Integrating VDM™* and Real-time System Design

K. Lano, S. Goldsack, J. Bicarregui,
Dept. of Computing, Imperial College, 180 Queens Gate, London, SW7 2BZ.
S. Kent, Dept. of Computing, University of Brighton.

Abstract. This paper presents work performed in the EPSRC “Object-
oriented Specification of Reactive and Real-time Systems” project. It
aims to provide formal design methods for real-time systems, using a
combination of the VDM T+ formal method and the HRT-HOOD method.
We identify refinement steps for hard real-time systems in VDMTT, to-
gether with a case study of a mine-pump control system, involving a

combination of VDM**+ and HRT-HOOD.
We also consider the representation of hybrid systems in VDMTT.

1 Introduction

Formalisms for real-time object-oriented specification are still at an early stage
of development. The TAM formalism [18] describes real-time systems without
module structures, and hence, does not make use of principles of locality or
encapsulation to support reasoning and transformation. TAM can be seen as a
subset of the Real Time Action Logic (RAL) notation used here. Extensions of
object-oriented methods to cover real-time aspects, such as HRT-HOOD [4] or
Octopus [1] do not provide a formal semantics or refinement concept, although
their design and analysis techniques are useful frameworks for development using
formal notations such as VDM*+. VDMTT provides a number of constructs for
specifying real-time constraints, such as the whenever statement [7]. However
there does not yet exist a systematic method for the development of real-time
systems using VDM*+.

We will show here that existing methods such as HRT-HOOD can be en-
hanced and combined with VDM*+/RAL, as follows:

— HRT-HOOD object descriptions can be given as VDM™T class definitions.

— Timing constraints in HRT-HOOD objects can be formally expressed using
RAL formulae.

— Operation request types can be represented by VDM*T operation defini-
tions, combined with RAL formulae.

The advantage of carrying out design in HRT-HOOD using VDM* is that pre-
cise mathematical constraints can be expressed in the language, and that design
can be carried out from an abstract functional and time-specification through
to a level close to a final implementation language such as Ada95. VDMTT also
allows a more abstract description of a system using a “model 0” flat specifica-
tion, with timing and synchronisation constraints expressed via logical formulae
rather than via pseudocode.

In the appendix we describe the RAL formalism, which combines aspects of
RTL, LTL and modal action logic formalisms in a coherent framework in order
to attempt to meet the criteria and capabilities for real-time formalisms given in
[8], and to enable formal treatment of real-time constraints as found in methods
such as HRT-HOOD. RAL can be used as an underlying semantics of VDM*+
to support reasoning about internal consistency and refinement of classes.

2 VDM*t

A VDM specification consists of a set of class definitions, where these have
the general form:

class C
types

T = TDef
values

const: T = wval
functions

f: A — B

f(a) == Defne(a)
time variables

input i; : Ti;

input in: Th;
07 : S1;

Om : Sm;
assumption i1, ..., in == Assumes;
effect i1, ..., In, 01, ..., Om == Effects
instance variables
Vg ! Tc;
inv objectstate == Invc;
init objectstate == Initc
methods
m(x: Xmc) valuey: Ymc
pre Prey c(x,ve) == Defnnc;

sync ...
thread ...

aux reasoning ...
end C

The types, values and functions components define types, constants and func-
tions as in conventional VDM (although class reference sets @D for class names
D can be used as types in these items — such classes D are termed suppliers
to C, as are instances of these classes. C is then a client of D). The instance
variables component defines the attributes of the class, and the inv defines an
invariant over a list of these variables: objectstate is used to include all the

attributes. The init component defines a set of initial states in which an object
of the class may be as a result of object creation. Object creation is achieved
via an invocation of the operation Clnew, which returns a reference to the new
object of C as its result.

The time variables clause lists continuously varying attributes which are
either inputs (the ij) with matching assumption clauses describing assumptions
about how these inputs change over time, or outputs (the ox), with effect
clauses defining how these are related to the inputs and to each other.

The methods of C are listed in the methods clause. The list of method names
of C, including inherited methods, is referred to as methods(C).

Methods can be defined in an abstract declarative way, using specification
statements, or by using a hybrid of specification statements, method calls and
procedural code. Input parameters are indicated within the brackets of the
method header, and results after a value keyword. Preconditions of a method
are given in the pre clause.

Other clauses of a class definition control how C inherits from other classes:
the optional is subclass of clause in the class header lists classes which are be-
ing extended by the present class — that is, all their methods become exportable
facilities of C.

Dynamic behaviour of objects of C is specified in the sync and thread
clauses, which must not conflict. In the sync clause, which describes the be-
haviour of passive objects, either an explicit history of an object can be given,
as a trace expression involving regular expressions in terms of method names, or
as a set of permission statements of the form:

per Method = Cond

restricting the conditions under which methods can initiate execution. The guard
condition Cond can involve event counters #act(m), #req(m) and #fin(m).

Threads describe the behaviour of active objects, and can involve general
statements, including a select statement construct allowing execution paths to
be chosen on the basis of which messages are received first by the object, similar
to the select of Ada or ALT of OCCAM.

A set of internal consistency requirements are associated with a class, which
assert that i1ts state space is non-empty, and that the definition of a method
maintains the invariant of the class, and that the initialisation predicate implies
the invariant.

Refinement obligations, based on theory extension, can also be given.

In discussing the semantics of VDMTT and HRT-HOOD we will make use of
the following RAL terms (Table 1).

2.1 Examples of Specification

An example of the type of properties that can be specified in an abstract declara-
tive manner using RAL and VDM™Y is a periodic timing constraint: “m initiates
every t seconds, and in the order of its requests”:

Vi:Ny- T(m(x),i+1) = (m(x),i)+t

Symbol Meaning

@C Set of possible object identifiers of objects of class C
Cc Set of identifiers of currently existing objects of class C
T(m(x),1) Activation time of i-th invocation of action m(x)
—(m(x), 1) Request time of i-th invocation of action m(x)
1(m(x), 1) Termination time of i-th invocation of action m(x)
#act(m) Number of activations of m to date

#req(m) Number of received requests of m to date

#fin(m) Number of terminated invocations of m to date

POt @ holds at time t

e®t Value of e at time t

&(p := true,i)[Time at which ¢ becomes true for the i-th time

Table 1. RAL Symbols and Meanings

More generally, in HRT-HOOD, periodic objects involve a periodic action
such as m, a period P for its execution period, and a deadline D for its comple-
tion within each period:

ViZNl'
Px(i-1)

< J(m,i)
I(m,i) < P+

A
-1)+D

where D < P.

This periodic behaviour can be expressed via a periodic thread and the
whenever statement of VDM™T, provided that the methods of the class con-
cerned are mutex:

effects ... ==
whenever P | now
also from D ==

#fin(m) = #fin(m) + 1 A #act(m) = #Fact(m) + 1
thread
periodic(P) (m)

In words “within D time units of any time t which is a multiple of P, there will
have been one more initiated and completed execution of m than at t”. Here

att denotes the value of att at the time of occurrence of the most recent trigger
event.

