
Integrating VDM++ and Real-time System DesignK. Lano, S. Goldsack, J. Bicarregui,Dept. of Computing, Imperial College, 180 Queens Gate, London, SW7 2BZ.S. Kent, Dept. of Computing, University of Brighton.Abstract. This paper presents work performed in the EPSRC \Object-oriented Speci�cation of Reactive and Real-time Systems" project. Itaims to provide formal design methods for real-time systems, using acombination of the VDM++ formal method and the HRT-HOODmethod.We identify re�nement steps for hard real-time systems in VDM++, to-gether with a case study of a mine-pump control system, involving acombination of VDM++ and HRT-HOOD.We also consider the representation of hybrid systems in VDM++.1 IntroductionFormalisms for real-time object-oriented speci�cation are still at an early stageof development. The TAM formalism [18] describes real-time systems withoutmodule structures, and hence, does not make use of principles of locality orencapsulation to support reasoning and transformation. TAM can be seen as asubset of the Real Time Action Logic (RAL) notation used here. Extensions ofobject-oriented methods to cover real-time aspects, such as HRT-HOOD [4] orOctopus [1] do not provide a formal semantics or re�nement concept, althoughtheir design and analysis techniques are useful frameworks for development usingformal notations such as VDM++. VDM++ provides a number of constructs forspecifying real-time constraints, such as the whenever statement [7]. Howeverthere does not yet exist a systematic method for the development of real-timesystems using VDM++.We will show here that existing methods such as HRT-HOOD can be en-hanced and combined with VDM++/RAL, as follows:{ HRT-HOOD object descriptions can be given as VDM++ class de�nitions.{ Timing constraints in HRT-HOOD objects can be formally expressed usingRAL formulae.{ Operation request types can be represented by VDM++ operation de�ni-tions, combined with RAL formulae.The advantage of carrying out design in HRT-HOOD using VDM++ is that pre-cise mathematical constraints can be expressed in the language, and that designcan be carried out from an abstract functional and time-speci�cation throughto a level close to a �nal implementation language such as Ada95. VDM++ alsoallows a more abstract description of a system using a \model 0"
at speci�ca-tion, with timing and synchronisation constraints expressed via logical formulaerather than via pseudocode.

In the appendix we describe the RAL formalism, which combines aspects ofRTL, LTL and modal action logic formalisms in a coherent framework in orderto attempt to meet the criteria and capabilities for real-time formalisms given in[8], and to enable formal treatment of real-time constraints as found in methodssuch as HRT-HOOD. RAL can be used as an underlying semantics of VDM++to support reasoning about internal consistency and re�nement of classes.2 VDM++A VDM++ speci�cation consists of a set of class de�nitions, where these havethe general form:class CtypesT = TDefvaluesconst : T = valfunctionsf : A ! Bf(a) == Defnf(a)time variablesinput i1 : T1;...input in : Tn;o1 : S1;...om : Sm;assumption i1; : : : ; in == Assumes;effect i1; : : : ; in; o1; : : : ; om == E�ectsinstance variablesvC : TC;inv objectstate == InvC;init objectstate == InitCmethodsm(x : Xm;C) value y : Ym;Cpre Prem;C(x;vC) == Defnm;C;...sync ...thread ...aux reasoning ...end CThe types, values and functions components de�ne types, constants and func-tions as in conventional VDM (although class reference sets @D for class namesD can be used as types in these items { such classes D are termed suppliersto C, as are instances of these classes. C is then a client of D). The instancevariables component de�nes the attributes of the class, and the inv de�nes aninvariant over a list of these variables: objectstate is used to include all the

attributes. The init component de�nes a set of initial states in which an objectof the class may be as a result of object creation. Object creation is achievedvia an invocation of the operation C!new, which returns a reference to the newobject of C as its result.The time variables clause lists continuously varying attributes which areeither inputs (the ij) with matching assumption clauses describing assumptionsabout how these inputs change over time, or outputs (the ok), with effectclauses de�ning how these are related to the inputs and to each other.The methods of C are listed in the methods clause. The list of method namesof C, including inherited methods, is referred to as methods(C).Methods can be de�ned in an abstract declarative way, using speci�cationstatements, or by using a hybrid of speci�cation statements, method calls andprocedural code. Input parameters are indicated within the brackets of themethod header, and results after a value keyword. Preconditions of a methodare given in the pre clause.Other clauses of a class de�nition control how C inherits from other classes:the optional is subclass of clause in the class header lists classes which are be-ing extended by the present class { that is, all their methods become exportablefacilities of C.Dynamic behaviour of objects of C is speci�ed in the sync and threadclauses, which must not con
ict. In the sync clause, which describes the be-haviour of passive objects, either an explicit history of an object can be given,as a trace expression involving regular expressions in terms of method names, oras a set of permission statements of the form:per Method) Condrestricting the conditions under which methods can initiate execution. The guardcondition Cond can involve event counters #act(m), #req(m) and #�n(m).Threads describe the behaviour of active objects, and can involve generalstatements, including a select statement construct allowing execution paths tobe chosen on the basis of which messages are received �rst by the object, similarto the select of Ada or ALT of OCCAM.A set of internal consistency requirements are associated with a class, whichassert that its state space is non-empty, and that the de�nition of a methodmaintains the invariant of the class, and that the initialisation predicate impliesthe invariant.Re�nement obligations, based on theory extension, can also be given.In discussing the semantics of VDM++ and HRT-HOOD we will make use ofthe following RAL terms (Table 1).2.1 Examples of Speci�cationAn example of the type of properties that can be speci�ed in an abstract declara-tive manner using RAL and VDM++ is a periodic timing constraint: \m initiatesevery t seconds, and in the order of its requests":8 i : N1 � "(m(x); i+ 1) = "(m(x); i) + t

Symbol Meaning@C Set of possible object identi�ers of objects of class CC Set of identi�ers of currently existing objects of class C"(m(x); i) Activation time of i-th invocation of action m(x)!(m(x); i) Request time of i-th invocation of action m(x)#(m(x); i) Termination time of i-th invocation of action m(x)#act(m) Number of activations of m to date#req(m) Number of received requests of m to date#�n(m) Number of terminated invocations of m to date'}t ' holds at time te~t Value of e at time t|(' := true; i) Time at which ' becomes true for the i-th timeTable 1. RAL Symbols and MeaningsMore generally, in HRT-HOOD, periodic objects involve a periodic actionsuch as m, a period P for its execution period, and a deadline D for its comple-tion within each period:8 i : N1 � P � (i� 1) � "(m; i) ^#(m; i) � P � (i� 1) +Dwhere D < P.This periodic behaviour can be expressed via a periodic thread and thewhenever statement of VDM++, provided that the methods of the class con-cerned are mutex:effects ... ==whenever P j nowalso from D ==>#�n(m) = (�����#�n(m) + 1 ^ #act(m) = (������#act(m) + 1...threadperiodic(P)(m)In words \within D time units of any time t which is a multiple of P, there willhave been one more initiated and completed execution of m than at t". Here(�att denotes the value of att at the time of occurrence of the most recent triggerevent.Periodic objects may also support high-priority asynchronous actions. Thesemethods, say interrupt, will have:8 i : N1 � delay(interrupt; i) < �where delay(m; i) = "(m; i) � !(m; i), � is some small time bound for theresponse time of the periodic object to this interrupt.

