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RAL Summer School for Young Experimental High Energy Physicists 

Cosener's House, 10 - 22 September 1995 

Preface 

Fifty-two young experimental particle physicists students attended the 1995 Summer school, 
held as usual in Cosener's House in Abingdon in mid September. This year, the weather was 
mild and sunny, and a number of tutorials and impromptu seminars were held on the spacious 
lawns leading down to the Thames, adding to and enhancing the relaxed atmosphere which 
disguises the very real intellectual challenge of the material. 

The lectures reproduced here were given by Dave Dunbar (Relativistic Quantum Field Theory), 
Jonathan Flynn (Relativistic Quantum Mechanics), Graham Shore (The Standard Model and 
Beyond) and Nigel Glover (Phenomenology). They were delivered and received 
enthusiastically, providing material for lively discussions in tutorials and elsewhere. 

Michael Berry (Bristol) gave an interesting seminar on the physics of the Levitron, solving on the 
way some Christmas present problems. Mike Whalley introduced the Durham HEP database 
with its impressive facilities now available through the World Wide Web. George Kalmus gave 
an informed and entertaining after dinner speech, finishing (as all such speeches should) with a 
challenging, relevant and politically correct joke. 

Each student gave a ten minute seminar in one of the evening sessions; I am consistently amazed 
by the quality of these talks. In many ways, the shorter the talk the more difficult the task of 
communicating a coherent message. It is a real achievement that so many did so with style and 
evident good humour. 

The work of the school was helped enormously by the hard work of the tutors - 
Susan Cartwright (Sheffield), Paul Dauncey (RAL), Jeff Forshaw (RAL), Paul Harrison (QMWC) 
and Bill Scott (RAL). Cosener's House provided its customary welcome; the calmness of the 
house and grounds - largely undisturbed by the bustle of Abingdon - and the excellent food are 
important factors contributing to the success of the school. The hard work and good humour of 
all of the Cosener's staff are much appreciated. The School also owes a debt of gratitude to 
Ann Roberts, who once again organised the director efficiently, and whose quick thinking and 
lively anticipation ensured that potential disasters were avoided. 

The ingredients for a successful summer school are few - an interesting topic, excellent lecturers 
and tutors, pleasant surroundings and above all committed and enthusiastic participants. This 
year, all came together to create a superb atmosphere. The school is intellectually and physically 
demanding, but also rewarding. I have enjoyed my three years as director, none more than this 
year's school. To all who helped make it so enjoyable - lecturers, tutors, staff at both Cosener's 
and RAL and above all the students - I extend my thanks and my good wishes. In particular, I 
wish to acknowledge the efforts and support of Susan Cartwright, Ann Roberts, Jonathan Flynn 
and Bill Scott who have been with me throughout these three years, and to wish Graham Shore 
(who is also leaving after only two years) the best of luck with BUSSTEPP next year. 

Finally, I hope that Steve Lloyd, my successor as Director of the School, has as much fun as I 
have had. To all who made it fun, many thanks and best wishes. 

Ken Peach (Director) 
Department of Physics & Astronomy, 
University of Edinburgh 
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Introduction to Quantum Field Theory and Gauge Theories 

David C. Dunbar 

University of Wales, Swansea 

Contents 

0)  Introduction 
1)  Classical Formulations of Dynamics 
2) Quantum Formulations: Pictures 
3 )  Free Boson Field Theory 
4) Interacting Boson: Canonical Quantisation and Feynman Diagrams 
5) Path Integral Methods 
6) Gauge Theories 1: Electromagnetism 
7 )  Gauge Theories 2: Non- Abelian Gauge Theories 
8) Critique of Perturbation Theory 

Acknowledgments: 
In preparing these lectures I have extensively “borrowed” ideas from the equivalent 

courses given by previous spea.kers especially those of Ian Halliday. In places, this “bor- 
rowing” is close to complete. These notes are more extensive in places than what was 
actually discussed during the lecture course. In particular the issue of Gauge fixing was 
not mentioned during the lectures although I include it here. (I had intended to  discuss 
it!) Jonathon Flynn covered gauge fixing during his course in a slightly different manner 
from these notes. Hopefully we will complement each other rather than interfere. 

Finally, I would like to thank Ken Peach for his relentless enthusiasm throughout the 
school, Ann Roberts for organising things impecably and the students for “hanging in” 
through the rather fast schedule. 

Jail 5th 1996 
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I iit r o d uc t io 11 
The purpose of this course is twofold. 
Firstly, it is provide a simple introduction to quantum field theory starting from, 

roughly, your undergraduate quantum mechanics course. Since you undoubt ably come 
from a very varied background this is not particularly easy and I guess the beginning 
material will be fairly familiar to many of you. To ensure a level “playing field” I will 
assume only that you are all familiar with the distributed prerequisites. I hope you are! 

. The intended endpoint will be to enable you to take a general field theory and write 
down the appropriate Feynman rules which are used to evaluate scattering amplitudes. 
There are two formalisms commonly used for this. The simplest f o r  a simple theory is the 
“Canonical quantisation” wheras the more modern approach is to use the “Path Integral 
Formulation”. I will cover both during the course although the Path Integral Formulation 
will be done rather hueristically. 

The second theme will be to consider the quantisation of gauge theories. For various 
reasons this is not completely a trivial application of general quantum field theory methods. 
Hopefully this will connect up to the other courses at this school. 
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1. Classical Foriiiulatioiis of Dynamics 

will consider here, 
There are three “equivalent” but different formulations of classical mechanics which I 

0 Newtonian 
0 Lagrangian 
0 Hamiltonian 

I will illustrate these formulations with a specific example - the simple pendulum, which 
approximates to a harmonic oscillator when the perturbations are small. The ideal pen- 
dulum which we consider here is an object of mass m described by its positions z and y 
connected to the point (0’0) by a rigid string. This is an example of a constrained system 
because x and y are forced to satisfy the constraint z2 + y2 = L2 where L is the length of 
the string. The object could equivalently be described by the angle 8 which is a function 
of z,y given by tan0 = -x/y. 

0 Firstly consider Newtonian Mechanics. Newtonian mechanics are only valid if we 
consider inertial coordinates. In this case good coordinates are 2 = (z, y)  and not 6 whence 
we have Newtons equations 

8 2  m- = F dt2 - 

Newton’s equation’s reduce to a pair of second order coordinates. To these equations we 
have to explicitly insert the forces applied by the string. 

0 Next we consider the Lagrangian method. For Lagrange an important difference is 
that a.ny coordinates will do not merely inertial ones. Thus we are free to describe the 
pendulum using 8. In general a system will be described by coordinates 41.. We construct 
the Lagrangian from the kinetic (2’)  and potential ( V )  energy terms L = T- V .  Lagrange’s 
equations in terms of L are 

- -  --L=O 
it [iq:] l r  

For the simple pendulum, if we use 8 as a coordinate Lagranges equation produces a single 
second order equation. The advantage over Newton’s method lies in the simplicity in the 
way which constraints may be applied. 

0 We now turn to the Hamiltonian method. The idea is to work with first order 
differential equations rather than second order equations. Suppose we define 

then we can write Lagrange’s equations as 

For a system with Kinetic term 
1 T = smri: 

r 
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then pr is just the normal momentum. The Lagrangian is a function of qr and &. We 
wish to change variables from q ,  Q to q ,  p. (This is a very close analogy to what happens 
in a thermodynamic system when changing variables from V, S to V, T .  ) Examine the 
response of L to a small change in qr and i r ,  

by eqs.(l.3)and (1.4). We can, by adding and subtracting E, QrSpr, rewrite this as 

So that by shuffling terms we obtain 

\ r / r r 

So we have obtained a quantity whose responses are in terms of 6pr and bqr. This is the 
Hamiltonian. It is given, in general, in terms of the Lagrangian by 

The Hamiltonian is to be thought of as a function of qr and pr only. If T - cj2 and 
V = V(q), as is the case in many situations, then H = T + V .  However the above 
expresion is the more general. The Hamiltonian equations are then, from (1.8) 

(1.10) 

This is a very similar to the situation in thermodynamics if we change from the energy, 
E, satisfying d E  = TdS - PclV where E is thought of as a function of S, V to the Free 
energy F which is thought of as a function of T, V and d F  = -SdT - PdV. Recall that 
the relationship betwen E and F is F = E - ST. In fact, the correct way of thinking about 
this is to regard thermodynamics as a dynamical system whence the change from E to F 
is precisely a change such as from L to H .  The Hamiltonian system is particularly useful 
when we consider quantum mechanics because q and p become non-commuting operators 
- something which makes sense if we use H(p,q)  but which requires more thought if we 
use L ( q , i ) .  For our simple pendulum, Hamiltonian dynamics will produce a pair of first 
order equations. 
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Before leaving Hamiltonian mechanics, let is define the Poisson Bracket of any two 
functions of p and q .  Let f and g be any functions of p ,  q then 

The Poisson bracket of the variables qi and p j  are then 

(1.11) 

(1.12) 

A Canonical change of coordinates is a change from p ,  q to coordinates Q ( p ,  q )  and P ( p ,  q )  
which maintain the above Poisson brackets. Hamiltonian dynamics is invariant under such 
canonical transformations. ( As an extremely nasty technical point, Quantum mechanics 
is not. Thus there are many quantisations of the same classical system , in principle.) 

The best known way of quantising a classical system uses the Hamiltonian formalisms, 
replaces qr and pr  by operators and replacing the Poisson brackets by commutators 

(1.13) 
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2. Quantum Pictures 
2.1 T h e  Dirac or Interaction Picture 

In the prerequisites, the are two equivalent pictures of Quantum mechanics: 1) the 
Schrodinger picture where the wavefunction is time dependant and the operators not 
and 2) the Heisenberg picture where the wavefunction is time-independant and the time- 
dependance is carried by the operators. I will introduce a third picture which is called the 
Dirac picture or, frequently, the interaction picture. First we set the scene. Take a typical 
situation where the Hamiltonian of a system is described as a “solvable piece” Ho and a 
“small perturbation piece” HI. 

H = H o  + H I  (2.1) 

Actually the interaction picture doesn’t care whether HI is small or not but is really only 
usefull when it is. One of the depressing/hopeful features of physics is how few problems 
have been solved exactly in quantum mechanics. There are actually only two. The first is 
the simple harmonic oscillator, the second is the hydrogen atom. (a third should or should 
not be added to this according to taste - it is the two dimensional Ising model.) All other 
cases which have been solved esactly are equivalent to these two cases. Free Field theory 
(non-interacting particles) is, as we will see, solvable because it can be related to a sum of 
independant harmonic oscilators. It is also amazing how far we have taken physics with 
just these few esaniples! Perhaps someday someone will solve a further model and physics 
will advance enormously. 

Since there is so little we can solve exactly a great deal of effort has gone into developing 
approximate methods to calculate. The methods I will develop here are for calculating 
matrix elements and will be perturbative in the (assumed) small perturbation HI. These 
have proved enormously sucessful (but don’t answer all questions..) For a given operator 
0, we can define the interaction picture operator 0 1  in terms of the Schrodinger operator 

L i A0 t dse- iA0 t 

=O(t)O&-l ( t )  

01 =e 

=e  (2.2) i A0 t e - i At 6 eikt e - i A0 t 

set tt = 1 unless explicitly stated otherwise - it is always a useful exercise to reinsert 
equations.) The operator 

(2-3) 
iAot - i H t  U(t) e e 

will be critical in what follows. In the case where HI = 0 the interaction picture reduces 
to the Heisenberg picture and U ( t )  = 1. We must make a similar definition for the states 
in the Dirac picture 

(2.4) 
ikot  

Ia,t)I = e la,t)S = O(t)la)H 

Note that the Dirac picture states contain a time dependance. Since the operators are 
transformed as if in the Heisenberg picture for HO we have 

a 
+ 6 I ( t )  at = [&(t), go] 
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To calculate in the interaction picture we need to evaluate o ( t ) .  I t  is this object which will 
be the focus of perturbation theory. We have 

a -  A ikote- iEi t  i k o t  - i E i t f i  i -U( t )  = - Hoe + e  e 

(2.6) 
at 

, e i H Q t f i I e - i H t  

= ( H I  )I o(t ) 

where the confusing notation ( f i ~ ) ~  denotes that the operator HI has been transformed 
into the interaction picture. Clearly if HI is a function of operators, H l ( O J ) ,  then ( f i ~ ) ~  = 

We are now in a position to solve this equation perturbatively, always assuming that 
H I ( O ~ ) .  

HI forms a small perturbation. Expanding U ( t )  as a series, 

We ca.n then substitute this into the equation for U ( t )  and solve order by order. We find 
for U1, 

(2.8) 
a 

i-u1 = B&) 
at 

which can be solved to give 
t 

U1 = -il fiI(t1)dtI 

and for U 2  a 
i-U2 = f i I (t )Ul(t )  
at 

giving 

(2.9) 

(2.10) 

(2.11) 

From this we can guess the rest (or prove recursivly) 

Notice that in the above t n  > tn-1 > . . . t 2  > t l .  This can all be massaged into a more 
standard form. We define the time ordered product of any two operators by 

(2.13) 

Note that within a time ordered product we can commute two operators as we like. Now 
the expresion for U2 may be written 

t 

(-i)2 dt2 lt2 dtlf iI (t2) f iI (t l )  = 7 (-‘I2 lt dt2 1 d t l T ( f i ~ ( t z ) ,  f i ~ ( t l ) )  (2.14) 
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where the integrations now both run from 0 to t .  The times ordered product ensures that 
the ordering of operators is as before and the factor of 1/2 comes because the integral now 
“overcounts”. Similarly we obtain, 

We are now in a position to formally sum the contributions into an exponential, 

t 

U(t) = T(ezp(-i f i r ( t )dt ) )  

(2.15) 

(2.16) 

This is in many senses a formal solution. As we will see later the perturbative evalua- 
tion typically involves finding U1, U2 themselves. We will spend a considerable effort in 
evaluating the Ui operators later. 

2.2 Lagrangian Quantum Mechanics and the Path Integral 
We now turn to the second distinct part of this section on Quantum mechanics. This 

will involve a formulation of quantum mechanics which involves the Lagrangian rather 
than the Hamiltonian. We will present this for a single coordinate q and momentum p. 
We will take two steps later: firstly to consider q as a vector of coordinates and secondly 
to take it as a field. We will initially work with a simplified Hamiltonian, 

(2.17) 

Recall that we can consider eigenstates or either position IQ) satisfying ilq) = qlq) or 
momentum Ip) satisfying F(p) = plp) but we cannot have simultaneous eigenstates. In fact 
the 

We 

momentum and position eigenstates can be expressed in terms of each other via 

(2.18) 

consider the amplitude for a particle to start at initial point qi at time t = t i  and end 
up at point qf at t = t f .  In the Schrodinger picture this is 

where lq) are the time independant eigenstates of 4 and we take t i  = 0 , t f  = t .  The 
following manipulation of this amplitude is due to Feynman originaly. We split up the 
time interval t into a large number, n, of small steps of length A = ( t f  - t i ) / n .  Then, 
trivially, 

(2.20) e -iHt = e-iHA . ,-iHA . e-iHA . . . e -iHA 

and 
1 % )  (2.21) -iHA ,-;HA . e-iHA..  . e -iHA A = klf le 
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In between the terms we now insert representations of one (quantum mechanically) 

to obtain the following expression for A,  

(2.22) 

(2.23) 

In the above we may make the replacement 

( q . I  1 P1 .) = e*QiPi  (2.24) 

We may also evaluate approximately 

where we are using the fact that A is small and the form of H. Note that we have turned 
operators into numbers in the above. We can now rewrite the amplitude and take the limit 
n --f 00, 

n-1 , 

The last line is the Path Integral formulation. It is an interesting question what the symbols 
mean in this equation!. In the integrations all intermediate values of p,q contribute. We 
can interpret this as an integral over all possible paths a particle may take between qi 
and q f .  This expresion is commonly used but is not quite the Lagrangian formalism. To 
obtain this we must evaluate the dpj integrals at the penultimet step (before n + 00). 

The integral is assuming the simplified form for H = p2/2m + V(q) ,  

dpie-lImAeiPi(qi-qi-l) . P? = ( 9 i  -9i-1)'" 

(2.27) 
iA $ 

- e  

/ 
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where we approximate (qi - q i - 1 )  by qiA. Using this we can again take n + 00 to obtain 
the expresion 

(2.28) 

This Formulation of Quantum mechanics is one we will use extensively. A useful object is 
the Action, S, defined as 

S =  dtL (2.29) / 
whence the path integral is /. [ dq] e ' '1 (2.30) 

(just for fun I reinserted h in this equation.) The classical significance of S is that it may 
be used to obtain the equations of motion. Lagranges equations arise by demanding the 
Action is at an extremal value. A common way to express the path integral, is to say that 
all paths are summed over, weighted by eixaction . This has a certain appeal. Think about 
what happens as tz. + 0. This formulation has strong anologies with statistical mechanics 
where the partition function is the sum over all configurations weighted by the energy 

/J 
i 

(2.31) 

however the factor of i should never be forgotten! 
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3. Field Theory: A F’ree Boson 

3.1 The classical treatiiieiit 
In this section we will esamine our first Field Theory, look at it initially and then 

quantise and solve. This will only be possible because it is a non-interacting field theory. 
We will consider a field, $(x) .  That is an object which has a value at every point in space. 
This is unlike the harmonic oscilator where, although wavefunctions depend on space these 
are merely the probability of observing a particle at that point. A field configuration is 
then described by a (continuous) infinity of real numbers as oppossed to the single number 
describing a harmonic oscillator. This infinity will, of course, complicate the mathematics. 
We can easily postulate the Kinetic energy of such a term to be 

This gives the field a Kinetic energy at each point. The potential term we take as 

W z  t )  2 is The “mass term” @ ( x , t )  is easy to understand. The remaining kinetic term (e) 
necessa.ry by Lorentz invariance. (Or one niay consider the model of an electic sheet with 
potential energy, consider sma.11 perturbations and then evaluate the potential energy: a 
term such as this then appexs.) The c should be the speed of light for Lorentz invariance. 

From this we may construct the Lagrangian, 

which we may apply Lagranges method to. For field’s we often speak of the Lagrangian 
density L where L = J d3xL. Before doing so we will rewrite this form in a more Lorentz 
cova.riant manner. Define a four-vector XI’ where p = 0 .  - 3 and zo = t .  We henceforth 
set c = 1 (otherwise fi would be jealous). Then 

It is a fundamental fact of relativity that xp and P q 5  are 4-vectors. I.e. they transform in 
a well behaved fashion under Lorentz transformations. Four vectors are similar to normal 
vectors if one remembers the important minus signs. From the vector zp one c m  define a 
“co-vector” x p  by xo = x o ,  , x i  = -zi,z = 1,2,3. In more fancy language zp  = E, gcyxv 
where gIIV are the elements of a 4 x 4 matrix g. In this case g = diag(f1, -1, -1, -1). I 
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mention this to introduce the Einstein summation convention where we write x,, = gpUxu 
and the summation is understood. With this convention, xpx,, = t 2  - x2 - y2 - z2.  

The dot product of two four vectors, 

3 

i= 1 

is invariant under Lorentz transformations. The action S is 

which since the measure d4a: f dtd3x is invariant under Lorentz transformation. I am 
actually sliping in a very very important concept here. Namely that symmetries of the 
theory are Manifest in the action or Lagrangian. (By contrast the Hamiltonian formulation 
also gives Lorentz invariant behaviour but it is not manifestly Lorentz invariant.) Since 
symmetries are very important, the Lagrangian formalism is a good place to study them. 
We can define the momenta conjugate to the field 4 

whence the Hamiltonian becomes 

Notice that this is not inva.riant under Lorentz transformations. let us now solve this 
system classically now. First we must present Lagranges equations for a field. Because of 
the space derivates the equations become modified. (We could see this by returning 
to S and examining the conditions that S is extremeised.) 

(where the sum over i is implied). For our Lagrangian this yields 

(3.10) 

(3.11) 

We now find the general solution to this equation. Since the system is linear in q5 the sum 
of any two solutions is also a solution.. Try a plane wave solution, 
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then substituting this into eq.(3.10) gives 

so that the trial form will be a solution provided 

w(k)  = * JG (3.14) 

Notice that there are two solutions. From now on take w(k) to denote the positive one. 
The general solution will be 

(3.15) 

The u ( k )  and .*(I;) are constants. We have also imposed the condition 4* = q5 which 
is necessary for a real field. For purely conventional reasons we have chosen the normal- 
isations given. A classical problem would now just degenerate to finding the a(k) and 
u*(k )  by e.g., examining the boundary conditions. To finish this section on the classical 
properties note that 

(3.16) 

3.2 The Quantum theory 
We will now quantise the theory. The field variables are q5(g,t) and n(g,t). we must 

decide upon the commutation relations for these objects. That is, we want the appropriate 
generalisations of (1.12) for the case where the q and p now are a continuous infinite set. 
These are 

(3.17) 

This looks reasonable except that the 6,j present for a discrete number of coordinate is 
replaced by the Dirac-S function. I'll try to elucidate this in an exercise. 

Let us now, in the Heisenberg picture examine the equations of motion for 4 and l?, 

(3.18) 
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and for fI, 

i l i (g,  t )  = [h(s t ) ,  if] 

We can combine and rewrite these two equations as 

(3.20) 

which is just as before. However, now these are operator equations with the solution 

(3.21) 

Now the ;I and ,?it are operators. This can be rewritten using four vectors in the form 

(3.22) 

Where the four vector Ef' is formed from w and &. (It requires a little care and relabelling 
under the integral sign to show this.) We can deduce the commutation relationships for 
them from those for and 0, 

(3.23) 

Thus as promised we find an infinite set of harmonic oscillators labeled by the momenta 
- k .  If we substitute the forms for 6 into the Hamiltonian we find (tediously) 

(3.24) 

So that the Hamiltonian is a sum of independant harmonic oscillators. We can thus apply 
our knowledge of such objects to this case. If we denote the ground state by 10) then we 
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will form states by applying raising operators to the vacuum. ;It&) will create a particle 
of momentum k and energy hw(k) .  (try reinserting the f i s ! )  We can easily check 

&it(k)lO) = Ld(k)U+(k)lO) (3.25) 

Similarly we may create the two particle states 

etc, etc. Notice that because of the commutation relationships that the 2-particles states 
are even under exchange. That means our system is a system of non-interacting bosons. 

We have taken 4 to be a real field. In practise we wish to consider complex fields. 
Suppose we have two real fields of the same mass, 

then we may define the complex field 

1 x =-(41 + $2) Jz 

Then we may easily check 

Solving Heisenberg's equations as before we find 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

where & a.nd d are now independant because s is a complex field. these must have com- 
mutation relationships 

all others being zero, with the Hamiltonian 

(3.31) 

(3.32) 

This is fairly important. So far no fundamental scalars have not been observed ex- 
perimentally although the standard models as we know it contains a fundamental scalar - 
the Higgs boson. The Higgs boson is complex rather than real. (if it exists!). 
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4. An interacting Bosoii Theory: Canonical Quantisation and Feynman Dia- 
grams 

We are now in a position to consider an interacting theory. As an example consider a 
theory which contains a real scalar 4 and a complex scalar x. The lagrangian density we 
take to be 

Lcj + Lx + Lint  (4.1) 
where L4 and Lx are the lagrangian densities for a free real and complex scalar (see (3.6) 
and (3.29) ). The interaction term we take 

We now work with this system. 
non-interacting case) are 

(4.2) L. - -g$kJ rnt - 

The Heisenberg equations (which we could solve in the 

where d2 = a P P .  t These non-linear operator equations have no known solution. We 
must attack them approximately. As we can see our system provided g is small is suited for 
analysis in the interaction picture. We can split the Hamiltonian into the non-interacting 
piece Ho plus the small additional HI = y i t g i .  This will allow us to evaluate transitions 
and scattering perturbatively. 

Recall that in the interaction picture, the crucial object 
order this is 

i s  the operator U ( t ) .  In lowest 

(4.4) 

We shall use this to examine the transition probability from an initial state containing a 
single 4 boson and a final state consisting of a xxt pair. We will take the initial time ti 
to be -00 and the final times t f  = 00, we have then, 

The initial 4 boson has four momenta k and the final pair of x - xt particles have momenta 
p and q. Recall that in the interaction picture the states evolve with time via the U ( t )  
operator, la,t)l  = f i ( t ) l a ) ~ .  Thus the initial state i i t ( & ) l O )  at t = -00 will evolve into 

t I have slipped over the issue of how to deal with complex fields. The correct proceedure turns out to 
be to treat x and xt as independant fields. This can be justified be rewritting x in terms of it’s real 
components. 
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(Note that if HI = 0 then the state remains fixed.) The probability that this state at 
t = 00 is a x ~ t  pair is the overlap of this with it(p)d"t(q)lO). This is the m ~ t r s ' ~  element - - 

This probability we now evduate. Using the expansions for 4 and x this is 

where d3p = d3p/2(27r)3~. We will evaluate this by commuting the annihilation operators 
to the right where they vanish when acting on the vacuum and the creation operators to 
the left where they vanish whwn multiplied by (01. Since, for example 6 commutes with iit 
we can throw away the $(PI) - terms. Similarly the iit(,-') term dissappears. (and also the 
c@) with a little more thought) leaving 

We can continue commuting each annihilation operator to the right, obtaining a variety 
of &functions on route. The filial result is 

The &function imposes coiiservation of four-momentum. This is in fact a real perturbative 
calculation. Notice that it doesn't make a lot of sense unless g is small. 

