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RAL Summer School for Young Experimental High Energy Physicists
Cosener's House, 10 - 22 September 1995

Preface

Fifty-two young experimental particle physicists students attended the 1995 Summer school,
held as usual in Cosener's House in Abingdon in mid September. This year, the weather was
mild and sunny, and a number of tutorials and impromptu seminars were held on the spacious
lawns leading down to the Thames, adding to and enhancing the relaxed atmosphere which
disguises the very real intellectual challenge of the material.

The lectures reproduced here were given by Dave Dunbar (Relativistic Quantum Field Theory),
Jonathan Flynn (Relativistic Quantum Mechanics), Graham Shore (The Standard Model and
Beyond) and Nigel Glover (Phenomenology). They were delivered and received
enthusiastically, providing material for lively discussions in tutorials and elsewhere.

Michael Berry (Bristol) gave an interesting seminar on the physics of the Levitron, solving on the
way some Christmas present problems. Mike Whalley introduced the Durham HEP database
with its impressive facilities now available through the World Wide Web. George Kalmus gave
an informed and entertaining after dinner speech, finishing (as all such speeches should) with a
challenging, relevant and politically correct joke.

Each student gave a ten minute seminar in one of the evening sessions; I am consistently amazed
by the quality of these talks. In many ways, the shorter the talk the more difficult the task of
communicating a coherent message. It is a real achievement that so many did so with style and
evident good humour.

The work of the school was helped enormously by the hard work of the tutors -
Susan Cartwright (Sheffield), Paul Dauncey (RAL), Jeff Forshaw (RAL), Paul Harrison (QMWC)
‘and Bill Scott (RAL). Cosener's House provided its customary welcome; the calmness of the
house and grounds - largely undisturbed by the bustle of Abingdon - and the excellent food are
important factors contributing to the success of the school. The hard work and good humour of
all of the Cosener's staff are much appreciated. The School also owes a debt of gratitude to
Ann Roberts, who once again organised the director efficiently, and whose quick thinking and
lively anticipation ensured that potential disasters were avoided.

The ingredients for a successful summer school are few - an interesting topic, excellent lecturers
and tutors, pleasant surroundings and above all committed and enthusiastic participants. This
year, all came together to create a superb atmosphere. The school is intellectually and physically
demanding, but also rewarding. I have enjoyed my three years as director, none more than this
year's school. To all who helped make it so enjoyable - lecturers, tutors, staff at both Cosener's
and RAL and above all the students - I extend my thanks and my good wishes. In particular, I
wish to acknowledge the efforts and support of Susan Cartwright, Ann Roberts, Jonathan Flynn
and Bill Scott who have been with me throughout these three years, and to wish Graham Shore
(who is also leaving after only two years) the best of luck with BUSSTEPP next year.

Finally, I hope that Steve Lloyd, my successor as Director of the School, has as much fun as I
have had. To all who made it fun, many thanks and best wishes.

Ken Peach (Director)
Department of Physics & Astronomy,
University of Edinburgh
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In preparing these lectures I have extensively “borrowed” ideas from the equivalent
courses given by previous speakers especially those of lan Halliday. In places, this “bor-
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from these notes. Hopefully we will complement each other rather than interfere.
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school, Ann Roberts for organising things impecably and the students for “hanging in”
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Introduction

The purpose of this course is twofold.

Firstly, it is provide a simple introduction to quantum field theory starting from,
roughly, your undergraduate quantum mechanics course. Since you undoubtably come
from a very varied background this is not particularly easy and I guess the beginning
material will be fairly familiar to many of you. To ensure a level “playing field” I will
assume only that you are all familiar with the distributed prerequisites. I hope you are!
. The intended endpoint will be to enable you to take a general field theory and write
down the appropriate Feynman rules which are used to evaluate scattering amplitudes.
There are two formalisms commonly used for this. The simplest for a simple theory is the
“Canonical quantisation” wheras the more modern approach is to use the “Path Integral
Formulation”. I will cover both during the course although the Path Integral Formulation
will be done rather hueristically.

The second theme will be to consider the quantisation of gauge theories. For various
reasons this is not completely a trivial application of general quantum field theory methods.
Hopefully this will connect up to the other courses at this school.



1. Classical Formulations of Dynamics -
There are three “equivalent” but different formulations of classical mechanics which I
will consider here,
e Newtonian
e Lagrangian
e Hamiltonian

I will illustrate these formulations with a specific example - the simple pendulum, which
approximates to a harmonic oscillator when the perturbations are small. The ideal pen-
dulum which we consider here is an object of mass m described by its positions z and y
connected to the point (0,0) by a rigid string. This is an example of a constrained system
because = and y are forced to satisfy the constraint 22 + y? = L? where L is the length of
the string. The object could equivalently be described by the angle § which is a function
of z,y given by tanf = —z/y.

e Firstly consider Newtonian Mechanics. Newtonian mechanics are only valid if we
consider inertial coordinates. In this case good coordinates are = (z,y) and not § whence
we have Newtons equations

d’z
m—y = F | (1.1)
Newton’s equation’s reduce to a pair of second order coordinates. To these equations we
have to explicitly insert the forces applied by the string.

e Next we consider the Lagrangian method. For Lagrange an important difference is
that any coordinates will do not merely inertial ones. Thus we are free to describe the
pendulum using 6. In general a system will be described by coordinates ¢,. We construct
the Lagrangian from the kinetic (T') and potential (V') energy terms L = T— V. Lagrange’s
equations in terms of L are

d[aL] O p-0 (12)

dt | 8¢,|  9qr
For the simple pendulum, if we use 8 as a coordinate Lagranges equation produces a single

second order equation. The advantage over Newton’s method lies in the simplicity in the
way which constraints may be applied.

_ o We now turn to the Hamiltonian method. The idea is to work with first order
differential equations rather than second order equations. Suppose we define

oL
= 1.3
pT 6q‘r ( )
then we can write Lagrange’s equations as
dp, OL
=T = 1.4
dt  Ogr (14)
For a system with Kinetic term
1
;



then p, is just the normal momentum. The Lagrangian is a function of ¢, and ¢.. We
wish to change variables from ¢, ¢ to ¢,p. (This is a very close analogy to what happens
in a thermodynamic system when changing variables from V,S to V,T. ) Examine the
response of L to a small change in ¢, and ¢,

oL oL _.
1= 3500+ g%

= Z (pr6Q1‘ + Pr5ér>

by egs.(1.3)and (1.4). We can, by adding and subtracting > . _¢,6p,, rewrite this as
=4 (Z prqr) +y (préqr - q'rapr) (1.7)
So that by shuffling terms we obtain
6(—1; + Zmr) =D drbpr =) brbes (1.8)

So we have obtained a quantity whose responses are in terms of ép, and é¢,. This is the
Hamiltonian. It is given, in general, in terms of the Lagrangian by

(1.6)

H=) pir—1L (1.9)

The Hamiltonian is to be thought of as a function of ¢, and p, only. If T ~ ¢% and
V = V(g), as is the case in many situations, then H = T + V. However the above
expresion is the more general. The Hamiltonian equations are then, from (1.8)

; 2

r _apr

. om (1.10)
Pr = aqr

This is a very similar to the situation in thermodynamics if we change from the energy,
E, satisfying dE = T'dS — PdV where E is thought of as a function of S,V to the Free
energy F' which is thought of as a function of T,V and dF' = —SdT — PdV. Recall that
the relationship betwen E and F is F' = E — ST. In fact, the correct way of thinking about
this is to regard thermodynamics as a dynamical system whence the change from E to F
is precisely a change such as from L to H. The Hamiltonian system is particularly useful
when we consider quantum mechanics because ¢ and p become non-commuting operators
- something which makes sense if we use H(p,q) but which requires more thought if we
use L(q,§). For our simple pendulum, Hamiltonian dynamics will produce a pair of first
order equations.



Before leaving Hamiltonian mechanics, let is define the Poisson Bracket of any two
functions of p and ¢. Let f and g be any functions of p, ¢ then

of 0g Of Og
gl = - 1.11
{1.d} Er:(aqr - (1.11)
The Poisson bracket of the variables ¢; and p; are then

{Qian} =0

{‘Ii,Pj} =bij (1.12)
{Pnpj} =0

A Canonical change of coordinates is a change from p, g to coordinates Q(p, ¢) and P(p, q)
which maintain the above Poisson brackets. Hamiltonian dynamics is invariant under such
canonical transformations. ( As an extremely nasty technical point, Quantum mechanics
is not. Thus there are many quantisations of the same classical system , in principle.)
The best known way of quantising a classical system uses the Hamiltonian formalisms,
replaces ¢, and p, by operators and replacing the Poisson brackets by commutators

{} . [...]/ih (1.13)



2. Quantum Pictures
2.1 The Dirac or Interaction Picture

In the prerequisites, the are two equivalent pictures of Quantum mechanics: 1) the
Schrodinger picture where the wavefunction is time dependant and the operators not
and 2) the Heisenberg picture where the wavefunction is time-independant and the time-
dependance is carried by the operators. I will introduce a third picture which is called the
Dirac picture or, frequently, the interaction picture. First we set the scene. Take a typical
situation where the Hamiltonian of a system is described as a “solvable piece” Hp and a
“small perturbation piece” Hj.