Sporadic constraints can also be directly expressed. In HRT-HOOD the spo-radic actionm may have a deadline D, which we can express as a constraint onits duration:8 i : N1 � duration(m; i) � Dwhere duration(m; i) = #(m; i)� "(m; i). There may also be interrupts spec-i�ed as for periodic objects.Timeouts can be speci�ed for synchronous methods in HRT-HOOD. Theserequire that an operation exception is executed if an operation op fails torespond to a request within t time units:timeout on delay(op; exception; t) �(8 i : N1 �delay(op; i) � t)9!j : N1 � "(exception; j) = !(op; i) + t) ^(8 j : N1 �9!i : N1 � "(exception; j) = !(op; i)+ t ^delay(op; i) � t)Likewise, a timeout on the duration of op can be expressed.Priority levels for operations and objects can be stated in a number of ways.For example, we could say that a high priority action � being active suppressesany low-priority actions �:#active(�) > 0) #active(�) = 0where #active(m) = #act(m)�#�n(m), the number of currently executinginvocations of m. Alternatively, if both � and � are waiting to execute, it isalways an � instance that is chosen:per �) #active(�) = 0\there are no active invocations of � at initiation of execution of �".Other forms of prioritisation constraints, permission constraints, timeoutsand responsiveness constraints can all be speci�ed in a direct manner usingRAL [12]. All the forms of method invocation protocols for concurrent objectsdescribed in [4] can be precisely described in this logic in a similar way. The Adarendez-vous interpretation is the default for VDM++.3 Models of TimeWe wish to model both discrete and hybrid systems, with continuous behaviourspeci�ed using time variables which may be constrained by general di�erentialand integral calculus formulae. In order that such class speci�cations are mean-ingful, we place the following constraints on instance and time variables and theset TIME of times.

We require that each (discrete) instance variable att : T in a VDM++ spec-i�cation can only take �nitely many di�erent values (including the unde�nedvalue nilT) over its lifetime:fatt~t j t 2 TIMEg 2 F(T)and the set of times over which att has a particular value is a �nite union ofintervals:8val : T; 9 I : N! I(TIME); n : N �ft j t : TIME ^ att~t = valg = Si�n I(i)where I(TIME) is the set of interval subsets of TIME, that is, subsets J suchthat 8 t; t0 : J � t < t0)8 t00 : TIME � t � t00 � t0) t00 2 JThis is a generalisation of the model of [20]. e~t is the value of e at time t.In addition, we usually expect that the lifetime of an object is contiguous:8obj : @C �ft j t : TIME ^ (obj 2 C)}tg 2 I(TIME)where @C is the type of possible object identities of objects of class C, whilstC : F(@C) is the set of identities of objects of C that currently exist.The usual model of time in VDM++ is that TIME is the set of non-negativereal numbers, with the usual ordering and operations. Because of the aboveproperties of attributes representing instance variables however, they can beconsidered to use a simpler concept of time: a discrete non-dense set of pointsfrom the non-negative reals. Likewise for action symbols denoting methods.In addition, in order for whenever ' : : : statements to be well-de�ned, thetimes |(a:' := true; i) at which a:' becomes true for the i-th time must be well-de�ned, ie, there must be clear cutto� points for '. This will be the case, if, forexample, ' is of the form time variable � constant, where time variableis an input time variable with a piecewise continuous graph.4 Formalising Real-time Re�nementThe most interesting forms of re�nement step are those which involve a transfor-mation from a continuous model of the world to a discrete model. In VDM++ thecontinuous model is expressed by means of time variables of a class, which de�neattributes that change their value in a manner independent of the methods ofthe class, and, for real-valued time variables, possibly in a continuous manner.Figure 1 shows the kinds of model and model transformation which are typ-ically performed in VDM++, starting from a highly abstract continuous modelof both the combined controlled system/controller (an essential model in the

System Environment

Discrete
System

continuous data flows

Environment

Essential
Model

actuator signals

sampled data/
interruptsFig. 1. Model Transformations: Continuous to Discreteterms of Syntropy [6]), then moving to a model where the controller is separatedfrom the controlled system, and then to a model where the controller is replacedby a discretisation. In the step to the discrete controller, output time variablesreceived by the controlled system are replaced by calls to actuator devices toachieve the required e�ects. Inputs from the controlled system to the controllerare replaced by sampling methods.This is the approach taken in the paper [7]. Alternatively, the continuouscontroller model may be divided into a number of continuous classes beforediscretisation, as is done in the case study of Section 4.5 below.A fundamental problem in each of these approaches is the transition from thecontinuous model to the discrete model. The transformation of data in this casedoes not �t into the usual VDM++ style of functional re�nement: there is nosimple retrieve function that converts the discretisation of a continuous quantityback to that quantity, because some information has been lost. Instead there aretwo alternatives:1. accept that this is a case of relational data re�nement. This complicates theproof theory of re�nement and the di�culty of proof and provides no real\measure of closeness" between the continuous and discrete models;2. use a concept of approximate re�nement, whereby the retrieve function takesa concrete data item into an approximation of some ideal value (in this case,the retrieve function is some digital-analogue (DA) conversion which tries torecover a continuous function from a sequence of sampled points taken fromit).Other alternatives could include mapping the discrete value to the set of possible

continuous abstractions of it, which should include the actual abstraction itderives from.We will examine both 1 and 2 below.4.1 Periodic Constraint Re�nementA common form of transformation from continuous to discrete views of a sys-tem starts from a class which abstractly describes a reaction to an event (thecondition C becoming true):class ContinuousControllertime variablesinput it : X;ot : S;effect it; ot ==whenever C(it)also from �0 ==> ot = vend ContinuousControllerIf we can assume that C remains true for at least tC > 0 time units from thepoints where it becomes true, then we can de�ne a sampling approach:class AbstractController-- refines ContinuousControllertime variablesinput it : X;ot : S;effect it; ot ==whenever C(it) ^ (P j now)also from � ==> ot = vend AbstractControllerwhere P � tC and � + P � �0. These constraints guarantee that no C := trueevents are missed by the AbstractController, and that it responds within �0to such events. P j now denotes that P divides the current time.This class is then implemented by a periodic action:class ConcreteController-- refines AbstractControllertime variablesinput it : X;instance variablesid : X;ot obj : @SClassmethodsreact() ==(id := it;if C(id)thenot obj!set(v))