Periodic objects may also support high-priority asynchronous actions. These
methods, say interrupt, will have:

Vi:N; - delay(interrupt,i) < §

where delay(m,i) = {(m,i) — —(m,1), § is some small time bound for the
response time of the periodic object to this interrupt.

Sporadic constraints can also be directly expressed. In HRT-HOOD the spo-
radic action m may have a deadline D, which we can express as a constraint on
its duration:

Vi:Nj - duration(m,i) < D

where duration(m,i) = |(m,i)— [(m,i). There may also be interrupts spec-
ified as for periodic objects.

Timeouts can be specified for synchronous methods in HRT-HOOD. These
require that an operation exception is executed if an operation op fails to
respond to a request within ¢t time units:

timeout_on_delay(op, exception, t) =
(Vl : Nl .
delay(op,i) > t =
3j: Ny - [(exception,j) = —(op,i)+t) A
(VJ ZNl .
i :N; - [(exception,j) = —(op,i)+t A
delay(op,i) > t)

Likewise, a timeout on the duration of op can be expressed.

Priority levels for operations and objects can be stated in a number of ways.
For example, we could say that a high priority action « being active suppresses
any low-priority actions 3:

#Hactive(a) >0 = Factive(8) =0

where #active(m) = Fact(m)— #fin(m), the number of currently executing
invocations of m. Alternatively, if both a and § are waiting to execute, it is
always an « instance that is chosen:

per 3 = H#active(a) = 0

“there are no active invocations of « at initiation of execution of 37.

Other forms of prioritisation constraints, permission constraints, timeouts
and responsiveness constraints can all be specified in a direct manner using
RAL [12]. All the forms of method invocation protocols for concurrent objects
described in [4] can be precisely described in this logic in a similar way. The Ada
rendez-vous interpretation is the default for VDMTT.

3 Models of Time

We wish to model both discrete and hybrid systems, with continuous behaviour
specified using time variables which may be constrained by general differential
and integral calculus formulae. In order that such class specifications are mean-
ingful, we place the following constraints on instance and time variables and the
set TIME of times.

We require that each (discrete) instance variable att : T in a VDMt spec-
ification can only take finitely many different values (including the undefined
value nilT) over its lifetime:

{att®t |t € TIME} € F(T)

and the set of times over which att has a particular value is a finite union of
intervals:

Vval: T; 31:N—Z(TIME); n: N -
{t | t : TIME A att®t = val} = |J,, I(i)

where Z(TIME) is the set of interval subsets of TIME, that is, subsets J such
that

Vet T -t <t =
Yt/ TIME - t <t’ <t = t"€J

This is a generalisation of the model of [20]. e®t is the value of e at time t.
In addition, we usually expect that the lifetime of an object is contiguous:

Yobj:@C -
{t |t : TIME A (obj € C)ot} € Z(TIME)

where @QC 1s the type of possible object identities of objects of class C, whilst
C: F(@C) is the set of identities of objects of C that currently exist.

The usual model of time in VDM™ is that TIME is the set of non-negative
real numbers, with the usual ordering and operations. Because of the above
properties of attributes representing instance variables however, they can be
considered to use a simpler concept of time: a discrete non-dense set of points
from the non-negative reals. Likewise for action symbols denoting methods.

In addition, in order for whenever ¢ ... statements to be well-defined, the
times &(a.p := true,i) at which a.¢ becomes true for the i-th time must be well-
defined, ie, there must be clear cuttoff points for ¢. This will be the case, if, for
example, ¢ is of the form time_variable > constant, where time_variable
is an input time variable with a piecewise continuous graph.

4 Formalising Real-time Refinement

The most interesting forms of refinement step are those which involve a transfor-
mation from a continuous model of the world to a discrete model. In VDM** the
continuous model is expressed by means of teme variables of a class, which define
attributes that change their value in a manner independent of the methods of
the class, and, for real-valued time variables, possibly in a continuous manner.
Figure 1 shows the kinds of model and model transformation which are typ-
ically performed in VDMTT | starting from a highly abstract continuous model
of both the combined controlled system/controller (an essential model in the

continuous data flows

System) (Environmen

Discrete |
System e m e

sampled data/

interrupts

Fig. 1. Model Transformations: Continuous to Discrete

terms of Syntropy [6]), then moving to a model where the controller is separated
from the controlled system, and then to a model where the controller is replaced
by a discretisation. In the step to the discrete controller, output time variables
received by the controlled system are replaced by calls to actuator devices to
achieve the required effects. Inputs from the controlled system to the controller
are replaced by sampling methods.

This is the approach taken in the paper [7]. Alternatively, the continuous
controller model may be divided into a number of continuous classes before
discretisation, as is done in the case study of Section 4.5 below.

A fundamental problem in each of these approaches is the transition from the
continuous model to the discrete model. The transformation of data in this case
does not fit into the usual VDMTT style of functional refinement: there is no
simple retrieve function that converts the discretisation of a continuous quantity
back to that quantity, because some information has been lost. Instead there are
two alternatives:

1. accept that this is a case of relational data refinement. This complicates the
proof theory of refinement and the difficulty of proof and provides no real
“measure of closeness” between the continuous and discrete models;

2. use a concept of approximate refinement, whereby the retrieve function takes
a concrete data item into an approximation of some ideal value (in this case,
the retrieve function is some digital-analogue (DA) conversion which tries to
recover a continuous function from a sequence of sampled points taken from
it).

Other alternatives could include mapping the discrete value to the set of possible

continuous abstractions of it, which should include the actual abstraction it
derives from.
We will examine both 1 and 2 below.

4.1 Periodic Constraint Refinement

A common form of transformation from continuous to discrete views of a sys-
tem starts from a class which abstractly describes a reaction to an event (the
condition C becoming true):

class ContinuousController
time variables
input it: X;
ot: S;
effect it, ot ==
whenever C(it)
also from 6 ==> ot = v
end ContinuousController

If we can assume that C remains true for at least tc > 0 time units from the
points where it becomes true, then we can define a sampling approach:

class AbstractController
-- refines ContinuousController
time variables
input it: X;
ot: S;
effect it, ot ==
whenever C(it) A (P | now)
also from 6§ ==> ot = v
end AbstractController

where P < t¢ and § + P < §y. These constraints guarantee that no C := true
events are missed by the AbstractController, and that it responds within §
to such events. P | now denotes that P divides the current time.