H=H+H (2.1)

Actually the interaction picture doesn’t care whether Hy is small or not but is really only
usefull when it is. One of the depressing/hopeful features of physics is how few problems
have been solved exactly in quantum mechanics. There are actually only two. The first is
the simple harmonic oscillator, the second is the hydrogen atom. (a third should or should
not be added to this according to taste - it is the two dimensional Ising model.) All other
cases which have been solved exactly are equivalent to these two cases. Free Field theory
(non-interacting particles) is, as we will see, solvable because it can be related to a sum of
independant harmonic oscilators. It is also amazing how far we have taken physics with
just these few examples! Perhaps someday someone will solve a further model and physics
will advance enormously. ,
Since there is so little we can solve exactly a great deal of effort has gone into developing
approximate methods to calculate. The methods I will develop here are for calculating
matrix elements and will be perturbative in the (assumed) small perturbation H;. These
have proved enormously sucessful (but don’t answer all questions..) For a given operator
O, we can define the interaction picture operator O; in terms of the Schrodinger operator

by
OI =elHotOSe—-lH0t

=eiI3Iote—thOHeif{te—iHot (2.2)
=U(t)0OxU™ (1)

(We set i = 1 unless explicitly stated otherwise - it is always a useful exercise to reinsert
h in equations.) The operator

O(t) = eiflotemiHt (2.3)

will be critical in what follows. In the case where H; = 0 the interaction picture reduces
to the Heisenberg picture and U(t) = 1. We must make a similar definition for the states
in the Dirac picture

ja,t)r = e, t)s = U(@la)r (24)

Note that the Dirac picture states contain a time dependance. Since the operators are
transformed as if in the Heisenberg picture for Hy we have

2-01(t) = 101(8), Bl (25)



To calculate in the interaction picture we need to evaluate U (t). It is this object which will
be the focus of perturbation theory. We have
’(Ta‘t‘U(t) = HoetHote—th + e:Hote—thH
=eiflotf{Ie—il:It (2.6)
=(An10(t)

where the confusing notation (Hj); denotes that the operator H; has been transformed
into the interaction picture. Clearly if Hy is a function of operators, H 1(07), then (Hp)r =
H(07).

We are now in a position to solve this equation perturbatively, always assuming that
H; forms a small perturbation. Expanding U(t) as a series,

U(t)=1+U1+U2+U3+"' (2.7)

We can then substitute this into the equation for U(t) and solve order by order. We find
for U 1,

.0 -
which can be solved to give
. .
U = -—z/ f:[[(tl)dtl (29)
0

and for U, 5

in:Us = Hi()Uy () (2.10)
giving

t i . .
Uy = (—i)? / dt, / dt, Hy(t:)Hi(t) (2.11)
0 0

From this we can guess the rest (or prove recursivly)

t V tn to . . . .
Un = (_i)n / dtn / dtn—l e / dtlHI(tn)H[(tn_l) v H](tz)H[(t_l) (212)
0 0 0

Notice that in the above ¢, > t,_; > ...t5 > t;. This can all be massaged into a more
standard form. We define the time ordered product of any two operators by

T(A(t1), B(t2)) =A(t1)B(t2); t1 >t

T (2.13)
=B(t2)A(t1); ty >t

Note that within a time ordered product we can commute two operators as we like. Now
the expresion for U; may be written

(—9)° /0 dt, /0 2dt1ﬁ1(t2)ﬁ1(t1)= (“;)2 /0 dt, /0 4t1T(1§r,(t2),ﬁ,(tl)) (2.14)



where the integrations now both run from 0 to ¢. The times ordered product énsures that
the ordering of operators is as before and the factor of 1/2 comes because the integral now
“overcounts”. Similarly we obtain,

N\ t .
—1 . . . .
Un = ( n') / HdtiT(HI(tn)’HI(tn—l),'",H[(tg),HI(tl)) (215)
bode 4
We are now in a position to formally sum the contributions into an exponential,

U(t) = T(exp(—1 /0 thI(t)dt)) (2.16)

This is in many senses a formal solution. As we will see later the perturbative evalua-
tion typically involves finding U, U, themselves. We will spend a considerable effort in
evaluating the U; operators later.

2.2 Lagrangian Quantum Mechanics and the Path Integral

We now turn to the second distinct part of this section on Quantum mechanics. This
will involve a formulation of quantum mechanics which involves the Lagrangian rather
than the Hamiltonian. We will present this for a single coordinate ¢ and momentum p.
We will take two steps later: firstly to consider ¢ as a vector of coordinates and secondly
to take it as a field. We will initially work with a simplified Hamiltonian,

R 22
H(p,4) = 3—+V(@) (217)

Recall that we can consider eigenstates or either position |q) satisfying §lg) = ¢|g) or
momentum |p) satisfying p|p) = p|p) but we cannot have simultaneous eigenstates. In fact
the momentum and position eigenstates can be expressed in terms of each other via

— dp —ipgq _/dq ipq
0= [ e, o) = [ Selg (218)

We consider the amplitude for a particle to start at initial point ¢; at time ¢ = ¢; and end
up at point g5 at t = ty. In the Schrodinger picture this is

A = (g5le™ " g;) (2.19)

where |¢) are the time independant eigenstates of § and we take t; = 0,y = t. The
following manipulation of this amplitude is due to Feynman originaly. We split up the
time interval ¢ into a large number, n, of small steps of length A = (t; —t;)/n. Then,
trivially,

e—iHt _ —iHA

e—iHA | —iHA | —iHA (2.20)

A= (qfle—zHA . e—:HA . e—tHA . e—tHAIqi) (221)

-10-



In between the terms we now insert representations of one (quantum mechanically)

-/@mm=1

(2.22)
[ avlpitol =1
to obtain the following expression for A,
[ Gaslpadpale™ 2 gn-1)gn-1lpas) (pasle ™2 lgn2)
gi.pi (2.23)
X{gn-2|pn-2) - |@1){q1|p1){p1 |6_'HA|qi)
In the above we may make the replacement
(gilpi) = €' o (229

We may also evaluate approximately

(Pale™ 2 |gnor) ~(Pal(1 — iH (5, §)A)|gn-1)
=(pn|(1 = tH(pn,gn-1)A)|gn-1) (2.25)
ze—iH(Pn,Qn-l)Ae"iPn n-1

where we are using the fact that A is small and the form of H. Note that we have turned
operators into numbers in the above. We can now rewrite the amplitude and take the limit
n — 00,

n n—1
A= limn_,oo/Hdp,- H dqi{He—iH(p.',q.'-x)Ae-ip-'qa-let’p.’q;}
= llmn_,oo/Hdpz H dq:{eXP( EA( QI I)Pz _ H(pi,fh‘—l))} (226)

s/wmmadwﬁm

The last line is the Path Integral formulation. It is an interesting question what the symbols
mean in this equation!. In the integrations all intermediate values of p, q contribute. We
can interpret this as an integral over all possible paths a particle may take between ¢;
and gy. This expresion is commonly used but is not quite the Lagrangian formalism. To
obtain this we must evaluate the dp; integrals at the penultimet step (before n — oo).
The integral is assuming the simplified form for H = p?/2m + V(q),

(2.27)

-11-.



where we approximate (¢; — ¢i—1) by ¢;A. Using this we can again take n — oo to obtain

the expresion
/ [dgle’ J #2(0:0) (2.28)

This Formulation of Quantum mechanics is one we will use extensively. A useful object is
the Action, S, defined as

S= / dtL (2.29)

whence the path integral is
/.[dq]e‘s’ r (2.30)

(just for fun I reinserted % in this equation.) The classical significance of S is that it may
be used to obtain the equations of motion. Lagranges equations arise by demanding the
Action is at an extremal value. A common way to express the path integral, is to say that
all paths are summed over, weighted by e**2<!°"  This has a certain appeal. Think about
what happens as & — 0. This formulation has strong anologies with statistical mechanics
where the partition function is the sum over all configurations weighted by the energy

Z~Y BT (2.31)

however the factor of ¢ should never be forgotten!