threadperiodic(P)(react)aux reasoning8 i : N1 � #(react; i) � P � (i� 1) + �end ConcreteControllerThe abstract speci�cation requires that, at each periodic sampling time P, ifC(it) holds, then within a response deadline �, ot has the value v:8 i : N �C(it)}(P � i))9 t : TIME �P � i � t � P � i+ � ^ (ot = v)}tThe form of the test guarantees that the times |(C(it) ^ (P j now) := true; i)are well-de�ned, regardless of C. '}t expresses that ' holds at time t.The concrete speci�cation attempts to satisfy this speci�cation by an explicitsampling and invocation. The periodic thread implies that:8 i : N1 � P � (i� 1) � "(react; i) ^ #(react; i) � P � iand we also know from the deadline speci�cation that in fact #(react; i) � P �(i� 1) + �.So assume C(it) holds at P � i for some i 2 N. Assume also that it remainstrue until the point "(react; i+1) where it is sampled by the concrete controller.Generally we will require that the period of sampling is fast enough with respectto the rate of change of it that it does not signi�cantly change its value in thedelay from P � i to "(react; i+ 1).Then react will send the message set(v) to the object that replaces theoutput time variable ot, ie, we could have the re�nement that ot in the abstractclass is interpreted by ot obj:ot in the concrete, where ot is still a time variablein ot obj.We can then prove that the e�ect ot = v is achieved by the time P � i+ �,if set is synchronous, because then it terminates and achieves ot = v before#(react; i+ 1) � P � i+ � as required.If set is asynchronous, with maximum delay plus duration �, say, then wemust use � � � as the deadline for react in ConcreteController.A consistency check that duration(react) �
 for whichever deadline
 ischosen must be made1.At the abstract speci�cation level, a corresponding check must be made thatmultiple whenever statements do not require con
icting situations to occur atthe same time.Thus we can, in principle, prove such a re�nement step correct.1 Under the assumption that the processor is adequate and not overloaded.

4.2 Discrete SamplingThe di�culty comes in the conversion from analogue to digital quantities {such as the relationship between id and it in the ConcreteController class.Consider the general case where we have an original abstract system which justcontains a time variable (an example in the case study would be the operatorconsole, containing alarm, or the module containing a sampled version of theCH4 level).class Outputtime variablesot : Send OutputA re�nement could instead contain a sampled version of the same data:class Output 1instance variablesd : seq of Smethodsset(v : S) == d := d a [v];access() value Spre len(d) > 0 == return d(len(d))end Output 1with the re�nement relation being that d is some sampling of the abstract vari-able: sampled(d;ot;P;D)This is an abbreviation for:8k : N � 9 t : TIME �k �P < t � k �P+D ^ k + 1 2 dom(d~(k �P+D)) ^d(k+ 1)~(k �P+D) = ot~tThat is, ot is sampled in each interval of the form (k � P;k � P + D] and itsvalue assigned to the k+ 1-th element of d.More generally, we could sample an expression e involving various timevariables and instance variables, including previous values of d. The predicatesampled(d;ot;P;D) does describe a re�nement relation between the abstractand concrete data, but not a retrieve function from the concrete state to theabstract state: for a given d there is not necessarily a unique ot such thatsampled(d;ot;P;D) is true. An alternative is to somehow characterise the er-ror between a functional re�nement mapping from d back to the continuousdomain, and the original ot value (Figure 2 shows the general situation here).For example, let ot be a boolean quantity, modelled by a f0; 1g value set. Assumethat the minimum inter-arrival time of events that change the value of ot is I.Then the abstract model can be regarded as a sequence of intervals I0, I1, : : :,

ot d*

d

DAADFig. 2. Approximate Re�nementwhich are demarcated by changes in the value of ot. Each of the Ij has lengthlen(Ij) � I.De�ne the DA conversion function from d to a time series d� as follows:d�(t) = d(1) if t � t0= d(2) if t0 < t � t1= : : := d(i+ 2) if ti < t � ti+1where ti is the time at which the i+1-th sample of ot is taken, so d�(ti) = ot(ti).Other DA functions are possible, but the error estimations are similar in eachcase. Here, we are concerned to estimate the integralR T0 j ot(t)� d�(t) j dtfor a given time T. This is our measure of error in the approximate retrievefunction that takes d to d�. We can break this integral down into a sum:�i2N1;j2N j ot("Ij)� d�(ti) j � len(Ij \ (ti�1; ti])over all the segments Ij\(ti�1; ti] where the values of both variables are constant,and ti � T. "Ij refers to the starting time point of the j-th interval.If we then assume that P+D < I, we can infer that:R k�I0 j ot(t)� d�(t) j dt � 2k � (P+D)This enables a crude upper bound to be placed on the error in the approximation.Clearly, the smaller we make the period and the deadline P andD involved in thesampling, the more accurate is the approximate re�nement. D < P is necessary,and D must be greater than the duration of the sampling method involved (ina system object such as ConcreteController above).Similar reasoning can be applied to other discrete-valued time variables.

4.3 Approximate Re�nementGiven some DA conversion function R as described in the previous section, werequire the following conditions for an \approximate re�nement" based on thisfunction.1. R should be the left inverse of an adequate (surjective) function from thecontinuous to the discrete space;2. the error between the continuous approximated variable c and R(d) whered is the corresponding discrete variable, should be boundable in terms whichcan be engineered by the system designer;3. each axiom ' of the continuous system should be provable in the interpretedform '[R(d)=c] in the discrete system.These three conditions have the following justi�cations:1. We should be able to see the transformation from a continuous to the discretemodel as an abstraction step, removing domain detail that is irrelevant tothe implemented system, similar to the transition from the essential modelsof Syntropy [6], which describe the \real world" domain, and the speci�cationmodels, which describe the required software (Figure 3).2. The developer should be able to control the quality of the discrete approxi-mation, and trade o� this quality against other aspects, such as e�ciency.3. Every property required by the abstract continuous class should be true ininterpreted form in the new class { this is the usual meaning of re�nementand subtyping as theory extension.
Abstraction

Refinement

Model

Implementation
Model

Essential
(Domain)
Model

Specification

Continuous,
Possibly non-computable

Discrete,
Computable

Discrete,
ComputableFig. 3. Essential, Speci�cation and Implementation Model RelationshipsExamples of this process are given in the papers [16, 17].

