear programming.

Computational Optimization and Applications, 13(1-3):231–252, 1999.

[66] R. S. Varga, E. B. Saff, and V. Mehrmann. Incomplete factorizations of matrices and connections with

H-matrices. SIAM J. on Numerical Analysis, 17:787–793, 1980.

[67] J. Zhao. The generalized Cholesky factorization method for saddle-point problems. Applied Mathematics and

Computation, 92:49–58, 1998.

23

	RAL-P-2014-003-cover.pdf
	RAL-P-2014-003-report.pdf