In general, to evaluate to a given order, we need to calculate objects of the form 

(4.11) 

In principle we can carry out the same proceedure as before. This is sandwiching between 
states and commuting annihilation operators to the right until we obtain some kind of 
result. There is a very well specified proceedure for doing so in a systematic manner 
which is known as Wick's theorem. The diagramatic representation of this is more or less 
the Feynman diagram approach. We will now think a little more generally in terms of 
operators. Since we wish to have operators with anihilation operators acting on the right 
we define the normal ordered operator to be precisely this. For example consider the 
composite operator T( i( z ) i (  y ) )  then 
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is the same operator but with the anihilation operators pushed to the right. T(4(z)d(y)) 
and : +(x)+(y) : differ by a term which we call the contraction 

(4.13) 

since + is linear in operators a.nd hence T(+(z)4(y)) quadratic the contraction term will 
be a pure number (that is no operator). We may evaluate this by sandwiching the above 
equation between (01 and 10) so that 

(4.14) 

We now present Wick’s theorem which tell’s us how to evaluate large collection of oper- 
ators into the normal ordered pieces and the contraction terms. Consider a large class of 
operators A ,  B, C . X, Y, Z which are linear in annihilation/creation operators. Then the 
time ordered product may be expanded, 

T ( A B C * - * X 1 7 Z )  = : ABC...X’YZ : 
+ A-B : CD...XYZ : +AC : BD.-.XYZ : +perms. 

+ A B  CD : E . . . X Y Z :  +perms. 
+.. .  
+ AB CD - - Y Z  + perms. 

- 
(4.15) 

- d  

L-1 1 . 1  -1 

(This needs a little modification for fermions.) Now we apply this to the case we are 
interested in. Namely the decay of a + particle into a ~ x t  pair. We need to sandwich the 
time-ordered products of Haniiltonians 

(4.16) 

between the initial and final sta,tes to evaluate the matrix element. We have done this for 
12 = 1. Let us examine the systematics of n > 1. First we define ‘initial’ and final state 
operators (also 1inea.r in creation operators), 

I 

(The operator for creating a +-state is in many ways a “sub-operator” of the 4 operator.) 
The first correction we can take as 

We can evaluate this using Wicks theorem and throwing away all the normal ordered terms 
since they vanish we sandwiched between (01 and 10). Fortunately a large number of the 
possible contractions are zero. For example the contraction between a 4 and a x field is 
zero since the operators in + commute with those in x. Thus we have 

(4.19) 
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and the only non-zero contractions will be between pairs of 4 operators and pairs of x and 
xt operators. It is a very useful exercise to repeat the previous calculation using Wick's 
theorem. Note that the contraction between a d(z) operator and an initial state operator 
is rather simple $(x)Oi - eik". If we consider the next case the correction is 

1 4 -  

Since we have an odd number of $ terms the contractions must leave a single 6 operator 
which will vanish when sandwiched. Thus the second correction will be identically zero. 
The third is 

This will be non-zero and hy Wick's theorem will produce a whole splurge of terms. Let 
us try to organise them. A term will be, 

o[it (51 ) Of+ i(21) 6(51)6(52 ) i(22)it (23)  f ( 2 2  ) i ( 2 3 )  6 ( 2 3  10; (4.22) 

If we draw a diagram with three points 21, 22 and 2 3  then we can "join the dots" using 
the contraction terms as labelled lines and obtain a diagram 

L - - - - L  c- - . U lLJ 

Figure 2. A Feynn1a.n Diagram. *x 
Similarly for the other terms we can also draw diagrams. The real trick is, of course, 

not to do it this way but in reverse. It is much easier to draw diagrams to keep track 
of contributions than to look after terms. We draw diagrams with the "Feynman rules" 
which are rules for sewing together vertices with propagators. These may be written down 
directly from 'the lagrangian. In our case we have Hamiltonian dxxt and the rule for 
vertices is that we have a three point vertex with one g5 line, one x line and one xt line. 
The general case is easy to see (and to understand in terms of what has gone before). For 
example if we had 

HI = 4'' (4.23) 

then we would have a n-point vertex. The vertices are joined together with lines to form 
all possibilities. We can then associate with each diagram the approprate contribution. 
The contributions are given in terms of the contractions of pairs of fields. This contraction 

I 
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is known as the Feynman propa.gator. Let us now evaluate the Feynman propagator for 
the 4 field 

(we have dropped the terms giving zero trivially) The two operator terms can be commuted 
past each other to yield 

(4.25) i(  k.z-q.y) - i (t1w( k ) - t z w ( q ) )  iaF(x,Y) = dk dq(2T)32U63(,--  - q)e -- -- s -  s 
The &function can now be evaluated. In the above we assumed t l  > t 2  when evaluating. 
The result in general is 

where O ( t )  = l , t  > 0 and O(t) = 0 , t  < 0. There is a more Lorentz invariant looking 
expression for the above which is 

(4.27) 

where we have slipped into relativistic four vector notation. The proof of the equivalence 
of these two forms relies upon Cauchy's theorem. For the more mathematically inclined we 
can prove this by esamining the integration in i k o  and continuing to a complex integration. 
The poles in the integral occur when 

( k 0 l 2  - k2 - ?n 2 + ic = o (4.28) 

which happends when ko = f w ( k )  
along the real axis with poles lying at (-U( k), +k) and (U( k), 4). 

ie The integral in the complex iko plane now lies 

Figure 3. The contour integrations for the Feynman propagator. 
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We can close the contour with a semi-circle at infinity to obtain a curve which we then 
apply Cauchy's theorem to. Whether we use the upper or lower hemisphere depends upon 
whether tl > t 2  or not. If tl < t 2  then we close in the upper plane and have to evaluate 
the residue at ( - w ( k ) ,  +k The general case can be combined 

which is as before. We now have a form of the propagator which integrates over d4 k rather 
than d3k. We are thus integrating over particles which need not be on mass-shell. 
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5.  Fuiictioiial Methods 
I will now rework some of the results of the previous section but using the path integral 

approach instead. This is in many ways much slicker. First for a set of discrete coordinates 
qi define 

(5.1) 

The Ji are dummy variables which will allow us to calculate expectations of qi etc by 
derivatives of W [ J ] .  For example 

We with to extend this concept to a field theory. This means extending qi + $(x) .  This 
gives 

W[J(x)] = / [ d + ]  exp(i / d4xL + J d 4 x J ( x ) 4 ( x ) )  (5.3) 

Now IV[J(x)]  is a. functional. That is something which takes a function and produces a 
number. Before continuing we must define a functional derivative. Consider a functional 
F [ J ( x ) ]  then 

(5.4) 
F [ J ( x )  + €S(x - Y ) ]  - F [ J ( x ) ]  -- z liin SF 

S J ( y )   cl € 

If we consider a simple emniple, 

then 

We now w 

S J ( y )  €-+cl 

=$(Y> 

11 ampply some methods to the theory with Lagranpn, 

This lagrangian has the free part plus an interaction terms $4. We will consider the free 
part first. The path integral for the free theory is gaussian and hence calculable by our 
favourite integrals. However we must carefully take the qi + $(x)  transition carefully. 
Recall that we can carry our gaussian integrals where the exponential contains the term, 
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where I< is a matrix. The correct generalisation will be the replace K by an operator. We 
thus wish to transform the exponent in the path integral into the form 

By integrating by parts (and neglecting surface terms) the Lagrangian density may be 
written, 

(5.10) + v2 - m23 4(x) [-p 
a2 

whence we may rewrite W [ J ]  as 

where 

at2 (5.12) 

We may now evaluate TVo[J] in terms of the inverse operator of K .  T h i s  is the operator 
satisfying 1 d'yI<(z, y ) A ( y ,  z )  = 6(x  - z )  (5.13) 

and we find 
(5.14) 

whence 

(5.15)515 

Now, the inverse operator A is in fact precisely the Feynman propagator encountered in 
canonical methods (up to  the odd normalisation factor of i or -1). To see this 

Now if we wish to evaluate, using functional methods, objects such as 

(5.16) 

(5.17) 
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then we can obtain these by a.cting upon Wo[J] with 

(5.18) 

and then setting J = 0. (together with integrating d4u and d4v.) Since, the exponential 
is quadratic, and we set J = 0 finally, every time a propagator is brought down a further 
functional derivative must act. The end result is that the object is a sum of products of 
propagators. 

As in the canonical case the simplest way to keep track of the terms is by drawing 
feynman diagrams. This functional approach provides an alternate derivation. In the cases 
considered up till now we have seen simple vertices (coresponding to just polynomial terms 
in HI)  this will now be the case for gauge theories but the methods still apply. t 

5.2 Moiiieiituiii space Feyiiiiiaii diagrams 
The feynman diagrams I have drawn are not really the conventional ones. These are 

normally drawn in momentum space rather then 2 space. The very good reason for this 
is that the external states a.re normally momentum eigenstates. The momentum space is 
really just a Fourier transform of the configuration space rules -and it may be regarded as 
an exercise to transform these. Just a few points, the rules then require that we draw all 
diagrams, the monienta now flowing through the legs is now integrated over and each vertex 
has a S-function in momenta. Tree level diagrams in momentum space are then merely the 
product of the propagators 1/( k2 - m2) however loop diagrams have more integrations over 
momenta than there are 6- functions and we obtain (the infamously difficult to evaluate) 
loop momentum integrations. We always obtain (look at our example) a S-function in our 
results which imposes total conservation of energy and momentum. From the examples 
we can easily (?!) see what the general rule for vertices will be - whatever is in Cz will be 
reflected in terms of the rules for the vertex: A $xxt vertex leads to a vertex with a 4 a 
x and a ~t outgoing state: A : c $ ~ ( x )  : lagrangian will yield a vertex with n outgoing 4 
states. Constants inultipling the vertex (such as g) get reflected in the rules. 

t I have cut more corners in this section than I care to think about in an attempt to convey some 
understanding of the path integral approach. Some of these corners came back to haunt me in 
tutorials. 
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6. Gauge Theories 1: Electro-Magnetism 
The great sucess in particle physics has been the ability to use gauge theories to 

describe the fundamental forces. As far as we know, both the strong and electro-weak 
forces are described by gauge theories. The strong force is beleived to be described by a 
SU(3) gauge theory known as QCD and the Electro-weak by SU(2) x U(1). Hopefully 
these terms will become clearer. I’ll take two “bites” at this very important type of field 
theory. (Graham will also spend a lot of time on gauge theories as will Jonathon). The 
first bite will be simply electro-magnetism or a U(1) gauge theory - although it might not 
seem so simple and on the second pass I’ll extend to SU(3) and SU(2) (or in fact any 
gauge group). 

The theory of electromagnetism as described by Maxwell’s equations is our proto- 
gauge theory. Maxwell’s equations are 

aE V x B = j + =  
- a t  

As might be familiar to you, it is common to express E and 
scalar potent ials 

in terms of the vector and 

B = V X A  (6.2) 
OA 
at - E = -Vqj - - - 

l3B whence the two equations V e B = 0 and V x E = -at become automatic. Our first task 
will be to write these equations in manifestly Lorentz covariant form. Firstly we form a 
4-vector potential A,, = (4, -A) and j ,  = ( p ,  -i) and define a field strength FPy such that 

This definition is in fact equivalent to 

With this definition it is fairly easy to see that the last two of Maxwell’s equations (four 
equations really) can be written (don’t forget the Einstein summation convention!) 

We now wish to provide a lagrangian formalism for these equations. It turns out that the 
appropriate Lagrangian density is given by 

1 
L = -FpVFPV 4 + j ,Ap (6.6) 
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whose Lagrange equations are just those of (6.5) . To see this, for example, take the 
Lagrange equation for Ao, 

- 0  + (y and z terms) - - - aL d dL dL 
dt [z1 $ [a(dzAo)1 aA0 

d 
0 + [-Foil + (y and z terms) + 0 = o 

There is a difficulty in carrying out a Hamiltonian approach to electro-magnetism. This is 
because the momentum which is conjugate to A0 is identically zero, 

since the Lagrangian density does not depend upon A,. 
Although not so obvious a problem in the Lagrangian formalism, this will rear it’s 

ugly head fairly soon. The rea.son that there is a problem is because, in some ways, we 
have too many variables A,, describing the fields. This will lead us into gauge symmetry. 
Notice that the field strength F,,, is invariant under a transformation 

where h ( x )  is an arbitrary function of z. Now, classically, the two choices of A,  give the 
same values of E and this 
symmetry in merely a curiosity. t 

Before discussing the cluaatisation of Electro-magnetism I will consider the theory 
coupled to Dirac fermion (or scalar ) If we consider a Dirac fermion 11, then the Lagrangian 

thus since everything can be written in terms of E and 

will be invariant under the transformation, 

where here Q! is a constant and not a function of 2. (We could also consider coupling to 
the scalar lagrangian d , x t P ~ . )  Suppose we would like to extend our transfomation so 
that ~ ( 2 ) .  Then the Lagrangian is not invariant but an extra term 

- igtj y, $a,a (6.12) 

t An analogy of the problems we are encountering is if we think of the simple pendulum. Suppose 
I was silly enough to over specify my system by decribing it by t ,  y, and 8. I might be tempted 
(obviously not but..) because the kinetic term is simple in 2 and y wheras the potential is simple 
in terms of 8 .  If I then chose L = f(i2 + y2 + O2 we would obtain the momentum PO = 0. This 
contraint on (p, q )  space is very similar to the electromagnetism case.) 
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arises. Now we could make the Lagrangian invariant if we add an interaction term 

and the combination 
LA + & + L int  

will be invariant under the combined gauge transformation. 

(6.14) 

11, + e--ig”(411, A ,  -+ A ,  + d,a(z) (6.15) 

In terms of the fermions the transformation act via multiplication by a phase e’”. Such 
phases form a group. A very simple group which is known as U(1)- the group of 1 x 1 
unitary matrices. ( U(n)  will be the group of n x n unitary matrices). We can include the 
interaction term with the kinetic term for 11, by defining the covariant derivative 

This is known as the cova.riant derivative because it transforms in the same way as $, 
namely with just a phase. 

D,11, --$ e-ig”(z)D P+ (6.17) 

This general trick of gauging symmetries has been enormously useful. It allows us to build 
models which have proved enormously useful1 in describing physics. 

There a.re several conventions for phases in this area. Later I will use a different 
convention which can be obtained by replaceing a by - a / g .  Whence the fields transforms 
as 

(6.18) II, -+ e’”+, A ,  + A ,  - -a,,ct 
1 
9 

whence 
D,, 8, - igA, (6.19) 

6.2 Quaiituiii Gauge Theories 
Our naive attepts to cluantise electrodynamics will prove to be sick because we are 

missing an important point. however, let us see how the sickness developes in the path inte- 
gral formulation. We attempt to find the propagator. To do so, we must write the quadratic 
part of the lagrangian as FIELD.OPERATOR.FIELD. The action may be rewritten 

/ d4z(d,A, - & A , ) ( P A ”  - d”Ap)  

= 1 d4zA, ( -27lUV’L3,d~ + 28””’) Ay’ 

= I d 4 .  /d ‘a ’AV(z ‘ ) (b4(2  - ~ ’ ) ( - - 2 ~ ~ ~ ’ ~ , ~ ~  + 2dYaYj )AVl (4  

(6.20) 
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we thus have tlie inverse-propagator organised in position space. When we fourier trans- 
form the above we obtain the momentum space inverse propagator, 

PfLu = ( k p k ,  - k 2 v p u )  (6.21) 

This “inverse propagator” has the unfortunate property that it does not have an inverse 
(so it is not the inverse of anything!). To observe this note that 

PflUPUP = - k2(kfLkp - k 2 v p p )  

= - k2Ppp 
(6.22) 

Now any matrix satisfying Ad2 = X.M cannot be invertible (unless M = X . 1  which P 
clearly is not.) so P is not an invertible operator. 

Now we have reached a problem in the path integral formalism (just as we would have 
in canonical methods.) What is the reason for this? The intrepratation of the “sickness” 
is that we are actually counting too many states in our path integral. If we have field 
configurations A,, and A,) rela.ted by a gauge transformation, they only represent a single 
equivalent states so we should only count them once rather than twice. In fact an infinite 
overcounting occurs in the path integral. Consider the following diagram, where I have 
“squeezed” the integration of tlie path integral onto two dimensions. Configurations related 
to a field configuration lie in the orbit of the configuration. 

I 4; .y A, t - b#u A 
Figure 4. Orbits in gauge configuration space. 

In this figure the orbits are shown and a curve which cuts each orbit is shown. Such 

441 = o  (6.23) 

We can think of implementing the gauge fixing by inserting a &function into the path 
integral. (However they are important coefficients!). Such a condition is called a gauge 
fixing condition. A good function g[A] is clearly one which cuts each orbit once and once 
only. The implementation of gauge-fixing is important technically in quantising a gauge 
theory. I will demonstrate (rather than prove) how to implement this. I will try to switch 
back and forth between a two-dimensional analogy and the real situation. 

a curve is given generically by 
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Consider a two 

in analogy with the ,  

dimensional integral 

gauge theories the function f is invariant under rotations thus 

(6.24) 

by analogy with gauge syninietries let us assume that the different values of 8 should not 
be counted. Thus we wish to evaluate 

I' = drrF(r) (6.26) J 
rather than (6.24) (which differs by a factor of Ji" d8 = 27r. Now we can just implement 
this by inserting a &function within the integral. We define 

We ca.n define this for any function and by definition 

I =  &$I4 (6.28) J 
however only for rotationally invariant functions will I4 be independant of 4. Since Id is 
independa.nt of 4, 

I = @I4 = 27rI& (6.29) 

where $0 is any value of 4. In many ways I have just cheated! - I "knew" that the curve 
8 = const. cut each orbit one and one only (and also smoothly!). In general we want 
to consider a general curve y ( x , y )  = 0. (analogous to (6.23) ). Again I want to insert 
6(g(z, y ) )  into the integral but now we need factors. We can see these from the identity, 

J 

(6.30) 

(For intuition 
S(s)/lul.) It is 

on this equation look, for example, at the prerequisites where 6 ( m )  = 
important that 

is rotation invariant. To see this note 

(6.31) 

(6.32) 
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We may now insert the factor of one in (6.30) into the integral I 

So we can obtain 
(6.34) 

As expected we have introduced a S-function but we have a correcting factor A,. In a 
quite considerable generalisation to gauge theories there is an identity, 

1 = A,(A? 1 W z )  M A P U )  (6.35) 
Z 

where 
A g ( A p )  = det - (6.36) 

and U(.) = e iCr ( l )  -we a.re integrating over elements of the U(1) group. Inserting this into 
the functional integral we obta.in, 

(3 

The formal method of quantisiiig is now rather simple - we just throw away the integration 
of the group variables J [ d U ] .  (analogously to J dd)  leaving us with a “gauge fixed” path 
integral which only counts ea.ch orbit once. 

Great. We however have one more step before this is any use!. (How do we implement 
a general gauge fixing 6-function?) Obviously, the gauge fixed path integral is independant 
of g .  (It’s not easy to show this ...) So using the gauge fixing functional 

g ‘ = y - B  (6.38) 

where B is just a function of .2: (just a constant really in functional space!) will give just 
the same result. Inserting a factor 

instead of n 6(g(APU)) merely changes the path integral by a constant. This is really just 
averaging (or smearing) over the gauge functions g - B with a factor e B Z .  This trivial trick 
allows us to get rid of the 6-fuctions and the gauge fixed path integral is 
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So we have promoted the S-function to an extra term in the action - the “gauge-fixing” 
term plus a determinant in the action (maybe more later). Many choices of “gauge-fixing” 
exist (and thus much effort to find good gauges - in some sense). I’ll try to illustrate one 
approach via the so-called covariant gauges. 

6.3 The Covariaiit gauges 
This gauge choice uses the gauge fixing term, 

g Aj’ =aj ’AP [ I  
With this gauge choice we find that the gauge fixing term in the action becomes 

This will affect the quadratic terins in the action ( thankfully!) to be 

Now, we cun invert this operator and obtain a propagator in momentum space 

Amongst this class of gauge choices two special ones are when [ = 0 , l  These are 

rlj’u Feyiiiiiaii Gauge, [ = 1, PPu = - 
k2 

r lpu - k , k u / k 2  
k 2  

Laiidau Gauge, [ = 0, PI(,, = 

(6.41) 

(6.42) 

(6.43) 

(6.45) 

So gauge fixing has resolved this (and in fact all other) problems with quantisation of the 
gauge theory. 

In the absence of either scalars or fermions, the quantised theory is a free theory and 
we may solve as for free scalar theory. (The Lagrangian contains only quadratic terms 
and, in the Feynman gauge, the propagator is just 6 , , / k2  which means the A, act just 
like multiple scalar fields.) In the presense of scalar or fermion fields the theory becomes 
a real live interacting quantum theory - QED for fermions or scalar-QED for scalars. For 
a fermion the covariant derivative contains an interaction term 

(6.46) 

implying a Feynman vertex 
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Figure 5. Feynman Diagram for Q E D .  

3 kJ  6.b 
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7. Gauge Theories 2: Non-Abeliaii gauge theories 
In this section we will generalise the concept of a gauge theory to that of a non- 

abelian gauge theory. Both the strong and weak interactions appear to be described by 
such theories. Recall that the action of a gauge transformations for electromagnetism act 
as 

(7.1) ,'a(') 

Now complex phases could, if one were perverse, be described as 1 x 1 unitary matrices. 
The U( 1) such matrices form a group. The basic definition of group's I quickly review here 

7.1 basic group theory 

following axioms are satisfied, 
A group G, is a set of objects with an action, or multiplication, defined such that the 

1 :if a, b E G, then a.b E G (closure) 
2 :there exists an identity ,e, s.t.a.e = e.a = a,Va E G 
3 :for all a E G, there exists an inverse u-l, aa-' = e, a-l .a = e 
4 :n.(b.c)  = (a.b).c vu, b, c 

(7.2) 

There are many examples of groups. For example, 
a) the numbers { 1, -1) uiider multiplication 
b) the real numbers under addition (but not multiplication since zero has no inverse.) 
c) the set of n x n matrices which are unitary ( A-' = At ) and which have determinant 

one. This group is known as S U ( N ) .  
d) the set of orthogonal matrices (A-' = AT) of determinant one. This is known as 

SO(N).  
Examples c) and d) are examples of Lie Groups. Lie groups are groups which depend 

smoothly (in a well defines niatheinatical sense) on parameters. For exaniple, a general 
SO(2) matrix can be written in the form, 

cos8 sin8 
-sin8 cos8 

M* = (7.3) 

which we can parameterise by 8. Clearly group multiplication (and inverses etc) depend 
smoothly upon 8, for example 

~ ( 8 ) ~ 4 ( 4 )  = M(8 + 4), ~ - l ( 8 )  = M(-8) (7-4) 

(If you are particulary observant you might notice that there is a lot of similarity be- 
tween these matrices and U(1). In fact SO(2) and U(1) are essentially the some algebraic 
structure.) If all elements of a group commute, 

a.b = b.a Vu, b (7.5) 

then we call the group Abelian. 
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7.2 Lie Algebras 
An important object of interest in a Lie group is it's algebra. This is defined in 

terms of the behaviour of the group elements near the identity. For example consider the 
group S U ( 2 ) ,  ( AtA = 1, det(A) = 1). If we have an arbitrary element near the identity, 
A = I + i T  (where T is small ) then T must satisfy, 

Tt = T, tr(T) = 0 (7.6) 

thus T can be parametised as 
3 

T = C a a ~ a  
a=l 

where 

(7.7) 

The matrices Ti generate an algebra under commutation. That is the commutator of any 
two T matrices is a sum of T nia.trices. For example 

IT', T2] = i T3  (7.9) 

In general for S U ( N ) ,  if we consider the algebra, then it is generated by hermition traceless 
matrices of which there are AT2 - 1. This is the dimension of the Lie algebra. For SU(3) 
there are thus eight matrices. 1-1 standard basis is 

which are closed under commutation. 

0 0  0 0 0  

0 0  0 1 0  0 

(7.10) 
Elements of the Lie algebra are linear combinations 

of these. There is a very important relationship between the elements of the algebra and 
the group itself. Essentially the group elements can be obtained by exponentiating the 
algebra, 

~ ( a )  = exp a a ~ a  (7.11) 
a 

where the a are no longer infinitesmal. Similar to the case of SU(2) ,  the Ta obey commu- 
tation relations, 

p a , T b ]  = i fabcTc (7.12) 

where f a b c  are known as the structure constants of the algebra. For SU(2) ,  f abc  = Pbc. 
(We normally normalise the T" such that tr(TaTb) = bUb /2 . )  Although I won't really 
justify this, the structure constants really contain all the information in the group. 
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7.3 Represent at ions 
The structure of a group is defined abstractly in terms of the multiplication. A concrete 

realisation of a group is called A representation. A representation has two objects. Firstly, 
there must be a specific object for each element of the group. Normally we will be interested 
in matrix representations of a group. So we will have a mapping between the group and 
our set of matrices, 

f : f ( G )  + A4 (7.13) 

which preserves the multiplication structure i.e. f ( G . H )  = f ( G ) . f ( H ) .  For our SU(2)  and 
SU(3) groups we have actually been looking at a representation of the formal mathematical 
structure. However, it has been a very special representation - the fundamental. For a given 
group there are many representations. For example the is always the trivial representation 
where every matrix get's mapped to the number 1. Also very importantly, the matrices 
must have a vector space to act upon. Normally we view this as column vectors. A 
cultural gap between mathematicians and physicists is that mathematicians focus upon 

r 

4 the matrices wheras physicists focus upon the vector space. 

7.4 Non Abeliaii Gauge syiiiiiietries 
Let us generalise our gauge transformation acting upon a fermion 

(7.14) 

where U is an element 
For example for SU(2)  

of a group C: such as SU(2) and tJ lies in a representation of G. 
we could take tJ to be a doublet ofermions - 

(7.15) 

I f  U did not va,ry with z then the Lagrangian 

is invariant, however for a gauge symmetry we wish the gauge transformation to vary with 
2. The technique will be to coiistruct a covariant derivative D, such that 

which will require 
u ( z ) D p u - l ( l )  = D', 

We will postulate a form for D" analogously to the U(1) case, 

(7.18) 

D, = a , + i g C ~ a ~ ;  
a 
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of the propagator, which in momentum space will lead to Ic, terms. The precise answer 
for the three point momentum space Feynman vertex, in the Feynman gauge, is 

as we show diagramatically, 

Figure 6. Feynma.11 Diagrams for Non- Abelian Gauge Theory. 