4.4 Sporadic Constraint Re�nementThe �nal major case of re�nement from continuous to discrete views of a sys-tem involves the implementation of sporadic response requirements by sporadic,interrupt-driven classes. This can be treated by replacing a boolean input timevariable by an interrupt [15].4.5 Case StudyAn example of combined analysis and design using VDM++/RAL and HRT-HOOD is as follows, based on the mine pump example used in [4].The requirements are as follows:1. the system should respond to the water low and water high conditions within20 seconds { switching the pump on if the water goes high with the methanelevel below the danger level, and switching it o� if the water level goes low.The minimum inter-arrival time for these events is 100 seconds;2. the system should respond to high methane conditions within 1 second,switching o� the pump and raising a \methane high" alarm. The methaneis sampled at 5 second intervals;3. the system should respond to critically high levels of CO within 1 second,raising a \CO high" alarm. The CO level is sampled at 60 second intervals;4. the system should respond to a critically low air
ow reading within 2 sec-onds, raising a \low air
ow" alarm. The air
ow is sampled at 60 secondintervals;5. the system should respond to a low water
ow reading when the pump is onwithin 3 seconds, raising a \pump failed" alarm. The water
ow is sampledat 60 second intervals.Based on the analysis of the requirements, we could specify the system as asingle class with input time variables representing the measured CH4 and COlevels, the water level and water and air
ow levels, together with the outputs {the data logger, motor state and alarm. This class can be derived from a contextdiagram and the detailed requirements of functionality:class Model 0typesAlarm status = < high methane > j < low air
ow > j < high water > j< high co > j < pump failed> j < safe >valuesch4 high : N = unde�ned;co high : N = unde�ned;jitter range : N = unde�ned;water low : N = unde�nedtime variablesinput co reading : N;

input ch4 reading : N;input low sensor : bool;input high sensor : bool;input water
ow : N;input air
ow : N;motor on : bool;alarm : Alarm status;/* Requirement 1: */effect high sensor; ch4 reading; motor on ==whenever high sensor ^ (ch4 reading � ch4 high � jitter range)also from 20000 ==> motor on;effect low sensor; motor on ==whenever low sensoralso from 20000 ==> : (motor on);/* Requirement 2: */effect ch4 reading; alarm ==whenever ch4 reading � ch4 high ^ (5000 j now)also from 1000 ==> alarm = < high methane >;effect ch4 reading; motor on ==whenever ch4 reading � ch4 high ^ (5000 j now)also from 1000 ==> : (motor on);/* Requirement 3: */effect co reading; alarm ==whenever co reading � co high ^ (60000 j now)also from 1000 ==> alarm = < high co >;/* Requirement 4: */effect air
ow; alarm ==whenever air
ow �
ow low ^ (60000 j now)also from 2000 ==> alarm = < low air
ow >;/* Requirement 5: */effect water
ow; motor on; alarm ==whenever (water
ow � water low) ^motor on ^ (60000 j now)also from 3000 ==> alarm = < pump failed >end Model 0We ignore data logging for simplicity in this initial model. The above class could

also contain di�erential/integral calculus expressions relating the CH4 level tothe air-
ow rate. jitter range provides some hysteresis for the system.Notice that many of the above e�ect clauses give the same sample points60000�k for the relevant tests on sensor values to be made. It may be infeasiblefor these tests to be made at exactly this time in the actual system, if thesampling tasks share a processor. However, any minor time-displacement of thiskind should not make any di�erence to the truth or falsity of the test concerned.This is an auxilliary proof requirement which would require knowledge of therelevant rate of changes involved.We can clearly factor this model into parts which contain smaller subsetsof the data. The �rst subsystem is an environment monitor which contains thevarious gas monitors:class EnvironmentMonitoris subclass of Basic typestime variablesinput co reading : N;input ch4 reading : N;input air
ow : N;motor on : bool;alarm : Alarm status;effect ch4 reading; alarm ==whenever ch4 reading � ch4 high ^ (5000 j now)also from 1000 ==>alarm = < high methane >;effect co reading; alarm ==whenever co reading � co high ^ (60000 j now)also from 1000 ==> alarm = < high co >;effect ch4 reading; motor on ==whenever ch4 reading � ch4 high ^ (5000 j now)also from 1000 ==> : (motor on);effect air
ow; alarm ==whenever air
ow �
ow low ^ (60000 j now)also from 2000 ==> alarm = < low air
ow >;methodscheck safe() value bool ==return (ch4 reading � ch4 high � jitter range)end EnvironmentMonitorWe need the method check safe to support the implementation of the �rstrequirement.This can be further decomposed into individual monitors plus a protectedobject to support external queries to the CH4 status:class Ch4 Sensor

is subclass of Basic typestime variablesinput ch4 reading : N;motor on : bool;alarm : Alarm status;effect ch4 reading; alarm ==whenever ch4 reading � ch4 high ^ (5000 j now)also from 1000 ==>alarm = < high methane >;effect ch4 reading; motor on ==whenever ch4 reading � ch4 high ^ (5000 j now)also from 1000 ==> : (motor on)end Ch4 Sensorclass Ch4Statusis subclass of Basic typesinstance variablesenvironment status : Ch4 status;init objectstate ==environment status := <motor safe >methodsread() value Ch4 status ==return environment status;write(v : Ch4 status) ==environment status := vend Ch4StatusSimilarly for the Air
ow Sensor and CO Sensor classes.Together these can be aggregated to re�ne the original subsystem speci�ca-tion:class EnvironmentMonitor 1-- refines EnvironmentMonitoris subclass of Basic types; Ch4 Sensor;Air
ow Sensor; CO Sensor; Ch4Statusmethodscheck safe() value bool ==return (environment status = <motor safe >)end EnvironmentMonitor 1The re�nement relation is that the abstract time variables inEnvironmentMonitor are implemented by the corresponding time variablesin the individual classes, whilst the attribute environment status is a discreti-sation of the test for motor safety, with a sampling time within 1 second of thetimes 5000 � k for k 2 N:sampled(environment status;if ch4 reading � ch4 high � jitter rangethen <motor safe >

elseif ch4 reading � ch4 highthen <motor unsafe >else (����������������environment status; 5000; 1000)Here (����������������environment status refers to the value at the previous sampling interval.This approach corresponds to the architecture given in the paper [4]. Each ofthe objects with continuous variables will eventually be implemented as cyclicobjects using a periodic thread. In the case of the CO sensor and air
ow sensorobjects the thread will have a periodicity of 60 seconds, whilst the CH4 sensorhas a periodicity of 5 seconds.Because we are using multiple inheritance to put together the components,which corresponds to aggregation in a object-oriented method such as Fusion [5],we must identify priorities for objects (generally, the objects with the shortestdeadlines and periods will have the highest priority, etc). In a simple systemsuch as this one, we can interpret the priorities as determining the precedence ofexecution of two operations: if class C has a higher priority than class D, theneach object a of C can always commence execution of an operation m of C inpreference to any object b of D waiting to execute an operation n of D:8 j : N1 � (a:#waiting(m) = 0)}"(b!n; j)An internal consistency check must be made, that all the separate periodic anddeadline constraints speci�ed in the individual classes can still be satis�ed, giventhese priorities, when they are aggregated into a mutex container class.We take the priorities from [4]:Class PriorityCH4 status 7motor 6CH4 sensor 5CO sensor 4air
ow sensor 3water
ow sensor 2HLW handler 1Formally we must have that8 i; j : N1 � duration(opcs periodic code; i) �1000� duration(co periodic code; j)where co periodic code is the periodic action of the CO sensor. Likewise:8 i; j;k : N1 �duration(opcs periodic code; i) +duration(co periodic code; j) �2000� duration(air
ow code;k)