This class is then implemented by a periodic action:

class ConcreteController
-- refines AbstractController
time variables

input it: X;
instance variables
id: X;
ot_obj: @SClass
methods
react() ==
(id := it;
if C(id)
then

ot_objlset(v))

thread

periodic(P) (react)
aux reasoning

Vi: Ny - |(react,i) < Px(i-1) + ¢
end ConcreteController

The abstract specification requires that, at each periodic sampling time P, if
C(it) holds, then within a response deadline 8§, ot has the value v:

Vi:N -
C@it)o(P *i) =
3t : TIME -
Pxi <t < Pxi+é6 A (ot=v)ot

The form of the test guarantees that the times &(C(it) A (P | now) := true,i)
are well-defined, regardless of C. p®t expresses that ¢ holds at time t.

The concrete specification attempts to satisfy this specification by an explicit
sampling and invocation. The periodic thread implies that:

ViZNl'
Px(i—1) < [(react,i) A [(react,i) < P i

and we also know from the deadline specification that in fact |(react,i) < P«
A-1)+6.

So assume C(it) holds at P 1 for some i € N. Assume also that it remains
true until the point |(react,i+ 1) where it is sampled by the concrete controller.
Generally we will require that the period of sampling is fast enough with respect
to the rate of change of it that it does not significantly change its value in the
delay from P #1 to {(react,i+ 1).

Then react will send the message set(v) to the object that replaces the
output time variable ot, ie, we could have the refinement that ot in the abstract
class is interpreted by ot_obj.ot in the concrete, where ot is still a time variable
in ot_obj.

We can then prove that the effect ot = v is achieved by the time P %1+ 6,
if set 1s synchronous, because then it terminates and achieves ot = v before
l(react,i+ 1) < P*i+ § as required.

If set is asynchronous, with maximum delay plus duration ¢, say, then we
must use § — € as the deadline for react in ConcreteController.

A consistency check that duration(react) < y for whichever deadline 7 is
chosen must be made!.

At the abstract specification level, a corresponding check must be made that
multiple whenever statements do not require conflicting situations to occur at
the same time.

Thus we can, in principle, prove such a refinement step correct.

! Under the assumption that the processor is adequate and not overloaded.

4.2 Discrete Sampling

The difficulty comes in the conversion from analogue to digital quantities —
such as the relationship between id and it in the ConcreteController class.
Consider the general case where we have an original abstract system which just
contains a time variable (an example in the case study would be the operator
console, containing alarm, or the module containing a sampled version of the

CH4 level).

class Output

time variables
ot: S

end Output

A refinement could instead contain a sampled version of the same data:

class Output_1
instance variables

d: seq of S
methods
set(v: §) == d = d 7 [v];

access() value S
pre len(d) > 0 == return d(len(d))
end Output_1

with the refinement relation being that d is some sampling of the abstract vari-

able:
sampled(d, ot, P, D)
This 1s an abbreviation for:

vk:N.3t: TIME -
k«+P <t < k+«P+D A k+1cdom(dek+«P+D)) A
dik+)@k +P+ D) = ot®t

That is, ot is sampled in each interval of the form (k « P,k «+ P 4+ D] and its
value assigned to the k 4+ 1-th element of d.

More generally, we could sample an expression e involving various time
variables and instance variables; including previous values of d. The predicate
sampled(d, ot, P, D) does describe a refinement relation between the abstract
and concrete data, but not a retrieve function from the concrete state to the
abstract state: for a given d there is not necessarily a unique ot such that
sampled(d, ot, P, D) is true. An alternative is to somehow characterise the er-
ror between a functional refinement mapping from d back to the continuous
domain, and the original ot value (Figure 2 shows the general situation here).
For example, let ot be a boolean quantity, modelled by a {0, 1} value set. Assume
that the minimum inter-arrival time of events that change the value of ot is I.

Then the abstract model can be regarded as a sequence of intervals Iy, Iy, ...,

ot @ d*
AD DA

d

Fig. 2. Approximate Refinement

which are demarcated by changes in the value of ot. Each of the I; has length
len(I;) > L
Define the DA conversion function from d to a time series d* as follows:

d*(t) = d(1) ift < tg
= d(2) ifty < t < &

=di+2) ift; < t < i

where t; is the time at which the i+1-th sample of ot is taken, so d*(t;) = ot(t;).
Other DA functions are possible, but the error estimations are similar in each
case. Here, we are concerned to estimate the integral

JiF lot(t) — d=(t) | dt

for a given time T. This is our measure of error in the approximate retrieve
function that takes d to d*. We can break this integral down into a sum:

Yienyjen | ot(1T;) — d*(t:) | * len(I; N (ti-1, t5])

over all the segments I;N(t;_1, t;] where the values of both variables are constant,
and t; < T. 1TI; refers to the starting time point of the j-th interval.
If we then assume that P + D < I, we can infer that:

[0 Jot(t) —d*(t) | dt < 2k« (P+D)

This enables a crude upper bound to be placed on the error in the approximation.
Clearly, the smaller we make the period and the deadline P and D involved in the
sampling, the more accurate is the approximate refinement. D < P is necessary,
and D must be greater than the duration of the sampling method involved (in
a system object such as ConcreteController above).

Similar reasoning can be applied to other discrete-valued time variables.

4.3 Approximate Refinement

Given some DA conversion function R as described in the previous section, we
require the following conditions for an “approximate refinement” based on this
function.

1. R should be the left inverse of an adequate (surjective) function from the
continuous to the discrete space;

2. the error between the continuous approximated variable ¢ and R(d) where
d 1s the corresponding discrete variable, should be boundable in terms which
can be engineered by the system designer;

3. each axiom ¢ of the continuous system should be provable in the interpreted
form ¢[R(d)/c] in the discrete system.

These three conditions have the following justifications:

1. We should be able to see the transformation from a continuous to the discrete
model as an abstraction step, removing domain detail that is irrelevant to
the implemented system, similar to the transition from the essential models
of Syntropy [6], which describe the “real world” domain, and the specification
models, which describe the required software (Figure 3).

2. The developer should be able to control the quality of the discrete approxi-
mation, and trade off this quality against other aspects, such as efficiency.

3. Every property required by the abstract continuous class should be true in
interpreted form in the new class — this is the usual meaning of refinement
and subtyping as theory extension.

Discrete,

Specification Computable
Model

Abstraction

Refinement

Continuous,

Possibly non-computable Implementation
Model
Discrete,
Computable

Fig. 3. Essential, Specification and Implementation Model Relationships

Examples of this process are given in the papers [16, 17].

4.4 Sporadic Constraint Refinement

The final major case of refinement from continuous to discrete views of a sys-
tem 1nvolves the implementation of sporadic response requirements by sporadic,
interrupt-driven classes. This can be treated by replacing a boolean input time
variable by an interrupt [15].