Note that is has crossing symmetry under interchange of legs and has one power of 
momentum in the vertex. The general situation is probably fairly clear from now on. There 
will also be a 4-point vertex. This contains no momentum (but a factor of g 2  rather than 
9.1 
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8. Critique of Perturbation theory 

I’ll try to illustrate the “light” and then the “shade” 
Perturbation theory has been enormously sucessful but it does have limitations. First 

The Light 
Perhaps the most impressive demonstration of perturbative field theory is the evalu- 

ation of g - 2 of the electron in QED. The magnetic moment of a fermion is related to it’s 
spin via 

(8.1) 
e 

2m 
p = -g-s 

The classical Dirac lagrangian gives a prediction for g to be exactly 2. However, as a purely 
Quantum mechanical effect, g may not exactly equal 2 but may be anomalous. This is 
calculable, using Feynman diagrams, perturbatively. 

The great success is 

( 9 - 2  ) =1159657.7 f 3.5 x lO-’ : Experiment 
2 (8.2) 

=1159655.4 f 3.3 x 10-’ : From Theory 

The theoretical, prediction includes Feynman diagrams up to three loops. The only sensible 
conclusion is that 

PERTURBATION THEORY WORKS 

The Shade 
Consider the function 

f ( 2 )  = 0 : 2 = 0 
1 

f ( x )  = e - 7  

This little function has a lot to teach us. It is not a particularly badly behaved function 
or very exciting to look at. It is continuous differentiable and it isn’t very difficult to show 
that 

f ‘ ( 0 )  = 0 (8-4) 
If fact, with a little more work we can show that 

f ‘” ’ (0)  = 0 (8.5) 

Thus the Taylor series of f ( z )  around z = 0 is 

00 

f ‘”’(0)”R = 0 # f ( 2 )  
n 

n=O 

Thus it is a fairly simple example where the Taylor series does not equal the function. Now 
a typical decay amplitude is a function of the coupling constant g 
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We attempt to evaluate R(g) by perturbation theory - this is essentially just it’s Taylor 
series. So any component of R which takes the form 

will n e v e r  show up in a perturbative expansion. One might argue that such functions are 
pathelogical. I.e. that they a.re really just mathematical and don’t effect real problems 
however I’ll try to argue the reverse. Consider SU(2)  pure gauge theory. Rescale the 
potential field 

(8.8) 
1 ’  w, + -wp 

F,u --f -qlU 

9 

1 

g 

whence 

where F‘ has no esplicit dependance on g. Then the Path integral looks a bit like 

Which definately 1001;s dangerous! Thus we can easily see how contributions not accessi- 
ble by perturbative results can creep in. This is especially true in any form of classical 
background 

A,, = A: + A:t (8.10) 

(I.e. looking a.t transitions in the presence of a non-zero background.) 
I present this example ( another good example is 1/(1 + g 2  ) not to try to destroy 

Feynman diagram techniques but to point out that they are not everything.  We must 
consider the realm of validity. Unfortunately, we have few alternate techniques. One 
technique is to take the path integral and just evaluate it numerically. To do so we must 
discretise space-time , the configuration etc etc. It takes a lot of computing effort and still 
has yet to be enormously fruitful but , at present, we have nothing else other than feynman 
diagrams (and variations thereof). Despite these concerns, field theory does “produce the 
goods”. 
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9. Exercises (selected) 
1.1 Using Lagrange’s Equations solve the double pendulum. 

Figure El.  The Double pendulum. 

1.2 Calculate the Poissoii lxackets, 

{ Q ” ’ P } ?  {Q”P’> 

How do these compare with 
[G2, l j 1 7  [i2 ’ lj21 

1.3 Suppose 
1 -1 -2  L = &d q 
L 

then what is H?.  
1.4 Show that the time dependance of any function F(pr ,qr)  is given by 

2.1 In the low temperature limit of the partition function in statistical mechanics it 
is the low-energy states whose contributions dominate. In the small-h limit which paths 
will dominate in the path integral? 

3.1 Consider a field $(z) we will quantise this theory by discretising in and then let 
the discretisation go to zero. Suppose we split s-space into N-regions of area 62j wher (b 
takes on the value $(si) .  Then the natural Lagrangian will be 

Define the continuous momentum conjugate to $(z) to be ~ ( 3 ) .  and denote it’s discreti- 
sation by  si). 
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What is the cononical momentum conjugate to 4(xi)? Suppose we quantise the 
disctete system. What is implied for 

Justify what happens to this in the limit 6xi + 0. 
62 5.1 Compute 6' and 6 J ( y ) 6 J ( z )  of 

6 J(Y)  

6.1 . .  
7.1 An alternate Definition of Fpu is 

7.2 Find a set of 3 x 3 matrices which form a representation of SU(2) .  i.e. matrices 
satisfying [ 7.9) 
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1 Introduction 
The aim of this course is to teach you how to calculate amplitudes, cross-sections and 
decay rates, particularly for quantum electrodynamics, QED, but in principle also for 
quantum chromodynamics, QCD. By the end of the course you should be able to go from 
a Feynman diagram such as the one for e+e- + p+p- in Figure l . l(a),  to a number for 
the cross-section, for example. 

We will restrict ourselves to calculations at tree level but will also look qualitatively 
at higher order loop effects which amongst other things are responsible for the running 
of the QCD coupling constant, where the coupling appears weaker when you measure it 
at higher enegy scales. This running underlies the useful application of perturbative QCD 
calculations to high-energy processes. As you can guess, the sort of diagrams which are 
important here have closed loops of particle lines in them: in Figure l . l(b) is one example 
contributing to the running of the strong coupling (the curly lines denote gluons). 

In order to do our calculations we will need a certain amount of technology. In 
particular, we will need to describe particles with spin, especially the spin-1/2 leptons 
and quarks. We will therefore spend some time looking at the Dirac equation and its free 
particle solutions. After this will come revision of Fermi’s golden rule to find probability 
amplitudes for transitions, followed by some general results on normalisation, flux factors 
and phase space, which will allow us to obtain formulas for cross sections and decay rates. 

With these tools in hand, we will look at some examples of tree level QED processes. 
Here you will get hands-on experience of calculating transition amplitudes and getting 
from them to cross sections. We then move on to  QCD. This will entail a brief introduction 
to renormalisation in both QED and QCD. We will introduce the idea of the running 
coupling constant and look at asymptotic freedom in QCD. 

In reference [l] you will find a list of textbooks which may be useful. 

1.1 Units and Conventions 

I will use natural units, c = 1, fi = 1, so mass, energy, inverse length and inverse time all 
have the same dimensions. 

4-vector ap p = 0,1,2,3 a = (a’, a)  
scalar product a 4  = aobo - a-b = gpUapb” (1.1) 

From the scalar product you see that the metric is: 

1 i f p = u  
0 i f p # u  

PX g = diag(1, -1, -1, -l), 9 QXU = 6,” = 

For c = 1, gpv and gpu are numerically the same. 

Figure 1.1 Examples of Feynman diagrams contributing to (a) e+e- + p+p- and (b) the 
running of the strong coupling constant. 
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F’rom the above, you would think it natural to write the space components of a 4-vector as 
U* for i = 1,2,3. However, for 3-vectors I will normally write the components as ui. This 
is confusing only when you convert between ordinary vector equations and their covariant 
forms, when you have to remember the sign difference between ui and ai. 

Note that 8, is a covector, 

SO Vi = -8 and 8’ = (ao, -V) 
My convention for the totally antisymmetric Levi-Civita tensor is: 

+I if {p ,  v, A, a} an even permutation of {O,1,2,3} 

0 otherwise 
-1 if an odd permutation (1.4) p f X a  = 

Note that ~ j ’ ~ ~ ~  = - E ~ ~ x ~ ,  and P‘XappqurXs, -+ (det A) EpuXuppqur~so for A in the Lorentz 
group. 

1.2 Relativistic Wave Equations? 

Imagine you are working in the 1920’s. You already know quantum mechanics based on 
Schrodinger’s equation and you know relativity. You might ask if you can come up with 
some relativistic version of a quantum mechanical wave equation. If you do this, you 
encounter difficulties arising from the one-particle viewpoint, thinking of the equations 
describing a wave function. These difficulties are solved by ditching the wave function in 
favour of a quantum field, the subject of your quantum field theory course. 

What is the problem with the one particle interpretation? Trouble arises from com- 
bining the uncertainty principle with the relativistic equivalence of mass and energy- 
momentum. If you try to localise a particle in a region with dimensions of order L, the 
particle’s momentum and (in the relativistic regime) energy are uncertain by - 1/L. 
As the dimension L becomes smaller than the particle’s inverse mass, l/m, states with 
more than one particle become energetically accessible. The more you try to localise a 
particle, the more you become uncertain whether you have one or any number of parti- 
cles. Relativistic causality is inconsistent with a single particle theory and the real world 
evades the conflict through pair creation. Quantum field theory is the tool allowing you 
to reconcile quantum mechanics and special relativity. 

What happens in quantum field theory is that field operators, which can create 
or destroy multiparticle states, satisfy Heisenberg equations of motion. If there are no 
interactions, then the relevant equations are the Klein-Gordon equation for scalar fields 
or the Dirac equation for spin-half fields (such as the electron). The free quantum fields 
are expanded as linear combinations of plane wave solutions of these equations, but with 
operator valued coefficients which can create and destroy single particles. Thus we need 
to know the properties of the plane wave solutions. This is trivial for the scalar field, but 
is more interesting for the Dirac field. All the problems with “negative energy solutions” 
in the wave function approach are non-problems in quantum field theory: the negative 
energy parts multiply operators which destroy particles. 

In fairness I should mention that you can get quite far with the one particle inter- 
pretation if you consider external forces which vary slowly on scales of order l /m,  and 
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thereby don’t have enough energy to create new particle pairs. Notably, you can use 
the Dirac equation, which we’ll meet below, in the presence of an electromagnetic field, 
to calculate fine structure in the spectra of hydrogen-like atoms (see textbooks such as 
Itzykson and Zuber [l] section 2.3 for example). 

1.3 The Klein-Gordon Equation 

In your quantum field theory course, you will show that the Heisenberg equations of 
motion for a free scalar field and its canonical conjugate give the Klein-Gordon equation 

(0 + m2) 4(2 )  = 0 (1-5) 

where 

and x is the 4-vector (t ,x) .  Using the substitutions, 

= a,a. = a2/dt2 - v2 

p + -iv, d E + i -  
dt’ 

you can see that the objects created or destroyed by 4 satisfy the relativistic energy- 
momentum relation 

E2 = p2 +m2. (1.8) 
The operator 0 is Lorentz invariant, so the Klein-Gordon equation is relativistically 

covariant (that is, transforms into an equation of the same form) if qi is a scalar function. 
That is to say, under a Lorentz transformation (t ,  x)  + (t’, x’) ,  

qi(c x) + 4’(t’> x’) = qi(t1 x) 

so qi is invariant. In particular 4 is then invariant under spatial rotations so it represents 
a spin-zero particle (more on spin when we come to the Dirac equation), there being no 
preferred direction which could carry information on a spin orientation. 

The Klein-Gordon equation has plane wave solutions 

(1.9) - Ne-i((E‘-P’X) qi(4 - 
where N is a normalisation constant and E = z t d p w .  Thus, there are both positive 
and negative energy solutions. In the quantum field 4,  these are just associated with 
operators which create or destroy particles. However, they are a severe problem if you 
try to interpret qi as a wavefunction. The spectrum is no longer bounded below, and you 
can extract arbitrarily large amounts of energy from the system by driving it into ever 
more negative energy states. Any external perturbation capable of pushing a particle 
across the energy gap of 2m between the positive and negative energy continuum of 
states can uncover this difficulty. 

A second problem with the wavefunction interpretation arises when you try to  find 
a probability density. Since qi is Lorentz invariant, 1412 doesn’t transform like a density. 
To search for a candidate we derive a continuity equation, rather as you did for the 
Schrodinger equation in the pre-school problems. Defining p and J by 

(1.10) 
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you obtain (see problem) a covariant conservation equation 

a,Jp = 0 (1.11) 

where J is the 4-vector (p,  J). It is natural to interpret p as a probability density and J 
as a probability current. However, for a plane wave solution (1.9), p = 21NI2E, so p is 
not positive definite since we’ve already found E can be negative. 

Derive the continuity equation (1.11). Start with the Klein-Gordon equation multiplied 
by qY and subtract the complex conjugate of the K-G equation multiplied by 4.  

Thus, p may well be considered as the density of a conserved quantity (such as 
electric charge), but we cannot use it for a probability density. To Dirac, this and the 
existence of negative energy solutions seemed so overwhelming that he was led to intro- 
duce another equation, first order in time derivatives but still Lorentz covariant, hoping 
that the similarity to Schrodinger’s equation would allow a probability interpretation. In 
fact, with the interpretation of 4 as a quantum field, these problems are not problems at 
all: the negative energy solutions will find an explanation in terms of antiparticles and p 
will indeed be a charge density as hinted above. Moreover, Dirac’s hopes were unfounded 
because his new equation also turns out to admit negative energy solutions. Fortunately 
it is just what we need to describe particles with half a unit of spin angular momentum, 
so we will now turn to it. 

D Exercise 1.1 
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2 The Dirac Equation 
Dirac wanted an equation first order in time derivatives and Lorentz covariant, so it had 
to  be first order in spatial derivatives too. His starting point was 

all, 
at 

i - = - i a - V $ J  + pm$J 

Remember that in field theory, the Dirac equation is the equation of motion for the field 
operator describing spin-1/2 fermions. In order for this equation to be Lorentz covariant, 
it will turn out that $J cannot be a scalar under Lorentz transformations. In fact this will 
be precisely how the equation turns out to describe spin-1/2 particles. We will return to 
this below. 

If $J is to describe a free particle it is natural that it should satisfy the Klein- 
Gordon equation so that it has the correct energy-momentum relation. This requirement 
imposes relationships among the a and p. To see these, apply the operator on each side 
of equation (2.1) twice, 

The Klein-Gordon equation will be satisfied if 

a;aj + ajai = 26ij 
paz +sip = 0 

p 2  = 1 

for i ,  j = 1,2,3.  It is clear that the ai and p cannot be ordinary numbers, but it is natural 
to give them a realisation as matrices. In this case, ll, must be a multi-component spinor 
on which these matrices act. 

Prove that any matrices a and p satisfying equation (2.2) are traceless with eigenvalues 
f l .  Hence argue that they must be even dimensional. 

D Exercise 2.1 

In two dimensions a natural set of matrices for the a would be the Pauli matrices 
0 1  0 -i 1 0  

However, there is no other independent 2 x 2 matrix with the right properties for p, SO 

the smallest dimension for which the Dirac matrices can be realised is four. One choice 
is the Dirac representation 

a = ( u  O u  0 )  , P = ( l  0 -1 O). 

Note that each entry above denotes a two-by-two block and that the 1 denotes the 2 x 2 
identity matrix. 

There is a theorem due to Pauli which states that all sets of matrices obeying the 
relations in (2.2) are equivalent. Since the Hermitian conjugates at and Pt clearly obey 
the relations, you can, by a change of basis if necessary, assume that a and P are 
Hermitian. All the common choices of basis have this property. Furthermore, we would 
like ai and p to be Hermitian so that the Dirac Hamiltonian (2.14) is Hermitian. 
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D Exercise 2.2 
Derive the continuity equation 8, Jj’ = 0 for the Dirac equation with 

p = Jo = qt(x)$(x), J = $t(x)a$(z). (2.5) 

We will see in section 2.6 that (p ,  J) does indeed transform as a four-vector. 

2.1 
We look for plane wave solutions of the form 

Free Particle Solutions I: Interpretation 

where 4 and x are two-component spinors, independent of x.  Using the Dirac represen- 
tation, the Dirac equation gives 

0 .P  
so that 

x = -  a.p 4, +== X .  E+m 
For E # -m there are solutions, 

while for E # m there are solutions, 

for arbitrary constant 4 and x. Now, since E2 = p2+m2 by construction, we find, just as 
we did for the Klein-Gordon equation (1.5), that there exist positive and negative energy 
solutions given by equations (2.6) and (2.7) respectively. Once again, the existence of 
negative energy solutions vitiates the interpretation of I) as a wavefunction. 

Dirac interpreted the negative energy solutions by postulating the existence of a 
“sea’) of negative energy states. The vacuum or ground state has all the negative energy 
states full. An additional electron must now occupy a positive energy state since the 
Pauli exclusion principle forbids it from falling into one of the filled negative energy 
states. By promoting one of these negative energy states to a positive energy one, by 
supplying energy, you create a pair: a positive energy electron and a hole in the negative 
energy sea corresponding to a positive energy positron. This was a radical new idea, and 
brought pair creation and antiparticles into physics. Positrons were discovered in cosmic 
rays by Car1 Anderson in 1932. 

The problem with Dirac’s hole theory is that it doesn’t work for bosons, such as 
particles governed by the Klein Gordon equation, for example. Such particles have no 
exclusion principle to stop them falling into the negative energy states, releasing their 
energy. We need a new interpretation and turn to Feynman for our answer. 
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time 

Figure 2.1 Feynman interpretation of a process in which a negative energy electron is absorbed. 
Time increases moving upwards. 

According to Feynman and quantum field theory, we should interpret the emission 
(absorption) of a negative energy particle with momentum p” as the absorption (emission) 
of a positive energy antiparticle with momentum -p”. So, in Figure 2.1, for example, an 
electron-positron pair is created at point A. The positron propagates to point B where 
it is annihilated by another electron. 

Thus Feynman tells us to keep both types of free particle solution. One is to be used 
for particles and the other for the accompanying antiparticles. Let’s return to our spinor 
solutions and write them in a conventional form. Take the positive energy solution of 
equation (2.6) and write, 

For the former negative energy solution of equation (2.7), change the sign of the energy, 
E + -E, and the three-momentum, p + -p, to obtain, 

In these two solutions E is now (and for the rest of the course) always positive and given 
by E = (p2 + m2)1/2. The subscript T takes the values 1,2, with 

At this point I would like to introduce another notation, and define 

(2.10) 

wp dp2 + m2, (2.11) 

so that, wp is the energy (positive) of a particle or anti-particle with three-momentum 
p (I write the subscript p instead of p, but you should remember it really means the 
three-momentum). I will tend to use E or wp interchangeably. 

The u-spinor solutions will correspond to particles and the v-spinor solutions to 
antiparticles. The role of the two x’s will become clear in the following section, where it 
will be shown that the two choices of T are spin labels. Note that each spinor solution 
depends on the three-momentum p, so it is implicit that po = wp. In the expansion of 
the Dirac quantum field operator in terms of plane waves, 

(2.12) 
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the operator b annihilates a fermion of momentum ( w p , p )  and spin T ,  whilst i t  creates 
an antifermion of momentum ( w p , p )  and spin r. The Hermitian conjugate Dirac field 
contains operators which do the opposite. This discussion should be clearer after your 
quantum field theory lectures. 

The vacuum state 10) is defined by, 

for every momentum p = (up, p) and spin label T .  This ensures the interpretation above: 
particles are created by the “daggered” operators and destroyed by the undaggered ones. 

2.2 
Now it’s time to  justify the statements we have been making that the Dirac equation 
describes spin-1/2 particles. The Dirac Hamiltonian in momentum space is 

Free Particle Solutions 11: Spin 

H = asp + pm (2.14) 

and the orbital angular momentum operator is 

L = r x p .  

Normally you have to worry about operator ordering ambiguities when going from classical 
objects to quantum mechanical ones. For L the problem does not arise - why not? 

Evaluating the commutator of L with H, 

(2.15) 

we see that the orbital angular momentum is not conserved. We’d like to find a total 
angular momentum J which is conserved, by adding an additional operator S to L,  

J = L + S .  

To this end, consider the three matrices, 

c = ( a O )  = -ialazasa. O a  

The C/2 have the correct commutation relations to represent angular momentum, since 
the Pauli matrices do, and their commutators with a and p are, 

DExercise 2.3 
Verify the commutation relations in equation (2.17) 
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n o m  the relations in (2.17) we find that 

[ Z , H ]  = -2ia x p. 

Comparing this with the commutator of L with H in equation (2.15), you readily see 
that 

[L + ; c , H ]  = 0, 

and we can set 
1 
2 

S = -c. 
We interpret S as an angular momentum intrinsic to the particle. Now 

and recalling that the eigenvalue of J2 for spin j is j ( j  + l ) ,  we conclude that S represents 
spin-1/2 and the solutions of the Dirac equation have spin-1/2 as promised. 

We worked in the Dirac representation for convenience, but the result is of course 
independent of the representation. 

Now consider the u-spinor solutions uI; of equation (2.8). Choose p = (O,O,p,)  and 
write 

J Z G  0 

(2.18) 1 d E G  

-dEGi 
u t = U p r  = ul=u;, = ( ) .  

It is easy to see that, 
1 1 

2 Szut = p, S,UJ = --u1. 

So, these two spinors represent spin up and spin down along the z-axis respectively. For 
the v-spinors, with the same choice for p, write, 

i 1 VJ = up, = 0 

\ 0 

' 0  

0 
-JG 

,J% 
(2.19) 

where now, 
1 1 
2 2 S,VJ = -u1, SzVt = - -UT.  

This apparently perverse choice of up and down for the U 'S  is because, as you see in 
equation (2.12) for the quantum Dirac field, ut multiplies an annihilation operator which 
destroys a particle with momentum p, and spin up, whereas multiplies an operator 
which creates an antiparticle with momentum p, and spin up. 

2.3 Normalisation, Gamma Matrices 

We have included a normalisation factor d- in our spinors. With this factor, 

u'tU3 - - v;~v; = 2 ~ ~ 6 ' " .  (2.20) 

This corresponds to the standard relativistic normalisation of 2wp particles per unit 
volume. It  also means that utu transforms like the time component of a 4-vector under 
Lorentz transformations as we will see in section 2.6. 
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D Exercise 2.4 
Check the normalisation condition for the spinors in equation (2.20). 

I will now introduce (yet) more standard notation. Define the gamma matrices, 

y o = p ,  r=pa.  (2.21) 

In the Dirac representation, 

(2.22) 

In terms of these, the relations between the a and in equation (2.2) can be written 

{y, yV}  = 2gpv. (2.23) 
compactly as, 

Combinations like up-yp occur frequently and are conventionally written as, 

c = u p y  = up,-/,, 

pronounced “a slash.” Note that yp is not, despite appearances, a 4-vector - it just 
denotes a set of four matrices. However, the notation is deliberately suggestive, for when 
combined with Dirac fields you can construct quantities which transform like vectors and 
other Lorentz tensors (see the next section). 

Let’s close this section by observing that using the gamma matrices the Dirac equa- 
tion (2.1) becomes 

(2.24) 

or in momentum space, 
(2.25) 

The spinors U and w satisfy 

(i? - m)$ = 0, 

(a4 - 4$ = 0. 

($ -m>u; = 0 
($+m)w; = 0 (2.26) 

DExercise 2.5 
Derive the momentum space equations satisfied by U;  and 21;. 

2.4 Lorentz Covariance 
We want the Dirac equation (2.24) to preserve its form under Lorentz transformations 
(LT’s). Let A p v  represent an LT, 

X’ + x ’ ~  = ApVxV 

The requirement is, 

(ir”qi - n-+/o) = 0 + (iya; - rn )$ ‘ (Z ’ )  = 0, 

where dp = A“$:. We know that 4-vectors get their components mixeh up by 
we expect that the components of $ might get mixed up also, 

$(x) + $’(XI) S(A)$(A%/) 

(2.27) 

~T’s, SO 

(2.28) 
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where S(A) is a 4 x 4 matrix acting on the spinor index of $. Note that the argument 
A-lx' is just a fancy way of writing 2, so each component of $(z) is transformed into a 
linear combination of components of $(z). 

To determine S we rewrite the Dirac equation in terms of the primed variables, 

The matrices 7''' 
equation (2.23)) 

y'"naP satisfy the same anticommutation relations as the yp's in 

{ylP, yIU} = 2gP". (2.30) 

DExercise 2.6 
Check relation (2.30). 

Now we invoke the theorem (Pauli's theorem) which states that any two represen- 
tations of the gamma matrices are equivalent. This means that there is a matrix S ( h )  
such that 

= S - ~ ( A ) ~ P S ( A ) .  (2.31) 

This allows us to rewrite equation (2.29) as 

(iy"% - ~ ) s ( A ) $ ( A - ~ ~ )  = 0, 

so that the Dirac equation does indeed preserve its form. To construct S explicitly for 
an infinitesimal LT, let, 

(2.32) 

where E is an infinitesimal parameter and p and o are fixed. Since this expression is 
antisymmetric in p and a there are six choices for the pair (p,  a) corresponding to  three 
rotations and three boosts. Writing, 

AP U -6P - U - E(SPP6"U - 9 UP 6 P U )  

S(A) = 1 + i a P U  (2.33) 

where spa is a matrix to be determined, we find that equation (2.31) for y' is satisfied by, 

(2.34) 

Here, I have taken the opportunity to define the matrix oP'. 

Verify that equation (2.31) relating y' and y is satisfied by sp" defined through equa- 
tions (2.33) and (2.34). 

We have thus determined how $ transforms under LT's. To find quantities which 
are Lorentz invariant, or transform as vectors or tensors, we need to introduce the Pauli 
and Dirac adjoints. The Pauli adjoint 3 of a spinor .J, is defined by 

 exercise 2.7 

The Dirac adjoint is defined by 
(qA4)* = $z$. (2.36) 
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For Hermitian yo it is easy to show that 
- 
A = yo At yo. (2.37) 

Some properties of the Pauli and Dirac adjoints are: 

( X A + p B )  = X * X + p * B ,  
A B  = BX, 
A$ = $A. 