in order that all three periodic codes can achieve their deadlines, assuming thatthey must be executed in a mutually exclusive and uninterrupted manner.We can obtain slightly more re�ned requirements by examining the di�erentperiods concerned: opcs periodic code and co periodic code only possiblycon
ict, for example, in the time intervals of length 5000 beginning with a mul-tiple of 60000. Thus we could require just:8 ` : N �duration(opcs periodic code; 1 + 12`) �1000� duration(co periodic code; 1 + `)The Basic types class encapsulates shared type and constant de�nitions:class Basic typestypesRate = N;Ch4 reading = N;Ch4 status = <motor safe > j <motor unsafe >;Alarm status =< high methane > j < low air
ow > j < high co > j< high water > j < pump failed > j < safe >valueswater low : N = unde�ned;ch4 high : Ch4 reading = unde�ned;co high : N = unde�ned;jitter range : Ch4 reading = unde�ned;ch4 sensor period : N = 5000end Basic typesThe implementation of the CH4 sensor is a cyclic object:class Ch4 Sensor 1-- refines Ch4 Sensoris subclass of Basic typestime variablesinput ch4dbr : Ch4 readinginstance variablesch4 present : Ch4 reading;ch4 status : Ch4 status;ch4status : @Ch4Status;pump controller : @PumpController;operator console : @OperatorConsole;data logger : @DataLogger;init objectstate ==(ch4 present := 0;ch4 status := <motor safe >)methodsopcs periodic code() ==(ch4 present := ch4dbr;ch4 status := ch4status!read();

if ch4 present � ch4 highthen(if ch4 status = <motor safe >then(pump controller!not safe();operator console!set alarm(< high methane >);ch4status!write(<motor unsafe >)))elseif (ch4 present � ch4 high � jitter range) ^ch4 status = <motor unsafe >then(pump controller!safe();ch4status!write(<motor safe >));data logger!ch4 status(ch4 status))threadperiodic(ch4 sensor period)(opcs periodic code)aux reasoning8 i : N1 �#(opcs periodic code; i) � (i� 1) � ch4 sensor period + 1000end Ch4 Sensor 1The deadline (1000ms) of the opcs periodic code operation is expressed in theaux reasoning section of the class.The re�nement relation of this object compared to its speci�cation is thatch4dbr implements ch4 reading, and that ch4 present is a sampled copy ofthis with period 5 seconds and deadline 1 second:sampled(ch4 present; ch4 reading; 5000; 1000)We can recast this as an approximate function-based re�nement as in Section4.2.In the above class themotor on output time variable has been implementedby the internal state pump controller:motor on. Notice that we use the ab-stract speci�cation of this class within the declarations of Ch4 Sensor 1, thisis valid because any re�nement of PumpController must be polymorphicallycompatible with its speci�cation, and must provide some expression that imple-ments motor on. Likewise, operator console:alarm is a sampled implemen-tation of the abstract attribute alarm.Ch4Status is already in a form that can be directly implemented as a pro-tected (mutex) object.The high/low water sensor object has the abstract speci�cation:class HighLowWater Sensoris subclass of Basic typestime variablesinput low sensor : bool;input high sensor : bool;input ch4 reading : N;motor on : bool;

assumption low sensor; high sensor ==: (low sensor ^ high sensor);effect high sensor; ch4 reading; motor on ==whenever high sensor ^ (ch4 reading � ch4 high � jitter range)also from 20000 ==> motor on;effect low sensor; motor on ==whenever low sensoralso from 20000 ==> : (motor on);end HighLowWater SensorIt is re�ned using the \sporadic constraints re�nement" strategy:class HighLowWater Sensor 1is subclass of Basic typesinstance variablesmotor : @Motormethodslow sensor interrupt() == skip;high sensor interrupt() == skipthreadwhile truedoselanswer high sensor interrupt -> motor!operate();answer low sensor interrupt -> motor!turn o�()end HighLowWater Sensor 1The operate method of Motor attempts to switch the motor on, checking�rst that the methane level is safe, using the check safe method. Durationconstraints are that the period of 100000ms that is the minimum inter-arrivaltime between these interrupts must be greater than the maximum duration ofthe select body, as described in Section 4.4 above. Likewise, this duration mustbe less than the deadline of 20000ms in the abstract requirements.The structure of part of the development is shown in Figure 4.Basic types isnot shown, for simplicity. Notice that the inheritance ofEnvironmentMonitor into Model 1 must hide the method check safe asthis method does not appear in the external interface of the system. Likewise theoperations of Ch4Status should be hidden in EnvironmentMonitor 1. Thelatter class is hybrid, as it contains both time variables and ordinary discrete vari-ables. The re�nement of EnvironmentMonitor by EnvironmentMonitor 1involves a discrete sampling re�nement step on the environment status vari-able with respect to the expression which tests if the motor is safe to operate.The re�nement from Ch4 Sensor to Ch4 Sensor 1 is a periodic constraintre�nement step, and also introduces discrete sampling.The re�nement of the high/low water sensor is a sporadic constraint re�ne-ment step.

Model_0

Environ-
ment
Monitor

 Pump
Controller

Model_1

Refines

Inherits
Inherits

Ch4_Sensor

Air_flow_
Sensor

CO_Sensor

Environ-
ment
Monitor_1

Inherits

Inherits

Refines

Inherits
Inherits Ch4Status

Ch4_Sensor_1

Composition

RefinesFig. 4. Partial Structure of Mine System DevelopmentIn a complete development we would also re�ne the other sensors and classesto implementation-level descriptions.5 Hybrid SystemsThe analysis and veri�cation of hybrid systems { systems containing both con-tinuous and discrete aspects { is currently one of the most challenging areas inprocess control [3, 9]. We can extend the RAL formalism to treat some hybridsystems by adopting the model of phase transition systems from [19]. In thismodel, a hybrid system passes through a set of phases, which generalise the con-cept of a state in a statechart. Within each phase, time variables can modifytheir value in accordance with a set of di�erential/integral calculus equations.Transitions between phases occur as a result of some critical exit condition beingreached.