4.5 Case Study

An example of combined analysis and design using VDM*+/RAL and HRT-
HOOD is as follows, based on the mine pump example used in [4].
The requirements are as follows:

1. the system should respond to the water low and water high conditions within
20 seconds — switching the pump on if the water goes high with the methane
level below the danger level, and switching it off if the water level goes low.
The minimum inter-arrival time for these events is 100 seconds;

2. the system should respond to high methane conditions within 1 second,
switching off the pump and raising a “methane high” alarm. The methane
is sampled at 5 second intervals;

3. the system should respond to critically high levels of CO within 1 second,
raising a “CO high” alarm. The CO level is sampled at 60 second intervals;

4. the system should respond to a critically low air flow reading within 2 sec-
onds, raising a “low air flow” alarm. The air flow is sampled at 60 second
intervals;

5. the system should respond to a low water flow reading when the pump is on
within 3 seconds, raising a “pump failed” alarm. The water flow is sampled
at 60 second intervals.

Based on the analysis of the requirements, we could specify the system as a
single class with input time variables representing the measured CH4 and CO
levels, the water level and water and airflow levels, together with the outputs —
the data logger, motor state and alarm. This class can be derived from a context
diagram and the detailed requirements of functionality:

class Model 0
types
Alarm_status = < high methane > | < low_air_flow > | < high_water > |
< high co > | < pump_failed > | < safe >
values
ch4 high: N = undefined;
co high: N = undefined;
jitter_range : N = undefined;
water_low: N = undefined
time variables
input co_reading: N;

input ch4 reading: N;

input low_sensor : bool;

input high sensor : bool;

input water_flow : Nj;

input air_flow: N;
motor_on : bool;
alarm : Alarm_status;

/* Requirement 1: */

effect high sensor, ch4 reading, motor_on ==
whenever high sensor A (ch4_reading < ch4 high — jitter_range)
also from 20000 ==> motor_on;

effect low_sensor, motor_on ==
whenever low_sensor
also from 20000 ==> — (motor_on);

/* Requirement 2: */

effect ch4_reading, alarm ==
whenever ch4_reading > ch4 high A (5000 | now)
also from 1000 ==> alarm = < high methane >;

effect ch4_reading, motor_on ==
whenever ch4_reading > ch4 high A (5000 | now)
also from 1000 ==> - (motor_on);

/* Requirement 3: */

effect co_reading, alarm ==
whenever co_reading > co_high A (60000 | now)
also from 1000 ==> alarm = < high_co >;

/* Requirement 4: */

effect air_flow, alarm ==
whenever air_flow < flow_low A (60000 | now)
also from 2000 ==> alarm = < low_air_flow >;

/* Requirement 5: */

effect water_flow, motor_on, alarm ==
whenever (water_flow < water_low) A
motor_on A (60000 | now)
also from 3000 ==> alarm = < pump_failed >

end Model 0

We ignore data logging for simplicity in this initial model. The above class could

also contain differential/integral calculus expressions relating the CH4 level to
the air-flow rate. jitter_range provides some hysteresis for the system.

Notice that many of the above effect clauses give the same sample points
60000 x k for the relevant tests on sensor values to be made. It may be infeasible
for these tests to be made at exactly this time in the actual system, if the
sampling tasks share a processor. However, any minor time-displacement of this
kind should not make any difference to the truth or falsity of the test concerned.
This 18 an auxilliary proof requirement which would require knowledge of the
relevant rate of changes involved.

We can clearly factor this model into parts which contain smaller subsets
of the data. The first subsystem is an environment monitor which contains the
various gas monitors:

class EnvironmentMonitor
is subclass of Basic_types
time variables
input co_reading: N;
input ch4_reading: N;
input air flow: N;
motor_on : bool;
alarm : Alarm_status;

effect ch4 reading, alarm ==
whenever ch4_reading > ch4 high A (5000 | now)
also from 1000 ==
alarm = < high methane >;

effect co_reading, alarm ==
whenever co_reading > co_high A (60000 | now)
also from 1000 ==> alarm = < high co >;

effect ch4 reading, motor_on ==
whenever ch4_reading > ch4 high A (5000 | now)

also from 1000 ==> - (motor_on);

effect air_flow, alarm ==

whenever air_flow < flow_low A (60000 | now)
also from 2000 ==> alarm = < low_air_flow >;
methods

check safe() value bool ==
return (ch4_reading < ch4 high — jitter_range)
end EnvironmentMonitor

We need the method check_safe to support the implementation of the first
requirement.

This can be further decomposed into individual monitors plus a protected
object to support external queries to the CH4 status:

class Ch4_Sensor

is subclass of Basic_types
time variables
input ch4 reading: N;
motor_on : bool;
alarm : Alarm_status;
effect ch4_reading, alarm ==
whenever ch4_reading > ch4 high A (5000 | now)
also from 1000 ==
alarm = < high methane >;

effect ch4_reading, motor_on ==
whenever ch4_reading > ch4 high A (5000 | now)
also from 1000 ==> - (motor_on)

end Ch4_Sensor

class Ch4Status

is subclass of Basic_types
instance variables

environment_status : Ch4_status;
init objectstate ==

environment_status := < motor_safe >
methods

read() value Ch4_status ==

return environment_status;

write(v: Ch4_status) ==
environment_status = v
end Ch4Status

Similarly for the Air_flow_Sensor and CO_Sensor classes.
Together these can be aggregated to refine the original subsystem specifica-
tion:

class EnvironmentMonitor_1
-- refines EnvironmentMonitor
is subclass of Basic_types, Ch4_Sensor,
Air_flow_Sensor, CO_Sensor, Ch4Status
methods
check safe() value bool ==
return (environment_status = < motor_safe >)
end EnvironmentMonitor_1

The refinement relation is that the abstract time variables in
EnvironmentMonitor are implemented by the corresponding time variables
in the individual classes, whilst the attribute environment_status is a discreti-
sation of the test for motor safety, with a sampling time within 1 second of the

times 5000 * k for k € N:

sampled(environment_status,
if ch4 reading < ch4 high — jitter_range
then < motor_safe >

else
if ch4 reading > ch4 high
then < motor_unsafe >

else environment_status, 5000, 1000)

Here environment_status refers to the value at the previous sampling interval.

This approach corresponds to the architecture given in the paper [4]. Each of
the objects with continuous variables will eventually be implemented as cyclic
objects using a periodic thread. In the case of the CO sensor and air flow sensor
objects the thread will have a periodicity of 60 seconds, whilst the CH4 sensor
has a periodicity of 5 seconds.

Because we are using multiple inheritance to put together the components,
which corresponds to aggregation in a object-oriented method such as Fusion [5],
we must identify priorities for objects (generally, the objects with the shortest
deadlines and periods will have the highest priority, etc). In a simple system
such as this one, we can interpret the priorities as determining the precedence of
execution of two operations: if class C has a higher priority than class D, then
each object a of C can always commence execution of an operation m of C in
preference to any object b of D waiting to execute an operation n of D:

Vj: Ny - (a.#waiting(m) = 0)®](b!n,j)

An internal consistency check must be made, that all the separate periodic and
deadline constraints specified in the individual classes can still be satisfied, given
these priorities, when they are aggregated into a mutex container class.

