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Abstract 

A complete description of the calculation of anomalous dimensions (GLAP split- 
ting functions) is given for parton distributions which appear in space-like pro- 
cesses. The calculation is performed in the light-cone gauge. The results are in 
agreement with the previous results of Furmanski and Petronzio. 
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1 ~ Introduction 
The light-cone gauge has always occupied at special role in the description of 
hard processes at high energy. It belongs to  a class of  physical gauges in which 
many of  the precepts of  the QCD parton model are true, because in this gauge 
collinear divergences occur in diagrams corresponding to the parton cascade. We 
thus retain the probabilistic interpretation of  a hard scattering event, which is 
obscured in covariant gauges. In fact, by introducing an additional gauge vector 
we obtain many of  the advantages of an infinite momentum frame formulation 
in a covariant notation. 

However, doubts have been raised about the utility of  light-cone gauge in 
practical calculations[l,2]. One refutation of  these misgivings is provided by the 
classic calculation of  the two loop splitting functions or anomalous dimensions 
as given by Curci, Furmanski and Petronzio[3] for the non-singlet case and the 
calculation of  Furmanski and Petronzio[4] for the singlet case. The calculation of  
ref. [4], however, has never been fully documented. I t  could be be that this lack 
of  complete documentation has acted as a barrier to further developments along 
this line. One example of  a further application of  this method is the calculation 
of  the polarized two loop splitting functions, recently presented in ref. [7]. I t  
therefore seemed a valuable addition to the literature to provide a more complete 
description of  the calculation o f  the singlet evolution probabilities. This is the 
modest aim of  this paper. 

In our calculation n is a light-like vector which serves to  define the longitudi- 
nal direction. The momentum of the incoming parton (taken to be massless) is 
denoted by p .  Thus we have two light-like vectors which are defined such that, 

n2 = p 2  = 0, n . p  E p n  # O ,  n . t  = p . t  = 0 ,  (1) 

where t is any vector in the transverse plane. In addition to specifying the 
longitudinal direction we also use the vector n to fix the light-cone gauge: 

n . A = O .  (2) 

Following reference [3] we use the principal value (PV)  prescription to regulate 
the divergences which occur in the light-cone gauge propagator in loop and 
phase space integrals, i.e. 

This prescription is at variance with the Mandelstam-Leibrandt (ML) treat- 
ment of  the l / ( n . k )  singularities[5,1]. The ML prescription, since it permits the 
Wick rotation in virtual diagrams, leads to power counting rules and a proof of  
renormalizability of  the theory in this gauge. Indeed the one loop non-singlet 
splitting function has been investigated in this gauge[6]. We have chosen not 
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to follow the ML prescription. The technical reason is that it leads to a prolif- 
eration of graphs, because of ghost-like contributions associated with the n . k 
propagator[6]. The physical reason is that we wanted to stay as close as possi- 
ble to old-fashioned perturbation theory in which manifest Lorentz covariance is 
sacrificed in order to have a simple form for unitarity. The advantage of Eq. (3) 
is that the unitarity of the theory is explicit. In this way we hoped to gain a 
greater physical understanding of the two loop anomalous dimensions. It would 
be interesting to repeat the calculation of the two loop anomalous dimensions 
using the ML prescription. 

Of course, the calculation of any gauge invariant quantity such as the two 
loop splitting function is independent of the gauge in which the calculation is 
performed and of the method of calculation. However, the discovery of compli- 
cations in the covariant gauge calculations[8,9] makes the method outlined in 
ref. [lO] and implemented in refs, [3,4] even more attractive. Not. only is. this 
method close to the parton model, but it also leads to compact answers and 
may be the most efficient method from a calculational point of view. It  might 
present a viable method for the analytic calculation of the three loop splitting 
functions2. 