We can relate this to RAL by de�ning a new form of actions termed phases:� =wr `pre Gdo �exit Epost QThese have the intended meaning that G always holds at initiation of �:8 i : N1 � G}"(�; i)Q holds at termination of �: 8 i : N1 � Q}#(�; i) and that the phase equations� hold during each execution of �:8 i : N1; t : TIME �"(�; i) � t < #(�; i)) �}tHooked attributes (�var occurring in � refer to the value of var at "(�; i).We assume that TIME is the set of non-negative real numbers in the fol-lowing.The exit condition controls when � terminates { ie, at the �rst point in eachexecution interval where E becomes true:8 i : N1; t : TIME �"(�; i) � t < #(�; i)) : E}t ^E}#(�; i)Thus for example, in the \mouse and cat" example of [19], we can representthe activity of the mouse running, terminated by the safe state by:mrunnorm =wr xm;mstatepre mstate = < running>do dxmdt = �vmexit xm = 0post mstate = < safe >The mouse velocity is vm and its distance to the hole is xm.A similar action is used to represent the cat running and achieving the \mousecaught" state:crunnorm =wr xc; cstatepre cstate = < running>do dxcdt = �vcexit xc = xm ^ xc > 0post cstate = <mouse caught >

A \running" activity of the complete system is then a parallel combinationof these two activities. It is not a simple jj combination however, because the catachieving the \mouse caught" state must \pre-empt" the mouse running action.Likewise, the mouse achieving the \safe" state before the cat reaches it mustpre-empt the cat running action.In order to represent the abortion or pre-emption of an action, we use thechoice combinator u:8 i : N1 � 9 j : N1 � ("(�; i) = "(�; j) ^ #(�; i) = #(�; j)) _("(�; i) = "(
; j) ^ #(�; i) = #(
; j))where � = � u
.If we want � to be capable of being aborted, ie, to terminate without itsnormal postcondition holding, then we de�ne a normal behaviour action �normand an action for abnormal behaviour cases �abort.� itself is de�ned as the u combination of these:� = �norm u �abortFor example, if we consider the cat and mouse problem, the activity of themouse running has the abort termination:mrunabort =wr xm;mstatepre mstate = < running>do dxmdt = �vmexit xm = xc ^ xm > 0post mstate = < caught >Similarly the cat running has an abnormal termination:crunabort =wr xc; cstatepre cstate = < running>do dxcdt = �vcexit xc = 0post cstate = < failed>This means that the composed action can be combined with the cat runningaction using the pre-emption operator :8 i : N1 �9 j;k : N1 �"(� �; i) = "(�; j) = "(�;k) ^#(� �; i) = #(�; j) = #(�;k)

The overall system action is then:running = (mrun (wait(�); crun))At termination of an instance (running; i) with duration greater than � weknow that both the mrun and crun actions have terminated. If mrun hasterminated normally, ie, the instance of mrun is an instance of mrunnorm,then we know that mstate = < safe > at #(running; i), and that xm = 0,and hence, that the crun action has terminated abnormally: the instance ofcrun involved is an instance of crunabort.Conversely, if the instance of crun is an instance of crunnorm then cstate =< mouse caught > at #(running; i), and that xm = xc 6= 0, so that theinstance of mrun involved must be an instance of mrunabort.It is not possible for both actions to fail { in that case xm = xc > 0 andxc = 0, a contradiction.Discretisation of this problem will require sampling of the vc and vm vari-ables, and calculation of the xc and xm variables. We must choose a �ne enoughgranularity of sampling so that the point where the cat catches the mouse isnot missed. This requires some tolerance j xm � xc j < � in the distances asthe criterion for \catches", instead of equality. The sampling period � must thensatisfy� < 2��vc�vm6 ConclusionsWe have described some techniques for combining VDM++ with HRT-HOOD,and how real-time re�nement can be formalised in RAL. All the forms of con-straint described in [8] can be expressed in RAL, except required internal non-determinism. External required non-determinism (the capability to respond toseveral di�erent messages) is expressed via the enabled predicate.The formalism possesses a sound semantics, and it is therefore consistentrelative to ZF set theory. The advantage of the formalism over other real-timeand concurrency formalisms is the conciseness of the core syntax and axiomati-sation, and its ability to express the full range of reactive and real-time systembehaviour via derived constructs. The TAM formalism of [18] can be regardedas a subset of RAL, and could be used to transform speci�cation and code frag-ments that are purely local to one class and that are within its language. Forpractical development, we also need higher-level design transformations such asdesign patterns, and a systematic, tool-supported combination of formal anddiagrammatic notations.We have argued that the concept of approximate (functional) re�nement ispreferable to the use of relational re�nement in carrying out the step from acontinuous or hybrid speci�cation of a system to a discrete speci�cation. Thisis because it provides a simpler formulation of re�nement in terms of theory

extension, and enables us to measure the degree to which information about thecontinuous world can be recovered from the discrete re�nement.Animation of VDM++ speci�cations can be performed at the abstract con-tinuous description level, using tools such as gPROMS [2], in order to validatethe formal model of the real-world situation expressed in terms of predicatesand time variables. This is in contrast to implementation-level simulation asdescribed in [4], which is in terms of threads and processes and may be uncon-nected to the real-world model. Tool support for proof obligation generation forinternal consistency, re�nement and subtyping obligations, and for animationof event sequences against VDM++ classes is being developed in the \Object-oriented Speci�cation of Reactive and Real-time Systems" project.Examples of using the logic to express properties of distributed and concur-rent systems can be found in the papers [13, 14]. Similar techniques could beapplied using the formal language Z++, although VDM++ is more suited to thelater design and implementation stages.References1. M Awad, J Kuusela, and Jurgen Ziegler. Object-oriented Technology for Real-timeSystems. Prentice Hall, 1996.2. P I Barton, E Smith and C C Pantelides. Combined Discrete/Continuous ProcessModelling Using gPROMS, 1991 AIChE Annual Meeting: Recent Advances inProcess Control, Los Angeles, 1991.3. P Barton and T Park. Analysis and Control of Combined Discrete/ContinuousSystems: Progress and Challenges in the Chemical Processing Industries, in pro-ceedings of Chemical Process Control - V: Assessment and New Directions forResearch, January, 1996.4. A Burns and A Wellings. HRT-HOOD: A structured design method for hard real-time systems. Real-Time Systems, 6(1):73{114, January 1994.5. D Coleman, P Arnold, S Bodo�, C Dollin, H Gilchrist, F Hayes, and P Jeremaes.Object-orientedDevelopment: The FUSION Method. Prentice Hall Object-orientedSeries, 1994.6. S Cook and J Daniels. Designing Object Systems: Object-Oriented Modelling withSyntropy. Prentice Hall, Sept 1994.7. E Durr, S Goldsack, and J van Katjwick. Speci�cation of a cruise controller inVDM++. In Proceedings of Real Time OO Workshop, ECOOP 96, 1996.8. S M Celiktin. Interval-Based Techniques for the Speci�cation and Analysis of Real-Time Requirements, PhD thesis, Catholic University of Louvain, September 1994.9. S Engell and S Kowalewski. Discrete Events and Hybrid Systems in Process Con-trol, Proceedings of Chemical Process Control - V: Assessment and New Directionsfor Research, January, 1996.10. J Fiadeiro and T Maibaum. Describing, Structuring and Implementing Objects, inde Bakker et al., Foundations of Object Oriented languages, LNCS 489, Springer-Verlag, 1991.11. F Jahanian and A K Mok. Safety Analysis of Timing Properties in Real-time Sys-tems, IEEE Transactions on Software Engineering, SE-12, pp. 890{904, September1986.