We take the priorities from [4]:

Class Priority
CH4 status 7
motor 6
CH4 sensor 5
CO sensor 4
3
2
1

airflow sensor
water flow sensor

HLW handler

Formally we must have that

Vi,j:N; - duration(opcs_periodic_code,i) <
1000 — duration(co_periodic_code, j)

where co_periodic_code is the periodic action of the CO sensor. Likewise:

Vi,j, k: Nl .
duration(opcs_periodic_code, i) +
duration(co_periodic_code,j) <
2000 — duration(air_flow_code, k)

in order that all three periodic codes can achieve their deadlines, assuming that
they must be executed in a mutually exclusive and uninterrupted manner.

We can obtain slightly more refined requirements by examining the different
periods concerned: opcs_periodic_code and co_periodic_code only possibly
conflict, for example, in the time intervals of length 5000 beginning with a mul-
tiple of 60000. Thus we could require just:

VN -
duration(opcs_periodic_code, 1 + 12¢) <
1000 — duration(co_periodic_code, 1 + ¢)

The Basic_types class encapsulates shared type and constant definitions:

class Basic_types

types
Rate = N;
Ch4_reading = N;
Ch4_status = < motor_safe > | < motor_unsafe >;

Alarm status =
< high methane > | < low_air_flow > | < high_co > |
< high water > | < pump_failed > | < safe >
values
water_low : N = undefined;
ch4 high: Ch4 reading = undefined;
co high: N = undefined;
jitter_range : Ch4_reading = undefined;
ch4 sensor_period: N = 5000
end Basic_types

The implementation of the CH4 sensor is a cyclic object:

class Ch4_Sensor_1

-- refines Ch4_Sensor

is subclass of Basic_types

time variables
input ch4dbr: Ch4_reading

instance variables
ch4 present : Ch4_reading;
ch4_status : Ch4_status;
ch4status : @Ch4Status;
pump_controller : @PumpController;
operator_console : @OperatorConsole;
data_logger : @DataLogger;

init objectstate ==

(ch4_present := 0;
ch4_status := < motor_safe >)
methods
opcs_periodic_code() ==
(ch4_present := ch4dbr;

ch4_status := chdstatus!read();

if ch4_present > ch4 high
then
(if ch4 status = < motor_safe >
then
(pump_controller!not_safe();
operator_console!set_alarm(< high_methane >);
chdstatus!write(< motor_unsafe >)))

else
if (ch4_present < ch4_high — jitter_range) A
ch4_status = < motor_unsafe >
then

(pump_controller!safe();
ch4status!write(< motor_safe >));
data_logger!ch4_status(ch4_status))
thread
periodic(ch4_sensor_period)(opcs_periodic_code)
aux reasoning
vV i: Ny -
| (opes_periodic_code,i) < (i—1)+*ch4_sensor_period + 1000
end Ch4_Sensor_1

The deadline (1000ms) of the opes_periodic_code operation is expressed in the
aux reasoning section of the class.

The refinement relation of this object compared to its specification 1s that
ch4dbr implements ch4_reading, and that ch4_present is a sampled copy of
this with period 5 seconds and deadline 1 second:

sampled(ch4_present, ch4 reading, 5000, 1000)

We can recast this as an approximate function-based refinement as in Section
4.2.

In the above class the motor_on output time variable has been implemented
by the internal state pump_controller.motor_on. Notice that we use the ab-
stract specification of this class within the declarations of Ch4_Sensor_1, this
is valid because any refinement of PumpController must be polymorphically
compatible with its specification, and must provide some expression that imple-
ments motor_on. Likewise, operator_console.alarm is a sampled implemen-
tation of the abstract attribute alarm.

Ch4Status is already in a form that can be directly implemented as a pro-
tected (mutex) object.

The high/low water sensor object has the abstract specification:

class HighLowWater_Sensor
is subclass of Basic_types
time variables
input low_sensor : bool;
input high_sensor: bool;
input ch4_reading: N;
motor_on : bool;

assumption low_sensor, high sensor ==
- (low_sensor A high sensor);

effect high sensor, ch4 reading, motor_on ==
whenever high sensor A (ch4_reading < ch4 high — jitter_range)
also from 20000 ==> motor_on;

effect low_sensor, motor_on ==
whenever low_sensor
also from 20000 ==> — (motor_on);
end HighLowWater_Sensor

It is refined using the “sporadic constraints refinement” strategy:

class HighLowWater_Sensor_1

is subclass of Basic_types
instance variables

motor : @Motor
methods

low_sensor_interrupt() == skip;

high_sensor_interrupt() == skip
thread
while true
do
sel
answer high sensor_interrupt -> motor!loperate(),
answer low_sensor_interrupt -> motor!turn_off()
end HighLowWater_Sensor_1

The operate method of Motor attempts to switch the motor on, checking
first that the methane level is safe, using the check_safe method. Duration
constraints are that the period of 100000ms that is the minimum inter-arrival
time between these interrupts must be greater than the maximum duration of
the select body, as described in Section 4.4 above. Likewise, this duration must
be less than the deadline of 20000ms in the abstract requirements.

The structure of part of the development is shown in Figure 4. Basic_types is
not shown, for simplicity. Notice that the inheritance of
EnvironmentMonitor into Model_1 must hide the method check_safe as
this method does not appear in the external interface of the system. Likewise the
operations of Ch4Status should be hidden in EnvironmentMonitor_1. The
latter class is hybrid, as it contains both time variables and ordinary discrete vari-
ables. The refinement of EnvironmentMonitor by EnvironmentMonitor_1
involves a discrete sampling refinement step on the environment_status vari-
able with respect to the expression which tests if the motor 1s safe to operate.

The refinement from Ch4_Sensor to Ch4_Sensor_1 is a periodic constraint
refinement step, and also introduces discrete sampling.

The refinement of the high/low water sensor is a sporadic constraint refine-
ment step.

Environ-
ment
Monitor

Model_0
kefin%
Inherits

Pump
Controller

Inherits

T~

Refines
(CO_Sensor

Inherits

Inherits

Composition

Ch4_Sensor_1

Fig. 4. Partial Structure of Mine System Development

In a complete development we would also refine the other sensors and classes
to implementation-level descriptions.

5 Hybrid Systems

The analysis and verification of hybrid systems — systems containing both con-
tinuous and discrete aspects — is currently one of the most challenging areas in
process control [3, 9]. We can extend the RAL formalism to treat some hybrid
systems by adopting the model of phase transition systems from [19]. In this
model, a hybrid system passes through a set of phases, which generalise the con-
cept of a state in a statechart. Within each phase, time variables can modify
their value in accordance with a set of differential /integral calculus equations.
Transitions between phases occur as a result of some critical exit condition being
reached.