2 Calculation of anomalous dimensions 

2.1 Factorization 
In this section we shall explain the method of factorization of the two-particle 
irreducible (2PI) diagram in the light-cone gauge. It  is not our intention to 
repeat the discussion which is clearly provided in ref. [3]. We only include those 
details which are necessary to present the structure of the calculation or to 
define the notation. Following ref. [lO] we define a generalized ladder expansion 
by introducing the 2PI kernel KO:  

CO 
1 - KO 

M = Co(l+ KO + KO2 + KO3 +. . .) E - . (4) 

Factorization occurs by introducing the projector onto physical states, P, 
1 

1 - (1 - ? ) K O  -?KO 
- -  - 1 
1 - KO 

1 1 

- [ l  - ( l  -PIKO1 [ l  -PK0[1- (1 -?)KO]-'  
- - 

Defining the modified kernel K ,  

KO 
1 -  (1-P)Ko ' K =  

2Results for IOW moments of the three loop splitting functions are given in Ref. [ll] 



we can thus write M as 

1 1 M = CO 
1 - (1 - P)Ko 1 - PK 

c r  (7) 

where 

(8) 
1 c = CO 

1 - (1 -P)Ko ’ 
1 

1 - P K  
r = -. (9) 

At this stage the factorized structure becomes apparent. In the light-cone gauge 
the 2PI kernels KO are finite before the integration over the sides of the ladder 
is performed. Collinear singularities appear only after integrating over the lines 
connecting the rungs of the ladders[lO]. All collinear singularities are contained 
in I’, whereas C is interpreted as the (finite) short distance cross section. Re- 
expanding we find that 

r = 1 + PK + ( PK ) ( PK )  + . . . 
1 +PKo + PKo(1 - P)Ko + (PKo)(PKo) + . . . (11) 

- = 

Restoring the indices and regulating collinear singularities by going to d = 4-26 
dimensions we have that 

1 + PKO + P(K,2) - P ( K ~ P K ~ )  + . . . 1 
1 - PK rij = zj- - 

and explicitly 

where ‘PP’ extracts the pole part of the expression on its right and Zj ( j  = q(g) )  
is the residue of the pole of the full quark (gluon) propagator, contributing to the 
diagonal splitting functions. Furthermore the spin averaged projection operators 
onto physical states are given by, 

1 
U --$, L , = j  ’- 4n.k 

npp” + n”pP 
Pn 

U,= -gP”, L - - - gP“ + 
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2.2 Derivation of GLAP equation 

The property of factorization allows us to separate the low momentum physics 
from the high momentum physics in a multiplicative way. This separation is 
performed at a scale p,  which is completely arbitrary, and no physical prediction 
can depend on it. In this section we investigate the constraints provided by this 
condition. For simplicity, we will consider a non-singlet cross section which can 
only be initiated by a quark. We therefore have the factorized result, 

where we have indicated that Fqq does not depend on o2 (i.e. Q 2 / p 2 ) ,  which is 
a consequence[3] of the finiteness of the kernel KO in the light-cone gauge. The 
symbol 8 indicates a convolution integral over longitudinal momentum fractions 
of the type 

dY dz f ( y ) g ( z )  4 z  - YZ) . (16) 

If we take moments, 

on both sides of Eq. 

n 2  

(15), it reduces to a simple product: 

Cq is the short distance cross section from which all singularities have been 
factorized. rqq contains the mass singularities which manifest themselves as 
poles in 6. The independence of the full cross section of p implies that . . 

and hence that 

The function yqq is known as the anomalous dimension, because it measures the 
deviation of Cq from its naive scaling dimension. It must be finite and can only 
depend on as(p2)  because these are the only variables common to both rqq and 
Cq. The anomalous dimension i s  extracted from Eq. (20) in the following way: 
Because the p dependence of rqq enters only through the running coupling we 
have that, 

(21) 
d 

d a s  
7 q q ( i  ws(p2)) = P ( w ,  4- lnrqq(i 0 S ( P 2 ) ,  4 t 
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where P(Qs, t) is the d-dimensional QCD P function in the MS scheme, 