- 
- -- 

With these definitions, $ transforms as follows under LT’s: 
- 
II, + $‘ = $S-’(A) (2.38) 

D Exercise 2.8 

(1) Verify that ypt = yoyf’yo. This says that ”J’” = yp.  

(2) Using (2.33) and (2.34) verify that yoSt(A)yo = S-’(A), i.e. = S-l. So S is not 
unitary in general, although it is unitary for rotations (when p and o are spatial 
indices). This is because the rotations are in the unitary O(3) subgroup of the 
nonunitary Lorentz group. Here you show the result for an infinitesimal LT, but it 
is true for finite LT’s. 

(3) Show that II) satisfies the equation 

4- - II, (-ig - m) = 0 

where the arrow over implies the derivative acts on $. 
(4) Hence prove that $ transforms as in equation (2.38). 

Note that  result (2) of the problem above can be rewritten as S(A) = S-’(A), and 
equation (2.31) for the similarity transformation of yp to y’f’ takes the form, 

- 
SypS = Apvy”.  (2.39) 

Combining the transformation properties of II, and $ from equations (2.28) and (2.38) 
we see that the bilinear II)$ is Lorentz invariant. In section 2.6 we’ll consider the trans- 
formation properties of general bilinears. 

Let me close this section by recasting the spinor normalisation equations (2.20) in 
terms of “Dirac inner products.” The conditions become, 

$U; = 2 m P  
(2.40) - - r s  

upup 
- - 8  - 

upup - 0 
7 s  vpVp = -2mr3 

DExercise 2.9 
Verify the normalisation properties in the above equations (2.40). 
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2.5 Parity 
In the next section we are going to construct quantities bilinear in II, and $, and classify 
them according to their transformation properties under LT’s. We normally use LT’s 
which are in the connected Lorentz Group, SO(3, l), meaning they can be obtained by 
a continuous deformation of the identity transformation. Indeed in the last section we 
considered LT’s very close to the identity in equation (2.32). The full Lorentz group has 
four components generated by combining the SO(3,l) transformations with the discrete 
operations of parity or space inversion, P ,  and time reversal, T, 

0 0  - 1 0 0 0  
A P = [ i  -1 0 -1 i), A T = [  0 1 0 0  0 0 0 ) .  

0 -1 0 0 0 1  

LT’s satisfy ATgA = g (see the preschool problems), so taking determinants shows 
that det A = fl. LT’s in SO(3 , l )  have determinant 1, since the identity does, but the 
P and T operations have determinant -1. 

Let’s now find the action of parity on the Dirac wavefunction and determine the 
wavefunction $p in the parity-reversed system. According to the discussion of the previ- 
ous section, and using the result of equation (2.39), we need to find a matrix S satisfying 

- - .  
SyOS = yo, Sy’S = -71. 

It’s not hard to see that S = 3 = yo is an acceptable solution, from which it follows that 
the wavefunction $p is 

$ P ( 4  x) = rOII,(t, -4. (2.41) 

In fact you could multiply yo by a phase and still have an acceptable definition for the 
parity transformation. 

In the nonrelativistic limit, the wavefunction II, approaches an eigenstate of parity. 
Since 

the u-spinors and w-spinors at rest have opposite eigenvalues, corresponding to particle 
and antiparticle having opposite intrinsic parities. 

2.6 Bilinear Covariants 

Now, as promised, we will construct and classify the bilinears. To begin, observe that by 
forming products of the gamma matrices it is possible to construct 16 linearly independent 
quantities. In equation (2.34) we have defined 

i 
- 2  

OP” = -[yyy”], 

and now it is convenient to define 

5 - . o  1 2  3 
75=7 = Z Y Y Y Y ,  (2.42) 
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Then the set of 16 matrices 
r : {1,Y5, Y P ,  7 9 5 ,  uPU}  

form a basis for gamma matrix products. 
Using the transformations of $ and $ from equations (2.28) and (2.38)) together 

with the similarity transformation of ~p in equation (2.39), construct the 16 fermion 
bilinears and their transformation properties as follows: 

(2.43) 

D Exercise 2.10 
Verify the transformation properties of the bilinears in equation (2.43). 

Observe that ? r p $  = (p,  J) is just the current we found earlier in equation (2.5). 
Classically p is positive definite, but for the quantum Dirac field you find that the space 
integral of p is the charge operator, which counts the number of electrons minus the 
number of positrons, 

Q - /d3spht$ N / d 3 p  [btb - dtd] .  

The continuity equation 6’,P = 0 expresses conservation of electric charge. 

2.7 Charge Conjugation 

There is one more discrete invariance of the Dirac equation in addition to parity. It is 
charge conjugation, which takes you from particle to antiparticle and vice versa. For 
scalar fields the symmetry is just complex conjugation, but in order for the charge conju- 
gate Dirac field to remain a solution of the Dirac equation, you have to mix its components 
as well: 

Here qT = yoT$* and C is a matrix satisfying the condition 

$ -+ $c = c$T. 

In the Dirac representation, 

c = i y y  O = (-!u2 -r2). 
I refer you to  textbooks such as [l] for details. 

When Dirac wrote down his equation everybody thought parity and charge conju- 
gation were exact symmetries of nature, so invariance under these transformations was 
essential. Now we know that neither of them, nor the combination CP, are respected by 
the standard electroweak model. 
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2.8 Neutrinos 
In the particle data book [2] you will find only upper limits for the masses of the three 
neutrinos, and in the standard model they are massless. Let's look therefore at solu- 
tions of the Dirac equation with m = 0. Specialising from equation (2.1), we have, in 
momentum space, 

lpl$= crap$. 

For such a solution, 
a . P  S.P 
lPl lPl 

7 5 $  = 75-11 = 2-$, 

using the spin operator S = i C  = $ 7 5 ~ ~ ~  with C defined in equation (2.16). But S.p/lpl 
is the projection of spin onto the direction of motion, known as the helicity, and is equal 
to f 1 / 2 .  Thus (l+y5)/2' projects out the neutrino with helicity 1/2 (right handed) 
and (l-y5)/2 projects out the neutrino with helicity -1/2 (left handed). To date, only 
left handed neutrinos have been observed, and only left handed neutrinos appear in the 
standard model. Since 1 1 

1 
r0$-75)$ = 5(1+75)Y0$, 

theory involving only left handed neutrinos necessarily violates parity. 

The standard model contains only left handed massless neutrinos. It is really the elec- 
troweak symmetry which prevents them having masses, not the fact that they are left 
handed only. It would be possible to doctor the standard model to contain scxalled Ma- 
jorana neutrinos which can be massive. However, this would entail relinquishing lepton 
number conservation and break the electroweak symmetry (or involve the introduction of 
new particles). 

2.9 Dirac Lagrangian 
In the spirit of the field theory course, we could have started out by looking for objects, 
transforming in the right way under Lorentz boosts and rotations, to represent spin-1/2 
particles. This would have led us to Dirac spinors, for which we would have shown that 

is a Lorentz invariant Lagrangian. 
Then Lagrange's equations immediately give the Dirac equation, as you can see 

simply from aC/@ = 0 (observing that C is independent of @/at). Now you could 
quantise by Hamiltonian or path integral methods. A new feature that appears is that, 
for consistency, you must impose canonical anticommutation relations in the Hamilto- 
nian form, or use anticommuting (Grassman) variables in the path integral. Thus, the 
connection between spin and statistics appears. For example, if @ ( p , r )  is the creation 
operator for an electron of momentum p and spin label r ,  then it@, r )  10) is a Fock state 
with one electron, but 

so you can never put more than one electron into the same state. This contrasts with 
the behaviour of bosons. 

6'(Pl T)it(P, r )  10) = 0, 
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3 Cross Sections and Decay Rates 

In section 4 we will learn how to calculate quantum mechanical amplitudes for elec- 
tromagnetic scattering and decay processes. These amplitudes are obtained from the 
Lagrangian of QED, and contain information about the dynamics underlying the scat- 
tering or decay process. This section is a brief review of how to get from the quantum 
mechanical amplitude to a cross section or decay rate which can be measured. We will 
commence by recalling Fermi’s golden rule for transition probabilities. 

3.1 Fermi’s Golden Rule 

Consider a system with Hamiltonian H which can be written 

H = H o + V  (3.1) 
We assume that the eigenstates and eigenvalues of Ho are known and that V is a small, 
possibly time-dependent, perturbation. The equation of motion of the system is, 

( 3 4  
a 
at i--I$(t)) = W O  + V)I$(t)) 

If V vanished, we could calculate the time evolution of I$(t)) by expanding it as a 
linear combination of energy eigenstates. When V does not vanish, the eigenstates of 
Ho are no longer eigenstates of the full Hamiltonian so when we expand in terms of 
Ho eigenstates, the coefficients of the expansion become time dependent. To develop 
a perturbation theory in V we will change our basis of states from the Schrodinger 
picture to the interaction or Dirac picture, where we hide the time evolution due to Ho 
and concentrate on that due to V. Thus we define the interaction picture states and 
operators by, 

so that the interaction picture and Schrodinger picture states agree at time t = 0, 
I$r(O)) = l$(O)), with a similar relation for the operators. In the new basis, the equation 
of motion becomes, 

(3.3) o,(t) 3 e Ho t 0 ( t  ) e - i H ~  t , I$r ( t ) )  = eaHot I$(t>) , 

(3.4) 
a 

2% I$I(t>> = Vdt) I$1W 7 

which can be integrated formally as an infinite series in V, 

n=l 

Here, we have chosen to start with some (known) state 1$1(-T/2)), at time -T/2, and 
have evolved it to I$l(t>) at time t. The evolution is done by the operator, U, that you’ve 
seen in the field theory course: 

I$I(t>> = UP, -T/2) I$1(-T/2)). 

Now consider the calculation of the probability of a transition to an eigenstate Ib) 
at time t .  The amplitude is, 

(bl@(t)) = (bIl$I(t)) 

= (bJ e-iHOt I$l(t)) 

- - e-iEbt ( t ) )  , 
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so ((bl~,!(t))(’ = ((bl+l(t))( ’ .  We let V be time independent and consider the amplitude 
for a transition from an eigenstate la) of Ho at t = -T/2 to an orthogonal eigenstate 
Ib) at t = T/2 .  The idea is that at very early or very late times Ho describes some set 
of free particles. We allow some of these particles to  approach each other and scatter 
under the influence of V ,  then look again a long time later when the outgoing particles 
are propagating freely under HO again. To first order in V ,  

T/2 . 
(b  l$~,(T/2)) = -2  J T I 2  (bl Vr(t) la) dt = -i(blVla) J ew*atdt, 

-T/2 -T/2 

where Wba = Eb - Ea. 

Show that for T + 00 the first order transition amplitude for general V can be written 
in the covariant form 

D Exercise 3.1 

(b  I$ I(O~>) = -2 Jd4s 4i (z )v4a(z ) ,  
where &(z) 
state of Ho, with energy E*. 

4i(x)e-Eit and &(x) is the usual Schrodinger wavefunction for a stationary 

The transition rate for time independent V is, 

2 4 sin2 (wbaT/2) 
4aT 

= J(blVla)J 
( ( b  l lh(T/2))  l2 

T 
If Eb # Ea, this probability tends to zero as T + 00. However, for Eb = Ea we use the 
result, 

For long times the transition rate becomes, 

&a = 2al(blvla)(26(Eb - E a ) .  (3.7) 

We need V small for the first order result to be useful and T large so that the delta- 
function approximation is good. However, T cannot be too large since the transition 
probability grows with time and we don’t want probabilities larger than one. 

If we allow for a number of final states Ib), with density p(&)  around energy Eb, the 
transition rate becomes, 

1 2‘T I (b I la) I 6 (Eb - Ea) p( Eb) dEb = 2ap(  Ea ) I (b I la) I * (3.8) 

This is Fermi’s golden rule. 

Justify the result of equation (3.6) and hence verify Fermi’s golden rule in equation (3.8). 

I’ll stop at first order in V .  The answer you get from the formal solution in equa- 
tion (3.5) depends on the form of V and the initial conditions. Your field theory course 
gives you a systematic way to perform perturbative calculations of transition amplitudes 
in field theories by the use of Feynman diagrams. In particular, you’ve seen the operator 
method of generating these diagrams, which I’ve mirrored in deriving the Golden Rule. 
Let’s now move on to see how to get from these amplitudes to cross-sections and decay 
rates. This corresponds to finding the density of states factor in the Golden Rule. 

 exercise 3.2 
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Figure 3.1 Scattering (a) and decay (b) processes. 

3.2 Phase Space 

We saw in the previous section that (b($~(co)) gives the probability amplitude to  go 
from state la) in the far past to state Ib) in the far future. In quantum field theory you 
calculate the amplitude to go from state li) to  state I f )  to be, 

where iMfi is the result obtained from a Feynman diagram calculation, and the overall 
energy-momentum delta function has been factored out (so when you draw your Feynman 
diagrams you conserve energy-momentum at every vertex). We have in mind processes 
where two particles scatter, or one particle decays, as shown in Figure 3.1. 

Attempting to  take the squared modulus of this amplitude produces a meaningless 
square of a delta function. This is a technical problem because our amplitude is expressed 
between non-normalisable plane wave states. These states extend throughout space-time 
so the scattering process occurs everywhere all the time. To deal with this properly you 
can construct normalised wavepacket states which do become well separated in the far 
past and the far future. We will be low-budget and put our system in a box of volume V. 
We also imagine that the interaction is restricted to act only over a time of order T. The 
final answers come out independent of V and T, reproducing the luxury wavepacket ones. 
We are in good company here: Nobel Laureate Steven Weinberg says [3], when discussing 
cross sections and decay rates, “. . . (as far as I know) no interesting open problems in 
physics hinge on getting the fine points right regarding these matters.” 

Relativistically normalised one particle states satisfy, 

(klk’) = ( 2 ~ ) ~ 2 w k 6 ~ ( k  - k‘), (3.10) 

but the discrete nonrelativistically normalised box states satisfy, 

We want to  know the transition probability from an initial state of one or two 
particles to  a set of final states occupying some region of k-space, where the density of 
states in the box normalisation is, 

d 3k 
box state density = - 

(2.)3 
(3.12) 
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recalling that the spacing of allowed momenta is 27r/L. A particular final state is labelled, 
I f )  = Ikl,. . . , k,,), and the initial state is, 

Ik) one particle 
'2) = { Ikl, k2) dV two particles 

(3.13) 

Note the factor of f l  in the two particle case. Without this, as V becomes large the 
probability that the two particles are anywhere near each other goes to zero. From the 
viewpoint of one particle hitting another, the one particle state is normalised to  one 
(probability 1 of being somewhere in the box), and the two particle state is normalised 
as a density (think of one particle having probability 1 of being in any unit volume and 
the second having probability 1 of being somewhere in the box). 

The transition probability from i to f is given by (3.9). We want to convert this to  the 
box normalisation. One ingredient of the conversion is the delta function of momentum 
conservation, arising from, 

using the box normalisation. Now, 

so we will say, 
l(2r)"6:T(p)l2 N VT (2r)464(p). 

The second ingredient is a factor of 1/(2E,V)1/2 for every particle in the initial or final 
state (here I am using Ei synonymously with wki). This comes from converting between 
relativistic and box normalisations for the states. 

To see where this arises from we write here the expression for a free field expanded in terms 
of annihilation and creation operators using three different normalisations: nonrelativistic, 
(klk') = J3(k - k'); relativistic, (klk') = (2~)~2wkJ~(k - k'); box, (klk') = 6kkl. 

4k.z + a:eik.z] nonrelativistic d3k 
[ake 

[a(k)e-'k'z + ~ t ( k ) e ' ~ . ~ ]  relativistic 
d3k J (2.13 bk 

1 [ake-ik.z + u,eik.z] box 

Since the discrete sum on k in the box case corresponds to J d3k V / ( ~ T ) ~ ,  we see that, 

I%, - a G f i l k ) b o x .  

The box states are normalised to one particle in volume V and the relativistic states have 
2Wk particles per unit volume. 
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So in the box normalisation, with one or two particles in the initial state and any number 
in the final state, 

1 1 
box amp = i M j i ( 2 ~ ) ~ 6 ~ ( P f  - Pi) [ 

out 

where the initial state energy product depends on the choice of normalisation in equa- 
tion 3.13 above. The squared matrix element is thus: 

1 
[box amp12 = IMfi12T(2~)464(Pf - Pi) n [-] n ['I , 

out 2 E f V  in 2Ei 

and the differential transition probability into a region of phase space becomes, 

1,  (3.14) differential prob relativistic density 
of final states unit time in 

where the relativistic density of final states, or rdfs, is, 

(3.15) 

You also sometimes hear the name LIPS, standing for Lorentz invariant phase space. Ob- 
serve that everything in the transition probability is Lorentz invariant save for the initial 
energy factor (using d3k / 2 E  = d4k d4(k2 - m2)>e(ko), which is manifestly Lorentz invari- 
ant, where E = (k2 + m2)1/2). I have smuggled in one extra factor, S, in equation (3.14) 
for the transition probability. If there are some identical particles in the final state, we 
will overcount them when integrating over all momentum configurations. The symmetry 
factor S takes care of this. If there ni identical particles of type i in the final state, then 

1 
ni! 

s=n-. (3.16) 

  exercise 3.3 
Show that the expression for two-body phase space in the centre of mass frame is given 
bY 

(3.17) 
d3k1 d3k2 1 

( 2 ~ ) ~ 6 ~ ( P  - kl - k 2 )  = --X1l2(s, m:, mi)dR*, 
(2T)3 2Wk, (2T)3 2wk2 3 2 ~ ~ s  

where s = P2 is the centre of mass energy squared, dR* is the solid angle element for the 
angle of one of the outgoing particles with respect to some fixed direction, and 

A(a, b, c )  = a2 + b2 + c2 - 2ab - 2bc - 2ca. (3.18) 

3.3 Cross Sections 

The cross section for two particles to scatter is a sum of the differential cross sections for 
scattering into distinct final states: 

1 1 
IT71 - 521 4E1Ez 

S 1 M fi I2D, transition prob - - do = 
unit time x unit flux 

(3.19) 
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Figure 3.2 2 + 2 scattering. 

where the velocities in the flux factor, 1/1$1 - $21, are subtracted nonrelativistically. I 
denote them with arrows to remind you that they are ordinary velocities, -not the spatial 
parts of 4-velocities. The amplitude-squared and phase space factors are manifestly 
Lorentz invariant. What about the initial velocity and energy factors? Observe that 

ElE2($1 - $2) = E2P1 - E1P2. 

In a frame where p1 and p2 are collinear, 

2 2  
lE2~1- E1p212 = ( ~ 1 . ~ 2 ) ~  - m p 2 ,  

and the last expression is manifestly Lorentz invariant. Hence the differential cross section 
is Lorentz invariant, as is the total cross section, 

3.3.1 Two-body Scattering 

An important special case is 2 + 2 scattering (see Figure 3.2), 

D Exercise 3.4 
Show that in the centre of mass frame the differential cross section is, 

(3.20) 

(3.21) 

The result of equation (3.21) is valid for any IMfiI2, but if lMfi12 is a constant you 

Invariant 2 + 2 scattering amplitudes are frequently expressed in terms of the 
can trivially get the total cross section. 

Mandelstam variables, defined by, 

(3.22) 

In fact there are only two independent Lorentz invariant combinations of the available 
momenta in this case, so there must be some relation between s ,  t and U. 
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D Exercise 3.5 
Show that  

s +- t + u = rn: + rnf + rnt + rni. 
DExercise 3.6 

Show that  for two body scattering of particles of equal mass rn, 

s>_4rn2, t 5 0 ,  U S O .  

3.4 Decay Rates 

With one particle in the initial state, 
total decay prob 1 

= - S 1 IMfi12D. unit time 2E final states 

Only the factor 1/2E is not manifestly Lorentz invariant. In the rest frame, for a particle 
of mass rn, 

1 
3 r - J 1 ~ ~ ~ 1 2 ~ .  

2m final states 
(3.23) 

This is the “decay rate.” In an arbitrary frame we find, (tdp/ut) = (rn/E)r, which 
has the expected Lorentz dilatation factor. In the master formula (equation 3.14) this is 
what the product of 1/2Ei factors for the initial particles does. 

3.5 Optical Theorem 

When discussing the Golden Rule, we encountered the evolution operator U(t’, t ) ,  which 
you also met in the field theory course. This takes a state at time t and evolves it to  
time t’. The scattering amplitudes we calculate in field theory are between states in 
the far past and the far future: hence they are matrix elements of U(o0, -m), which is 
known as the S-matrix, 

Since the S-matrix is unitary, we can write, 

(S - I ) (S t  - I) = -((S - I) + (S - Iy). (3.24) 

Note that S - I is the quantity of interest, since we generally ignore cases where there is 
no interaction (the “I” piece of S). In terms of the invariant amplitude, 

(f l  s - I li) = i ~ ~ ~ ( 2 4 4 6 4 ( ~ ~  - pi) 
( f l  (s - ~ ) t  li) = - i ~ , r f ( 2 4 4 6 4 ( ~ ~  - pi) 

Sandwiching the above unitarity relation (equation 3.24) between states li) and If), and 
inserting a complete set of states between the factors on the left hand side, 

r n J  
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where D, is the phase space factor for the state labelled by m, containing rm particles, 
D, = D,,,, (Pi; Icl, . . . , krm) .  Hence, 

m J  

If the intermediate state m contains ni identical particles of type i ,  there is an extra 
symmetry factor S, with, 

1 
n; ! 

S = H -  
i 

on the left hand side of the above equation to avoid overcounting. The same factor (see 
equation 3.16) appears in the cross section formula (equation 3.19) when some of the final 
state particles are identical. 

If 12) and I f )  are the same two particle state, 

4 E ~ p i  CT = 2 Im M,,. (3.25) 

this is the optical theorem, relating the forward part of the scattering amplitude to the 
total cross section. I f  particles of masses ml and 7 n 2  scatter, then ET = s1I2 and 4sp: = 
X(s, m:, m;), where X is the function defined in equation (3.18). Then the optical theorem 
reads, ImMii  = X~(s,rn:,m?j)a. 
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4 Quantum Electrodynamics 

In this section we are going to get some practice calculating cross sections and decay rates 
in QED. The starting point is the set of Feynman rules derived from the QED Lagrangian, 

Here, D, = 0, + ieA, is the electromagnetic covariant derivative, F,,, = 8,A, - &A, and 
(8.A)2/2 is the gauge fixing term for Feynman gauge. This gives the rules in Table 4.1. 

- m, 
which appears in the quadratic term in the fermion fields, as you expect from your 
field theory course. The derivation of the photon propagator, along with the need for 
gauge fixing, is also discussed in the field theory course. The external line factors are 
easily derived by considering simple matrix elements in the operator formalism, where 
they are left behind from the expansions of fields in terms of annihilation and creation 
operators, after the operators have all been (anti-)commuted until they annihilate the 
vacuum. In path integral language the natural objects to compute are Green functions, 
vacuum expectation values of time ordered products of fields: it takes a little more work 
to  convert them to  transition amplitudes and see the external line factors appear. 

The spinor indices in the Feynman rules are such that matrix multiplication is per- 
formed in the opposite order to that defining the flow of fermion number. The arrow on 

The fermion propagator is (up to  factors of i )  the inverse of the operator, 

For every . . . draw. .  . write . . . 

Internal photon line 

Internal fermion line 

Vertex 

Outgoing electron 
Incoming electron 
Outgoing positron 
Incoming positron 
Outgoing photon 
Incoming photon 

P a 

P-, 

0 Attach a directed momentum to every internal line 
0 Conserve momentum at every vertex 

Table 4.1 Feynman rules for QED. p ,  v are Lorentz indices and a, p are spinor indices. 
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Figure 4.1 Lowest order Feynman diagram for electron-muon scattering. 

the fermion line itself denotes the fermion number flow, not the direction of the momen- 
tum associated with the line: I will try always to indicate the momentum flow separately 
as in Table 4.1. This will become clear in the examples which follow. We have already 
met the Dirac spinors U and U. I will say more about the photon polarisation vector E 
when we need to use it. 

4.1 Electron-Muon Scattering 
To lowest order in the electromagnetic coupling, just one diagram contributes to this 
process. I t  is shown in Figure 4.1. The amplitude obtained from this diagram is 

Note that I have changed my notation for the spinors: now I label their momentum as an 
argument instead of as a subscript, and I drop the spin label unless I need to use it. In 
constructing this amplitude we have followed the fermion lines backwards with respect 
to fermion flow when working out the order of matrix multiplication. 

The cross-section involves the squared modulus of the amplitude, which is 

where the subscripts e and p refer to the electron and muon respectively and, 

Lye; = q P c )  YPU (Pa )@a ) YVU ( P c )  1 

with a similar expression for ~57;). 

Verify the expression for IMfi12. 

Usually we have an unpolarised beam and target and do not measure the polarisation 
of the outgoing particles. Thus we calculate the squared amplitudes for each possible spin 
combination, then average over initial spin states and sum over final spin states. Note that 
we square and then sum since the different possibilities are in principle distinguishable. 
In contrast, if several Feynman diagrams contribute to the same process, you have to 

D Exercise 4.1 

sum the amplitudes 
The spin sums 

labels on spinors): 

first. We will see examples of this below. 
are made easy by the following results (I temporarily restore spin 

(4.3) 
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D Exercise 4.2 
Derive the spin sum relations in equation (4.3). 