-12-



3. Field Theory: A Free Boson

3.1 The classical treatment

In this section we will examine our first Field Theory, look at it initially and then
quantise and solve. This will only be possible because it is a non-interacting field theory.
We will consider a field, ¢(z). That is an object which has a value at every point in space.
This is unlike the harmonic oscilator where, although wavefunctions depend on space these
are merely the probability of observing a particle at that point. A field configuration is
then described by a (continuous) infinity of real numbers as oppossed to the single number
describing a harmonic oscillator. This infinity will, of course, complicate the mathematics.
We can easily postulate the Kinetic energy of such a term to be

/ds d¢(z t) )2 (3'1)

This gives the field a Kinetic energy at each point. The potential term we take as

_m / Brg?(z,t) + / 2 Z(dd’g't) (3.2)

The “mass term” ¢2(z,t) is easy to understand. The remaining kinetic term (%:;“)2 is

necessary by Lorentz invariance. (Or one may consider the model of an electic sheet with

potential energy, consider small perturbations and then evaluate the potential energy: a

term such as this then appears.) The ¢ should be the speed of light for Lorentz invariance.
From this we may construct the Lagrangian,

which we may apply Lagranges method to. For field’s we often speak of the Lagrangian
density £ where L = [ d®2L. Before doing so we will rewrite this form in a more Lorentz

covariant manner. Define a four-vector z* where g = 0---3 and z° = t. We henceforth
set ¢ = 1 (otherwise i would be jealous). Then
. ?;j .y
2 _. (3.4)
ax,

It is a fundamental fact of relativity that z# and 8*¢ are 4-vectors. Le. they transform in
a well behaved fashion under Lorentz transformations. Four vectors are similar to normal
vectors if one remembers the 1mportant minus signs. From the vector z# one can define a
“co-vector” z, by o = 2°,,z; = —z',7 = 1,2,3. In more fancy language z, = >, Gut’
where g, are the elements of a 4 x 4 matrix g. In this case g = diag(+1,-1,-1,-1). I

-13-



mention this to introduce the Einstein summation convention where we write =, = Jup”
and the summation is understood. With this convention, z,z# = t? — 22 — y% — 22.
The dot product of two four vectors, ‘

3
A-B=A,B*=ABy- Y AB; (3.5)

i=1

is invariant under Lorentz transformations. The action S is
4 11 m? 2

which since the measure d*z = dtd3z is invariant under Lorentz transformation. I am
actually sliping in a very very important concept here. Namely that symmetries of the
theory are Manifest in the action or Lagrangian. (By contrast the Hamiltonian formulation
also gives Lorentz invariant behaviour but it is not manifestly Lorentz invariant.) Since
symmetries are very important, the Lagrangian formalism is a good place to study them.
We can define the momenta conjugate to the field ¢

_ oL 0
whence the Hamiltonian becomes
M%(z,t) 1/0¢4(z,t)\2 m?
- z, L Z, 2

Notice that this is not invariant under Lorentz transformations. let us now solve this
system classically now. First we must present Lagranges equations for a field. Because of
the space derivates d¢/0z the equations become modified. (We could see this by returning
to S and examining the conditions that S is extremeised.)

ofoc), 0 oc ) o 9)
ot{ag|  Oxilo(2L)| 94 '
(where the sum over ¢ is implied). For our Lagrangian this yields
¢ 0% 2,
W_a_:l:?+m¢_0 (3.10)
or
du0*¢p+m?¢ =0 (3.11)

We now find the general solution to this equation. Since the system is linear in ¢ the sum
of any two solutions is also a solution. Try a plane wave solution,

d(z,t) = Ae'kzm) (3.12)

-14 -



then substituting this into eq.(3.10) gives
Al + B 4+ m?|eiEzmen = (3.13)

so that the trial form will be a solution provided

w(k) = £\/k* + m? (3.14)

Notice that there are two solutions. From now on take w(k) to denote the positive one.
The general solution will be

The a(k) and a*(k) are constants. We have also imposed the condition ¢* = ¢ which
is necessary for a real field. For purely conventional reasons we have chosen the normal-
isations given. A classical problem would now just degenerate to finding the a(k) and
a*(k) by e.g., examining the boundary conditions. To finish this section on the classical
properties note that

(z,t) = d’k _ia(k)ef@'z-?“)—ia*(-k)e"&'ﬂwt) (3.16)
= (27)32 '

3.2 The Quantum theory
We will now quantise the theory. The field variables are ¢(z,t) and II(z,t). we must
decide upon the commutation relations for these objects. That is, we want the appropriate

generalisations of (1.12) for the case where the ¢ and p now are a continuous infinite set.
These are

[$(z1), d(w,8)] =0
[ﬁ(i"-’t)’ $(E,t)i =—i8*(z—y) . (3.17)
[fi(a,1), iy, )] =0

This looks reasonable except that the §;; present for a discrete number of coordinate is
replaced by the Dirac-§ function. I'll try to elucidate this in an exercise.
Let us now, in the Heisenberg picture examine the equations of motion for ¢ and I,

i#(z,1) = [$(z,1), 4]
= [ @i, L0
= [@u} (et tien]i 0 + 00 e dwn]) @9

= [ it e ity
= 1(z, 1)

-15-



and for f[,

ill(z,t) = [fi(z, 1), ]
= [t 2L 20D ]y ), b0, 000
_ / { Z__53 (o )aqﬁ(g;,t) im%(g,tw@_w} (3.19)
- i% im?(z,t)
We can combine and rewrite these two equations as
'm%%_t) - -qu; - | (3.20)

M(z,t) = $(z,1)

which is just as before. However, now these are operator equations with the solution

. dBL . .
$(z,t) = / W[a(k)e’@-’-wt) —a’f(—k)e'(kfrwﬂ] (3.21)

Now the & and &' are operators. This can be rewritten using four vectors in the form

t) = / m)‘f—;;(k) [a(k)e“"z + af(k)e-"k'z] (3.22)

Where the four vector k* is formed from w and k. (It requires a little care and relabelling

under the integral sign to show this.) We can deduce the commutation relationships for
them from those for ¢ and II,

la(k), a(k)] =0
la(k), 4% (k)] =(2m)° 20.6%(k - &) (3.23)
@' (&), a'(&)] =0

Thus as promised we find an infinite set of harmonic oscillators labeled by the momenta
k. If we substitute the forms for ¢ into the Hamiltonian we find (tediously)

H= / 2é3k)3 a'(k)a(k) + const. (3.24)

So that the Hamiltonian is a sum of independant harmonic oscillators. We can thus apply
our knowledge of such objects to this case. If we denote the ground state by |0) then we
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will form states by applying raising operatofs to the vacuum. at(k) will create a particle
of momentum k and energy hw(k). (try reinserting the %is!) We can easily check

Ha'(k)|0) = w(k)a'(k)[0) (3.25)
Similarly we may create the two particle states
a’(k;)a'(k,)[0) (3.26)

etc, etc. Notice that because of the commutation relationships that the 2-particles states
are even under exchange. That means our system is a system of non-interacting bosons.

We have taken ¢ to be a real field. In practise we wish to consider complex fields.
Suppose we have two real fields of the same mass,

2. /1 . m?
5= / d4$rz=:l(§3' b-0ue - 342 (3.27)

then we may define the complex field

X =%(¢1 + i¢32)

1 (3.28)
x! =‘“\/_—§(¢1 — i¢2)
Then we may easily check
S = /d4x [6"){18,,)( - m2x"x] (3.29)
Solving Heisenberg’s equations as before we find
X(z,t) = / @—W)i% {I;(E)eik" + J*(g))e-“"z] (3.30)

where b and d are now independant because y is a complex field. these must have com-
mutation relationships

[ik), Bt (k)] =(27)° 20.8°(k - &)

A (3.31)
[dk), d1(&)] =(2m) 2082k — B
all others being zero, with the Hamiltonian
A Brk /- - - A
- t 1
A= / T (b (K)b(k) + d (_Ig)d(_lg)+const.) (3.32)

This is fairly important. So far no fundamental scalars have not been observed ex-
perimentally although the standard models as we know it contains a fundamental scalar -
the Higgs boson. The Higgs boson is complex rather than real. (if it exists!).
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4. An interacting Boson Theory: Canonical Quantisation and Feynman Dia-
grams

We are now in a position to consider an interacting theory. As an example consider a
theory which contains a real scalar ¢ and a complex scalar y. The lagrangian density we
take to be

£¢ + LX + »Cint (41)

where L4 and £, are the lagrangian densities for a free real and complex scalar (see (3.6)
and (3.29) ). The interaction term we take

Lint = —g% %4 (4.2)

We now work with this system. The Heisenberg equations (which we could solve in the
non-interacting case) are

(6 +m2)d+ x5 =0
(62 +m )x + gx =0

where 9% = 9,0". t These non-linear operator equations have no known solution. We
must attack them approximately. As we can see our system provided g is small is suited for
analysis in the interaction picture. We can split the Hamiltonian into the non-interacting
piece Hy plus the small additional Hy = gyt x¢ This will allow us to evaluate transitions
and scattering perturbatively.

Recall that in the interaction picture, the crucial object is the operator U(t). In lowest
order this is

(4.3)

. ty
U(t,’,tf) =—i/ H](t)dt
t - (4.4)

ty
—ig [ a3
t.