In the scheme rqq is given by a series of the form 

Comparing the coefficient of the term of order E O  we find that 

Integrating Eqs. (20’21) one obtains 

and 

with the running coupling as(&’). In order to obtain the hadronic cross section, 
u(Q2/p2,  a s ,  E )  has to be convoluted with ‘bare’ (‘unrenormalized’) quark den- 
sities $(as, t) which contain mass singularities that must exactly cancel those 
in rqq. The resulting ‘dressed’ (‘renormalized’) quark distribution function 

is free of mass singularities and satisfies the non-singlet evolution equation 

which, defining 

in c space takes the form of the GLAP equation[l2,13]: 
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Expanding 

one has 

r ,q(z ,aS,c)=6(1-2) - ;  1 Z;;P4,? as ( 0 )  (z)+-(-) 1 as P;;)(z)  +.. . )+ o ( $ )  . ( 2 2n 
(32) 

The generalization to the singlet case is straightforward. 

2.3 Non-singlet and singlet equations 

The separation into singlet and non-singlet parts depends on the properties of  
the kernel. Using S U ( f )  flavour symmetry we may define the following combi- 
nations of  qq and qq matrix elements: 

In addition, because of charge conjugation invariance, we have that 

Pqiqj = Pqiqj 
pqiqj = pqiqj 
Pqig = Pqig 
psqi = Pgqi . (34) 

At two loop order, there is a non-zero contribution from Pi and P&, but 
we have the additional relation 

PS 99 = ps- 99 . (35) 

which simplifies the treatment o f  the non-singlet pieces. 

distributions as 
For each flavour we define the sum and difference of  the quark and anti-quark 

qif = qj f q j  . (36) 
One then finds that the combinations 

and 
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(where i ,  iE = 1 , .  . . , n j ;  1 = k 2  - 1) are non-singlets, i.e., evolve according to 
Eq. (30) with the kernels P- and P+, respectively. 

The singlet Altarelli-Parisi equation is3[12,13] 

where G ( j )  is the moment of  the gluon distribution and C ( j )  is the singlet quark 
combination, 

C ( j ,  Q 2 )  = $ ( j ,  Q 2 )  E [qi(j, Q 2 )  + q i i j ,  Q 2 ) ]  . (40) 
f f 

The elements of  the anomalous dimension matrix are given in terms of  the 
kernels defined in Eqs. (33-35) as, 

Pqq = P+ + nj(PA +P&) 
pq9 = 2nfPqi9 
p,, = PS% ' (41) 

2.4 Renormalization constants 
The notation for the renormalization constants is shown in Fig. 1. We define 
the integral 

which contains the divergences in the P V  regulator 6 (see Eq. ( 3 ) )  arising from 
the light-cone gauge propagator. As already noted in ref. [3],  use of  the PV 
prescription (3)  in the light-cone gauge entails the disagreeable feature that the 
renormalization constants depend on the longitudinal momentum fractions 2. 

3Note that the notation for the off-diagonal terms is different than in ref. [4]. 
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Figure 1: Renormalization constants and the vertices which they renormalize 

(44) 
4 CF = - Nc = 3,  Tj = TRnj = i n ,  . 
3' 

where 

When combined in the appropriate combinations to investigate the renormaliza- 
tion of the charge, the momentum dependent terms and the divergent integrals 
I0 cancel. Thus the relationship between the bare and renormalized couplings 
is 

2.5 Topologies of NLO graphs 

The basic topologies of all 2PI diagrams which occur in two loops are shown 
in Fig. 2. The notation of the topologies (b)-(i) is determined by the labelling 
of the diagrams for the non-singlet calculation given in ref. [3]. We have not 
included diagrams which can be obtained by reflection about the vertical axis 
which occur in cases (c),(d),(e) and (j). Topologies (hi) correspond to the terms 
P(Ki) - P(KoPK0) in Eq. (12), all other topologies belong to PKo. As an 
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example, the diagrams corresponding to Pg are given explicitly in Fig. 3. Fig. 4 
shows the diagrams for P$ (b) and for P$ (h,i). The appendices give the 
necessary ingredients needed for the evaluation of  the real and virtual graphs in 
Fig. 2. 