We can relate this to RAL by defining a new form of actions termed phases:

o =
wr /{
pre G
do 0
exit E

post Q

These have the intended meaning that G always holds at initiation of a:
Vi:N; - Gol(a,1)

Q holds at termination of a: Vi:N; - Q®|(«,1) and that the phase equations
hold during each execution of «a:

Vi:Ny; t: TIME -
i) < 6 < Lad) = 0ot

Hooked attributes var occurring in @ refer to the value of var at {(a,1i).

We assume that TIME is the set of non-negative real numbers in the fol-
lowing.

The exit condition controls when « terminates — ie, at the first point in each
execution interval where E becomes true:

Vi:Ny; t: TIME -
(i) < & < (i) = -Bot A
E®|(a,i)

Thus for example, in the “mouse and cat” example of [19], we can represent
the activity of the mouse running, terminated by the safe state by:

mMrullpnorm =—
WI X, mstate
pre mstate = < running >
do d(’;—g" = —Vm
exit x;,, = 0
post mstate = < safe >

The mouse velocity 1s vy, and its distance to the hole is x,.
A similar action is used to represent the cat running and achieving the “mouse
caught” state:

CrUlporm =
WI Xc, cstate
pre cstate = < running >

do ddxtc = —v¢
exit X = Xm A Xe > 0

post cstate = < mouse_caught >

A “running” activity of the complete system is then a parallel combination
of these two activities. It is not a simple || combination however, because the cat
achieving the “mouse caught” state must “pre-empt” the mouse running action.
Likewise, the mouse achieving the “safe” state before the cat reaches it must
pre-empt the cat running action.

In order to represent the abortion or pre-emption of an action, we use the
choice combinator M:

ViZNl'
HjZNl'
(T(a,i) = 1(8,3) A
A

Wai) = 1(8,3) V
(Mo, 1) = 1(v.d) A Uayi) = |

a, i

where o« = 3 1 7.

If we want « to be capable of being aborted, ie, to terminate without its
normal postcondition holding, then we define a normal behaviour action ayerm
and an action for abnormal behaviour cases @abort.

« itself 1s defined as the M combination of these:

O = Onorm || Qabort

For example, if we consider the cat and mouse problem, the activity of the
mouse running has the abort termination:

mrullagbort —
WI X, mstate
pre mstate = < running >
do d(’;—g" = —Vm
exit X; = Xe A Xm > 0
post mstate = < caught >

Similarly the cat running has an abnormal termination:

Crullabort —
WI Xc, cstate
pre cstate = < running >
do ddxt“ = —v,
exit x. =0
post cstate = < failed >

This means that the composed action can be combined with the cat running
action using the pre-emption operator §:

ViZNl'
3j,k : Ny -
Hafpi) = [(a
Watpi) = |

The overall system action is then:
running = (mrunj(wait(é); crun))

At termination of an instance (running, i) with duration greater than é we
know that both the mrun and crun actions have terminated. If mrun has
terminated normally, 1e, the instance of mrun is an instance of mrungeprm,
then we know that mstate = < safe > at |(running,i), and that x,, = 0,
and hence, that the crun action has terminated abnormally: the instance of
crun involved is an instance of crungport.

Conversely, if the instance of erun is an instance of crunygpm then cstate =
< mouse_caught > at |(running,i), and that xym = xc # 0, so that the
instance of mrun involved must be an instance of mrun,port.

It is not possible for both actions to fail — in that case x, = xc > 0 and
x. = 0, a contradiction.

Discretisation of this problem will require sampling of the v, and vy, vari-
ables, and calculation of the x, and xy, variables. We must choose a fine enough
granularity of sampling so that the point where the cat catches the mouse is
not missed. This requires some tolerance | Xy, — Xe | < € in the distances as
the criterion for “catches” | instead of equality. The sampling period 7 must then
satisfy

2xe
T < Yoova

6 Conclusions

We have described some techniques for combining VDMt with HRT-HOOD,
and how real-time refinement can be formalised in RAL. All the forms of con-
straint described in [8] can be expressed in RAL, except required internal non-
determinism. External required non-determinism (the capability to respond to
several different messages) is expressed via the enabled predicate.

The formalism possesses a sound semantics, and it is therefore consistent
relative to ZF set theory. The advantage of the formalism over other real-time
and concurrency formalisms is the conciseness of the core syntax and axiomati-
sation, and 1its ability to express the full range of reactive and real-time system
behaviour via derived constructs. The TAM formalism of [18] can be regarded
as a subset of RAL, and could be used to transform specification and code frag-
ments that are purely local to one class and that are within its language. For
practical development, we also need higher-level design transformations such as
design patterns, and a systematic, tool-supported combination of formal and
diagrammatic notations.

We have argued that the concept of approximate (functional) refinement is
preferable to the use of relational refinement in carrying out the step from a
continuous or hybrid specification of a system to a discrete specification. This
i1s because it provides a simpler formulation of refinement in terms of theory

extension, and enables us to measure the degree to which information about the
continuous world can be recovered from the discrete refinement.

Animation of VDM** specifications can be performed at the abstract con-
tinuous description level, using tools such as gPROMS [2], in order to validate
the formal model of the real-world situation expressed in terms of predicates
and time variables. This i1s in contrast to implementation-level simulation as
described in [4], which is in terms of threads and processes and may be uncon-
nected to the real-world model. Tool support for proof obligation generation for
internal consistency, refinement and subtyping obligations, and for animation
of event sequences against VDMTT classes is being developed in the “Object-
oriented Specification of Reactive and Real-time Systems” project.

Examples of using the logic to express properties of distributed and concur-
rent systems can be found in the papers [13, 14]. Similar techniques could be
applied using the formal language Z*t+ although VDMTT is more suited to the
later design and implementation stages.

References

1. M Awad, J Kuusela, and Jurgen Ziegler. Object-oriented Technology for Real-time
Systems. Prentice Hall, 1996.

2. P I Barton, E Smith and C C Pantelides. Combined Discrete/Continuous Process
Modelling Using gPROMS, 1991 AIChE Annual Meeting: Recent Advances in
Process Control, Los Angeles, 1991.

3. P Barton and T Park. Analysis and Control of Combined Discrete/Continuous
Systems: Progress and Challenges in the Chemical Processing Industries, in pro-
ceedings of Chemical Process Control - V: Assessment and New Directions for
Research, January, 1996.

4. A Burns and A Wellings. HRT-HOOD: A structured design method for hard real-
time systems. Real-Time Systems, 6(1):73-114, January 1994.

5. D Coleman, P Arnold, S Bodoff, C Dollin, H Gilchrist, F Hayes, and P Jeremaes.
Object-oriented Development: The FUSION Method. Prentice Hall Object-oriented
Series, 1994.

6. S Cook and J Daniels. Designing Object Systems: Object-Oriented Modelling with
Syntropy. Prentice Hall, Sept 1994.

7. E Durr, S Goldsack, and J van Katjwick. Specification of a cruise controller in
VDM**. In Proceedings of Real Time OO Workshop, ECOOP 96, 1996.