We shall use this to examine the transition probability from an initial state containing a
single ¢ boson and a final state consisting of a xx' pair. We will take the initial time ¢;
to be —oo and the final times ¢y = oo, we have then,

[t = —o0) =a'(k)[0)
it = o0) =b(p)d'(9)10) (4.5)
(t = oo| =(0]b(p)d(q)
The initial ¢ boson has four momenta k and the final pair of ¥ — x' particles have momenta

p and ¢. Recall that in the interaction picture the states evolve with time via the U(t)
operator, |a,t); = U(t)la) Thus the initial state af(k)|0) at ¢ = —co will evolve into

U (=00, 00)al (£)[0) (4.6)

t T have slipped over the issue of how to deal with complex fields. The correct proceedure turns out to
be to treat ¥ and x! as independant fields. This can be justified be rewritting x in terms of it’s rea.l
components.
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(Note that if Hy = 0 then the state remains fixed.) The probability that this state at
t = co is a y x| pair is the overlap of this with bt(g)df(g)IO). This is the matriz element

(t = 0o|U (=00, 00)|t = —c0) = (0]6(p)d(g) (g/d4m>2*2$) a'(k)I0) (4.7)

This probability we now evaluate. Using the expansions for ¢ and y this is

——ig [ a2 [ @ [@x [ @q 00 (Ag)e" + ) )

(4.8)
x (&(_]g’)eikl'z + at(k/)e—ik’ -'1:) (b(gl)eiq’.z + dt(g—/)eiql.z) &f(lglO)

where d®p = d®p/2(27)3w. We will evaluate this by commuting the annihilation operators

to the right where they vanish when acting on the vacuum and the creation operators to

the left where they vanish whwn multiplied by (0|. Since, for example b commutes with a'

we can throw away the b(¢') terms. Similarly the a'(k') term dissappears. (and also the

cz(g_y’ ) with a little more thought) leaving

—ig / d'z / 3y’ / B / & q'(0]b(p)d(q)b! (p)a(k")d" (¢')e™ =P+ = )at (k)[0) (4.9)

We can continue commuting each annihilation operator to the right, obtaining a variety
of 6-functions on route. The final result is

—i / d*ze TR 2(010) = —ig(27)26*(p + ¢ — £)(0]0) (4.10)

The é-function imposes conservation of four-momentum. This is in fact a real perturbative
calculation. Notice that it doesn’t make a lot of sense unless g is small.
In general, to evaluate to a given order, we need to calculate objects of the form

/ dtydty - dt T(Hy(t)Hi(ts) - - - Hi(tn)) (4.11)

In principle we can carry out the same proceedure as before. This is sandwiching between
states and commuting annihilation operators to the right until we obtain some kind of
result. There is a very well specified proceedure for doing so in a systematic manner
which is known as Wick’s theorem. The diagramatic representation of this is more or less
the Feynman diagram approach. We will now think a little more generally in terms of
operators. Since we wish to have operators with anihilation operators acting on the right
we. define the normal ordered operator to be precisely this. For example consider the
“composite operator T(¢(z)¢(y)) then

: $(2)d(y) - (4.12).
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is the same operator but with the anihilation operators pushed to the right. T(é(z)é(y))
and : ¢(z)é(y) : differ by a term which we call the contraction

T(3(x)d(y)) =: $(2)d(y) : +¢(z )¢(y) (4.13)

since ¢ is linear in operators and hence T(¢(z)é(y)) quadratic the contraction term will
be a pure number (that is no operator). We may evaluate this by sandw1ch1ng the above
equation between (0| and |0) so that

(OIT(¢(2)$())I0) = $()¢(y) (4.14)

We now present Wick’s theorem which tell’s us how to evaluate large collection of oper-
ators into the normal ordered pieces and the contraction terms. Consider a large class of
operators A, B,C --- X, Y, Z which are linear in annihilation/creation operators. Then the
time ordered product may be expanded,

/'\

&

T(ABC---XYZ)=:ABC---XYZ:
+AB:CD---XYZ:+AC:BD--- XY Z : +perms.
+ABCD :E---XYZ : +perms. (4.15)
+...
+*f CE'E) ---)L;Z+perms.

(This needs a little modification for fermions.) Now we apply this to the case we are
interested in. Namely the decay of a ¢ particle into a yx! pair. We need to sandwich the
time-ordered products of Hamiltonians

/ dtydty - - dtnT(Hi(t) Hilt) - - - Hi(ta) (4.16)

between the initial and final states to evaluate the matrix element. We have done this for
n = 1. Let us examine the systematics of n > 1. First we define ‘initial’ and final state
operators (also linear in creation operators),

i >= 0}0), |f >=0L0!,10) (4.17)

(The operator for creating a ¢-state is in many ways a “sub-operator” of the q@ operator.)
The first correction we can take as

9(017(0£0%, d(z1)(e1)%' (21)0% ) 10) (418)

We can evaluate this using Wicks theorem and throwing away all the normal ordered terms
since they vanish we sandwiched between (0| and |0). Fortunately a large number of the
possible contractions are zero. For example the contraction between a ¢ and a x field is
zero since the operators in ¢ commute with those in x. Thus we have

#(z)x(y) = x(=)x(v) = x'(=)x'(y) = 0 (4.19)
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and the only non-zero contractions will be between pairs of ¢ operators and pairs of x and
x! operators. It is a very useful exercise to repeat the previous calculation using Wick’s
theorem. Note that the contraction between a qS(z) operator and an initial state operator
is rather simple MO' = ¢'*'%_ If we consider the next case the correction is

g (01T (0£0%,(21)%(21)% " (21)8(22)%(22)R ' (22)0} ) 0) (4.20)

Since we have an odd number of ¢ terms the contractions must leave a single ¢ operator
which will vanish when sandwiched. Thus the second correctlon will be identically zero.

The third is
g*(0IT (0401, 3(e1)%(w1)% (1)8(e2)R(22)R (22)d(2)(20)8 N (23)05 ) 10)  (4.21)

This will be non-zero and by Wick’s theorem will produce a whole splurge of terms. Let
us try to organise them. A term will be,

0{,>zf(m1) Of, %(21) $(z1)d(x2) R(22)%"(23) X1(z2)%(23) (3)0 (4.22)
L4 bt ot . .

If we draw a diagram with three points z,, 2 and z3 then we can JOln the dots“ using
the contraction terms as labelled lines and obtain a diagram '

Figure 2. A Feynman Diagram. X

Similarly for the other terms we can also draw diagrams. The real trick is, of course,
not to do it this way but in reverse. It is much easier to draw diagrams to keep track
of contributions than to look after terms. We draw diagrams with the “Feynman rules”
which are rules for sewing together vertices with propagators. These may be written down
directly from the lagrangian. In our case we have Hamiltonian ¢xx' and the rule for
vertices is that we have a three point vertex with one ¢ line, one x line and one x' line.
The general case is easy to see (and to understand in terms of what has gone before). For
example if we had

= ¢n (4.23)

then we would have a n-point vertex. The vertices are joined together with lines to form
all possibilities. We can then associate with each diagram the approprate contribution.
The contributions are given in terms of the contractions of pairs of fields. This contraction
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is known as the Feynman propagator. Let us now evaluate the Feynman propagator for

the ¢ field

iAr(z,y) = §(2)(y) = (0IT(4()(y))I0)

- - . . 4.24
= (0] (lk/dq(&(_]g)el(k'z—W(k)h)) (df(g)e—l(!_y_-w(ﬂtz))|0) (4.24)

(we have dropped the terms giving zero trivially) The two operator terms can be commuted
past each other to yield

iAp(z,y) = / dk / dg(27)* 2w (k — g)e' k2= —ilhiw(k) ~tzu(0)) (4.25)

The §-function can now be evaluated. In the above we assumed t; > t; when evaluating,.
The result in general is

d*k ik (z—y)—i(t1—ts)w —ik-(z—y)—i(ta—
iAF(:I:,y):/m[e(tl_h)e'.&(ﬂ y)—i(t1—t2) +6(t2—t1)e k(z—y)—i(ta—t1)w (4.26)

where 6(t) = 1,t > 0 and 6(t) = 0,t < 0. There is a more Lorentz invariant looking
expression for the above which is

d4ke—ik-(z——y)

Ap(z,y) = | ————— 4.2

t F(a/ y) /k2—7n2+ze ( 7)
where we have slipped into relativistic four vector notation. The proof of the equivalence
of these two forms relies upon Cauchy’s theorem. For the more mathematically inclined we
can prove this by examining the integration in 1k¢ and continuing to a complex integration.

The poles in the integral occur when
(k9?2 =k —m? +ie=0 (4.28)

which happends when ky = +w(k) F ie The integral in the‘complex iko plane now lies
along the real axis with poles lying at (—w(k), +i€) and (w(k), —t€).

Figure 3. The contour integrations for the Feynman propagator.



We can close the contour with a semi-circle at infinity to obtain a curve which we then
apply Cauchy’s theorem to. Whether we use the upper or lower hemisphere depends upon
whether t; > t; or not. If t; < t; then we close in the upper plane and have to evaluate
the residue at (—w(k), +te. The general case can be combined

o(ts —ta) | <2x>35w BT 4 (1, — 1) f T )

which is as before. We now have a form of the propagator which integrates over d*k rather
than d®k. We are thus integrating over particles which need not be on mass-shell.