Figure 2: Basic topologies of the diagrams 

3 Results 
As in Eq. (31) we define the perturbative expansion 

P i j ( Z , c r S )  = ( g ) P p ( z )  + ( E ) z P p ( z )  + . . . (46) 

The full one loop results are included for completeness[l2] 

(47) 

(48) 

(49) 

2 3 
1 - z + -6 (1 -  z)} 

P $ W  = C F { p - q  - 2 

P$(z) = 2T1{z'+ (1 - z)'} 

Pg' ( z )  = c"( 1 + (1  X - X I 2 }  

1 1 PO 
P -  zI+ z 2 

P g ( 2 )  = 2&{- + - - 2 + z ( 1 -  z)} + -6(1- z) . (50) 
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Figure 3: Diagrams for the qq part of the NLO non-singlet splitting functions 

In order to write the full result for the two loop splitting functions P/i) we 
introduce the notation 

(51) P W ( 4  = l-r - 1 - x  

pgg(x) = x 2 +  (1 - x)2 (52) 

2 

1 + (1 - x)2 
X Pse(") = (53) 

(54) 
1 + - - 2 + x(l- x) . 1 

P g g ( 4  = 1-z X 

0-4 
Figure 4: The qq diagrams 
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CFTR 
(hi) 
-1 
-1 

813 
5 
1 

-5619 
6 
-2 

2019 

Table 1: Results for the qq-Singlet diagram 

The graph-by-graph results are given in Tables 1-4, where we only list the 
contributions to the singlet splitting functions since those for the non-singlet 
case have been presented in a similar table in ref. [3]. Our final full results 
for the two loop non-singlet splitting functions read for x # 1 [3]: 

3 
p~(1) = c;{ - [ 2 1 n z l n ( 1 -  x )  + - lnz1pqq(x)  2 

-(- + - x )  l n x  - - (1+  x )  l n 2 x  - 5(1 - z)} 
3 7  1 
2 2  2 

1 11 67 I? 20 
+CFNC{ [s In2 x + -1n 6 x + - 18 - - ] p q q ( x )  6 + (1 + x )  h x  + ~ ( 1  - z)} 

(55) 
2 10 4 

+cFTf { - [ 3 In 2 + - ] pqq  9 (2) - 5 (1 - x ) ) }  

P;‘”=CF(CF- ~ ) { 2 ~ q q ( - ~ ) S ~ ( z ) + 2 ( 1 + z ) l n z + 4 ( 1 - r ) } .  Nc (56) 

Our results for the singlet terms are[4], 

pi$ = p + m  (57) 
20 56 8 

+ 2 c ~ T f { ~  - 2 + 6x - -2’ + (1 + 5x + ?x2) l n z  - (1 + x )  ln2 3: 
X 9 

4 - 9 x - ( 1 - 4 x ) 1 n x - ( 1 - 2 2 ) l n 2 z + 4 1 n ( l  - 3 )  

1 - x  1 - x  . 2  
+[21n2 (-) X - 41n (-) 2 - -r2+ 3 10]pq,(r)} 
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182 14 40 136 38 
3 +NcT’{ 9 + T z  + g + (-2 - -) l n z  - 41n( l -  z) - (2 + 8z)1n2 z 

+[ - ln2z  + - l n z  - 21n2(1 - z) + 411-111 - z) + - - - ] pqg (z )  
n2 218 

3 
44 
3 3 9  

(58) 

20 4 .  Pi:) = CFT’j{ - 16+ 8z + -z2 + - - ( 6 +  1 0 i ) l n z  - 2(1 + z ) l n 2 z }  3 32 
26 1 4  20 

+NcTj { 2 - 22 + s ( z 2  - -1 - - (1 + z) In z - g p g g  (z)} 

+ N $ { T ( l -  z) + T(z2 - -) - (- - -z+ %z2) lnz+4(1  + z ) l n 2 z  

+[- 9 - 4 l n z l n ( l -  z ) + l n 2 z -  - ] pgg (z )  3 +2pgg(-z)S2(z) ) }  (60) 

z 3  
27 67 1 25 1 1  

X 3 3  3 
67 A2 

where the function S2(z) is defined as4 

In the small-z limit S, becomes 

All results in Eqs. (55-60) are in complete agreement with the corresponding 
results in [3,4]. They can be extended to all values of z using a trick to evaluate 
the endpoint contributions in Eqs. (55,SO). The sum rule from the conservation 
of fermion number is 