Using the spin sums we find, 

Since all calculations of cross sections or decay rates in QED require the evaluation of 
traces of products of gamma matrices, you will generally find a table of “trace theorems” 
in any quantum field theory textbook [l]. All these theorems can be derived from the 
fundamental anticommutation relations of the gamma matrices in equation (2.23) to- 
gether with the invariance of the trace under a cyclic change of its arguments. For now 
it suffices to  use, 

tr(GIY) 
tr(GIVd4 

tr(yp1 - e r ” ” )  

D Exercise 4.3 
Derive the trace results in equation 

= 4a.b 

= 0 for n odd 
= 4(a.b c-d - a-c  b-d + a.d bet) (4.4) 

(4.4) 
Using these results, and expressing the answer in terms of the Mandelstam variables 

of equation (3.22), we find, 

This can now be used in the 2 + 2 cross section formula (3.21) to  give, in the high energy 
limit, s, U >> rn:, rni, 

e4 s2 + u2 
(4.5) - - - -- d a  

dR* 3 2 ~ ~ s  t2 ’ 

for the differential cross section in the centre of mass frame. 

Derive the result for the electron-muon scattering cross section in equation (4.5). 

Other calculations of cross sections or decay rates will follow the same steps we have 
used above. You draw the diagrams, write down the amplitude, square it and evaluate 
the traces (if you are using spin sum/averages). There are one or two more wrinkles to  
be aware of, which we will meet below. 

D Exercise 4.4 

4.2 Electron-Electron Scattering 
Since the two scattered particles are now identical, you can’t just replace rn, by rn, in 
the calculation we did above. If you look at the diagram of Figure 4.1 (with the muons 
replaced by electrons) you will see that the outgoing legs can be labelled in two ways. 
Hence we get the two diagrams of Figure 4.2. 

The two diagrams give the amplitudes, 

ie2 - 
iM1 = -u(~c>r”u(pa)n(pd)~~u(pb), t 

ie2 - 
iM 2 = - - U  (Pd) r”u (Pa ) q P c  TpU (Pb) . 

U 
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Figure 4.2 Lowest order Feynman diagrams for electron-electron scattering. 

e- e+I P b  -$ P d  -$ :: n" 4 n- 4 

P b  -$ P d  -$ 

Figure 4.3 Lowest order Feynman diagrams for electron-positron scattering in QED. 

Notice the additional minus sign in the second amplitude, which comes from the anti- 
commuting nature of fermion fields. You should accept as part of the Feynman rules for 
QED that when diagrams differ by an interchange of two fermion lines, a relative minus 
sign must be included. This is important because 

so the interference term will have the wrong sign if you don't include the extra sign 
difference between the two diagrams. 

4.3 Electron-Positron Annihilation 

4.3.1 e+e- + e+e- 

For this process the two diagrams are shown in Figure 4.3, with the one on the right 
known as the annihilation diagram. They are just what you get from the diagrams for 
electron-electron scattering in Figure 4.2 if you twist round the fermion lines. The fact 
that the diagrams are related this way implies a relation between the amplitudes. The 
interchange of incoming particles/antiparticles with outgoing antiparticles/particles is 
called crossing. This is a case where the general results of crossing symmetry can be 
applied, and our diagrammatic calculations give an explicit realisation. Theorists spent 
a great deal of time studying such general properties of amplitudes in the 1960's when 
quantum field theory was unfashionable. 

4.3.2 

If electrons and positrons collide and produce muon-antimuon or quark-antiquark pairs, 
then the annihilation diagram is the only one which contributes. At sufficiently high 
energies that the quark masses can be neglected, this immediately gives the lowest order 
QED prediction for the ratio of the annihilation cross section into hadrons to that into 
u+u-. 

e+e- + p+p- and e+e- + hadrons 

. . I  

a(e+e- + hadrons) 
R E  = 3 x Q 2 f ,  

a(e+e- + p+p-) f 
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Figure 4.4 Feynman diagrams for Compton scattering. 

where the sum is over quark flavours f and Q f  is the quark’s charge in units of e .  The 
3 comes from the existence of three colours for each flavour of quark. Historically this 
was important: you could look for a step in the value of R as your e+e- collider’s CM 
energy rose through a threshold for producing a new quark flavour. If you didn’t know 
about colour, the height of the step would seem too large. Incidentally, another place 
the number of colours enters is in the decay of a 7ro to two photons. There is a factor of 
3 in the amplitude from summing over colours, without which the predicted decay rate 
would be one ninth of its real size. 

At the energies used today at LEP, of course, you have to remember the diagram 
with a 2 replacing the photon. We will say some more about this later. 

Show that the cross-section for e+e- -+ p+p- is equal to 47ra2/(3s), neglecting the lepton 
masses. 

D Exercise 4.5 

4.4 Compton Scattering 

The diagrams which need to be evaluated to compute the Compton cross section for 
ye + ye are shown in Figure 4.4. For unpolarised initial and/or final states, the cross 
section calculation involves terms of the form 

where X represents the polarisation of the photon of momentum p. Since the photon 
is massless, the sum is over the two transverse polarisation states, and must vanish 
when contracted with p, or p,. In addition, however, since the photon is coupled to 
the electromagnetic current J” = $yp$ of equation (2.5)) any term in the polarisation 
sum (4.7) proportional to pp or p’ does not contribute to the cross section. This is 
because the current is conserved, 8,JP = 0, so in momentum space p,JP = 0. The 
upshot is that in calculations you can use, 

- 

since the remaining terms on the right hand side do not contribute. 

4.5 Form Factors 

So far we have considered processes where the strong interactions were absent, or ignored. 
There are many electroweak processes where a complete computation would require a 
better understanding of QCD, especially its non-perturbative aspects, than we currently 
have. However, by using Lorentz and gauge invariance, and any other known symmetries 
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Figure 4.5 Electron-pion scattering (top diagram) and some contributions to the pion electro- 
magnetic form factor (lower diagrams). Wavy lines denote photons and curly lines are gluons. 
Ordinary lines between the shaded ellipses denote quarks. 

of a process, we can parcel up the strong interaction effects in a small number of invariant 
functions. Let’s see how this goes in an example, the electromagnetic form factors of pions 
and nucleons. 

4.5.1 Pion Form Factor 

Consider electron-pion scattering as depicted in the top diagram in Figure 4.5. The 
shaded blob represents all the strong interaction effects in the pion electromagnetic form 
factor. In the lower part of the figure are represented some contributions to the shaded 
blob. Note that the blob itself contains more blobs (the shaded ellipses) indicating the 
unknown wavefunction of the pion in terms of quarks. The electron’s coupling to the 
photon is understood in QED and has been discussed above. Let’s see how much we 
can say about the pion’s coupling to photons. This coupling is given by the matrix 
element (7r(p‘)l P ( 0 )  [ ~ ( p ) ) ,  where P ( 0 )  is the electromagnetic current at the origin. 
Using Lorentz covariance we can write, 

(7wl JW I7w = e [F(!I2)(P + P ’ Y  + G(q2)q’], 

where q = p - p‘. Electromagnetic gauge invariance implies that qPJ” = 0 so that 
G(q2) = 0. Hence all the strong interaction effects are contained in F(q2) and 

D Exercise 4.6 
Starting from the kinetic term in the Lagrangian for a free charged scalar field, a,@a,d, 
and introducing the electromagnetic field by minimal substitution, 8, +- 8, - ieA,, show 
that, to lowest order in perturbation theory F(q2) = 1 for all q2. Note that the change 
of sign in the coupling compared to QED is because QED involves the negatively charged 
electron, whilst here 4 is taken as the field which destroys positively charged objects and 
creates negatively charged ones. You may need to normal order the current. 

An additional general piece of information is that F ( 0 )  = 1 since at q2 = 0 the photon 
cannot resolve the structure of the pion. This result is a consequence of the conservation 
of the electromagnetic current, since the space integral of Jo gives the charge operator. 
For q2 # 0 we expect F(q2) to fall with q2 owing to the pion’s composite nature. 
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 exercise 4.7 
Given that the electric charge operator is defined by 

e& = 1 d3x J0(x), 

show that current conservation implies Q is time independent, and that F(0) = 1 for a 
positively charged pion. 

4.5.2 Nucleon Form Factor 

For nucleons there are two form factors consistent with Lorentz covariance, current con- 
servation and parity conservation (which holds for electromagnetic and strong interac- 
tions). They are defined as follows (again we are working to first order in electromag- 
netism) : 

where U and a are the nucleon spinors, and M the nucleon mass. At zero momentum 
transfer only the first term contributes and Fl(0)  = 1[0] for the proton[neutron]. The 
factor K is chosen so that F2(0) = 1: K is 1.79 for the proton and -1.91 for the neutron. 
In writing the expression (4.10), use is made of the Gordon identity, 

to replace a term in (p + p’)” with terms of the form given. Given the form factor 
expression you can compute the angular distribution of electrons in electron-nucleon 
scattering in terms of F1 and F2. 

Use Lorentz covariance, current conservation and parity invariance to show that there 
are two electromagnetic form factors for the nucleon in (4.10). 

D Exercise 4.8 
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5 Quantum Chromodynamics 
In the 1960's most theorists lost interest in quantum field theory. They were discouraged 
by the apparent non renormalisability of massive vector boson theories which precluded 
a field theory description of weak interactions. For the strong interactions, their strength 
and the menagerie of hadrons seemed also to preclude a field theory description. The 
renaissance of field theory came with the realisation that spontaneous symmetry breaking, 
the Higgs mechanism and the property of asymptotic freedom made renormalisable gauge 
theories viable candidates to describe the electroweak and strong interactions. 

Our discussion in this section will lead to the property of asymptotic freedom which 
enables us to make phenomenological predictions using perturbation theory for QCD. 
Since perturbative calculations beyond tree level are not in the scope of this course, the 
discussion will necessarily be somewhat qualitative. We'll proceed by going back to QED 

to introduce the idea of renormalisation then work up to the running coupling in QCD 
and thence to asymptotic freedom. 

QCD is a theory of interactions between spin-1/2 quarks and spin-1 gluons. I t  is a 
nonabelian gauge theory based on the group SU(3),  with Lagrangian, 

1 gauge fixing and 
4 + iqiq - m f M f  + ghosi terms 

L = --Ga Gapu 
f 

Here, a is a colour label, taking values from 1 to 8 for SU(3),  and f runs over the quark 
flavours. The covariant derivative and field strength tensor are given by, 

where the f a b c  are the structure constants of SU(3) and the T" are a set of eight in- 
dependent Hermitian traceless 3 x 3 matrix generators in the fundamental or defining 
representation (see the pre school problems and the quantum field theory course). 

As in QED gauge fixing terms are needed to define the propagator and ensure that 
only physical degrees of freedom propagate. The gauge fixing procedure is more compli- 
cated in the nonabelian case and necessitates, for certain gauge choices, the appearance 
of Faddeev-Popov ghosts to cancel the contributions from unphysical polarisation states 
in gluon propagators. However, the ghosts first appear in loop diagrams, which we will 
not compute in this course. 

There are no Higgs bosons in pure QCD. The only relic of them is in the masses for 
the fermions which are generated via the Higgs mechanism, but in the electroweak sector 
of the standard model. 

A fundamental difference between QCD and QED is the appearance in the nonabelian 
case of interaction terms (vertices) containing gluons alone. These arise from the nonva- 
nishing commutator term in the field strength of the nonabelian theory in equation (5.2). 
The photon is electrically neutral, but the gluons carry the colour charge of QCD (specif- 
ically, they transform in the adjoint representation). Since the force carriers couple to 
the corresponding charge, there are no multi photon vertices in QED but there are multi 
gluon couplings in QCD. This difference is crucial: it is what underlies the decreasing 
strength of the strong coupling with increasing energy scale. 
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Figure 5.1 Schematic depiction of deep inelastic scattering. An incident lepton radiates a 
photon which knocks a quark out of a proton. The struck quark is detected indirectly only 
after hadronisation into observable particles. 

In QCD, hadrons are made from quarks. Colour interactions bind the quarks, produc- 
ing states with no net colour: three quarks combine to make baryons and quark-antiquark 
pairs give mesons. It is generally believed that the binding energy of a quark in a hadron 
is infinite. This property, called confinement, means that there is no such thing as a free 
quark. Because of asymctotic freedom, however, if you hit a quark with a high energy 
projectile it will behave in many ways as a free (almost) particle. For example, in deep 
inelastic scattering, or DIS, a photon strikes a quark in a proton, say, imparting a large 
momentum to it. Some strong interaction corrections to this part of the process can be 
calculated perturbatively. As the quark heads off out of the proton, however, the brown 
muck of myriad low energy strong interactions cuts in again and “hadronises” the quark 
into the particles you actually detect. This is illustrated schematically in Figure 5.1. 

5.1 Renormalisation: An Introduction 
5.1.1 Renormalisation in Quantum Electrodynamics 

Let’s start by going back to QED and considering how the electric charge is defined and 
measured. This will bring up the question of what happens when you try to compute 
higher loop corrections. In fact, the expansion in the number of loops is an expansion in 
Planck’s constant h, as you can show if you put back the factors of h for once. 

The electric charge 6 is usually defined as the coupling between an on-shell electron 
and an on-shell photon: that is, as the vertex on the left hand side of Figure 5.2 with 
P9 = P2 = m2, where m is the electron mass, and q2 = 0. It is 6 and not the Lagrangian 
parameter e which we measure. That is, 

C2 1 
47r 137’ 
-- - e 

We call 6 the renormalised coupling constant of QED. We can calculate 6 in terms of e 
in perturbation theory. To one loop, the relevant diagrams are shown on the right hand 
side of Figure 5.2, and the result takes the form, 
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Figure 5.2 Diagrams for vertex renormalisation in QED up to one loop. 

1-31: 
Figure 5.3 Some diagrams for electron-electron scattering in QED up to one loop. 

where al and bl are constants obtained from the calculation. The e3 term is divergent, 
so we have introduced a cutoff M to regulate it. This is called an ultraviolet divergence 
since it arises from the propagation of high momentum modes in the loops. The cutoff 
amounts to  selecting only those modes where each component of momentum is less than 
M in magnitude. Despite the divergence in (5.3), it still relates the measurable quantity 2 
to  the coupling e we introduced in our theory. This implies that  e itself must be divergent. 
The property of renormalisability ensures that in any relation between physical quantities 
the ultraviolet divergences cancel: the relation is actually independent of the method used 
to  regulate divergences. 

As an example, consider the amplitude for electron-electron scattering, which we 
considered at tree level in section 4.2. Some of the contributing diagrams are shown in 
Figure 5.3, where the crossed diagrams are understood (we showed the crossed tree level 
diagram explicitly in Figure 4.2). Ultraviolet divergences are again encountered when 
the diagrams are evaluated, and the result is of the form, 

M2 
m2 

i ~ f ~  = coe2 + e4 [c1 In - + dl] + - - (5.4) 

where CO, c1 .and dl are constants, determined by the calculation. In order to evalu- 
ate Mfi  numerically, however, we must express it in terms of the known parameter G. 
Combining (5.3) and (5.4) yields, 

where the ellipsis denotes terms of order e6 and above. Since IMfiI2 is measurable, 
consistency (renormalisability) requires, 
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This result is indeed borne out by the actual calculations, and the relation between M f i  
and E contains no divergences: 

iMj i  = cog2 + Z4(dl - 2blco) + 6 ( d 6 ) .  (5.6) 

To understand how this cancellation of divergences happened we can study the con- 
vergence properties of loop diagrams (although we shall not evaluate them). Consider 
the third diagram on the right hand side in Figure 5.2 and the middle diagram in Fig- 
ure 5.3. These both contain a loop with one photon propagator, behaving like l / k 2  at 
large momentum k, and two electron propagators, each behaving like l/k. To evaluate 
the diagram we have to integrate over all momenta, leading to an integral, 

d4k 
I l a r g e  k F’ (5.7) 

which diverges logarithmically, leading to the lnM2 terms in (5.3) and (5.4). Notice, 
however, that the divergent terms in these two diagrams must be the same, since the 
divergence is by its nature independent of the finite external momenta (the factor of two 
in equation (5.5) arises because there is a divergence associated with the coupling of each 
electron in the scattering process). In this way we can understand that at least some of 
the divergences are common in both (5.3) and (5.4). What about diagrams such as the 
third box-like one in Figure 5.3? Now we have two photon and two electron propagators, 
leading to, 

d4k 
I l a r g e  k Ic6‘ 

This time the integral is convergent. 
Detailed study like this reveals that ultraviolet divergences always disappear in re- 

lations between physically measurable quantities. We discussed above the definition of 
the physical electric charge e.  A similar argument applies for the electron mass: the 
Lagrangian bare mass parameter m is divergent, but we can define a finite physical mass 
m. 

In fact you find that all ultraviolet divergences in QED stem from graphs of the 
type shown in Figure 5.4 and known as the primitive divergences. Any divergent graph 
will be found on inspection to contain a divergent subgraph of one of these basic types. 
For example, Figure 5.5 shows a graph where the divergence comes from the primitive 
divergent subgraph inside the dashed box. Furthermore, the primitive divergences are 
always of a type that would be generated by a term in the initial Lagrangian with a 
divergent coefficient. Hence by rescaling the fields, masses and couplings in the original 
Lagrangian we can make all physical quantities finite (and independent of the exact 
details of the adjustment such as how we regulate the divergent integrals). This is what 
we mean by renormalisability. 

This should be made clearer by an example. Consider calculating the vertex correc- 
tion in QED to one loop, A = ~ ( p ’ )  [ A y p  + Bap”q, + Cq2yp + * .]u(p). 

- 80 - 



Figure 5.4 Primitive divergences of QED. 

l-------1 

Figure 5.5 Diagram containing a primitive divergence. 

The calculation shows that A is divergent. However, we can absorb this by adding a 
cancelling divergent coefficient to the $d$ term in the QED Lagrangian (4.1). The B 
and C terms are finite and unambiguous. This is just as well, since an infinite part of B,  
for example, would need to be cancelled by an infinite coefficient of a term of the form, 

which is not available in (4.1). 
In fact, the B term gives the QED correction to the magnetic dipole moment, g,  of 

the electron or muon (see page 160 of the textbook by Itzykson and Zuber [l]). These 
are predicted to be 2 at tree level. You can do the one-loop calculation (it was first done 
by Schwinger between September and November 1947 [4]) with a few pages of algebra to 
find, 

g = 2  1 + - .  ( 3 
This gives g/2 = 1.001161, which is already impressive compared to the experimental 
values [2]: 

(g/2)e~e,~,0n = 1.001 159652193( 10) , 
(g/2)mu0n = 1.001165923(8). 

Higher order calculations show that the electron and muon magnetic moments differ at 
two loops and above. Kinoshita and collaborators have devoted their careers to  these 
calculations and are currently at the four loop level. Theory and experiment agree for 
the electron up to the 11th decimal place. 

The C term gives the splitting between the 2 . ~ ~ 1 ~  and 2p1/2 levels of the hydrogen 
atom, known as the Lamb shift. Bethe's calculation [5] of the Lamb shift, done during a 
train ride to Schenectady in June 1947, was an early triumph for quantum field theory. 
Here too, the current agreement between theory and experiment is impressive. 

5.1.2 Bare Versus Renormalised 

In discussing the vertex correction in QED, we said that the divergent part of the A term 
could be absorbed by adding a cancelling divergent coefficient to the $~?,LJ term in the 
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QED Lagrangian (4.1). When a theory is renormalisable, all divergences can be removed 
in this way. Thus, for QED, if the original Lagrangian is (ignoring the gauge-fixing term), 

L = - - Fp,, Fp” + i$811, - eq411, - m$$, 
1 
4 

then redefine everything by: 

e = Ze2 = - m = Zmm, 

where the subscript R stands for “renormalised.” In terms of the renormalised fields, 

Writing each Z as Z = 1 + 6 2 ,  reexpress the Lagrangian one more time as, 

Now it looks like the old lagrangian, but written in terms of the renormalised fields, with 
the addition of the 6 2  countertemns. Now when you calculate, the counterterms give you 
new vertices to include in your diagrams. The divergences contained in the counterterms 
cancel the infinities produced by the loop integrations, leaving a finite answer. 

The old A and 11, are called the bare fields, and e and m are the bare coupling and 
mass. 

Note that to maintain the original form of L, you want Z1 = 2 2 ,  so that the 8 and 
24 terms combine into a covariant derivative term. This relation does hold, and is a 
consequence of the electromagnetic gauge symmetry: it is known as the Ward identity. 

5.2 Renormalisation in Quantum Chromodynamics 

We now try to repeat the procedure we used for the coupling in QED, but this time in 
QCD, which is also a renormalisable theory. If we define the renormalised coupling 6 as the 
strength of the quark-gluon coupling, then in addition to the diagrams of Figure 5.2, with 
the photons replaced by gluons, there are more diagrams at one loop, shown in Figure 5.6. 
Looking at the second of these new diagrams, it is ultraviolet divergent (containing a 
lnM2 term), but also infrared divergent, since there is no mass to regulate the low 
momentum modes. In QED all the loop diagrams contain at least one electron propagator 
and the electron mass provides an infrared cutoff (you still have to worry when the 
electron is on-shell, but this is not our concern here). In the second diagram of Figure 5.6 
there is no quark in the loop. Now suppose we choose to define the renormalised coupling 
off-shell at some non-zero q2.  The finite value of q2 provides the infrared regulator and 
the diagram has a term proportional to ln(M2/q2). 

Thus in QCD we can’t define a physical coupling constant from an on-shell vertex. 
This is not really a serious restriction since the QCD coupling is not directly measurable 
anyway. Now the renormalised coupling depends on how we define it and therefore on 

-82 -  



Figure 5.6 Additional diagrams for vertex renormalisation in QCD up to one loop. The dashed 
line denotes a ghost. For some gauge choices and some regularisation methods not all of these 

, are required. 

at least one momentum scale (in almost all practical cases, only one momentum scale). 
The renormalised strong coupling is thus written, 

When physical quantities are expressed in terms of ij(q2) the coefficients of the pertur- 
bation series are finite. 

It would of course be possible to define the renormalised QED coupling to  depend on 
some momentum scale. However, the on-shell definition used above is a natural one to 
pick. 

You can define counterterms for QCD in the same way as was demonstrated for 
QED. Now the gauge coupling g enters in many terms where i t  could get renormalised 
in different ways. In fact, the gauge symmetry imposes a set of relations between the 
renormalisation constants, known as the Slavnov-Taylor identities, which generalise the 
Ward identity of QED. 

5.3 Asymptotic Freedom 

We have just seen that the renormalised coupling in QCD, ij(q2), depends on the mo- 
mentum at which it is defined. We say it depends on the renormalisation scale, and 
commonly refer to i j  as the “running coupling constant.” We would clearly like to know 
just how i j  depends on q2,  so we calculate the diagrams in Figures 5.2 and 5.6, to  get the 
first terms in a perturbation theory expansion: 

where a1 and bl are constants and g is the “bare” coupling from the Lagrangian (5.1). 
I have switched to  using p2 in place of q2,  and have written i j  as a function of p for 
convenience. From this equation it follows that, 

The discovery by Politzer and by Gross and Wilczek, in 1973, that a1 > 0 led to the 
possibility of using perturbation theory for strong interaction processes, since i t  implies 
that  the strong interactions get weaker at high momentum scales - ij(00) = 0 is a stable 
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Figure 5.7 Running of the strong coupling constant with renormalisation scale. 

solution of the differential equation (5.9). Keeping just the j3  term, we can solve (5.9) 
to find, 

(5.10) 

where A is a constant of integration and PO = 32n2al. Thus as(p) decreases logarith- 
mically with the scale at which it is renormalised, as shown in Figure 5.7. If for some 
process the natural renormalisation scale is large, there is a chance that perturbation 
theory will be applicable. The value of P O  is, 

2 
3 

P O  = 11 - - n f ,  (5.11) 

where nf  is the number of quark flavours. The crucial discovery when this was first 
calculated was the appearance of the “11” coming from the self-interactions of the gluons 
via the extra diagrams of Figure 5.6. Quarks, and other non-gauge particles, always con- 
tribute negatively to  PO. Nonabelian gauge theories are the only ones we know where you 
can have asymptotic freedom (providing you don’t have too much “matter” - providing 
the number of flavours is less than or equal to 16 for QCD). 

What is the significance of the integration constant A? The original QCD La- 
grangian (5.1) contained only a dirnensionless bare coupling g (the quark masses don’t 
matter here, since the phenomenon occurs for a pure glue theory), but now we have a 
dimensionful parameter. The real answer is that  the radiative corrections (in all field 
theories except finite ones) break the scale invariance of the original Lagrangian. In 
QED there was an implicit choice of scale in the on-shell definition of 6. Lacking such a 
canonical choice for QCD, you have to say “measure a, at p = Mz” or “find the scale 
where a, = 0.2,” so that a scale is necessarily involved. The phenomenon was called 
dimensional transmutation by Coleman. A is given by, 

(5.12) 

and is p-independent. The explicit p dependence is cancelled by the implicit p depen- 
dence of the coupling constant. Today it has become popular to  specify the coupling by 
giving the value of A itself. 

We’ve seen that the coupling depends on the scale at which it is renormalised. 
Moreover, there are many ways of defining the renormalised coupling at a given scale, 
depending on just how you have regulated the infinities in your calculations and which 
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momentum scales you set equal to p. The value of j ( p )  thus depends on the renormal- 
isation scheme you pick, and with it, A. In practice, the most popular scheme today 
is called modified minimal subtraction, MS, in which integrals are evaluated in 4 - E 

dimensions and divergences show up as poles of the form e-" for positive integer n. In 
the particle data book [2] you will find values quoted for Am around 200MeV (it also 
depends on the number of quark flavours). Don't buy a value of A unless you know which 
renormalisation scheme was used to define it. 

In Figure 5.7 you see that the coupling blows up at p = A. This is an artifact of 
using perturbation theory. We can't trust our calculations if as(p) > 1. In practice, 
you can perhaps use scales for p down to about 1 GeV, but not much lower, and 2 GeV 
is probably safer. This region is a murky area where people try to match perturbative 
calculations onto results obtained from a variety of more or less kosher techniques. 