8. S M Celiktin. Interval-Based Techniques for the Specification and Analysis of Real-
Time Requirements, PhD thesis, Catholic University of Louvain, September 1994.

9. S Engell and S Kowalewski. Discrete Events and Hybrid Systems in Process Con-
trol, Proceedings of Chemical Process Control - V: Assessment and New Directions
for Research, January, 1996.

10. J Fiadeiro and T Maibaum. Describing, Structuring and Implementing Objects, in
de Bakker et al., Foundations of Object Oriented languages, LNCS 489, Springer-
Verlag, 1991.

11. F Jahanian and A K Mok. Safety Analysis of Timing Properties in Real-time Sys-
tems, IEEF Transactions on Software Fngineering, SE-12, pp. 890-904, September
1986.

12. S Kent and K Lano. Axziomatic Semantics for Concurrent Object Systems,
AFRODITE Technical Report AFRO/IC/SKKL/SEM/V1, Dept. of Computing,
Imperial College, 180 Queens Gate, London SW7 2BZ.

13. K Lano. Distributed System Specification in VDMYT, FORTE ‘95 Proceedings,
Chapman and Hall, 1995.

14. K Lano, J Bicarregui and S Kent. A Real-time Action Logic of Objects, ECOOP
96 Workshop on Proof Theory of Object-oriented Systems, Linz, Austria, 1996.

15. K Lano. Semantics of Real-Time Action Logic, Technical Report GR/K68783-3,
Dept. of Computing, Imperial College, 1996.

16. K Lano, S Goldsack and A Sanchez. Transforming Continuous into Discrete Speci-
fications with VDM T 1EE C8 Colloquium Digest on Hybrid Control for real-time
Systems, 1996.

17. K Lano. Refinement and Simulation of Real-time and Hybrid Systems using
VDMt and gPROMS, ROOS project report GR/K68783-13, November 1996,
Dept. of Computing, Imperial College.

18. G Lowe and H Zedan. Refinement of complex systems: A case study. The Com-
puter Journal, 38(10):785-800, 1995.

19. 7Z Manna and A Pnueli. Time for concurrency. Technical report, Dept. of Com-
puter Science, Stanford University, 1992.

20. B Mahony and I J Hayes. Using continuous real functions to model timed his-
tories. In P A Bailes, editor, Proceedings of 6th Australian Software Fngineering
Conference. Australian Computer Society, July 1991.

21. J S Ostroff. Temporal Logic for Real-Time Systems. John Wiley, 1989.

22. A Pnueli. Applications of temporal logic to the specification and verification of
reactive systems: A survey of current trends. In J de Bakker, W P de Roever, and
G Rozenberg, editors, Current Trends in Concurrency, LNCS vol. 224, Springer-
Verlag, 1986.

Real-time Action Logic

Logic

RAL is an extension of the Object Calculus of Fiadeiro and Maibaum [10] to
cover durative actions and real-time constraints. The syntactic elements of an
RAL theory are: action symbols, attribute symbols, plus the usual type, function
and predicate symbols of typed predicate calculus, including the operators €, set
comprehension, U, IF, etc, of ZF set theory. These aspects are as for the standard
object calculus.

For each action «, there are function symbols —(«, 1) the time of request of
the i-th invocation of action «, 1(«,1) the time of activation of this invocation,
and |(«,1) the time of termination of this invocation. i ranges over Nj.

Modal operators are @ “holds at a time” and ® “value at a time”.

The type TIME is assumed to be totally ordered by a relation <, with a
least element 0, and with N C TIME. It satisfies the axioms of the set of non-
negative elements of a totally ordered ring, with addition operation 4+ and unit
0, and multiplication operation * with unit 1.

The following operators can be defined in terms of the above symbols: (i)
the modal action formulae [«]P “« establishes P”. P may contain references

‘€ to the value of e at commencement of the invocation of o being considered:;
(ii) the operator D representing the calling relation between two actions; (iii)
the RTL [11] event-time operators &(p := true,i) and &(p := false, 1) giving
the times of the i-th occurrences of the events of a predicate ¢ becoming true
or false, respectively; (iv) counters #req(«), #act(«) and #fin(«) for request,
activation and termination events; (v) the temporal logic operators O, o, O; (vi)
action combinators ; , || (parallel non-interfering execution), assignment, etc.

Specific to the object-oriented view are types @Any of all possible object
identifiers, and subsorts @C of this type which represent the possible object
identifiers of objects of class C.

A predicate added for concurrent object-oriented systems is a test for enabling
of an action o« (whether a request for execution of « will be serviced or not).
This is expressed by enabled(«).

Attributes and Actions For a specification S consisting of a set of classes,
the attribute symbols are as follows: x.att for x : @C and att an instance or
time variable of a class C of S. The attribute C for each class C represents the
set of existing objects of C. This is of type F(@C).

Derived attributes of a class will include event counters #act(m), #fin(m)
as defined below.

The action symbols are: newe(¢) for C a class of S and ¢ : @C; x!m(e) for
x : @QC and m a method of C, with e : X, ¢ a term in the type of the input
parameters of m in C.

pre Guard post Post where Guard is an expression over a set of attributes,
and Post can additionally contain expressions of the form € referring to the
value of the expression e at commencement of execution of the action.

We write x.](m(e),1) for {(x!m(e),i) etc to make the notation used for
objects more uniform.

Derived Actions and Attributes For an object x : @C event occurrence
times &(yp = true,i) and &(p := false,i) can be defined from the above lan-
guage.

Event counters are also derived operators:

x.#act(m(e)) =
card({j : Ny | x.T(m(e),]) < now})

This definition involves < because we consider #act(m) to be incremented in-
divisibly just after the moment at which m initiates execution. Similarly we can

define x.#req(m(e)) and x.#fin(m(e)).