1 1’ dz (Pqq(z) - Pqq(z)) / dz P-(z) = 0 . (63) 
0 

4Note that the definition of S2 in ref. [4] contains a typographical mistake. 
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The conservation of momentum leads to the following two relations, 

These results for the integrals of the splitting functions are satisfied if one makes 

--+- 
the substitutions 

1 1 
1 - 2  [ l - 2 ] +  

in Eqs. (51,54) and adds in the end-point contributions to Eqs. (55,60) [14], 

where C(3) M 1.202057. The substitution in Eq. (66) is obviously not necessary 
if the factor of 1/(1- 2) has a coefficient which vanishes at 2 = 1 ,  such as ln(z). 
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(4 
2 
2 
4 
8 
-4 
-2 
-8 
6 

-8 
-14 

2 
4 
8 
2 
-8 

- 
- (e) 

-4 
-8 
-8 
8 
6 

-4 

8 
8 
8 

-8 

-8 

6 

- - 

-2 

-4 
-4 
3 

-2 

4 
7 

-4 
-4 
1 
3 

- - 

- 
(hi) 

2 
4 
4 
4 
-3 
-8 
8 
-2 

-8 
-4 
9 
2 
-1 
4 
5 
4 
4 

-12 
3 

- - 

- 
Sum 

2 
2 
-4 

4 
-4 

-2 

10 
2 
-1 
4 
-1 
4 

-9 
4 

- - 

- 
- (b) 

-1 

3 
4 

2 
4 

-13 

20 
1 

-4 
17 

- - 

- 
- (4 

4 
4 

8 
-1 

-4 
-4 
-4 

10 
-4 

4 
4 
2 

- - 

Nc Tj 
(hi) 
-2 

-4 
-4 

3513 

-8 
2 

4 
-6519 

-8 
-2 

4613 
-2913 

. -4 
-4 

1419 

4019 
1119 

Sum 
-2 
-1 

4413 
4 

1 
2 

-21819 
-8 
-2 

13613 
-3813 

-4 

1419 
18219 
4019 

Table 2: Results for the qg diagrams 



- 
- (4 
1 

4 
4 
-3 
1 
4 

4 
-4 
-10 

1 

2 ;  
4 

-4 
1 - - 

- 
(hi) 
-1 

-2 
-2 

312 
-2 
-4 
1 

-2 
2 
5 
112 
-1 

512 
-2 
-2 
-2 

-1 
-4 - - 

- 
Sum 
-1 
- 

-3 

112 
-1 

712 
2 
-2 

-712 
-512 - - 

(b) 

-112 

-312 
2 

1 
2 

-1312 

-112 
-10 

1712 
-2 

- 
(cd) 

1 

2 

-4 
512 

-2 
-2 

4 
-5 

2 

1 
2 - - 

CF N 
(e) 
- 
- 

-2 
-4 
-4 

1113 

-2 

4 
6719 

-4 

-4 

1113 

- - 

(hi) 
1 
2 
2 
2 
312 
-2 
4 
-1 

-2 
-2 
1419 
1 
4 
-813 
-912 
3 
2 
2 

4419 
-8619 
2819 

Sum 
1 
112 
-2 

1113 

-112 
1 

112 
1 
4 

-813 
-5 
-12 
2 

4419 
65/18 
2819 

C F  Tj 

(e) 

-413 

-2019 

-413 

Table 3: Results for the gq diagrams 



X2 

1 
2 

112 

(b) 

813 
8 
8 

-7619 
4 
-4 

7619 

813 

- - 

CF Tf 
(hi) 

-2 
-2 

-813 
-18 
-14 
-813 
13619 

4 
-12 

-6419 - - 

- 
Sum 

-2 
-2 

-10 
-6 

2013 
8 

-16 

4/3 - 

- 
(b) 

-413 
-4 
-4 

-413 
3819 
-2 
2 

-3819 - - 

(fg) 