Extending the expansion of 3 in terms of g in (5.8) to two loops gives 
D Exercise 5.1 

with a similar equation for tj(p0) in terms of 9. Renormalisability implies that j ( p )  can 
be expanded in terms of lj(po), 

n=O 

where the X, are finite coefficients. Show that this implies that a2 is determined once 
the one loop coefficient al is known. In fact a1 determines all the terms (a,lnp)", called 
the leading logarithms: from a one loop calculation, you can sum up all the leading 
logarithms. 

For QED there is no positive contribution to the beta function, so the electromagnetic 
coupling has a logarithmic increase with renormalisation scale. However the effect is small 
even going up to LEP energies: Q goes from 1/137 to about 1/128. The so called Landau 
pole, where Q blows up, is safely hidden at an enormous energy scale. 

5.4 Applications 

In this section we will briefly consider some places where perturbative QCD can be applied. 

5.4.1 e+e- + hadrons 

In section 4.3.2 we considered the ratio R of the annihilation cross section for e+e- into 
hadrons to that into p+p-. The result we found from the lowest order annihilation 
diagram proceeding via an intermediate virtual photon was, 

a(e+e- + hadrons) 
a(e+e- + p+p-) R G  = 3 x Q y ,  

f 
(5.13) 

where I remind you that sum is over quarks f with Qf the quark's charge in units of e. 
Now I would like to extend the discussion in two ways: QED and QCD corrections, and 
contributions of intermediate 2 bosons. 
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Figure 5.8 QED radiative corrections in e+e- annihilation. 

Figure 5.9 QCD radiative corrections in e+e- annihilation. 

Turning first to QED corrections, consider the two diagrams in Figure 5.8 illustrating 
two possibilities. The graph on the left contributes to the order a correction to the 
amplitude. It is ultraviolet divergent, but we have discussed above how to deal with this. 
However, it is also infrared divergent when the momentum of the photon in the loop goes 
to zero. The treatment of this problem involves a cancellation of divergences between 
this graph and the bremsstrahlung diagram on the right of Figure 5.8. Physically, limited 
detector resolution means you can’t tell if the final state you detect is accompanied by one 
(or infinitely many) very soft photons. So, the rate you calculate should also include these 
undetected photons, and in summing all the terms, the infrared divergences disappear. 
Since quarks have electric charge, we can also, of course, have QED corrections where the 
photon lines connect to the quark legs of the annihilation diagram 

For the strong interactions, if as is not too large and we aren’t near a hadronic 
resonance, then we expect that calculating the diagrams in Figure 5.9 will give the leading 
QCD corrections. The gluon is exchanged only between the quarks since the incoming 
ese- don’t feel the strong force. The result of the computation is 

What value should we choose for p in this expression? To answer this you need to know 
that higher order terms in the perturbation series contain powers of ln(s/p2), where s is 
the square of the centre of mass energy. So, to avoid large coefficients in the higher order 
terms, the preferred choice is p2 N s. Observe that the leading order graph predicts a 
back-to-back qq pair. Owing to hadronisation, what we actually see is a pair of back- 
to-back jets. Experimentally, the jets follow the angular distribution predicted for the 
underlying qij process, that is, a (1 + cos2 8) distribution, where 8 is the scattering angle 
in the centre of mass frame. Three jet events can arise from QCD bremsstrahlung where 
a “hard” (high momentum) gluon radiates from one of the quark legs (see Figure 5.10). 
The observation of such three jet events at DESY in the 1980’s was hailed as the “discovery 
of the gluon.” 

At present day e+e- colliders, the most important contributions to e+e- annihilation 
come from other diagrams in the standard model. In Figure 5.11 we show two diagrams 
where the ese- can annihilate into a neutral 2 boson or a neutral Higgs scalar, Ho. The 
2 and Higgs propagators contain factors 1 / ( q 2  - m2) where q2 = s and m refers to the 
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Figure 5.10 QCD bremsstahlung producing a three jet event. 

Figure 5.11 2 bosons and Higgs particles in e+e- annihilation. 

2 or Higgs mass respectively. For the 2 graph, the ratio of its amplitude to the QED 
amplitude is, 

M z  q2 
- m  

MQED q2 - m i ’  

M HO q2 memg 

MQED q2 -m2z & * 

The extra factors of the electron and quark masses for the Higgs contribution arise 
because of the standard model mass generation mechanism (see your standard model 
lectures), and the factor of me means that the 2 contribution is most important. These 
amplitude ratios make it clear that as the centre of mass energy approaches mZ, the 2 
process will dominate the pure QED one. This, of course, is exactly the situation at LEP. 

I will not go further with this subject, but in closing I note that the agreement 
between the LEP results and the standard model depends on the inclusion of radiative 
corrections. This agreement provides compelling evidence for the quantum field theoretic 
aspects of the standard model. 

In the Higgs case the ratio is, 

- m  

5.4.2 

The process of interest is 

Deep Inelastic Lepton Hadron Scattering 

lepton + hadron + lepton + X, 

where X denotes “anything” and the momentum transfer q between the initial and final 
leptons is large. The initial state lepton may be an electron, muon or neutrino, and 
the interaction can proceed via the exchange of a photon, W or 2. In Figure 5.12 we 
illustrate this for electron-proton deep inelastic scattering (DIS), mediated by a photon. 
The photon couples to one of the qurks in the proton, and since the interaction of the 
photon and lepton is understood, the strong interaction physics resides in the virtual- 
photon-proton scattering amplitude. 

Choose a Lorentz frame in which the proton is highly relativistic and let the struck 
quark carry a fraction 5 of the proton’s momentum p. Neglecting the struck quark’s 
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photon L 
Figure 5.12 DIS process and a QCD correction. 

transverse momentum, since the transverse momentum of secondary particles in hadronic 
experiments is generally small, we have, 

where we assume the struck quark is nearly on shell and has negligible mass. This leads 

2 
to 1 

- e = - -  q -  - x. 
2p.q 

The fraction of the proton's momentum carried by 
kinematic variable x (known as Bjorken's variable) 
DIS cross section thus provide information 'about the 
inside hadrons. 

(5.14) 

the struck quark is given by the 
Measurements of the differential 

momentum distribution of quarks 

What can we say about this process in perturbation theory? In calculating higher 
order contributions such as that from gluon radiation in the right hand diagram in Fig- 
ure 5.12, there is an important difference from the calculation of the R ratio for e+e- 
annihilation in (5.13). The region of phase space where the struck quark is nearly on 
shell is important, as was anticipated above in the identification of t with x in (5.14). 
This manifests itself in the, appearance of terms of the form a," ln"(q2/X2), where X is 
some lower cutoff on the quark's momentum. The choice of X depends on details of the 
proton wavefunction and hence these terms can't be calculated in perturbation theory. 
In other words, the relevant momenta are small, and DIS cross sections are not calculable 
in perturbation theory. However, for large q2,  it is possible to  to compute the evolution 
of these cross sections with q2,  since these effects depend on the region of phase space 
where the quark is far off shell (q2 >> h2). So, in summary, although DIS cross sections are 
not themselves calculable, their dependence on q2 is. This is sufficient for a considerable 
amount of phenomenology. 

DIS cross sections, and hence the momentum distribution of quarks in a proton, 
depend on q2. As q2 increases, theory predicts that  there should be fewer quarks at 
large x and more at small x. This result has a physical interpretation. Imagine probing 
a proton with a virtual photon and seeing a quark carrying fraction y of the proton's 
momentum. If you increase the photon energy, you may see that what you thought was a 
quark with momentum yp is actually a quark with momentum xp together with a gluon 
of momentum (y - x)p. Thus the total momentum of the quark and gluon is yp and the 
quantum numbers of the pair are those of a single quark. In the first case, the pair was 
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Figure 5.13 Drell-Yan process and a QCD correction. 

not resolved, but in the second case we see that since x < y the quark’s momentum is 
less now than when we looked with a lower energy photon. 

There is currently great interest in DIS processes at HERA, which is allowing us to 
explore smaller values of z, giving a new testing ground for theoretical ideas. 

5.4.3 Drell-Yan and Related Processes 

Now consider a process with two initial state hadrons. For illustration, consider the 
Drell-Yan process, 

hadron + hadron + e+(pS) + e-(p-) + X ,  

where the centre of mass energy of the hadrons and the invariant mass of the lepton 
pair are large and comparable. A parton model for this process, proposed by Drell and 
Yan is illustrated in Figure 5.13. A quark from one of the initial hadrons, labelled with 
subscript 1 in the figure, annihilates an antiquark from the other hadron, producing a 
virtual photon which in turn decays into a lepton-antilepton pair. 

The momentum distribution of the quarks in the initial state hadrons can be deter- 
mined from DIS experiments, so the process is calculable in terms of those distributions: 

(5.15) 

where s = (p1+p2)~  and q,j(x) is the probability density for finding a quark of flavour f 
in hadron i carrying a fraction z of its momentum (similarly for qif>. Now consider some 
higher order correction such as the gluon radiation graph on the right of Figure 5.13. 
Just as for DIS there are important contributions from the “long-distance” region of 
phase space, where the quark and antiquark are almost on-shell. However, close study 
reveals that these long-distance contributions are precisely the same as in DIS, so can 
be absorbed into the quark distribution functions. Thus the Drell-Yan and DIS cross 
sections can be related in perturbation theory. The relation is just equation (5.15) with 
the qif(xi) replaced by qif(zi, M 2 ) ,  which is the probability density determined from DIS 
experiments with q2 = M2.  There are further perturbative corrections to (5.15), but 
the large logarithms coming from long-distance physics can always be absorbed into the 
distribution functions. 
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The factorisation of long distance effects into the distribution functions is a common 
feature of hard inclusive processes, including, besides Drell-Yan production, the produc- 
tion of particles or jets with large transverse momenta. In each case the cross section is 
a convolution of the partonic distribution functions with the cross section for the quark 
or gluon hard scattering process. Thus hadrons can be viewed as broad band beams of 
quarks and gluons, with a known (experimentally determined) momentum distribution. 
These beams are what we use to search for the Higgs scalar, or signals of new physics 
such as technicolour or supersymmetry - but that is all material for another course. 
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A Pre School Problems 

The main aim of this course will be to teach the techniques required for performing 
simple calculations of amplitudes, cross sections and decay rates, particularly in Quan- 
tum Electrodynamics but also in Quantum Chromodynamics. Some aspects of quantum 
mechanics, special relativity and electrodynamics will be assumed during the lectures at 
the school. The following problems should be helpful in consolidating your knowledge in 
these areas. The solutions can be found in many standard textbooks. 

Probability Density and Current Density 

Starting from the Schrodinger equation for the wave function $(x,t) ,  show that the 
probability density p = $J*$ satisfies the continuity equation 

a P  - + V * J = O  
at 

where 

What is the interpretation of J ?  

Rotations and the Pauli Matrices 

Show that a 3-dimensional rotation can be represented by a 3 x 3 orthogonal matrix R 
with determinant +1 (Start with x' = Rx, and impose x'-x' = x-x). Such rotations form 
the special orthogonal group, SO(3). 

For an infinitesimal rotation, write R = I + i A  where I is the identity matrix and 
A is a matrix with infinitesimal entries. Show that A is antisymmetric (the i is there to 
make A hermitian). 

Parameterise A as 

A = (-;u2 ius ;lr' 0 -ial i ; )  X a i L ;  i=l 

where the U;  are infinitesimal and verify that the Li satisfy the angular momentum 
commutation relations 

Note that the Einstein summation convention is used here. In general, I will switch 
around between different notational conventions without warning. You should be able to 
tell from the context what is meant: notation should be your slave, not your master. 

[L;, Lj] = i6ijkLk 

The Pauli matrices 0; are, 
.I=(; i), . 2 = ( p  ; 2 ) ,  1 0  -1). 

Verify that satisfy the same algebra as L;. If the two-component spinor 

transforms into (I + ia.a/2)7) under an infinitesimal rotation, check that $t$ is invariant 
under rotations. 
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Raising and Lowering Operators 

From the angular momentum commutation relations, 

[Li , Lj] = i € i j I ,  LI, 

show that the operators 
L* = L1 f iL2 

satisfy 
[L,, L-] = 2L3 
[L*, L3] = TL* 

and show that 

where L2 = L:+ Li+ Li. From the last commutator it follows that there are simultaneous 
eigenstates of L2 and L3. Let $lm be such an eigenvector of L2 and L3 with eigenvalues 
Z(Z  + 1) and m respectively. Show that each of Lk$lm either vanishes or is an eigenstate 
of L2 with eigenvalue Z ( Z  + 1) and of L3 with eigenvalue rn f 1. 

[L2, L3] = 0 

Four Vectors 

A Lorentz transformation on the coordinates x p  = (ct,x) can be represented by a 4 x 4 
matrix A as follows: 

x'p = ApUxu 

For a boost along the x-axis to velocity v, show that 

where P = v/c and y = (1 - ,O2)-lI2 as usual. 
By imposing the condition 

where 
1 0  0 

g p w =  (i jl ;1 jl) 
show that 

gru Ap,Au, = gpa or ATgA = g 

This is the analogue of the orthogonality relation for rotations. Check that it works for 
the A given by equation (A.l) above. 

Now introduce 
xp = gpux' 
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and show, by reconsidering equation (A.2) using xpx,,, or otherwise, that 

x ;  = x , ( A - ~ ) ” , ,  

Vectors A’’ and B,, that transform like x” and x,, are sometimes called contravariant 
and covariant respectively. A simpler pair of names is vector and covector. A particularly 
important covector is obtained by letting d/dx” act on a scalar 4: 

Show that a,, does transform like x,, and not xf’. 

Electromagnet ism 

The four Maxwell equations are: 

dE V x B = /LOJ + /LOCO- 
at 

dB 
V x E = - -  

at 

Which physical laws are represented by each of these equations? Show that 

ap - + V * J = O  at 
and explain the significance of this equation. Verify that it can be written in manifestly 
covariant form 

a,,Jp = 0 

where JP = (cp, J ) .  
Introduce scalar and vector potentials q5 and A by defining B = V x A and E = 

-Vq5 - d A / a t ,  and recall the gauge invariance of electrodynamics which says that E 
and B are unchanged when 

a A  
A + A + V A  and q 5 + q 5 - -  

at 

for any scalar function A. Using this gauge freedom we can set 

Assuming that 4 and A can be combined into a four vector A,, = (4/c, A) ,  this can be 
written as a,AP = 0, which is known as the Lorentx gauge condition. Defining 0 
show that with this condition Maxwell’s equations are equivalent to 

The tensor F’, is defined by 
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How many independent components does Fpv have? Rewrite F,, in terms of E and B. 
Show that. 

where 
+1 
-1 

if pupa is an even permutation of 0123 
if pvpa is an odd permutation of 0123 E~~~~ = { 0 otherwise 

This gives the relativistic invariants which can be constructed from E and B. 

Group Theory: in Particular S U ( N )  
Unitary matrices U satisfy UtU = I. Verify that they form a group by showing that 
W = UV is unitary if U and V are. In general, you should also show that there is an 
identity element and that every U has an inverse, but these are both obvious. U ( N )  is 
the group of complex unitary N x N matrices and S U ( N )  is the subgroup of matrices 
with determinant +l. 

Let U be a U(N )  matrix close to the identity. Write 

U = I l + i G  

where G has infinitesimal entries. Show that G is hermitian. If, in addition, U has 
determinant 1, so U E S U ( N ) ,  show that G is traceless. 

Any N x N traceless hermitian matrix can be written as a linear combination of a 
chosen basis set. So, for any G we can choose infinitesimal numbers ~i such that 

N2-1 
G = ~iTi 

a= 1 

where the Ti are our basis. Explain why the summation runs from 1 to N2 - 1. 
Show that [ T i , T j ]  is antihermitian and traceless, and hence can be written 

[Ti, T j ]  = i f i j k T k  64-31 

for some constants f j j k .  The commutation relations between the different Ti define the Lie 
algebra of S U ( N ) .  The T, are called the generators and the f i j k  are called the structure 
constants. 

Find a set of 3 independent 2 x 2 matrices which are generators for SU(2)  and a set 
of 8 independent 3 x 3 generators for SU(3). 

Verify the Jacobi identity, 

and hence show that 

Define a new set of ( N 2  - 1) x (N2 - 1) matrices 
f j k l f i l m  + f k i l f j l m  + f a j l f k l m  = 0 
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and show that they obey the same commutation relations as the 7’’ in equation (A.3). The 
TAj define the adjoint representation. The W’s  of the weak interactions and the gluons 
of the strong interactions belong to the adjoint representations of s U ( 2 ) ~ ,  left-handed 
weak SU(2) ,  and SU(3),  the strong interaction colour algebra, respectively. 

The generators, and 
near the identity. Other 
infinitesimal “rotations” 

hence the algebra, were found by looking at group elements 
group elements can be recovered by combining lots of these 

where the 0; are finite. This construction generates what mathematicians call a simply 
connected group. There is a theorem stating that every Lie algebra comes from exactly 
one simply connected group: SU(N)  and its algebra give us one example. 

However, we have seen that both SU(2)  and the rotation group SO(3) have the 
same, angular momentum, algebra. What is going on? It  must be that SO(3) is not 
simply connected. In fact, there is a mapping, called a covering, from SU(2)  to SO(3) 
which preserves the group property: that is if U E SU(2)  is mapped to f ( U )  E SO(3), 
then f ( U V )  = f ( U ) f ( V ) .  In the SU(2)  + SO(3) case, two elements of SU(2) are 
mapped on to every element of SO(3). Whenever a group G has the same Lie algebra as 
a simply connected group S there must be such a covering S + G. 

The double covering of SO(3) by SU(2) underlies the behaviour of spin-1/2 and 
other half-odd-integer spin particles under rotations: they really transform under SU( 2), 
and rotating them by 27r only gets you half way around SU(2) ,  so you pick up a minus 
sign. A second 27r rotation gets you back to where you started. 
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1 Introduction 

The standard model is a beautifully crafted and brilliantly predictive theory of 
all known phenomena in elementary particle physics. It was conceived in the 
decade from the mid 1960s to the mid 1970s when quantum field theory made a 
spectacular revival and non-abelian gauge theories were shown to provide a quan- 
titative understanding of particle physics. Those were (I am told) heady times 
for theorists. Writing in 1984, Sidney Coleman remembers them nostalgically: 

“This was a great time to be a high-energy theorist, the period of the famous 
triumph of quantum field theory. And what a triumph it was, in the old sense of 
the word: a glorious victory parade, full of wonderful things brought back from 
far places to make the spectator gasp with awe and laugh with joy.” 

Since then, the SU(3)c  x s U ( 2 ) ~  x U(l)y standard model, the fusion of 
quantum chromodynamics with the electroweak theory of Glashow, Salam and 
Weinberg, has successfully described (or at  least not contradicted) all experimen- 
tal data. 

These lectures describe the construction of the standard model, with particu- 
lar reference to the symmetry structure and tree-level dynamics of the electroweak 
interactions. I have tried to adopt a ‘constructive’ point of view, emphasising 
how the phenomenological structure of the fermion currents is incorporated into 
a gauge field theory. The complete standard model Lagrangian therefore appears 
as the culmination of the lecture course, rather than the starting point. These 
notes are complementary to the other lecture courses in this volume, which de- 
scribe in more depth the quantum dynamics of gauge theories. 

Some sections of these notes assume rather more familiarity with quantum 
field theory than the rest,, particularly those associated with anomalies and chiral 
symmetry. These are marked in the text with an asterisk and may be disregarded. 
The importance of anomaly freedom in ensuring unitarity and constraining the 
fermion spectrum of the standard model cannot, however, be overemphasised. 

There are many excellent books on gauge theories and the standard model. 
The description given in these lectures follows quite closely the presentation in 
the book by Halzen and Martin, ‘Quarks and Leptons’. This would provide a 
good source of supplementary reading and further examples. 
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2 Elementary particles, QED and QCD 

Leptons 

Quarks 

We begin by listing the elementary particles which are currently known to exist 
in nature. These are the leptons e, quarks q and the gauge bosons which mediate 
the fundamental forces. 

e= e P T Ve UP UT 

q= U d S C b t 
mass(MeV) 0.51 105.6 1784 146eV 50.25 5 70 

mass 7MeV 15MeV 200MeV 1.3GeV 4.8GeV 175 GeV 
charge 3 3 3 3 3 2 

3 
- -1 - - -1 2 - -1 - 2 

P -  
J = O  

x I -  
K" 

It- 0 - 

x -1 
K- 

The quarks do not exist a.s free particles, but are permanently bound into hadrons. 
This is confinement. If we consider just the three quarks U, d,  s, we form the 
baryon and meson octets a,nd decuplets of 'flavour' SU(3): 

It" It+ 

11 13 

- -  X 
RI1 

P +  J = !  
2 X 

n 

z- - 
A 

X -_ - 

o x  
P 

P +  J =! 
2 x  X 

A A" 

X 
K+ 

R' 

o x  X 

A+ A+ 

z*+ 
13 

z' " 
. I  

-2 x = .n - 

-3 

P -  
J = l  

K'+ 

With the discovery of charm, bottom, . . . the picture can be extended. New 
hadrons exist and fit into multiplets of higher flavour symmetries SU(4), . . . For 
example, there are the charmed mesons such as D+ = cd with rn = 1.86GeV 
which decays by D+ + K-T+T+. Of course, because of the mass differences 
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between the quarks, these flavour symmetries are only approximate. All this 
phenomenology establishes the quarks as the elementary paxticles; mesons and 
baryons are bound states. 

The next category of elementary particles are the gauge bosons: 

The photon mediates the electromagnetic interaction, described by quantum 
electrodynamics (QED). It is massless. The strong (inter-quark, not inter-nuclear) 
force is mediated by a ‘colour’ octet of massless gluons and described by another 
gauge theory, quantum chromodynamics (QCD). Finally, the gauge bosons cor- 
responding to the weak interactions are the charged IY* and neutral 2,  with 
masses of S0.2 and 91.2GeV respectively. These were discovered in 1983 by the 
UA1 and UA2 collaborations at CERN. 

Finally, as we shall see, a. further ingredient is required to make the picture 
work. The minimal standa.rd model also predicts the existence of a scalar particle 
Ho, the famous Higgs hoson. 

In the standard quantum field theory model, all these elementary particles 
are considered to be the quanta of elementary fields. 

The simplest example of a gauge theory of this type is QED, describing the 
interaction of electrons and photons. The action is 

where $ is the electron field and A, is the photon field. Green functions (and 
hence S-matrix elements, etc.) are constructed from the path integral, 

(2) Z = e  M’[J,I<,K] = / D + ~ & z ) A  ei s dz L+JPA,+I?++GI\’ 

usually using perturbation theory, Feynman diagrams, etc. 

In the early 1970s, it was realised that the strong interaction could be de- 
scribed by a non-abelian gauge theory, quantum chromodynamics. Each quark is 
assigned a colour quantum number, corresponding to the gauge group SU(3)c.  
QCD is ‘flavour blind’, i.e. independent of the type of quark.The action is 

1 
4 

S = dxL = / da: [$-yp(tIp + zgTaA;)$ - -G;,GapU + m2$$]. (3) / flavour 

where $ is the colour triplet quark-field, A; is the colour octet gluon field and T” 
is the matrix specifying the quark representation (for quarks, the fundamental 
representation of SU(3)c ) .  
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The physics of non-a.belian gauge theories is very different from QED. In 
particular QCD exhibits asyniptotic freedom - the effective coupling + 0 at small 
distances. This implies simple (quasi-free) behaviour of quarks in deep inelastic 
scattering experiments probing the structure of the proton. The inverse effect 
(infrared slavery), viz. the increase in the effective coupling at long distances, is 
related to confinement. 

At this point, with QED and QCD, we have a theory of the strong and the 
electromagnetic interactions: 

Gauge group Su(3)c x u ( 1 ) e m  

Elementary fields g 7 
e P 7 

U d S c . .  

SU(3)c acts only on the colour degree of freedom of the quarks. U(l)em acts on 
all charged particles. The tlicory is parametrised by two coupling constants e and 
g, the latter being traded for I\QC~ according to dimensional transmutation, plus 
masses. There are no constraints on the masses, mass terms in L being gauge 
invariant . 

This leaves the weak interactions to be incorporated. These are much more 
complicated - they act on the flavour degrees of freedom of the quarks and be- 
tween v, e ,  etc. The following are examples of weak interaction processes: 

If the weak interactions were really distinct from the other two, we would simply 
have to enlarge the gauge group to include a new ‘quantum flavourdynamics’ 
group Gw acting on the quark flavours and lepton types. However, the picture 
which will emerge from the following discussion is more subtle. The weak in- 
teractions mix with electroniagnetism and weave together the intricate tapestry 
that is the standard model. 
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3 Weak Interactions 

3.1 Effective current-current interaction 
The weak interactions were originally described by a phenomenological current- 
current interaction. From a modern viewpoint, we understand this interaction in 
terms of the effective low-energy Lagrangian implied by a gauge theory of massive 
vector bosons. 

To motivate this, consider integrating out the gauge field in the QED La- 
grangian 

where D,, = d2gpv - (1 - a)d,&, where a is the gauge-fixing parameter. Com- 
pleting the square, we find 

/ vAeiS = / DAeiS ! j (A-eJ /D)D(A-eJ /D) -e2  J 2 / 2 D  (5) 

with 
L,jj  = - l e 2  2 Jzmnpu J,’” ( 7 )  

where A is the photon propagator, DA = is. 

propagator - - 
q2 

current is 

The QED interaction is therefore of current-current type, but mediated by a 
It is therefore a long-range interaction. The electromagnetic 

J““ P = -Ey,e - jiy,p + . . . (8) 
where e, p,  . . . are Dirac fields for the electron, muon, etc. 