5. Functional Methods
I will now rework some of the results of the previous section but using the path integral
approach instead. This is in many ways much slicker. First for a set of discrete coordinates

; define
q W[Ji] / H[dq,]exp( / L(q,~,c_},~)dt+Zquj> (5.1)

The J; are dummy variables which will allow us to calculate expectations of ¢; etc by
derivatives of W[J]. For example

oW [Ji]
EXA

- / (dailare’s (5.2)

We with to extend this concept to a field theory. This means extending ¢; — ¢(z). This
gives

W(J(2)] = / (4] exp(i / ol + / d4:cJ(:c)¢(:1:)) | (5.3)

Now W[J(z)] is a functional. That is something which takes a function and produces a
number. Before continuing we must define a functional derivative. Consider a functional
F[J(z)] then
6F _ . FlU() +eb(z —y)] - FlI(2)
6J(y) — e=0 €

(5.4)
If we consider a simple example,
FlU@) = [ 1)) (5.5)

then

§F
——— =lim [ é(z - x
Gy i (z — y)o(z) (5.6)
=¢(y)
We now will apply some methods to the theory with Lagrangian,
1 3¢ 1, 5, At
=3(&) Z meme (57)

This lagrangian has the free part plus an interaction terms ¢*. We will consider the free
part first. The path integral for the free theory is gaussian and hence calculable by our
favourite integrals. However we must carefully take the ¢; — ¢(z) transition carefully.
Recall that we can carry our gaussian integrals where the exponential contains the term,

Z 9i Kijq; (5.8)
¥
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where K is a matrix. The correct generalisation will be the replace K by an operator. We
thus wish to transform the exponent in the path integral into the form

/dm/dyd)(m) - Operator - ¢(y) (5.9)

By integrating by parts (and neglecting surface terms) the Lagrangian density may be
written,

é(z) [*ﬁ +Viom ]¢(z) (5.10)

whence we may rewrite W[J] as

wols) = | (ag] p(—l [ &= [ v - [ d“zm)«s(z)) (5.11)

where

K(z,y) —54(x-y)[—-§?+v2 ] (5.12)

We may now evaluate Wy[J] in terms of the inverse operator of K. This is the operator
satisfying

/ dyK (z,9)A(y, 2) = §(z — 2) (5.13)
and we find
WolJ] = exp (—% / d4xd4yJ(:c)A(m,y)J(y)) (5.14)
e Wl | _ A y) (5.15)515
6J(2)67(y) | 1=0 ’ :

Now, the inverse operator A is in fact precisely the Feynman propagator encountered in
canonical methods (up to the odd normalisation factor of ¢ or —1). To see this

62 d4k e—ik'(z—y)
4 Tr( N = | d*26%z — 2)[ - — 2 _m?
/d ZI&(.'L','.)ZAF(Z,y) /(l 26 (m 2)( 6t2 +V m) (27()4 k2 — m?2
4 _¢dr etk (z—y)
/d 26%(z z)/ (27r)4 (5.16)
=/d4254(:1: - 2)6*(z —y)
=8z —y)

Now if we wish to evaluate, using functional methods, objects such as

/ dtydty (O|T($(2)#(y) Hi1 (81 Hr(t2))0) (5.17)



then we can obtain these by acting upon Wy[J] with

§ & & &
I(2) I(y) J(u)* J(v)*

(5.18)

and then setting J = 0. (together with integrating d*u and d*v.) Since, the exponential
is quadratic, and we set J = 0 finally, every time a propagator is brought down a further
functional derivative must act. The end result is that the object is a sum of products of
propagators.

As in the canonical case the simplest way to keep track of the terms is by drawing
feynman diagrams. This functional approach provides an alternate derivation. In the cases
considered up till now we have seen simple vertices (coresponding to just polynomial terms
in Hy) this will now be the case for gauge theories but the methods still apply.

5.2 Momentum space Feynman diagrams

The feynman diagrams I have drawn are not really the conventional ones. These are
normally drawn in momentum space rather then z space. The very good reason for this
is that the external states are normally momentum eigenstates. The momentum space is
really just a Fourier transform of the configuration space rules -and it may be regarded as
an exercise to transform these. Just a few points, the rules then require that we draw all
diagrams, the momenta now flowing through the legs is now integrated over and each vertex
has a é-function in momenta. Tree level diagrams in momentum space are then merely the
product of the propagators 1/(k? —m?) however loop diagrams have more integrations over
momenta than there are §- functions and we obtain (the infamously difficult to evaluate)
loop momentum integrations. We always obtain (look at our example) a é-function in our
results which imposes total conservation of energy and momentum. From the examples
we can easily (?!) see what the general rule for vertices will be - whatever is in £z will be
reflected in terms of the rules for the vertex: A ¢xx' vertex leads to a vertex with a ¢ a
x and a x' outgoing state: A : ¢™(z) : lagrangian will yield a vertex with n outgoing ¢
states. Constants multipling the vertex (such as g) get reflected in the rules.

t I have cut more corners in this section than I care to think about in an attempt to convey some
understanding of the path integral approach. Some of these corners came back to haunt me in
tutorials.

-26 -



6. Gauge Theories 1: Electro-Magnetism

The great sucess in particle physics has been the ability to use gauge theories to
describe the fundamental forces. As far as we know, both the strong and electro-weak
forces are described by gauge theories. The strong force is beleived to be described by a
SU(3) gauge theory known as QCD and the Electro-weak by SU(2) x U(1). Hopefully
these terms will become clearer. I'll take two “bites” at this very important type of field
theory. (Graham will also spend a lot of time on gauge theories as will Jonathon). The
first bite will be simply electro-magnetism or a U(1) gauge theory - although it might not
seem so simple and on the second pass I'll extend to SU(3) and SU(2) (or in fact any
gauge group).

The theory of ‘electromagnetism as described by Maxwell’s equations is our proto-
gauge theory. Maxwell’s equations are

V-B =0
Vxﬁ:—aa—ﬁ
t (6.1)
V-E=p
OE
VxB=j+-—*—
XD l+0t

As might be familiar to you, it is common to express E and B in terms of the vector and
scalar potentials

0A
B=-vy-%2  B-vxa (6.2)
whence the two equations V- B=0and Vx E = —% become automatic. Qur first task

will be to write these equations in manifestly Lorentz covariant form. Firstly we form a
4-vector potential A, = (¢,—A) and j, = (p, —j) and define a field strength F,, such that

0 E, E, E;
_|-E; 0 -B; B,
Fu, = _E, B, 0 -B, (6.3)
-E, -B, B; 0
This definition is in fact equivalent to
Fu = 0,A, — 0,4, (6.4)

With this definition it is fairly easy to see that the last two of Maxwell’s equations (four
equations really) can be written (don’t forget the Einstein summation convention!)

B FH = 5 (6.5)

We now wish to provide a lagrangian formalism for these equations. It turns out that the
appropriate Lagrangian density is given by

L
L= ZF,,,,F’“’ + 7. A" (6.6)
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whose Lagrange equations are just those of (6.5) . To see this, for example, take the
Lagrange equation for Ao,

or1dL d oL oL

g [-ézg] + T [—-——a(aon)} + (y and z terms) — B4 =0

0+ % [—Fm] + (y and z terms) + 0 =0 (6.7)
V.-E=0

There is a difficulty in carrying out a Hamiltonian approach to electro-magnetism. This is
because the momentum which is conjugate to Ag is identically zero,

oc
T4, 9A. = 0 (6.8)
since the Lagrangian density does not depend upon Ag.

Although not so obvious a problem in the Lagrangian formalism, this will rear it’s
ugly head fairly soon. The reason that there is a problem is because, in some ways, we
have too many variables A, describing the fields. This will lead us into gauge symmetry.
Notice that the field strength F),, is invariant under a transformation

A, — AL = A, + 0,A(z) (6.9)

where A(z) is an arbitrary function of z. Now, classically, the two choices of A, give the
same values of E and B thus since everything can be written in terms of E and B this
symmetry in merely a curiosity.

Before discussing the quantisation of Electro-magnetism I will consider the theory
coupled to Dirac fermion (or scalar ) If we consider a Dirac fermion % then the Lagrangian

Ly = Py,0" (6.10)
will be invariant under the transformation,
P =Y =e % (6.11)

where here o is a constant and not a function of z. (We could also consider coupling to
the scalar lagrangian 8,x70*x.) Suppose we would like to extend our transfomation so
that a(z). Then the Lagrangian is not invariant but an extra term

—igy,pdta (6.12)

! An analogy of the problems we are encountering is if we think of the simple pendulum. Suppose
I was silly enough to over specify my system by decribing it by z, y, and 6. I might be tempted
(obviously not but..) because the kinetic term is simple in z and y wheras the potential is simple

in terms of 6. If I then chose L = 1(2% + y? + 6% we would obtain the momentum pg = 0. This
contraint on (p, q) space is very similar to the electromagnetism case.)
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arises. Now we could make the Lagrangian invariant if we add an interaction term
Lint = 1g APy, (6.13)

and the combination ,
La+Ly+ Lint (6.14)

will be invariant under the combined gauge transformation.
P — 799y, A, — A, + 8,a(z) (6.15)

In terms of the fermions the transformation act via multiplication by a phase e'*. Such
phases form a group. A very simple group which is known as U(1)- the group of 1 x 1
unitary matrices. ( U(n) will be the group of n x n unitary matrices). We can include the
interaction term with the kinetic term for ¢ by defining the covariant derivative

Dy = (0u +igAu )y (6.16)

This is known as the covariant derivative because it transforms in the same way as ¥,
namely with just a phase.