-413 

-2019 

413 

513 

-513 

-413 - - 

Sum 

-2019 

-413 
-413 

2619 
-2 
2 

-2619 - - 

(b) 

-1 

4 

2 
4 

-1113 
-1712 
-1712 

13619 

10518 

-1113 

-10518 

-13619 

(4 
2 
2 
8 
12 

-1113 

5 

8 
-12 

-17019 

213 

-1113 
-2316 
-2316 
-3113 
2213 

2513 
-2513 

-2213 

( 4  

-4 
-8 
-8 

2213 
-4 

8 
13419 

(fg) 
-2 

-4 
-4 

1113 
-4 
-2 

-4 
4 

10319 

113 
-5112 
5/12 
-113 - - 

(hi) 

4 

-8 

-8 

4 
4 

-2213 
16 
4 

2213 
-4613 
1912 
-1912 
4613 - - 

Sum 

1 
-4 

-1 
2 

6719 
4 
4 

11/3 
-4413 

-2513 

6719 
-27 f 2 
2712 
-6719 - - 

Table 4: Results for the gg diagrams 



4 Summary 
This paper has presented a recalculation of the two loop anomalous dimension 
for space-like processes. The results given in this paper are therefore not new. 
The new features are the presentation of the results in a coherent notation, the 
description of some of the integrals which are required to derive the results and 
a detailed'description of the contributions of the sub-diagrams to the results. 

A Virtual Integrals 

A. l  Two point function 
The evaluation of the virtual integrals involving non-covariant denominators of 
the form l /(n. k )  requires some care. We define 

1+ = n . 1  
1- = p . 1  

ddl = dl+dl-dd-211 . (A.1) 
We shall evaluate the integrals by explicitly performing the integrals over I-, 11 
keeping 1+ fixed. This formulation will be useful when f ( l + )  contains poles in 
1/1+ coming from non-covariant denominators as long as the method used to 
regulate the I+ singularity does not involve I-. The general two-point function 
then reads 

f (1,) 1 & (12 + is)((l  - k)2 + i ~ )  
'r(i+C) - - & (3) 1 dz f ( l + )  z-'(l- z)-' (A.2) 

where f is an arbitrary function, d = 4 - 26 and z = l+/k+ the boost invariant 
rescaled value of 1+. If f ( l + )  = 1 we recover the normal covariant result, 

J a - J ~ ( 1 2 + i & ) ( ( l - k ) 2 + i & )  (3) r(2-26) 6 ' 

' r(i + €)r2(i - 6 )  1 - i - - 1 

(A.3) 
The result for the integral ,with one non-covariant denominator is 

ddl 1 
J21n E / mPV (A) (12 + is)((l - k)2  + is) 
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where x = n . k / p n  and we have indicated that the PV prescription defined by 
Eq. (3) has been used. I0 is defined as in Eq. ( 4 2 ) ;  in the small4 limit it reduces 
to 

U 
10 = 1' du- w -In 161 . 

U2 + 6 2  
Furthermore, 

For the case without an endpoint singularity in the integral over the plus 
component we may take the limit 6 + 0 and hence obtain, 

ddl k+ 1 1 (P + ie)((l - k ) 2  + is) 

r(i + c)r2(i - e)  A2 + 2 Liz(1- x) - - r(i - 2 4  3 

where LiZ(x) is the usual dilogarithm function, 

LiZ(1:) = - dt . 

We note that one also needs the vector two point function with one non-covariant 
denominator, 

ddl I" 
Jz",fl / (2x)dPV (:) (12 + is)((l - k)2 + is) ' (A-9) 

Assuming Lorentz covariance of the momentum integral one finds 

J& = (k" - -np 5 2  + - np -Jz,* + -Jl," ) (A.lO) n . k  " ) 2 n - k  I C 2  ( k2 

where 

(A . l l )  

It turns out that the integral Jl,, always cancels out in the final answer. 
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Figure 5: (a) Vertex correction graph (b) One parton emission (c) Two parton 
emission. 