12. S Kent and K Lano. Axiomatic Semantics for Concurrent Object Systems,AFRODITE Technical Report AFRO/IC/SKKL/SEM/V1, Dept. of Computing,Imperial College, 180 Queens Gate, London SW7 2BZ.13. K Lano. Distributed System Speci�cation in VDM++, FORTE `95 Proceedings,Chapman and Hall, 1995.14. K Lano, J Bicarregui and S Kent. A Real-time Action Logic of Objects, ECOOP96 Workshop on Proof Theory of Object-oriented Systems, Linz, Austria, 1996.15. K Lano. Semantics of Real-Time Action Logic, Technical Report GR/K68783-3,Dept. of Computing, Imperial College, 1996.16. K Lano, S Goldsack and A Sanchez. Transforming Continuous into Discrete Speci-�cations with VDM++, IEE C8 Colloquium Digest on Hybrid Control for real-timeSystems, 1996.17. K Lano. Re�nement and Simulation of Real-time and Hybrid Systems usingVDM++ and gPROMS, ROOS project report GR/K68783-13, November 1996,Dept. of Computing, Imperial College.18. G Lowe and H Zedan. Re�nement of complex systems: A case study. The Com-puter Journal, 38(10):785{800, 1995.19. Z Manna and A Pnueli. Time for concurrency. Technical report, Dept. of Com-puter Science, Stanford University, 1992.20. B Mahony and I J Hayes. Using continuous real functions to model timed his-tories. In P A Bailes, editor, Proceedings of 6th Australian Software EngineeringConference. Australian Computer Society, July 1991.21. J S Ostro�. Temporal Logic for Real-Time Systems. John Wiley, 1989.22. A Pnueli. Applications of temporal logic to the speci�cation and veri�cation ofreactive systems: A survey of current trends. In J de Bakker, W P de Roever, andG Rozenberg, editors, Current Trends in Concurrency, LNCS vol. 224, Springer-Verlag, 1986.Real-time Action LogicLogicRAL is an extension of the Object Calculus of Fiadeiro and Maibaum [10] tocover durative actions and real-time constraints. The syntactic elements of anRAL theory are: action symbols, attribute symbols, plus the usual type, functionand predicate symbols of typed predicate calculus, including the operators 2, setcomprehension, [, F, etc, of ZF set theory. These aspects are as for the standardobject calculus.For each action �, there are function symbols !(�; i) the time of request ofthe i-th invocation of action �, "(�; i) the time of activation of this invocation,and #(�; i) the time of termination of this invocation. i ranges over N1.Modal operators are } \holds at a time" and ~ \value at a time".The type TIME is assumed to be totally ordered by a relation <, with aleast element 0, and with N � TIME. It satis�es the axioms of the set of non-negative elements of a totally ordered ring, with addition operation + and unit0, and multiplication operation � with unit 1.The following operators can be de�ned in terms of the above symbols: (i)the modal action formulae [�]P \� establishes P". P may contain references

(�e to the value of e at commencement of the invocation of � being considered;(ii) the operator � representing the calling relation between two actions; (iii)the RTL [11] event-time operators |(' := true; i) and |(' := false; i) givingthe times of the i-th occurrences of the events of a predicate ' becoming trueor false, respectively; (iv) counters #req(�), #act(�) and #�n(�) for request,activation and termination events; (v) the temporal logic operators 2, �,
; (vi)action combinators ; , jj (parallel non-interfering execution), assignment, etc.Speci�c to the object-oriented view are types @Any of all possible objectidenti�ers, and subsorts @C of this type which represent the possible objectidenti�ers of objects of class C.A predicate added for concurrent object-oriented systems is a test for enablingof an action � (whether a request for execution of � will be serviced or not).This is expressed by enabled(�).Attributes and Actions For a speci�cation S consisting of a set of classes,the attribute symbols are as follows: x:att for x : @C and att an instance ortime variable of a class C of S. The attribute C for each class C represents theset of existing objects of C. This is of type F(@C).Derived attributes of a class will include event counters #act(m), #�n(m)as de�ned below.The action symbols are: newC(c) for C a class of S and c : @C; x!m(e) forx : @C and m a method of C, with e : Xm;C a term in the type of the inputparameters of m in C.preGuard postPostwhereGuard is an expression over a set of attributes,and Post can additionally contain expressions of the form (�e referring to thevalue of the expression e at commencement of execution of the action.We write x:"(m(e); i) for "(x!m(e); i) etc to make the notation used forobjects more uniform.Derived Actions and Attributes For an object x : @C event occurrencetimes |(' := true; i) and |(' := false; i) can be de�ned from the above lan-guage.Event counters are also derived operators:x:#act(m(e)) =card(fj : N1 j x:"(m(e); j) < nowg)This de�nition involves < because we consider #act(m) to be incremented in-divisibly just after the moment at whichm initiates execution. Similarly we cande�ne x:#req(m(e)) and x:#�n(m(e)).The actions preG postP name actions � with the following properties:8 i : N1 � now = "(�; i)) G}"(�; i)8 i : N1 � now = "(�; i)) P[att~"(�; i)=(�att]}#(�; i)

Formulae 2a;C� denotes that � holds at each future initiation time of a methodinvocation a!m on an object a : @C, where m is a method of the class C. Inother words it abbreviates8 i : N1 � a:"(m1; i) � now) �}a:"(m1; i)^ : : : ^8 i : N1 � a:"(mn; i)� now) �}a:"(mn; i)where methods(C) = fm1; : : : ;mng.The calling operator � is de�ned by:� � � �8 i : N1 � now = "(�; i))9 j : N1 � "(�; j) = "(�; i) ^ #(�; j) = #(�; i)In other words: every invocation interval of � is also one of �.The MAL operator [�]P is de�ned as:[�]P �8 i : N1 � now = "(�; i)) P[att~"(�; i)=(�att]}#(�; i)where the same substitution is used as for the de�nition of preG postP above.We can then show [preG postP]((�G ^ P) and that(� � �)) ([�]P) [�]P)for any P in the language concerned.Conditionals have the expected properties:E) (if E then S1 else S2 � S1): E) (if E then S1 else S2 � S2)Similarly,while loops can be de�ned.A synchronous method invocation a!m(e) is interpreted as an invoke state-ment:invoke a!m(e)An instance (S; i) of this statement has the properties:8 i : N1 � 9 j : N1 �"(S; i) = a:!(m(e); j) ^#(S; i) = a:#(m(e); j)Axioms The axioms of predicate calculus and ZF set theory are adopted, withsome modi�cations.The core logical axioms include:(C1) : 8 i : N1 � !(m(e); i) � !(m(e); i+ 1)