D, — 799 D o (6.17)

This general trick of gauging symmetries has been enormously useful. It allows us to build
models which have proved enormously usefull in describing physics.
There are several conventions for phases in this area. Later I will use a different

convention which can be obtained by replaceing a by —a/g. Whence the fields transforms

as

o e, A, — A, — iaﬂa (6.18)

whence
D, =0, —igA, (6.19)

6.2 Quantum Gauge Theories

Our naive attepts to quantise electrodynamics will prove to be sick because we are
missing an important point. however, let us see how the sickness developes in the path inte-
gral formulation. We attempt to find the propagator. To do so, we must write the quadratic
part of the lagrangian as FIELD.OPERATOR.FIELD. The action may be rewritten

/ B (8, A, — B, A,)(O" A¥ — ¥ AW)
= / dad, (-2 8,04 +20°0” ) A  (6.20)

= / diz / d“:v’A,,(:c’)(&"(:z: —z')(—2n""’0,‘6“+26"6"’))A,,:(:L')
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we thus have the inverse-propagator organised in position space. When we fourier trans-
form the above we obtain the momentum space inverse propagator,

Py = (kuky — K1) (6.21)

This “inverse propagator” has the unfortunate property that it does not have an inverse
(so it is not the inverse of anything!). To observe this note that

PuPyp=— kz(kﬂkp - k277up)

6.22
ep (6:22)
Now any matrix satisfying M? = A\.M cannot be invertible (unless M = A.I which P
clearly is not.) so P is not an invertible operator. :

Now we have reached a problem in the path integral formalism (just as we would have
in canonical methods.) What is the reason for this? The intrepratation of the “sickness”
is that we are actually counting too many states in our path integral. If we have field
configurations A, and A, related by a gauge transformation, they only represent a single
equivalent states so we should only count them once rather than twice. In fact an infinite
overcounting occurs in the path integral. Consider the following diagram, where I have
“squeezed” the integration of the path integral onto two dimensions. Configurations related
to a field configuration lie in the orbit of the configuration.

205 T

Al = Ayt DN
Figure 4. Orbits in gauge configuration space.

In this figure the orbits are shown and a curve which cuts each orbit is shown Such
a curve is given generically by

g [Aﬂ] =0 (6.23)

We can think of implementing the gauge fixing by inserting a é-function into the path
integral. (However they are important coefficients!). Such a condition is called a gauge
fixing condition. A good function g[A] is clearly one which cuts each orbit once and once
only. The implementation of gauge-fixing is important technically in quantising a gauge
theory. I will demonstrate (rather than prove) how to implement this. I will try to sw1tch
back and forth between a two-dimensional analogy and the real situation.
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Consider a two dimensional integral

I= /d:z:dyf(m,y) (6.24)
in analogy with the gauge theories the function f is invariant under rotations thus
f(z,y) = F(r,0) = F(r) (6.25)

by analogy with gauge symmetries let us assume that the different values of 8 should not
be counted. Thus we wish to evaluate

I' = /drrF(r) (6.26)

rather than (6.24) (which differs by a factor of f02" df = 27. Now we can just implement
this by inserting a é-function within the integral. We define

Iy = /dzrf(x,y)és(ﬂ - @)= /rdrdGF(r, 0)6(8 — ¢) = /rdrF(r) =TI (6.27)

We can define this for any function and by definition

I= / doI, (6.28)

however only for rotationally invariant functions will Iy be independant of ¢. Since Iy is
independant of ¢,

I= / dpIs = 2nly, (6.29)

where ¢ is any value of ¢. In many ways I have just cheated! - I “knew” that the curve
6 = const. cut each orbit one and one only (and also smoothly!). In general we want
to consider a general curve g(x,y) = 0. (analogous to (6.23) ). Again I want to insert
8(g(z,y)) into the integral but now we need factors. We can see these from the identity,

9
09

_, [ ety =1 (6.30)

(For intuition on this equation look, for example, at the prerequisites where §(az) =
é(z)/|al.) It is important that

d
Ay(ry) = la—g - (6.31)

is rotation invariant. To see this note

87(ce) = [ d8(9(rass)) = [ de(a(re)) = 87) (632)
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We may now insert the factor of one in (6.30) into the integral I

- | dords f(z,1) [ aonwstatey) = ( / d¢) [ Erfa s, @iy (639

So we can obtain
I'= [ e, A, 06(,) (6.34)

As expected we have introduced a é-function but we have a correcting factor Ay, In a
quite considerable generalisation to gauge theories there is an identity,

1= A,(4%) / []du(=) [] 6(s(4*Y) (6.35)

where , g ,
AAA)=daQﬁ) ~ (6.36)

and U(z) = e**(®) -we are integrating over elements of the U(1) group. Inserting this into
the functional integral we obtain,

/ d[AR]e=Action / [dU) 2 g(A4%) T 8(9(A*Y))
- / (U] / dlar)e=Action p (42) TT 6(9(4*Y)

The formal method of quantising is now rather simple - we just throw away the integration
of the group variables [[dU]. (analogously to [ d¢) leaving us with a “gauge fixed” path
integral which only counts each orbit once.

Great. We however have one more step before this is any use!. (How do we implement
a general gauge fixing §-function?) Obviously, the gauge fixed path integral is independant
of g. (It’s not easy to show this...) So using the gauge fixing functional

(6.37)

¢ =g-B (6.38)

where B is just a function of & (just a constant really in functional space!) will give just
the same result. Inserting a factor

/ (4B] T] 8(9(4*Y) - Bye=3 [ 4=2°) (6.39)

instead of [] 6(g(A*Y)) merely changes the path integral by a constant. This is really just

averaging (or smearing) over the gauge functions g — B with a factor e? *. This trivial trick
allows us to get rid of the §-fuctions and the gauge fixed path integral is

/d[A”] /[dB]e—ACtionAg(AZ) Hé(g(Ap,U _ B)e-—.,}z-fd‘izB?(z)
(6.40)
— /d[Ay]e—Action—-zlE- fd4zg[A]2Ag(A‘;l‘)
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So we have promoted the §-function to an extra term in the action - the “gauge-fixing”
term plus a determinant in the action (maybe more later). Many choices of “gauge-fixing”
exist (and thus much effort to find good gauges - in some sense). I'll try to illustrate one
approach via the so-called covariant gauges.

6.3 The Covariant gauges
This gauge choice uses the gauge fixing term,

g[A"] = 9,4" (6.41)
With this gauge choice we find that the gauge fixing term in the action becomes
/ o (9, AFY? (6.42)
2€
This will affect the quadratic terms in the action ( thankfully!) to be
1
A (kuku 1 = 7" 1) 4, (6.43)

Now, we can invert this operator and obtain a propagator in momentum space

I
(’hw B Ele)?“ )

k% +de (6.44)
Amongst this class of gauge choices two special ones are when £ = 0,1 These are
Feynman Gauge, (=1, P, = %
My — Kk [ 12 (6.45)

Landau Gauge, (=0, P, =

k2

So gauge fixing has resolved this (and in fact all other) problems with quantisation of the
gauge theory.

In the absence of either scalars or fermions, the quantised theory is a free theory and
we may solve as for free scalar theory. (The Lagrangian contains only quadratic terms
and, in the Feynman gauge, the propagator is just §,,/k? which means the A, act just
like multiple scalar fields.) In the presense of scalar or fermion fields the theory becomes
a real live interacting quantum theory - QED for fermions or scalar-QED for scalars. For
a fermion the covariant derivative contains an interaction term

igh Y AR =19 Y Pa(Vu)arthsA* (6.46)

a,b

implying a Feynman vertex
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7. Gauge Theories 2: Non-Abelian gauge theories

In this section we will generalise the concept of a gauge theory to that of a non-
abelian gauge theory. Both the strong and weak interactions appear to be described by
such theories. Recall that the action of a gauge transformations for electromagnetism act
as

e'e(®) (7.1)

Now complex phases could, if one were perverse, be described as 1 x 1 unitary matrices.
The U(1) such matrices form a group. The basic definition of group’s I quickly review here

7.1 basic group theory

A group G, is a set of objects with an action, or multiplication, defined such that the
following axioms are satisfied,

1:if a,b € G,then a.b € G (closure)

2 :there exists an identity ,e,s.t.a.e = e.a = a,Va € G

Vaa™! = e,a_l.a =e

(7.2)

3 for all a € G, there exists an inverse a~
4 :a.(b.c) = (a.b).c Va,b,c

There are many examples of groups. For example,

a) the numbers {1, —1} under multiplication

b) the real numbers under addition (but noet multiplication since zero has no inverse.)

c) the set of n xn matrices which are unitary ( A~} = A' ) and which have determinant
one. This group is known as SU(N).

d) the set of orthogonal matrices (A™' = AT) of determinant one. This is known as
SO(N). '

Examples c¢) and d) are examples of Lie Groups. Lie groups are groups which depend
smoothly (in a well defines mathematical sense) on parameters. For example, a general
'SO(2) matrix can be written in the form,

M, = ( cos b sinG) (7.3)

—sinf cosé

which we can parameterise by 8. Clearly group multiplication (and inverses etc) depend
smoothly upon 6, for example

M(6)M(¢) = M(6 +¢), M~'(6) = M(-6) (7.4)
(If you are particulary observant you might notice that there is a lot of similarity be-
tween these matrices and U(1). In fact SO(2) and U(1) are essentially the some algebraic
structure.) If all elements of a group commute,

“a.b=b.a Va,b (7.5)

then we call the group Abelian.
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7.2 Lie Algebras