A.2 Three point function 
We shall only consider the special case which is needed for our purpose. We 
employ the momentum assignments p2 = (p - k)' = 0 and define the boost in- 
variant quantities, x = k+/p+, y = l+/p+, z = y/x = l+/k+. The corresponding 
diagram is shown in Fig. 5a. One finds 

e r ( i  + 6) 
- - 16;:kZ ($) 7 f ('+ 1 J & (12 + ia)((l - k)2 + i&)((l - p)2 + ia) 

1 ( z - 1  
%(l -  x )  [ Jd= dy f ( l + )  z-€(1- %ye 2Fl 1 + 6, 1; 1 - 6; - 

X 1 +P1 - 4  (1 - .).JI dy f ( l + )  (1 - y)-'-2' 
r ( i  - 26) 

(A.12) 

where 2FI is the hypergeometric function. With a little work one can show that 
for the special case f ( l + )  = 1 one recovers the normal covariant result, 

1 
/&(P +ia)((1 - k ) 2 + i a ) ( ( l  - P ) ~ + ~ E )  

(A.13) 

The explicit result for the three point function with one light-cone gauge denom- 
inator using the PV prescription is (we have performed a shift of the integration 
variables relative to Eq. (A.12)): 
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‘ r ( i  + c ) r 2 ( i  - E )  1 I n z  -Io 
16i2kZ (3) r ( i  - 2 4  . {-+ €2 € 

(A.14) 
1 2 7r2 

+ I 1 - l o l n z - 2 L i 2 ( 1 - z ) - - l n  z--++(c) 
2 6 

The other integral which we need can be obtained from Eq. (A.14) by exchange 
of  p and p‘ 

- 1 
( ( I + P ) 2 + i E ) ( 1 2 + i € ) ( ( l + p ’ ) 2 + i € )  - 

‘ r ( 1 + c ) r 2 ( 1 - t )  1 I n z - 2 I n ( l - z ) - 1 0  
{ F +  € 

1 57r2 
2 6 

+I1 - lo In z + 2Li2(1 - z) - - ln2 z + ln2(1 - z) - - + +(e) 

A useful relation in comparing these results with the real diagrams is 

(A.16) 
I? 

6 
r ( i  + t ) r ( i  - €) = 1 + f2- + . 

B Real integrals 

In this appendix we will describe some of the integrals which occur in diagrams 
involving the emission o f  real partons. As illustrated in Figs. 5(b,c), we will 
denote the momenta of  the emitted particles by p3 and p4 and the momentum 
of the ‘observed’ parton line by k. The phase space for one and two parton 
emission, and keeping k2 and n . k fixed, is given by (we set pn 1 in the 
following) 
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Integrating over irrelevant angles in d dimensions we have for the transverse 
phase space, 

If the integrand is independent o f  81 we can integrate further to  obtain 

B.l  
Here we shall describe the integrals needed for the evaluation o f  the crossed 
ladder diagram (topology b) as shown in Fig. 6. We introduce a notation for 
the real parton momenta such that, 

Crossed ladder diagrams: topology b 

with transverse momenta t l ,  t2. I n  terms of  these var.dbles the denominators 
which occur in the diagram in Fig. 6 can be written as 

2 t12 t22 
P I = - - ,  pi=--, k 2 = ( ~ - p B - p q ) 2  = - a l t 1 ~ - a z t ~ ~ - 2 t l . t 2  (B.6) 

21 22 

where 

The general form of  the matrix element which has to be integrated over the 
phase space of  Eq. (B.2) is 

The integrations over t l  and t2 are finite at small transverse momenta, so that 
before the k 2  integration the expression is finite. Introducing the constants 
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Figure 6: An example of the graph of topology (b) 

we have in the frame specified by Eq. (B.5): 

6 lk’1 = alt1’ + aztz’ + 2tl. tz . (B.lO) 

Since the integrals over the transverse momenta are-finite we may take the limit 
d + 4. The values of the integrals for the integrands which occur in Eq. (B.8) 
and the phase space weight given in Eq. (B.lO) are collected in Table B.l .  The 
remaining one dimensional integrals are easily performed. 