At low energies ( q  << m,~,.), the weak intera.ctions can be well described by an 
effective theory comprising a current-current interaction. Since the weak inter- 
actions are short range, a good approximation is to replace the propagator by a 
constant, which is equivalent to a point interaction, i.e. 

weak - AB A J ~ B  Le , ,  -G JP (9) 

Notice that G has dimensions of which implies that this is a non- 
renormalisable interaction. It violates unitarity (cross sections Q - s for large 
energy). This means that the current-current interaction cannot be fundamental. 
Nevertheless, it gives an excellent description of weak interaction processes for 
momenta below mw. 

Our aim is to build a renormalisable gauge theory of the weak interactions. 
The next step, therefore, is to extract the form of the weak currents J,” from the 
phenomenology of weak interactions. 
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3.2 Lorentz structure of currents 
The general Lorentz structure for a bilinear fermion current is 

where I? = 1, 75, yp, ypy5, opv (total=16) 
Now, if the current-current interaction is derived from a gauge theory with 

vector bosons, we will have either I? = yp or ypy5 (the so-called V or A currents). 
Extensive studies of weak interaction phenomenology in the 1950s showed that 
this is indeed true - the other forms (S, P and T) are excluded by experiment. 

The original assumption was that I? must be yp, based on the analogy with 
the electromagnetic current. This was the basis of the 1932 Fermi theory of ,B 
decay. The ypy5, or A, interaction would violate parity. 

However, in 1956, Lee and Yang surveyed weak interaction data and concluded 
that parity may not be conserved (e.g. I{+ --+ TT and TTT both occur). The 
experimental confirmation of parity violation by Wu ('OC -+ "Ni e- V,, polarised 
beta decay), Ledermann ( T -  --$ p-ii,, followed by p- + e- ii, vp) and others 
followed shortly after. 

The cumulative experimental evidence led to the identification (by Feynman 
and Gell-Mann and Marshak et al.) of the Lorentz structure of the charged weak 
current as V-A, i.e. I' = (1 - y5)yp. Also, only the left-handed (helicity -;, 
VL = 5(1 - y5)v) neutrino seems to occur in nature, together with the right- 
handed antineutrino. There is no VR state. 

1 

Because left and right handed states enter differently in weak interaction 
theory, it is convenient to use the left and right handed projections for all particles. 
So, e.g. 

1 

1 
e~ = -(1 2 - ys)e 

e~ = -(1 2 + y5)e 
are the helicity -f and +; components of the electron. 

Under parity (P-lySP = -75) 
P 

eL * eR 

Under charge conjugation ($c = Cyo$* = C$*) 

c -T e w e  (14) 
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We can show that 

J," 2 Jr J: 3 -J: (time cpt.) (15) 

J," 5 J," (17) JL 3 -J, V 
(16) 

P JY 2 - J, V J? -3 J? (space cpts.) 

so that ,C:fi* violates P and C individually, but is C P  invariant. 

This discussion of CP invariance needs to be re-assessed when we have the 
full weak currents, where II, is a multiplet of fields and we must allow for flavour 
mixing. It turns out that C P  violation is generic in the physical three generation 
model. (See the discussion of the CKM matrix in section 5.5)  

In terms of left and right-handed fields, the electron mass term in the La- 
grangian is written as 

Since there is no U R  sta.te, we cannot construct a similar Dirac mass term for 
neutrinos. 

L = m(eL e R  + e R  e L )  (18) 

3.3 Charged weak current (leptons) 

The individual lepton numbers Le, L, and L, are separately conserved (e.g. 
p + e y  is forbidden). This implies that we should construct separate lepton 
currents for the 3 generations. To deduce the structure of these currents, consider 
the following weak processes: 

1. p- + e- 5, v, 

2. v, e- + v, p- 
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e ' e  

e 

e 'e  

4. V ,  e- -t fie e- 

The crossed diagrams for (3) and (4) do not occur. These would require gauge 
bosons carrying lepton number. 

Elastic U, e- and Fe e- scattering also have neutral current contributions. 
However, only the charged current contributes to (2). 
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All these interactions are of the current-current form: 

where the lepton charged current is 

Notice that cross terms linking, for example, electron and muon type currents 
are possible - the gauge bosons are independent of the generation. This is known 
as “universality” of the weak interactions. 

The coupling strength G (the Fermi constant) is the same for all these pro- 
cesses. This indicates a single underlying explanation. If we postulate that the 
interaction is due to the escha.nge of a massive vector boson W* with propagator 

then the effective Lagra.ngia.n becomes 

So we can identify 

The V-A structure ca.n be verified from ue  scattering. If we assume a Lorentz 
structure Jfc = Vey,(u + by5)! for the weak current, then process (2) gives 

where A* = (a2 + b2)2 f 4a2b2. 
(See Halzen and Martin, sect. 12.7 for cross-sections for charged current v e and 
V e scaktering.) 
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3.4 Neutral weak current (leptons) 
In 1973, neutral current weak interactions were observed in neutrino interactions 
in the Gargamelle bubble chamber at  CERN, e.g. 

These require a new interaction to be added to the effective Lagrangian, viz. 

L ,  - -2pJ , ,  4G N C j N C p  

ant - Jz 
The factor p allows for a different strength of coupling compared with the charged 
current interaction. 

Unlike the charged currents, the neutral current is not V-A. In fact, we 
parametrise 

where CL = cv + CA and CR = cv  - CA. 

For the electron (Halzen and Martin, fig. 13.5)) experiment gives 

cb = 0.06 f 0.08 
C> = -0.52 f 0.06 

Since there is no right-handed neutrino UR, we have c; = c i  = i. 

4 Weinberg-Salam Model (leptons) 

The Weinberg-Salam model was proposed in 1967 (see also Glashow, 1961), an- 
ticipating the discovery of neutral currents as well as the gauge bosons W and 
2. 

4.1 Currents, gauge bosons and the electroweak group 

If we are to derive the effective current-current interaction 
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from a non-abelian gauge theory with interaction Jf AA,, then the currents must 
form a representation of the gauge group. 

For one lepton generation, these currents are 

JZc = J- P = iiLy,eL 

JFct = J+ c1 = ~ L ~ , V L  

J;C = +Ly,VL 2 + ci~Ly,eL + c;eRy,eR) (32) 

The charged currents J,’ can form two of the three components of the adjoint 
representation of SU(2) .  In the fundamental (2-dimensional) representation of 
SU(2), the generators are T A  = and satisfy the commutation relations 

7 A = 1,2 ,3  (33) [ T A , T B ]  = Z C  ABCTC 

For the charged components, 

* 7 + = (  0 1  o ) , T - = (  

Now construct lepton doublets- 

SL = ( ”e’,” ) ,  

1 
2 

7* = -(? f 2 7 2 )  

1 0  

2-dim s U ( 2 ) ~  representation 

The currents J,’ can then lie written as 

f f 1 . 2  Jp = S ~ y , 7  X L  = J, &aJ, 

i.e. as components of the s U ( 2 ) ~  current 

Jt = S L ~ , T ~ X L  

The remaining component is 

(34) 

(35) 

(36) 

(37) 

However, this has no right-handed part and so it obviously cannot be identified 
with the remaining current J:’. 

The solution is to introduce a new current, corresponding to a new U(1)y 
interaction. The proposal is to define 

(39) J 1’ = - V L ~ V L  - eLy,eL - 2eRypeR 
P 
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so that U ( l ) y  commutes with SU(2),5. 

Now try and express JFc and Jlm as linear combinations of J," and J,' : 

solution only if 1 + CL - CR = 0 (41) I U - 2 b  = 1 
j ~ + 2 b  = -CL 

4b = -CR 

1 Then, a = f ( 1 - C L )  and b = -- 4 ~ ~ .  So, provided we have 1 + c L  - CR = 0, 
we can express 

(42) 

(43) 

J:" = -(1 1 - CL)JZ - -cRJ, 1 ,  
2 4 

1 
2 

= J: - -cRJ;* 

where recall CR = cv - CA 

mixing scheme to work. 
The condition 1 + CL - CR = 0 requires CA = - f .  This is necessary for this 

To incorporate this structure into a gauge theory, choose a gauge group 
s U ( 2 ) ~  x U(1)1~, with ga.uge bosons W t  and B,. The interaction term in the 
Lagrangian is 

(44) 
g' 1' 

P 2 P  
Lint = -9 JAWA* - -J Bp 

In terms of J:, JEm and JF" we have 

where W f  = & (Wi 7 iWl). 

In the Weinberg-Salam model, the mixing between Wi and B, to give A,  and 
2, is of the following form:- 

Z, = W ~ C O S O ~  - BPsinOw 
A ,  = W; sin Ow + B, COS Ow (46) 
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Then the Lagrangian becomes 

l e  
(J,' W + P  + J; W -  P,  L =  - -- 4 sin& 

e 
- e Jl"A, - 

sin 8w cos 8w 
JrcZP 

where we identify 

and 

e=gs inBw = g ' c o s 8 ~  

- CR = sin2 ew 1 
2 

This last result implies tha,t 

(47) 

(48) 

The resulting current-current effective interaction is 

Comparing with 
~ = - ( J ~ C J C C ~ ~ + 2 p J ~ C J N C ~ )  4 G  

fi 
we identify 

e2 - g2 - - G 
& -  SmZ, 8mZ,sin28w 
- -  

and 

4.2 Weinberg-Salam Lagrangian (leptons) 

The s U ( 2 ) ~  x U(l)y Lagrangian is therefore 

1 1 
4 4 p" 

C = - - F A  F P V A  - - F a  F P U a  

+ 

A determines the s U ( 2 ) ~  representation of X L  
A where T = -7 

2 
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The parameters are 

or equivalently 

g ,  9'7 mw, mz 

e, sinew, mw, mz 

The interaction terms are 

where 

Z,, = Wz COS Ow - B, sinew 
A ,  = W i  sin OM, + B, COS Bw 

and 

The effective interaction is 

Lint = - 4G (J, cc J CC,t + 2pJ;'JNC') 
fi 

together with electromagnetism. This phenomenological description has the pa- 
rameters e, G, p,  c;, c>. 

The Weinberg-Salam model requires c> = -f. The other equivalences are 

e2 - G 
fi 8mLsin2Ow 
-- 

C; = -f + 2sin2 e, (65) 

Universality implies that cb A = cc A = c$ A as well as a single G, p. 

In fact, the full Weinberg-Salam model including the Higgs mechanism also 
implies p = 1 because of an additional (custodial SU(2)) symmetry which is built 
into the model. (See section 9.) 
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5 Quarks in the Electroweak Model 

An analysis of weak interactions involving hadrons leads to a very similar struc- 
ture for the quark sector of the electroweak model. 

5.1 Charged weak current (quarks) 

A selection of key processes includes the following: 

1. p decay n + p e - v ,  i.e. d + U e- Ve 

U 

2. T decay T+ + p+ 11,~ 

(see Halzen and Martin, sect. 12.6 for a discussion of the “hadronisation” 
of ud into T+.)  

3. U,, N + p- X e.g. U,, d + p- U 
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This is realised in deep inelastic scattering. It is the weak interaction ana- 
logue of e- N -+ e- X 

e i 

All these processes can be described a.t low energies, q << rnw, by an effective 
current-current interaction, also of Lorentz structure V - A : 

with Jfc N UL -yg d ~ .  Lint uses the same G as before. This extends electron-muon 
universality to lepton-quad; universality. 

In fact, this is too simple. Consider the next generation, with strange and 
charm quarks. These almost obey 

This corresponds to a structure like the leptons, with families of s U ( 2 ) ~  doublets 

However, processes 

I(+ + p+ VP 

such as I{+ + pu+u also occur, involving a U - s transition: 

P+ 
U 

S K+i "P 

(cf. 7r+ -+ p+up ) 
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To incorporate this flavour mixing, we add an ad-hoc quark mixing angle (the 
Cabibbo angle) and define 

d' = dcos 0, + ssin0, 
S' = -dsinO,+ scose, (68) 

so that the SU(2)L eigenstates are 

Then 

r p +  -+ p+l/p) 

qTr+ p+l/p) 

The Cabibbo angle is small: 
CKM matrix in sect. 5.4). 

5.2 Neutral 

Processes such as 
with strength 

- sin' 0, (up to kinematic factors) 

0, = 13", sine, = 0.23 (see also the discussion of the 

current (quarks) 
v,N 4 vPX were observed at CERN (Gargamelle) in 1973 

a(vN -+ Y X )  

a(vN + p X )  
- 0.3 

They can be described by 

with 

(71) 
1 
2 J:" = -Gyp (C; - C ~ Y S )  q 

This is the same as for the leptons, except for the different cv, CA parameters 
(see sect. 5.6). 

5.3 Charm and flavour changing neutral currents 

Suppose there was no c quark. With any U t) d' transitions, we would have 
the flavour changing neutral current (AS = 1)  decay K O  + p+p- from the top 
diagram overleaf. 

The Cabibbo factors from the (du) (us) vertices give cos 8, sin 8,. However, 
experimentally, flavour changing neutral current (FCNC) decays are found to be 
strongly suppressed, e.g. 
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- cos 8, sine, 

s P- 

- -cos 8, sinec 

With charm, there is mother diagram, shown above. The Cabibbo factors 
have the opposite sign, giving a cancella.tion. So FCNCs are strongly suppressed. 
This is the famous GIM (Glashow, Iliopoulos, Maiani) mechanism. 

This was one of the main motivations for the proposal of charm by GIM in 
1970. Another was anomalies. 

Theoretical Interlude - Anomalies 

*Theory 

It can happen that a symmetry which holds in the classical theory is no 
longer a good symmetry in the corresponding quantum theory. This is known as 
an anomaly. This phenomenon is particularly associated with chiral symmetries 
(i.e. involving 7 5 )  such as occur in the electroweak model. 

As the simplest example, consider massless QED with the action 

This is invariant under the (global) chiral transformation, 

+ + eia75 + (74) 

By Noether’s theorem, there is a conserved current J,5 = $7c1y5+ corresponding 
to this symmetry. It satisfies the equation of motion (conservation law) 
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Does this remain true in the quantum theory? The equivalent statement would 
be the chiral Ward identity for, e.g. the two-point Green function 

< OIT*3”Jp5 a10 >A (sa) (76) 

where (sa) is the vacuum expectation value of the chiral variation of some arbi- 
trary (elementary or composite) field a. 

To compute Green functions in the quantum theory, we need the generating 
functional, 

w = J D ~ D ~ D A  eiSdzL (77) 

Now consider the behaviour of W under a change of integration variable, $ + 
eiay5$, II) + e-iay5$. Since this is only a change of variable, W does not change. 
So (taking a = a(.) as a technical device), we get 

since - ss - - -8’J,5 . Since the variation is a total derivative, the global trans- 
6+) 

formation is a symmetry. This gives the naive Ward identity. 
However, the integration measure D,$D$, which is the key ingredient in tak- 

ing us from the classical to the quantum theory, is not invariant under chiral 
transformations. In fact, 

where p p ’  = & ‘ Y a ~ l ; a p .  The derivation of this is subtle and difficult. However, 
the final result for the Ward identity is simple: 

that is, 

(81) 
e2 

167r 
< OIT*BpJ,~ @I0 > - < O ~ T * ~ F ~ , ~ c c u  @I0 >= ( h a )  

This result is exact and non-perturbative. In fact, with an appropriate choice of 
renormalisation for the composite operators Jp5 and F,,,FpU, it holds in the same 
form to all orders (Adler-Bardeen theorem). This is the anomalous chiral Ward 
identity. 

In perturbation theory, the anomaly is manifested in the l-loop triangle dia- 
gram shown overleaf. 
Naively, we expect this amplitude to satisfy qpMccXP A 0 because of the classical 
current conservation. However a careful treatment of the divergent integrals 
involved in its calculation actually gives 

. C )  
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in accordance with the a,nonialous Ward identity. 

The result for non-abelian currents is similar. In this case, the currents at the 
vertices of the triangle dia.gram (or equivalently the external gauge fields) include 
group generators T“ , Tb and T“. The anomaly is then proportional to 

A = Tr{T”,  T b } T c  (83) 

We have described the ‘AVV’ anomaly. In theories such as the electroweak 
model which also has asid gauge bosons there are also ‘AAA’ and higher-point 
anomalies. 

The physical significance of anomalies depends entirely on whether or not the 
axial current is coupled 10 gauge fields. 

*Global currents: 

This is the case where the current is not coupled to a gauge field. Here, 
t.here is no problem. The quantum theory (anomalous Ward identity) does not 
look like the classical theory (conserved current), but this does not damage the 
consistency of the theory. In fact, the existeiice of these anomalies is an essential 
and experimentally verified part of the standard model. 

For example, the anoma.ly is essential for the neutral pion decay 7ro --+ yy. 
The pion couples to the a i a l  current J,5 according to < OlJP51~ >= ik, f ir  where 
f ir  is the pion decay constant, 93MeV (see section 7). This allows us to calculate 
the 7ro + yy decay amplitude from the matrix element < OIJP5Jyy >. The 
divergence of this would vanish if the naive Ward identity was true, predicting 
7ro+ yy. In fact, because of the anomaly, 

and this permits a non-zero decay amplitude 7ro L+ yy in QED and QCD. 
The constant multiplying the anomaly, Er&;, measures the sum of the 

squares of the charges for all the fermions which make up JP5 (i.e. which go 
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round the loop in the triangle diagram). Initial calculations with quarks gave a 
result for the decay amplitude 3 times smaller than experiment. This is resolved 
if we take the number of colours into account. So, experiment and the anomaly 
explanation of T O  + r y  implies that QCD must have Nc = 3. 

Gauged currents: 

The situation is quite different if we couple a dynamical gauge field to the 
anomalous current (i.e. promote the anomalous symmetry to a local transfor- 
mation). Here, the anomaly completely destroys the consistency of the quantum 
theory. The gauge symmetry is broken (since the current is not conserved) and 
the quantum theory is non-unitary (the unphysical and Faddeev-Popov ghost 
degrees of freedom do not decouple). 

To see why this is so, consider again the QED action. This can be written as 

(85) 
1 
4 S = / - -FpuFPu + i$y”a,.lC, + eJ,A@ 

where J, = - 4 ~ ~ 4  is the electromagnetic current. This action is U(1) gauge 
invariant provided the current is conserved, i.e. P J ,  = 0 using the equations of 
motion. 

Now consider the photon self-energy diagram below: 

This can be expressed as A,\,IIp’Au,, where nctU is the two current Green function 
(OIJp J,10) and the photon propagator is A,, = - $ ( g ~ ~ - ( l - i ) m ) .  The current 
conservation condition implies that q P I I , ,  = 0. In turn, this means that the 
unphysical, longitudinal degrees of freedom in the photon propagator decouple. 
This must happen for the theory to be unitary. Otherwise, if the longitudinal 
degrees of freedom are allowed to propagate, the high energy behaviour of the 
theory is uncontrolled and cross-sections violate unitarity bounds. The conclusion 
is that  the theory is only unitary if the gauged current is conserved. This is true 
for QED since the gauged current is pure vector, i.e. contains no 75 part. 

Moving on to the electroweak interactions, we can write the interaction part 
of the Lagrangian as 

QZ 

S = 1 J;W”” + JLB” + kinetic terms (86) 

Now consider Feynman diagrams describing the coupling of three gauge bosons, 
for example: 
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This can be expressed as A ~ , M ~ ~ A b , , A ~ , ,  where the A are the vector boson 
propagators and M,!$ is the three current Green function (to lowest order in 
perturbation theory, this is just the single fermion loop shown above). Gauge 
invariance (current conservation) here would imply qPM;E = 0, which just as 
above is essential if the unphysical degrees of freedom of the vector bosons are 
to decouple leaving a unitary theory with good high-energy behaviour. But as 
we have seen, this is not assured. Evaluating the triangle diagram using the 
Feynman rules, we actually find 

where the T" are the generators in the fermion currents. The theory will therefore 
only be gauge-invariant and unitary if the fermion spectrum is chosen so that the 
r.1i.s. of this equation ('t>lie a.nomaly') vanishes. 

This is therefore dangerous for a chiral gauge theory such as the electroweak 
model, since we have gauge fields coupled to axial currents. The theory will only 
be unitary if all the potential anomalies vanish. 

Rewriting in terms of left and right-handed fields, the anomaly coefficient is 
proportional to 

A = Tr[{T,",TL}TL - { T ~ , T ~ } T ~ ]  
reps 

There are four possible anomalies to check in the electroweak sector: 

(1) a, b, c all SU(2)L currents:- 
All fermions are in doublets, so 

- 6 " b x T r T C = 0  

since the trace of an SU(2) matrix vanishes. 

(2) a = s U ( 2 ) ~  and b, c = U(1)y :- 
In this case, 

-a 
7 

A = 2Tr- Y i  = 0 
2 

(89) 
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for the same reasons. 

(3) a, b = s U ( 2 ) ~  and c = U(l)y :- 
Here, 

- t i a b E T r Y L  - TrQ 
Lreps 

since for the left-handed representations ~ Y L  = -Ti + Q 

(4) a, b, c all U( 1)y :- 
Here, 

A = 2 {  Try:- Try;}  
Lreps Rreps - TrQ 

Lreps 

since for the right-handed representations ~ Y R  = Q. 

So, the anomalies of type (1) and (2) necessarily vanish. But the anomalies 
for type (3) and (4) vanish if and only if 

CQr=o 
f 

(93) 

i.e. anomaly cancellation requires the sum of the electric charges of the fermions 
to vanish. 

In the standard model, this is true individually for each generation:- 

1 
= -1 + -jNc 

2 1  C & j  = O-l+Nc(---) 
f =vele,u,d 3 3  

= 0 for Nc=3 (94) 

This theoretical analysis tells us several important things about the standard 
model 

1. The SU(Nc) x s U ( 2 ) ~  x U(l)y gauge theory (QCD plus electroweak) with 
the known quark and lepton spectrum must have Nc = 3 

2. Anomaly cancellation within each generation means that a model with two 
lepton generations and the quarks U, d, s does not exist. Anomaly freedom 
implies that charm exists! 

3. 3 lepton generations implies that top exists. 
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4. The condition Er &j = 0 as described above looks contrived. This suggests 
that the quarks and leptons may have originally been in some single larger 
representation. This hints at some form of grand unification. 

5.4 

To keep the success of the GIM mechanism when we extend the standard model 

Third generation and the CKM matrix 

to three generations, we assign the quarks to s U ( 2 ) ~  eigenstates ( ) 7 where 

u;L = U L ,  CL, tL and d;L = d ~ ,  S L ,  bl;, with 

(95) 

(96) 

d! = V.. d .  1L %.I f L  

If v is unitary (Vt V = I ) ,  then 

(1; d: = 2 \/t \/ d = 2, di 

This property suppresses the FCNC diagrams discussed in sect. 5.3 and ensures 
the neutral current is flavour diagonal. V enters the vertices with the W* but 
not with the 2. 

V is the CKM (Cabibbo-Kobayashi-Maskawa) matrix. First, note the param- 
eter counting for an arbitrary number N of generations: 

Unitary N x N matrix + N~ parameters. 
1 
2 

Orthogonal N x N matrix + -N (N  - 1) parameters. 

But (2N-1) relative phases for the quarks are irrelevant. So VCKM has iN(N-1)  
real parameters and N2 - (2N - 1) - i N ( N  - 1) = i ( N  - 1)(N - 2) phases. 

for CP violation). The Kobayashi-Maskawa parametrisation is 
In the standard model, M = 3, so VCriM has 3 angles and 1 phase (important 

1 0  0 1 0  
VCIiM = (: e", :: " ) ( o  o o 1 eis o ) ( o  0 -s3 c3 ".) c3 

1 = ( -s1c2 cl clc2c3 - s2s3e is c1c2s3 + s2c3ei6 

0 -s2 c2 0 1  

(97) 
SIC3 s1s3 

i6 sls2 - c ~ s Z C ~  - c2s3e -c1s2s3 + c2c3ei6 

where we let c1 = cos 81 etc. 
The current experimental values are approximately 

Ivudl = 0.975 Ivusl = 0.222 [ v u b [  = 0.005 
[ K d l  = 0.222 [Ksl = 0.974 [Kbl = 0.043 ) (98) 
[ K d l  = 0.010 [ & S I  = 0.041 [&bl = 0.999 
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For precise values and errors and a recent review, see Ali and London (Glasgow 
Conference, 1994). 
These arise from:- 

Vud : Pdecay 12 + pe-fi, , w +  -+ w o +  e U, 

v,, : I<+ 4 nOe+ve , K O  + 7r-e+ue 

semileptonic hyperon decays A + pe-ii, 

Vub : b ---f ue-ij, , need B decays with no K in final state 

&d : upd 4 p - e  , as in the diagram 

P- 
P+ 

14, : ups + p-c , needs estimate of s-content of nucleon 
D+ t Koe+ve 

&b : B -+ D'eij~ , plus heavy quark effective theory 

S : The phase is determined by the e parameter in K O  - I?' 

&d : Bo - Bo mixing, from diagrams like 

d . s  u . c . t  b 
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Clearly a great deal of experimental work (and theoretical analysis - much 
depending on models and approximations for heavy quark states) is being done 
to determine the quark mixing parameters and verify the assumption that VC~,-M 
is a unitary matrix. There is at present no accepted theory of these mixing angles 
- they are all free parameters in the standard model. 

5.5 CP violation arid the CKM matrix 
Much of the interest in T'cri*nd is because it is the only source of C P  violation in 
the standard model. We show here why the appearance of a phase in VCKM leads 
to CP violation. Let 

be the charged-current induced matrix element for q;qj --f q k q .  U are the appro- 
priate Dirac spinors. If we can show that the C P  transformed matrix element 
satisfies Mcp = Mt, then the theory conserves C P .  Otherwise, CP is violated. 

Under C, 

We find that Mcp = Mt provided K j  are real. 
It follows that in the three generation model where VCKM has a complex 

parameter, C P  is violated. This will show up in K O  - I?' or Bo - Bo mixing (see 
figure). 