\the !(m(e); i) times are enumerated in order of their occurrence."(C2) : 8 i : N1 � !(m(e); i) � "(m(e); i) < #(m(e); i)\every invocation must be requested before it can initiate, and initiates beforeit terminates."The compactness condition is that for every p 2 N1 there are only �nitelymany values "(�; i) < p, for each action �. Similar conditions are required forthe ! and # times.Of key importance for reasoning about objects is a framing or locality con-straint [10], which asserts that over any interval in which no action executes, noattribute representing an instance variable changes in value.This locality principle reduces to that of the object calculus in the case thatall actions have duration 1 and TIME = N.The usual inference rules of predicate logic are taken. In addition the follow-ing rule is adopted:� ` '� ` 8 t : TIME �'}tInterpretations of Class FeaturesThe theory �S of a system is the union of the theories �C of the separate classeswithin it, which are de�ned as follows.If we have a method de�nition in class C of the form:m(x : Xm;C) value y : Ym;Cpre Prem;C == Codem;C;then the action a!m(e) has the properties:a:Prem;C [e=x] ^ a 2 C)a!m(e) � a:Codem;C[e=x]where each attribute att of C occurring in Prem;C is renamed to a:att ina:Prem;C and similarly forCodem;C. Additionally, invocations of actions b!n(f)within Code are explicitly written as invoke b!n(f) statements.The initialisation of a class C can be regarded as a method initC whichis called automatically when an object c is created by the action newC:newC(c) � c!initC.newC itself has the property: c 62 C) [newC(c)](C =(�C [fcg).A method must be enabled when it initiates execution:8x : @C; i : N1; e : Xm;C �enabled(x!m(e))}x:"(m(e); i)for all methods m of C.

The invariant of a class is true at every method initiation and terminationtime: 2a;CInvC ^ 8 i : N1 � InvC}a:#(mj; i) for each method mj of C and a :@C. However, the typing constraints for attributes are always true: 2� (a:att 2T) for each attribute declaration att : T of C.Permission guards for a methodm give conditions which must be implied byenabled(m):per m) Gyields the axiom enabled(m)) G.The whenever construct of VDM++ is interpreted as follows. A statementwhenever � also from � ==> 'asserts that ' must be true at some point in each interval of the form [t; t+ �]where t is a time at which � becomes true.Thus it can be expressed directly as:8 i : N1; 9 t : TIME � '}t ^|(� := true; i) � t � |(� := true; i) + �This de�nition yields a transitivity principle.We can extend this interpretation to classes involving time variables, pro-vided that we restrict TIME to be the set of non-negative real numbers. Therepresentation of assumption and effect clauses then uses phase actions, whichhave ongoing activities terminated by critical conditions. These activities onlychange a certain subset of the time variables (ie, for each assumption clause, thevariables listed in the header, and for e�ect clauses, those output variables listedin the clause header).In detail, for each assumption clauseassumption it1; : : : ; itp == A(it1; : : : ; itp)we have a phase actionwr it1; : : : ; itppre self 2 Cdo A(it1; : : : ; itp)exit self 62 Cpost truewhich continues for the lifetime of the current object, allows only it1; : : : ; itp tochange, and requires that their changes obey the formula A at all times in thislifetime.If an input time variable it does not appear in an assumption clause, thenthere is a default action for it with A being true. Similarly for output timevariables without e�ect clauses. The now attribute is treated in this way, exceptthat its activity clause is d nowdt = 1.Likewise, an effect clause

effect it1; : : : ; itp; ot1; : : : ; otq == E(it1; : : : ; itp; ot1; : : : ; otq)has an interpretation as an action:wr ot1; : : : ;otqpre self 2 Cdo E(it1; : : : ; itp;ot1; : : : ;otq)exit self 62 Cpost trueAll of these actions are lifted to be actions at the class level by substitution ofparticular object references a : @C for self , and a:iti for iti, etc.Notice that since these actions execute over the entire lifetime of an object ofthe class, a more re�ned concept of locality, involving write frames for actions,is necessary in order to reason about changes to attributes over intervals. Moreprecisely, if an attribute att of a : @C changes in value between times t1 < t2,then there is some t : TIME with t1 � t � t2 such that some action m of C isexecuting on a at t, and has att in its write frame.Finally, the formulae listed in the aux reasoning part of a class are conjoinedtogether, and lifted to refer to particular objects, in order to obtain their meaningin the class theory.If class C inherits class D, the theory of D is included in that of C, exceptthat methodsm of D de�ned in both classes are renamed to D`m in the theoryof C.Subtyping and Re�nement ConceptsTheory MorphismsThe concept of a theory morphism for RAL is similar to that for the objectcalculus. A morphism � : Th1 ! Th2 maps each type symbol T of Th1 to atype symbol �(T) of Th2, each function symbol of Th1 to a function symbolof Th2, and each attribute of Th1 to an attribute of Th2. Actions of Th1 aremapped to actions of Th2.The type TIME is always mapped to itself.We can construct a category of theories with theory morphisms as categoricalarrows as usual. Theory morphisms can be used to decompose the descriptionof a class or system theory into theories for individual objects, and theories ofthe individual classes.Re�nementThe concepts of subtyping and re�nement in VDM++ correspond to a particularform of theory morphism. Class C is a supertype of class D if there is a retrievefunction R : TD ! TC between the respective states, and a renaming � of

methods of C to those of D, such that for every ' 2 LC, �C ` ' implies that�D ` �('[R(v)=u]) where v is the tuple of attributes of D, u of C.� must map internal methods of C to internal methods of D, and externalmethods to external methods. The notation C v �;R D is used to denote thisrelation.D is a re�nement of C if it is a subtype of C and the retrieve function Rsatis�es the condition of adequacy:8u 2 TC � InvC(u))9v 2 TD � InvD(v) ^ R(v) = uThat is, R is onto. In addition, no new external methods can be introduced inD. Re�nement proofs can be decomposed into modular proofs of stronger butmore local obligations, such as that preconditions can be weakened and post-conditions strengthened, etc.

This article was processed using the LATEX macro package with LLNCS style