An important object of interest in a Lie group is it’s algebra. This is defined in
terms of the behaviour of the group elements near the identity. For example consider the
group SU(2), ( A'A =1, det(4) = 1). If we have an arbitrary element near the identity,
A =TI +1T (where T is small ) then T must satisfy,

Tt =T, t(T)=0 (7.6)
thus T can be parametised as

3
T=) o'T" (7.7)

170 1 1/0 — 1/1 0
Y T (Y (A T

The matrices T; generate an algebra under commutation. That is the commutator of any
two T matrices is a sum of T matrices. For example

where

[TI,T"’] = iT® (7.9)

In general for SU(N), if we consider the algebra, then it is generated by hermition traceless
matrices of which there are N* — 1. This is the dimension of the Lie algebra. For SU(3)
there are thus eight matrices. A standard basis is
0
0
1
1
0
0

0 —i 0 110
/\2=i00,\3=§0—10
0 0 0 0 0
[0 0 ~i 0 00 L [0 0 0 0
M==10 0 0 |x= 0 0 1M ==[00 —|X\= 10
2 2 2\/_
“\: 0 O 010 0 i 0 0 -2

(7.10)
which are closed under commutation. Elements of the Lie algebra are linear combinations
of these. There is a very important relationship between the elements of the algebra and
the group itself. Essentially the group elements can be obtained by exponentiating the
algebra,

L

DN | -
(el i ]
oo =
[ B e
o =

[CV R

Ula) = expza“T“ (7.11)

where the a are no longer infinitesmal. Similar to the case of SU(2), the T, obey commu-
tation relations,

[Ta,T"] — j fabere (7.12)
where f2%¢ are known as the structure constants of the algebra. For SU(2), fobc = edbe,

(We normally normalise the 7% such that tr(T°T%) = 62%/2.) Although I won’t really
justify this, the structure constants really contain all the information in the group.
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7.3 Representations

The structure of a group is defined abstractly in terms of the multiplication. A concrete
realisation of a group is called A representation. A representation has two objects. Firstly,
there must be a specific object for each element of the group. Normally we will be interested
in matrix representations of a group. So we will have a mapping between the group and
our set of matrices,

fif(G)— M (7.13)

which preserves the multiplication structurei.e. f(G.H) = f(G).f(H). For our SU(2) and
SU(3) groups we have actually been looking at a representation of the formal mathematical
structure. However, it has been a very special representation - the fundamental. For a given
group there are many representations. For example the is always the trivial representation
where every matrix get’s mapped to the number 1. Also very importantly, the matrices
must have a vector space to act upon. Normally we view this as column vectors. A
cultural gap between mathematicians and physicists is that mathematicians focus upon
+ the matrices wheras physicists focus upon the vector space.

7.4 Non Abelian Gauge symmetries
Let us generalise our gauge transformation acting upon a fermion

Y- Uy (7.14)

where U is an element of a group G such as SU(2) and 3 lies in a representation of G.
For example for SU(2) we could take ¢ to be a doublet of fermions

Y= (i;) (7.15)

If U did not vary with z then the Lagrangian

P17 0ty + P27 Bt = B 7*B, 9 (7.16)

is invariant, however for a gauge symmetry we wish the gauge transformation to vary with
z. The technique will be to construct a covariant derivative D, such that

D,$ — U(z)D,y (7.17)

which will require

U(z)D, U Y (z)=D', (7.18)
We will postulate a form for D* analogously to the U(1) case,

D, =8, +igy T*W;
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of the propagator, which in momentum space will lead to k, terms. The precise answer
for the three point momentum space Feynman vertex, in the Feynman gauge, 1s

V:,f,f(p, q,r) = gfabc (6up(‘Iu —7u) + 6pu(ry — Pv) + bpu(pp — ‘Ip)) (7.27)

as we show diagramatically,

Co

A

A,

- —
1 r

Figure 6. Feynman Diagrams for Non-Abelian Gauge Theory.

Note that is has crossing symmetry under interchange of legs and has one power of
momentum in the vertex. The general situation is probably fairly clear from now on. There
will also be a 4-point vertex. This contains no momentum (but a factor of g2 rather than

g.)
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8. Critique of Perturbation theory
Perturbation theory has been enormously sucessful but it does have limitations. First
I'll try to illustrate the “light” and then the “shade”
The Light
Perhaps the most impressive demonstration of perturbative field theory is the evalu-

ation of g — 2 of the electron in QED. The magnetic moment of a fermion is related to it’s
spin via
e

p=-95—~S (8.1)

m

The classical Dirac lagrangian gives a prediction for g to be exactly 2. However, as a purely
Quantum mechanical effect, ¢ may not exactly equal 2 but may be anomalous. This is
calculable, using Feynman diagrams, perturbatively.

The great success is

—9
(gT) =1159657.7 + 3.5 x 10™? : Experiment

(8.2)
=1159655.4 + 3.3 x 10~° : From Theory

The theoretical, prediction includes Feynman diagrams up to three loops. The only sensible
conclusion is that

PERTURBATION THEORY WORKS

The Shade
Consider the function

(8.3)

“This little function has a lot to teach us. It is not a particularly badly behaved function

or very exciting to look at. It is continuous differentiable and it isn’t very difficult to show
that '

f(0)=0 (8.4)
If fact, with a little more work we can show that
f™)=0 (8.5)
Thus the Taylor series of f(z) around z =0 is
o0 " zn
> fPO)— =0#f(2) (86)
n=0

Thus it is a fairly simple example where the Taylor series does not equal the function. Now
a typical decay amplitude is a function of the coupling constant ¢

R(g)
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We attempt to evaluate R(g) by perturbation theory - this is essentially just it’s Taylor
series. So any component of R which takes the form

~ellT fg) (8.7)

will never show up in a perturbative expansion. One might argue that such functions are
pathelogical. le. that they are really just mathematical and don’t effect real problems
however I'll try to argue the reverse. Consider SU(2) pure gauge theory. Rescale the
potential field

1
W, — EW,; (8.8)

whence

n

1
F,, — ~F
g

where F' has no explicit dependance on g. Then the Path integral looks a bit like
~ / [dwlesr JFa)’ (8.9)

Which definately looks dangerous! Thus we can easily see how contributions not accessi-
ble by perturbative results can creep in. This is especially true in any form of classical
background

A=Al + A, (8.10)

(Le. looking at transitions in the presence of a non-zero background.)

I present this example ( another good example is 1/(1 + g2 ) not to try to destroy
Feynman diagram techniques but to point out that they are not everything. We must
consider the realm of validity. Unfortunately, we have few alternate techniques. One
technique is to take the path integral and just evaluate it numerically. To do so we must
discretise space-time , the configuration etc etc. It takes a lot of computing effort and still
has yet to be enormously fruitful but , at present, we have nothing else other than feynman
diagrams (and variations thereof). Despite these concerns, field theory does “produce the
goods”.
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9. Exercises (selected)
1.1 Using Lagrange’s Equations solve the double pendulum.

Figure E1. The Double pendulum.

1.2 Calculate the Poisson brackets,
{qz,p}, {qz,pz}

A2]

How do these compare with
[627ﬁ]’ [é29
1.3 Suppose
1
L=3;v(g)7'¢’

then what is H?.
1.4 Show that the time dependance of any function F(p,,q¢r) is given by

F= {FH} (9.1)

2.1 In the low temperature limit of the partition function in statistical mechanics it
is the low-energy states whose contributions dominate. In the small-A limit which paths
will dominate in the path integral?

3.1 Consider a field ¢(z) we will quantise this theory by discretising in and then let
the discretisation go to zero. Suppose we split z-space into N-regions of area éx; wher ¢
takes on the value ¢(z;). Then the natural Lagrangian will be

L=y &c%q's(x,-y +V(6(2:)) 9.2)

Define the continuous momentum conjugate to ¢(z) to be 7(z). and denote it’s discreti-
sation by n(z;).
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What is the cononical momentum conjugate to ¢(z;)? Suppose we quantise the
disctete system. What is implied for

[r(22), 8())

Justify what happens to this in the limit éz; — 0.
) 82
5.1 Compute W‘ and W Of

o) [ dé@)I(a)
| [ dw«s(w)J(x)r
) [ deb(@)I(ay

6.1 Express both F,, F'*” and €,,,0F,, F*? in terms of E and B.
7.1 An alternate Definition of F),, is

F;w = [D[l-) Du]

7.2 Find a set of 3 x 3 matrices which form a representation of SU(2). i.e. matrices
satisfying (7.9)
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1 Introduction

The aim of this course is to teach you how to calculate amplitudes, cross-sections and
decay rates, particularly for quantum electrodynamics, QED, but in principle also for
quantum chromodynamics, QCD. By the end of the course you should be able to go from
a Feynman diagram such as the one for ete™ — p*u~ in Figure 1.1(a), to a number for
the cross-section, for example.

We will restrict ourselves to calculations at tree level but will also look qualitatively
at higher order loop effects which amongst other things are responsible for the running
of the QCD coupling constant, where the coupling appears weaker when you measure it
at higher enegy scales. This running underlies the useful application of perturbative QCD
calculations to high-energy processes. As you can guess, the sort of diagrams which are
important here have closed loops of particle lines in them: in Figure 1.1(b) is one example
contributing to the running of the strong coupling (the curly lines denote gluons).