The actions pre G post P name actions « with the following properties:

Vi:N;- now = [(o,1) = G&(a,i)
Vi:N;- now = (a,i) = Platt®](a,i)/att]®|(a, i)

Formulae O, c¢¢ denotes that ¢ holds at each future initiation time of a method
invocation alm on an object a : @C, where m is a method of the class C. In
other words it abbreviates

Vi:N;-a.l(mi,i) > now = ¢ea.T(my,i)
VANV
Vi:N;-al(mn,i) > now = ¢@a.|(mn, i)

where methods(C) = {m;,...,my}.
The calling operator D is defined by:

aDdf =
Vi:N; -now = T(a,1) =
Elj NlT(ﬁaj):T(aai) A l(ﬁaj):l(aai)

In other words: every invocation interval of « is also one of 3.
The MAL operator [«]P is defined as:

[o]P = o
Vi:N; -now = (a,1) = Platt®](«o,1)/att]®|(a,1)

where the same substitution is used as for the definition of pre G post P above.
We can then show [pre G postP](G A P) and that

(@2 p) = ([A]P = [«]P)

for any P in the language concerned.
Conditionals have the expected properties:

E = (GfEthenS;elseS; DO S;)
- E = (if EthenS;elseS; DO 8j)

Similarly, while loops can be defined.
A synchronous method invocation alm(e) is interpreted as an invoke state-
ment:

invoke alm(e)

An instance (S,1) of this statement has the properties:

Vlle'JNl
1(S,1) = a.—(mf(e),j) A
1(8,i) = a.l[(m(e),])

Axioms The axioms of predicate calculus and ZF set theory are adopted, with
some modifications.
The core logical axioms include:

(C1): Vi:Ni-—(m(e),i) < —(m(e),i+1)

“the —(m(e),1) times are enumerated in order of their occurrence.”
(C2): Vi:N;1 - —(m(e),i) < T(m(e),i) < |(m(e),i)

“every invocation must be requested before 1t can initiate, and initiates before
it terminates.”

The compactness condition is that for every p € Nj there are only finitely
many values («,1) < p, for each action «. Similar conditions are required for
the — and | times.

Of key importance for reasoning about objects is a framing or locality con-
straint [10], which asserts that over any interval in which no action executes, no
attribute representing an instance variable changes in value.

This locality principle reduces to that of the object calculus in the case that
all actions have duration 1 and TIME = N.

The usual inference rules of predicate logic are taken. In addition the follow-
ing rule 1s adopted:

I'kFe
I'EVt: TIME - o6t

Interpretations of Class Features

The theory I's of a system is the union of the theories I'c of the separate classes
within it, which are defined as follows.
If we have a method definition in class C of the form:

m(x: Xmc) value y: Ym,c
pre Pren c == Codem,c;

then the action alm(e) has the properties:

aPrencle/x] A a € C =
alm(e) D a.Coden cle/x]

where each attribute att of C occurring in Prey, ¢ is renamed to a.att in
a.Prem ¢ and similarly for Codey, ¢. Additionally, invocations of actions bin(f)
within Code are explicitly written as invoke bIn(f) statements.

The initialisation of a class C can be regarded as a method inite which
is called automatically when an object ¢ is created by the action newc:
newc(c) D clinitc.

newc itself has the property: ¢ € C = [newc(c)](C = C U {c}).
A method must be enabled when 1t initiates execution:

Vx:@QC;i:Ny; e: X -
enabled(x!m(e))@x.T(m(e),1)

for all methods m of C.

The invariant of a class is true at every method initiation and termination
time: O, cInve AVi:N;-Inve®a.|(myj,1) for each method m; of C and a:
@C. However, the typing constraints for attributes are always true: O7 (a.att €
T) for each attribute declaration att : T of C.

Permission guards for a method m give conditions which must be implied by

enabled(m):

perm = G

yields the axiom enabled(m) = G.
The whenever construct of VDM™TT is interpreted as follows. A statement

whenever y also from 6 ==> ¢

asserts that ¢ must be true at some point in each interval of the form [t,t + 6]
where t is a time at which x becomes true.
Thus it can be expressed directly as:

Vi:Ny; 3t: TIME - 00t A
&(x :=true,i) < t < &(x := true,i)+ 4

This definition yields a transitivity principle.

We can extend this interpretation to classes involving time variables, pro-
vided that we restrict TIME to be the set of non-negative real numbers. The
representation of assumption and effect clauses then uses phase actions, which
have ongoing activities terminated by critical conditions. These activities only
change a certain subset of the time variables (ie, for each assumption clause, the
variables listed in the header, and for effect clauses, those output variables listed
in the clause header).

In detail, for each assumption clause

assumption ity, ..., it, == A(ity, ..., itp)
we have a phase action

wr ity, ..., ity
pre self € C

do A(itl, ceey ltp)
exit self ¢ C
post true

which continues for the lifetime of the current object, allows only itq, ..., ity to
change, and requires that their changes obey the formula A at all times in this
lifetime.

If an input time variable it does not appear in an assumption clause, then
there is a default action for it with A being true. Similarly for output time
variables without effect clauses. The now attribute is treated in this way, except
that its activity clause is 4B9%W — 1.

de
Likewise, an effect clause

effect it1, ..., itp, oty, ..., otq == (it1, RN itp, oty, ..., th)
has an interpretation as an action:

wr oty,...,0tq

pre self € C

do E(itq, ..., itp, 0t1, ..., 0tg)
exit self ¢ C

post true

All of these actions are lifted to be actions at the class level by substitution of
particular object references a : @QC for self, and a.it; for it;, etc.

Notice that since these actions execute over the entire lifetime of an object of
the class, a more refined concept of locality, involving write frames for actions,
is necessary in order to reason about changes to attributes over intervals. More
precisely, if an attribute att of a : @C changes in value between times t; < to,
then there is some t : TIME with t; < t < t5 such that some action m of C is
executing on a at t, and has att in its write frame.

Finally, the formulae listed in the aux reasoning part of a class are conjoined
together, and lifted to refer to particular objects, in order to obtain their meaning
in the class theory.

If class C inherits class D, the theory of D is included in that of C, except
that methods m of D defined in both classes are renamed to D‘m in the theory

of C.

Subtyping and Refinement Concepts

Theory Morphisms

The concept of a theory morphism for RAL is similar to that for the object
calculus. A morphism ¢ : Thl — Th2 maps each type symbol T of Thl to a
type symbol o(T) of Th2, each function symbol of Thl to a function symbol
of Th2, and each attribute of Thl to an attribute of Th2. Actions of Thl are
mapped to actions of Th2.

The type TIME is always mapped to itself.

We can construct a category of theories with theory morphisms as categorical
arrows as usual. Theory morphisms can be used to decompose the description
of a class or system theory into theories for individual objects, and theories of
the individual classes.

Refinement

The concepts of subtyping and refinement in VDMTT correspond to a particular
form of theory morphism. Class C is a supertype of class D if there is a retrieve
function R : Tp — T between the respective states, and a renaming ¢ of

methods of C to those of D, such that for every ¢ € L¢, I'c F ¢ implies that
I'p F ¢(¢[R(v)/u]) where v is the tuple of attributes of D, u of C.

¢ must map internal methods of C to internal methods of D, and external
methods to external methods. The notation C C 4 g D is used to denote this
relation.

D is a refinement of C if it is a subtype of C and the retrieve function R
satisfies the condition of adequacy:

Vue Te -Inve(u) =
dveTp Invp(v) AR(V)=u

That is, R is onto. In addition, no new external methods can be introduced in
D.

Refinement proofs can be decomposed into modular proofs of stronger but
more local obligations, such as that preconditions can be weakened and post-
conditions strengthened, etc.

This article was processed using the ETEX macro package with LLNCS style