In the two generation model, K O  and Eo are linear combinations of the CP = 
+1, -1 eigenstates, I<s = ( K O  + I?') and KL = & ( K O  - Eo) , which decay by 
K s  -+ 2n and KL --f 3n. i? owever KL + 2n does occur with a small branching 
ratio of - 
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5.6 Gauge boson-current interaction (quarks) 
The same construction as for the lepton sector now goes through essentially 
unchanged. In the electroweak Lagrangian, the interaction of the A ,  W and 2 
bosons with the quarks is 

where 

and 

JFc = Ji - sin2 8w Jim 
= q j y p  (i (1 - y5) t3 - sin’ O W Q )  qj 

= wYpi (c? - C>*Y5) Qf (109) 

where t3 is the eigenvalue of 2’; and Q is the charge. 

are listed in the table below (sin2 8w N 0.234). 
The general formulae are 

The eigenvalues t3,  Q and parameters cy and CA in the neutral current J;‘ 
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cv = t3 - 2 sin20wQ 

This determines the Z f f  vertex:- 

along with the W* vertices for leptons 

and for quarks, including the CKM matrix, 
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6 Electroweak Processes 

In this section, we consider some simple examples of electroweak processes using 
the structure of the currents described above. 

6.1 
Consider the following diagra.ms, which mediate electron-positron annihilation 
into leptons: 

y - 2 interference in e+e- + p + -  p 

The amplitudes are 
M y = - - ( -  e2 

k2 U ~ Y  u p )  (GeYXUe) 

and 
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where s = k2 and we neglect lepton masses. Recall cL(R)  = cv f C A  

IM-, + A4z12. This is electroweak interference. 

four allowed L, R helicity combinations for e and p. We find 

To calculate the cross section, we first add these amplitudes then square, i.e. 

The unpolarised e+e- + p+p- cross section is found by averaging over the 

da a2 
dR 4s 
- = - [ A ~  (1 + cos2 e) + cos e] 

where 

with 
s &Gm2, 
e2 s - m2, + imzrz 

I.=- 

r comes from the 2 propagator, modified to include the finite resonance width 
rz which must be included when s N m i .  In pure QED, A0 = 1 and Al = 0. 

This cross section is usually expressed as a forward-backward asymmetry. 
Define. 

(116) 

Then we have 

and 

3 A1 
(s << m2,) 

6.2 Z partial widths 
From the Z f f  vertex, 

we can calculate the decay rate, 
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This enables us to compute the partial widths for the set of decays:- 

= 0.17GeV 
,. 

l? ( 2  t ,+e-) = I'i (1 - 4 sin2 BW + 8 sin4 8,) = 0.09 GeV 

9 3 
4 8 

8 2  r(2 + U U )  = SI?; (1 - -sin 8 W  + 
( 2  + d d )  = (1 - -sin2Bw 3 + -sin4Bw) 9 = 0.39GeV (121) 

(The 3 in the last two expressions is the number of colours, Nc = 3) 
The more light generations, i.e. with mass less than mz/2, the bigger the 2 

width. LEP measurements can therefore determine the number of light genera- 
tions. The experimental value 

confirms N, = 3. 

Cosmological Interlude - N, = 3 from Big Bang 
Nucleosynt hesis 

As well as the LEP measurement of I'z, there is good evidence for N, = 3 from 
measurements of the 4He abundance in the universe. This is based on primordial 
nucleosynthesis in the big bang model. Very roughly, the argument is as follows:- 

1. Most (- 90%) of the present day 4He abundance is primordial. 4He pro- 
duction in stars contributes < 10%. 

2. At high temperatures (kT >> 1MeV) just after the big bang, neutrons and 
protons were in equilibrium through the reversible processes 

n t pe-v, 
n + e +  + p + ~ ,  
n + v ,  + p + e -  

with a neutron to proton ratio (nlp) of 

- A m J k T  - - e  
P 

where Am = m, - mp = 1.3MeV. 
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3. When kT drops below l M e V  (after t = lOsec), the rate for p + n pro- 
cesses becomes much smaller than n --$ p. When this rate falls below the 
expansion rate of the universe, the p t n transitions “freeze-out”, fixing 
the n / p  ratio (apart from neutron decay.) 
Now, the expansion rate depends on the square root of the energy density 
of relativistic particles, so is greater for a larger number of light particles, 
viz. neutrinos with rn, < 100MeV. 

So, a bigger A’, + faster expansion rate 
+ earlier freeze-out of n / p  at higher T 
+ bigger freeze-out n / p  ratio. 

In fact, N, = 3 e n / p  N 1/6 at freeze-out. 

4. Nucleosynthesis begins later, at around t = 2 mins, when the temperature 
is low enough for deuterons to be stable against photodisintegration. By 
this time, free neutron decay has reduced n / p  to 1/7. 

5. Virtually all the neutrons in existence at the start of primordial nucleosyn- 
thesis end up as 4He. 
So, the bigger the n / p  ratio the greater the abundance of 4He. 

The present value for ‘He abundance (M 24%) rules out Nu = 4 and is con- 
sistent with N, = 3. Further evidence comes from a detailed investigation of 
abundances of ’He, D and ’Li. 

6.3 3 and 4 gauge boson vertices 

Recalling that 
F:, = aPW,A - &W,” - gcABCW,BW,C (127) 

we see from the field strength terms in the Lagrangian 

LCgauge = / dz [--F,”,FAYY 1 - ~ F , , F Y u ] ,  
4 4 

where the first term corresponds to s U ( 2 ) ~  and the second to U(l)y,  that there 
will he vertices with 3 and 4 gauge field propagators. 

In terms of the A ,  W* and 2 fields, these are: 
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I<PQRS [ ~ Y , ” Y X P  - Y,xgvp - Y ~ P Y ~ X I  

where for the different possible vertices:- 

w+ 
A 

P Q R S  ~ ( P Q  RS 
T V -  TV+ w- ig2 
I/\/+ A W -  -ie2 

Z 
A 

(recall e = g sin OW) 

T/T/+ Z W -  -ig2cos2e, 
PIT+ Z W -  -ie g COS 8, 

At LEP 200, with e+e- collisions at 100 + 100GeV, it will soon be possible 
to pair produce W+W- through the diagrams: 
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This will provide the first direct measurement of the 3 gauge boson coupling. 

7 Spontaneous Symmetry Breaking I - Global 
Symmetries and Goldstone’s Theorem 

7.1 A global U(1) model 
As a toy model, consider a complex scalar field with Lagrangian 

with 
w7 d*) = -P2d*d + 

We have chosen the opposite sign from usual for the quadratic term. 

V 

- - - _ _ _ _ _ _ _ - - - - -  - -  

Plot of V over the complex ($ plane. 

Rewriting + in modulus-phase form, + = A p e ’ X ,  the Lagrangian is 

1 1 
= $d2 + 5P2(%X) ’  - V(P) 
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where 
1 2 2  x 4  

V(P> = -p p + p 
This theory has a global U(1) symmetry, i.e. invariance under 4 + dei*,  Q = 
constant, i.e. x --f x + a. This is reflected in the potential, which depends only 
on p. 

With the sign of p2 chosen, the minimum of V(p) is not p = 0, but at the 
bottom of the rim. The minimum is not unique - there is a family of degenerate 
minima connected by U( 1) transformations. 

Select one of these equivalent minima, say x = 0, p = v, then write p = v+ H. 
In the quantum theory v is the vacuum expectation value (VEV) of 4, i.e. 

Then, 
1 1 
2 2 

L = -(8pH)2 + -v2((aPx)’ + (U H + iH2) (8P~)2  - V ( H )  (134) 

where 

(135) 
1 x 
4 4 

V ( H )  = --Xv4 + Xv2H2 + XvH3 + -H4 

At the minimum, v2 = p2/X.  

scalar particle with mk = 2Xv2. 

scalar field, i has dimension 1, the Lagrangian is 

In perturbation theory about this minimum, the H field describes a massive 

Rewriting in terms of X a,nd m H ,  and rescaling 2 = v x  so that, as usual for a 

We can read off the spectrum of the quantum theory from L. The theory has 
one massive scalar H - this corresponds to fluctuations up the side of the walls 
in the potential. Crucially, it also has one massless scalar 2, corresponding to 
fluctuations around the circle of degenerate minima. This is known as a Goldstone 
boson. 

There are also interaction terms, and a constant non-zero vacuum energy 
density. (This could be a problem if we think of including gravity in a theory 
with SSB.) 

7.2 Goldstone’s theorem 

This model illustrates a general theorem. We say that a symmetry is sponta- 
neously broken if the vacuum is not invariant under the symmetry, i.e. if a field 

- 141 - 



which varies under the symmetry acquires a VEV. This field is said to be an 
“order parameter” in the language of statistical mechanics. 

In the model above, L is invariant under U(1), but the vacuum state has no 
residual invariance. U(1) is broken to the identity. 

In general, L will have a symmetry G and the vacuum will have a residual 
invariance under a subgroup Go. We say the symmetry is broken from G to Go. 
In that case, the space of degenerate minima is the coset manifold G/Go. 

Goldstone’s theorem: 

This states that corresponding to each broken generator of G (i.e. a generator 
in G which is not in Go) there is a massless scalar boson in the spectrum. 

The corresponding scalar field x ( x )  takes values in the coset manifold G/Go. 

*Proof: 

We give a general, non-perturbative proof in quantum theory. Corresponding 
to each symmetry generator in G there is a conserved current. The Ward Identity 
is 

(olT*av; q o )  = (OlS”Q,~O) (137) 
where Sa@ is the variation of Q, under the generator T” of the group G. 

the broken generators, i.e. T” in G but not in Go, we have 
The VEV is equal to zero for the unbroken generators, i.e. T“ in Go. But for 

writing the Green function in momentum space. This is true for all momenta, in 
particular E ,  = 0. 

The only way this can he true is if there exists a massless state Ix) in the 
spectrum coupling to the broken current. Then 

where Axx is the x propagator N 

is one massless x state for each broken current. 
and Fx is the decay constant. Clearly there 

7.3 

An important example of global spontaneous symmetry breaking occurs in QCD. 
Consider QCD with just two flavours U and d and neglect their masses. Since 
QCD is independent of flavour, there is a rotation symmetry between U and 
d. Also, since parity is conserved for massless quarks, we can rotate the left 

*Chiral symmetry breaking in QCD 
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and right handed fields separately. So, massless QCD has a global symmetry 

This is spontaneously broken to the SU(2)v subgroup (the axial generators are 
all broken) by the appearance of a VEV (Oliiu+ddlO), also called a “condensate”. 

Since we have SSB with G‘ = s U ( 2 ) ~  x s U ( 2 ) ~  and Go = SU(2)v, Goldstone’s 
theorem says there are 3 massless pseudoscalar bosons (since 3 = dim G/Go). 

These are the pions, 7r+, T-, TO, which would be exactly massless in QCD 
with rn, = r n d  = 0. 

SU(2)L x SU(2)R. 

8 Spontaneous Symmetry Breaking I1 - Gauged 
Symmetries and the Higgs Mechanism 

8.1 A local U(1) iiiodel 

Now go back to the toy model of section 7.1 and make the U(1) into a local 
(gauge) symmetry. The Lagrangian is 

where F,, = d,A, - i3,,Al, and D,q5 = (8, - ieA,)$. The potential is the 
same, with a non-zero va.cuuni expectation value for $. Making the substitution 
q5 = $(v + H)eiX we have 

(141) 
1 1 1 
2 2 4 L = -(d,H)2 + -(U + H)2(d,x - eA,)2 - V ( H )  - -F,,,FPu 

with V(H)  as before. NOW write 

Since this is a gauge transformation, F,, = d,W, -a,W,, independent of x. This 
leaves 

1 1 1 1 
2 2 2 4 

L = -(d,H)2 + -e2v2W,lVp + e2(vH + -H2)WpWp - V ( H )  - -Fp,FPu (143) 

In this form we can read off the particle content we expect the quantum theory 
to have: 

The x field has disappeared! So there are no massless scalar bosons. 

The W, field is massive, with rnw = e2v2. It therefore has 3 degrees of freedom 
(two inherited from A and one from x). 
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So, starting from a theory with a U( 1) gauge symmetry, we find that the spectrum 
in the SSB phase has a massive gauge boson. This is the Higgs Mechanism. 

Going back to C, in its original form it had 3 parameters, e,X,p. The fi- 
nal theory has a massive W and a massive H ,  so we can write C in terms of 

(Check: o2 = f ,  then m; = 2Xv2 and m& = e2v2). 
This gives 

e,mH,mW- 

1 1 1 
4 2 2 

C = --(apWv - a,W,)2 -+ -rn&W,W, + -(a,H)2 

- -m&H2 1 -+ emwHWpWp -+ -e 1 2  H 2 W,Wp 
2 2 

- -e-H 1 m2, - - e  1 2m; -H +-mHmw 1 2 2  
2 112M' 8 m b  se2 (144) 

8.2 Quantisation and renormalisation 

Notice that the above description of the Higgs Mechanism was entirely at  the 
classical level. Strictly speaking, it is no more than a plausibility argument as to  
what we expect in the full quantum theory. 

Remember that to cluantise a gauge theory, we have to start with the func- 
tional integral, introduce a gauge-fixing term, and construct the Faddeev-Popov 
ghosts. To obtain the physical spectrum, we have to prove that these ghosts 
decouple along with the unphysical components of the gauge field. 

All this has to be re-done in a theory with SSB. It works and the spectrum is 
as described above. 

Gauge invariance is essential to the renormalisation of the theory. We have 
to prove ('t Hooft, 1971) that SSB does not spoil renormalisation, despite the 
appearance of gauge boson masses. 

The beauty of the Higgs Mechanism is that this is true - gauge theories with 
spontaneous symmetry 1irea.king are renormalisable. 

9 The Higgs Mechanism and Mass Generation 
in the SU(2),5 x U(l)y Model 

9.1 Mass generation 

In the form we have presented so far, the s U ( 2 ) ~  x U(l)y electroweak model has 
no mass for either the gauge bosons or fermions. 

Gauge bosons: 
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Mass terms for W* or 2 simply added to L violate the gauge symmetry. 
(This is also true for any gauge theory.) But the gauge symmetry is necessary 
for the theory to be renormalisable, and therefore predictive. 

For example, consider e- e- scattering at l-loop. The Feynman diagrams 
include 

e e e 

The loop gives 

1 1 1  1 1 1 d4qAeAeA,A, qXY' J d 4 q - - - -  - 1 d 4 q 6  = convergent 
q Q q2 q2 q 

for the photon diagram, since the photon propagator (in Feynman gauge) is 

On the other hand, the 2 propagator is A Z  = q2-fm., ( -gPv + T) so the loop 
gives 

/d4qAeAeAzAz  'Z / d4q- = divergent 

A - - L  
Y - q 2 Q P V *  

1 
!12 

The divergence has to lie cancelled by a counterterm 

which is a four-Fermi interaction (dim = 6). But this introduces a new parame- 
ter. The process continues and an infinite set of higher dimension operators are 
induced. The theory is non-renormalisable. 

We therefore need a dynamical mechanism to generate vector boson masses 
while keeping gauge invariance. This is achieved by the Higgs mechanism. 

Fermi o ns : 

In general, we can add fermion mass terms to the Lagrangian in a gauge 
theory. For example, in QCD we can add quark masses, Lm,,, = J dx ~ ( Q R  qL + 
Q L ~ R ) .  Lma,, is gauge invariant. 

However, in SU(2)L x U(l)y ,  because s U ( 2 ) ~  is a chiral gauge theory (the 
group acts only on the left handed fields) fermion masses violate the gauge sym- 
metry. For example Lma,, = J dx m(eR e L  + EL eR) is not invariant under an 
S U ( 2 )  L transformation. 

We therefore need a mechanism to generate fermion masses dynamically in 
the standard model. Remarkably, the Higgs fields can also achieve this, through 
Yukawa couplings. 

-. 
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9.2 Higgs mechanism in s U ( 2 ) ~  x U(1)y. 

We need to repeat the analysis of the U(1) Higgs mechanism described earlier, 
generalised to a non-abelian theory. The aim is to find a Higgs sector which will 
break s U ( 2 ) ~  x U ( l ) y  to U(l)em. 

The simplest choice (Weinberg and Salam, 1967) is to take 

ig’ 
Dp$ = (8, + igTAW,A + T Y B ~ ) ~  (145) 

where 4 is a complex s U ( 2 ) ~  doublet with Y = 1. Then 

L H i g g s  = ( o p 4 ) t ( D p 4 )  - v(#’, 4t) (146) 

with the potential V(4,  q5t) = -p2q5tq5 + 
Q = T’ + ;Ir, the charge assignment is 

So, remembering the relation 

q 5 = ( $ )  (147) 

If charge conservation is to remain unbroken, only the 4’ should get a vacuum 
expectation value. This motivates rewriting 

where x A ,  H are real fields. The potential is V ( H )  = - 5 p2 ( v + H ) ~  + $ ( v + H ) ~  
and we h w e  chosen v2 = 5 to give the minimum at H = 0. 

2 

Now substitute 4 into L 1 { i g g s .  We have 

where U i s  an s U ( 2 ) ~  gauge transformation. But since L is gauge invariant, it 
will not depend on U, which can be absorbed into a trivial redefinition, of the 
gauge fields, just as in section 8.1 for the U(1) transformation U = e”. 

In this so-called ‘unitary gauge’ the Lagrangian has the form 

with 

The Goldstone boson fields x A ,  which parametrise the space of flat directions in 
the potential, disappear from the spectrum. The vacuum expectation value for 

the scalar fields is (4) = 5 ( ) . 
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This is not invariant under s U ( 2 ) ~  transformations or U(l)y ,  since we have 
assigned Y = 1 to d. However it is invariant under U(l)em transformations, since 

So G = s U ( 2 ) ~  x U(1)y is spontaneously broken to Go = U(l)em. There are 
dim G/Go = 3 broken generators, which implies 3 Goldstone boson xA. These 
are absorbed by the vector bosons W*,  2,  which acquire masses. The remaining 
vector boson, the photon, is still massless because U(l)em is unbroken. 

There is one massive neutral scalar left in the physical spectrum - the Higgs 
boson H .  

To find the masses a.nd couplings, we expand out . C H ; ~ ~ ~ .  In the unitary gauge, 
where 

1 
‘ = z ( v ! H )  

we have 

in terms of Mf+, Id/-, 2. Notice that, as expected, the photon field A, does not 
appear. 

Substituting into .Cnjggs, we find the vector boson masses 

rnb = Z g v  1 2 2  

We therefore predict the p parameter, originally introduced as the relative 
strength of the neutral and charged current interactions:- 
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in the Weinberg-Salam-Higgs model. This is a special property of the particular 
representation of Higgs field we have chosen to induce the breaking of S U ( 2 ) L  x 
U( 1)y.  Other choices are possible - not all give p = 1 however. 

The deeper reason is that p = 1 is a prediction of a global SU(2) (‘custodial’) 
symmetry implicit in LHiggs .  Writing 4 in terms of real components, 4+ = q!? +id2 
and 4’ = d3 + i44 gives V(4tq5) = V(& + 4; + 4: + 4:). The potential has an 
O(4) symmetry, broken to O(3) by the vacuum expectation value. In fact, the 
Higgs sector is a linear sigma model with coset manifold 0(4) /0(3)  N S U ( 2 )  x 
S U ( 2 ) / S U ( 2 ) .  The unbroken custodial global SU(2) ensures the mass relation 
between mw, mz that gives p = 1. 

Finally, rewriting L H ~ ~ ~ ~  in terms of the parameters m&,  m i ,  m&,  g rather 
than the original set p,  A, g‘, g we have 

The corresponding Feyniiian rules for the vertices are shown in the figures. 

9.3 Fermion masses 

Yukawa interactions involving 2 fermion fields and the Higgs field can be con- 
structed in such a way as to be s U ( 2 ) ~  x U(l)y  invariant, and so preserve 
renormalisability. When the Higgs field gets a vacuum expectation value, the 
interaction terms give rise to mass terms for the fermions. 

Leptons: 

Choose the s U ( 2 ) ~  x U(l)ll invariant Yukawa terms, 

Setting 

as above, we have 

g me - -meEe - --eeH + p,  r terms - - 
2 mw 
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The Yukawa coupling (another free parameter) is traded for the lepton mass. 
There is also a lepton-Higgs boson vertex, proportional to m l e p t o n / m ~ .  This is a 
general feature of the model - the Higgs boson couples to particles with a strength 
proportional to their mass. 

Quarks: 

This is slightly trickier because we have to arrange masses for the upper 
components of the SU(2),5 doublets as well. 
Define 

(162) 

in the unitary gauge. 

- 149 - 



Allowing for quark mixing, remembering that the SU( 2 ) ~  eigenstates are 

( ) with d: = I/;yKMdj, we can write 

where we have chosen G‘yj to be diagonal and Gij  such that VtG is diagonal. 

10 The Standard Model Lagrangian 

This completes the construction of the standard model Lagrangian. The standard 
model is the SU(3)c  x s U ( 2 ) ~  x U(1)y gauge theory with quarks, leptons and 
the Higgs field, with Lagrangian:- 

SU(2)L  and U (  1 ) ) r  fermion-gauge interaction on L fields 

U( 1)y interaction on R fields 

-t iq(igQCDXa G”,q 
SU(3)c interaction on quarks. 
X a  = SU(3)c  triplet representation generators. 
G; = gluon field. q = colour triplet quarks. 
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Higgs sector + W, 2 masses and H interactions. 
q5 = s U ( 2 ) ~  doublet Higgs field (Y = 1) V is the Higgs potential 

With the construction of this Lagrangian, our task in these lectures comes to 
a close. This is, however, more of a beginning than an end. 

Many questions immediately arise. Going beyond the tree level dynamics and 
symmetries we used to guide us to the Lagrangian, what does the standard model 
actually predict and is it true? Here, the evidence for the model is strong and 
compelling. Perturbative radiative corrections to the tree-level predictions are 
impressively verified in precision electroweak experiments at  LEP, and perturba- 
tive QCD, exploiting tlie power of the renormalisation group, is well established. 
Non-perturbative phenomena are much harder, but lattice gauge theories and 
other approaches are beginning to make serious inroads into the physics of QCD 
bound states. Beyond that,  there are predictions, in general yet to be tested, 
concerning the role played by extended objects such as instantons, monopoles 
and strings which are implicit in the model. 

The least tested and most controversial aspect of the standard model is of 
course the symmetry breaking, Higgs sector. Here, even the confrontation of the 
model with precision electroweak data provides little more than circumstantial 
evidence in favour of the precise mechanism presented here. Experimental con- 
firmation of the Higgs mechanism, or indeed an alternative dynamical symmetry 
breaking scheme, will probably have to await the LHC. 

Finally, we are led to the big questions. Assuming the standard model to be 
true, why is it the way it is’? What determines the symmetries and the represen- 
tations in which the elementary quark and lepton fields lie? What determines the 
parameters, nineteen in all? Aesthetic criteria, often so successful in fundamen- 
tal physics, tempt us to the view that the standard model is just the low energy 
effective theory of a deeper, more unified theory of the fundamental interactions. 
But that  would be another lecture course. 
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Problems 

1. Check that 7; = 1 and {y5,y,} = 0. 

i.e. 
Show that Pr, = $(l - 75) and PR = f( 1 + 7 5 )  are projection operators, 

P; = PL P; = PR PLPR = PRPL = o PL + PR = 1 

Consider a massless fermion with p, = (E, O,O, E). Show that P ~ u ( p )  and 
P R U ( ~ )  are eigenstates of helicity h with eigenvalues -1/2 and 1/2 respectively. 

2. 
transformation, 

Consider the current Jp = fGy,(l- 7 5 ) ~ .  Show that under a combiLed CP 

1 
Jp --$ - T t ~ t ( l  - y5)u 

Hence verify that the product JpJt” is CP invariant. 
What happens if we have different types of fermions U; and a current J,, = 

-u;yp(l 1 -  - y5)L$uj, for some matrix V? 2 

3. Suppose that the weak charged current had the Lorentz structure 

Jf“ = ti,yp(a + bY5)e + ( p  + e )  

Calculate the cross section for vpe- + p-ue and show that 

do G2s 8 
- - - - (A+ + A- cos4 -) 
ClR 32n2 2 

where A* = (a2 + b2)2 f 4a2b2. Neglect me and m, and assume 

4. The decay rate for the 2-body decay 2 + f f  is 

where D denotes the phase space measure. 
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The Z f f  vertex is - i - -&p~~(cV f f  - ~ ~ 7 s ) .  

First show that, summing over the fermion and averaging over the boson 

where kl, k2 are the fermion momenta and the gauge boson polarisation sum is 

Then show that the demy rate is 

5. Using the explicit forins for cv and CA in the electroweak model, derive 
expressions for the deca.y rates 2 t v,V,, Z + e+e-, Z + iiu and 2 t dd in 
terms of sin2 Ow 

[GF = 1.2 x 10-5GeT/2, sin28w = 0.23, nzz = 91GeV ] 
What is the total width of the 2 in the standard model? 

6. 
Show that the vector boson iiiass matrix is 

Consider a Higgs theory for a general gauge group G and Higgs field 4. 

where (4) is the vacuum expectation value of 4 and T A  is the generator of G in 
the representation to which 4 belongs. 

Specialise the above result to G = s U ( 2 ) ~  x U(l )y ,  with 4 in an SU(2),5 
doublet representation with Y = 1 and assume the breaking conserves U(l)em. 
Show that in the charged sector, mk* = g2v2, where v is the magnitude of the 
VEV for 4, while in the neutral sector, the mass matrix for W: and B, is 

ZV (-991 92 -ggl) gt2 

Diagonalise this to find the mass eigenstates. Show that these are the photon A, 
and 2, defined as 

z, = Wzcos0w - B,sin0w 
A, = W: sin OW + B, COS 0w 
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