( ) 

B.2 Real diagrams: topology cd 

The calculation of the topology (b) graphs was facilitated by the fact that before 
integration over k2 the kernel was finite. The situation is more complicated for 
topology (cd), which has two cuts involving either one or two real partons. The 
cut with two real partons (gluons) is shown in Fig. 7 which also shows the 
definition of the kinematics. 

22 



Integrand 

Table 5: Real integrals for crossed ladders 

Integral in units of F 2 q  J dz~dzz 6(1- z1 - z2 - t)B(z1)B(z2) 

We perform a light-cone decomposition of the light-like momenta p3 and p4: 

(B . l l )  

where zy = 2. It is expedient to perform a change of variables, 

(B.12) 
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Figure 7: An example of the graph of topology (cd) 

(B.16) 
rs + r: - 2 r l .  ra 

Z 
IPZI = (P3 + = 

n . p 3 =  1 -  z ,  n . p 4 = z ( l - y ) .  (B.17) 

Hence we have that in this frame, 

(B.18) 

If we are integrating over quantities which do not depend on angles we may 
write Eq. (B.18) in the form 

where the rescaled transverse momentum w is defined as 

(B.20) 

The results for the integrals are given in Table 6. 
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Integrand Value of integral in units of F21kal-2'w{ I I 

We note at this point that Eq. (B.19) is also suitable for dealing with a 
light-cone gauge denominator term like l / ( n  . p3) in the matrix element. For 
instance, we obtain 

(B.21) 
where I0 is as defined in Eq. (42). 

If we have a denominator which depends on the angle between rl and r2, 
the integral is more complicated. For example when we have the denominator 
as given by Eq. (B.16) the angular integration splits into two regions, r: > ri 
and ri > r:: 

where 

< 2 1 >= F2 1k21-2c (1- dz  ( 2 )'I(a) 
(B.22) 

z )  2 ( l - z ) ( z - z )  lP2 I 

CYW 
dw ~ - ' ( l -  ~ ) - ~ - ' 2 F 1 ( 1 , 1  + e ;  1 - e ;  -) 

I (a )  = . {I" 1 - w  

+; /& dw w-'-'(l- w)-'2aF1(lI 1 + 6 ;  1 - 6 ;  
QW 

1 '  

(B.24) 
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Now by redefinition of  variables the two integrals give 

(B.25) 
1 1  

I(a) = J(a) + -J(-) 
a a  

where 
1 

J(a) = 0 - 6 1  dvv-'(l+ av)-'+2'2F1(l1 1 + €; 1 - E ;  v )  

) . (B.26) 
a - - - -- a-'(1+ a)-1+2'2F1(lr -2€; 1 - €; - 

2€ l + a  
Hence combining using the identity, 

r2(1--C)t'(l - t)' (B.27) .r(i - 2 4  
2F1(1, -2€; 1 - €; 2) + 2F1(1, -2€; 1 - €; 1 - 2) = 2 

one obtains 
1 r2(i - €) . 1 
e r(i - 2 4  1 + a . I (a)  = -- (B.28) 

Thus the final result is as given in Table 6. This result can be obtained much 
more easily by performing a shift of the transverse momenta so that lp:l only 
depends on a single transverse momentum. 

If we now add a second denominator such a shift is no longer useful. The 
scalar integral with two denominators is given by a simple modification of 
Eq. (B.22), 

1 
<- > = F2 lk21-1-2c JI' (1 -;1+2, 

IP: I IP3 

(B.29) 

where a is as given in Eq. (B.24). By change of variables this integral may be 
further written as 

(B.30) 
1 dz <- 

IP: I lP: I 
where 

K(a)  = { 1 'dv  v-(l+') (i + 1)2' 2F1(1, 1 + 6 ;  1 - E ; V )  

+ 1' dv v-' (: + V )  2' 2F1 (1 , 1 + C;  1 - C ;  v )  
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T h e  partial result for K(a )  which is sufficient for our purposes is 

2 r2(i - e) ( l + e l n ( A )  z ( 1 -  + e 2 , + 0 ( c 2 ( 1 - z ) ) )  A2 . (B.32) 
- K(a )  = -- 

e r(i - 2 4  

So the final result for the integral is as given in Table 6. 
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