In order to do our calculations we will need a certain amount of technology. In
particular, we will need to describe particles with spin, especially the spin-1/2 leptons
and quarks. We will therefore spend some time looking at the Dirac equation and its free
particle solutions. After this will come revision of Fermi’s golden rule to find probability
amplitudes for transitions, followed by some general results on normalisation, flux factors
and phase space, which will allow us to obtain formulas for cross sections and decay rates.

With these tools in hand, we will look at some examples of tree level QED processes.
Here you will get hands-on experience of calculating transition amplitudes and getting
from them to cross sections. We then move on to QCD. This will entail a brief introduction
to renormalisation in both QED and QcD. We will introduce the idea of the running
coupling constant and look at asymptotic freedom in QCD.

In reference 1] you will find a list of textbooks which may be useful

1.1 Units and Conventions

I will use natural units, ¢ = 1, i = 1, so mass, energy, inverse length and inverse time all
have the same dimensions.

4-vector a* 1=0,1,23 a=(aa) (1.1)
scalar product a-b = a%° — a-b = g,,a*b” '
From the scalar product you see that the metric is:
1 ifpu=v
= di -1.~-1. - B — AP — H
g=diag(1,-1,-1,-1), ¢ =8={y b " (1.2)

For c =1, g*¥ and g, are numerically the same.

et ut ‘
° (a) 4 (b)

Figure 1.1 Examples of Feynman diagrams contributing to (a) ete~™ — p*p~ and (b) the
running of the strong coupling constant.
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From the above, you would think it natural to write the space components of a 4-vector as
a* for i = 1,2,3. However, for 3-vectors I will normally write the components as a;. This
is confusing only when you convert between ordinary vector equations and their covariant
forms, when you have to remember the sign difference between a* and a;.

Note that 9, is a covector,
a 14 14
6# = bﬁ, 8,@ = 6“, (13)

so Vi = -9 and o* = (8°, V)
My convention for the totally antisymmetric Levi-Civita tensor is:

—1 if an odd permutation (1.4)

X {+1 if {¢,v, A, 0} an even permutation of {0,1,2,3}
et —
0  otherwise

Note that €#*? = —¢,,nq, and €2 p,g,mrs, — (det A) #*?p,q, 725, for A in the Lorentz
group.

1.2 Relativistic Wave Equations?

Imagine you are working in the 1920’s. You already know quantum mechanics based on
Schrodinger’s equation and you know relativity. You might ask if you can come up with
some relativistic version of a quantum mechanical wave equation. If you do this, you
encounter difficulties arising from the one-particle viewpoint, thinking of the equations
describing a wave function. These difficulties are solved by ditching the wave function in
favour of a quantum field, the subject of your quantum field theory course.

What is the problem with the one particle interpretation? Trouble arises from com-
bining the uncertainty principle with the relativistic equivalence of mass and energy-
momentum. If you try to localise a particle in a region with dimensions of order L, the
particle’s momentum and (in the relativistic regime) energy are uncertain by ~ 1/L.
As the dimension L becomes smaller than the particle’s inverse mass, 1/m, states with
more than one particle become energetically accessible. The more you try to localise a
particle, the more you become uncertain whether you have one or any number of parti-
cles. Relativistic causality is inconsistent with a single particle theory and the real world
evades the conflict through pair creation. Quantum field theory is the tool allowing you
to reconcile quantum mechanics and special relativity.

What happens in quantum field theory is that field operators, which can create
or destroy multiparticle states, satisfy Heisenberg equations of motion. If there are no
interactions, then the relevant equations are the Klein-Gordon equation for scalar fields
or the Dirac equation for spin-half fields (such as the electron). The free quantum fields
are expanded as linear combinations of plane wave solutions of these equations, but with
operator valued coefficients which can create and destroy single particles. Thus we need
to know the properties of the plane wave solutions. This is trivial for the scalar field, but
is more interesting for the Dirac field. All the problems with “negative energy solutions”
in the wave function approach are non-problems in quantum field theory: the negative
energy parts multiply operators which destroy particles.

In fairness I should mention that you can get quite far with the one particle inter-
pretation if you consider external forces which vary slowly on scales of order 1/m, and



thereby don’t have enough energy to create new particle pairs. Notably, you can use
the Dirac equation, which we’ll meet below, in the presence of an electromagnetic field,
to calculate fine structure in the spectra of hydrogen-like atoms (see textbooks such as
Itzykson and Zuber [1] section 2.3 for example).

1.3 The Klein-Gordon Equation

In your quantum field theory course, you will show that the Heisenberg equations of
motion for a free scalar field and its canonical conjugate give the Klein-Gordon equation

(O+m?) ¢(z) =0 (1.5)
where
0= 9,0" = §*/9t* — V? (1.6)
and z is the 4-vector (¢,x). Using the substitutions,
i)
E —i— —1 )
—)zat, p — —iV, (1.7)

you can see that the objects created or destroyed by ¢ satisfy the relativistic energy-
momentum relation

E?=p? +m? (1.8)

The operator O is Lorentz invariant, so the Klein-Gordon equation is relativistically

covariant (that is, transforms into an equation of the same form) if ¢ is a scalar function.
That is to say, under a Lorentz transformation (¢,x) — (¢',x’),

¢(tv X) - ¢I(t’7xl) = ¢(t,x)

so ¢ is invariant. In particular ¢ is then invariant under spatial rotations so it represents
a spin-zero particle (more on spin when we come to the Dirac equation), there being no
preferred direction which could carry information on a spin orientation.

The Klein-Gordon equation has plane wave solutions

¢(x) = Ne HEt-Px) (1.9)

where N is a normalisation constant and E = #£+/p? + m?. Thus, there are both positive
and negative energy solutions. In the quantum field ¢, these are just associated with
operators which create or destroy particles. However, they are a severe problem if you
try to interpret ¢ as a wavefunction. The spectrum is no longer bounded bélow, and you
can extract arbitrarily large amounts of energy from the system by driving it into ever
more negative energy states. Any external perturbation capable of pushing a particle
across the energy gap of 2m between the positive and negative energy continuum of
states can uncover this difficulty.

A second problem with the wavefunction interpretation arises when you try to find
a probability density. Since ¢ is Lorentz invariant, |¢|? doesn’t transform like a density.
To search for a candidate we derive a continuity equation, rather as you did for the
Schrédinger equation in the pre-school problems. Defining p and J by

_ (.06 8¢
b= ’(¢5’t" W) (1.10)
J = —i(6"Vé - V)

-49-



you obtain (see problem) a covariant conservation equation
8,J* =0 (1.11)

where J is the 4-vector (p,J). It is natural to interpret p as a probability density and J
as a probability current. However, for a plane wave solution (1.9), p = 2|N|2E, so p is
not positive definite since we've already found E can be negative.

> Exercise 1.1
Derive the continuity equation (1.11). Start with the Klein-Gordon equation multiplied
by ¢* and subtract the complex conjugate of the K-G equation multiplied by ¢.

Thus, p may well be considered as the density of a conserved quantity (such as
electric charge), but we cannot use it for a probability density. To Dirac, this and the
existence of negative energy solutions seemed so overwhelming that he was led to intro-
duce another equation, first order in time derivatives but still Lorentz covariant, hoping
that the similarity to Schrodinger’s equation would allow a probability interpretation. In
fact, with the interpretation of ¢ as a quantum field, these problems are not problems at
all: the negative energy solutions will find an explanation in terms of antiparticles and p
will indeed be a charge density as hinted above. Moreover, Dirac’s hopes were unfounded
because his new equation also turns out to admit negative energy solutions. Fortunately
it is just what we need to describe particles with half a unit of spin angular momentum,
so we will now turn to it.
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2 The Dirac Equation

Dirac wanted an equation first order in time derivatives and Lorentz covariant, so it had
to be first order in spatial derivatives too. His starting point was

) %f— = —ia- V¢ + fmy (2.1)
Remember that in field theory, the Dirac equation is the equation of motion for the field
operator describing spin-1/2 fermions. In order for this equation to be Lorentz covariant,
it will turn out that 1 cannot be a scalar under Lorentz transformations. In fact this will
be precisely how the equation turns out to describe spin-1/2 particles. We will return to
this below.

If 4 is to describe a free particle it is natural that it should satisfy the Klein-
Gordon equation so that it has the correct energy-momentum relation. This requirement
imposes relationships among the & and 3. To see these, apply the operator on each side
of equation (2.1) twice,

2 .
—?9_;21) = —a'?V'V? — i (B’ + o' BymV*Y + BPm*y
The Klein-Gordon equation will be satisfied if
aiaj + ;= 2(5,'_‘-,'
Bo; +a;8 = 0 (2.2)
g = 1

fori,j = 1,2,3. It is clear that the o; and 8 cannot be ordinary numbers, but it is natural
to give them a realisation as matrices. In this case, 1 must be a multi-component spinor
on which these matrices act.

> Exercise 2.1
Prove that any matrices a and £ satisfying equation (2.2) are traceless with eigenvalues
+1. Hence argue that they must be even dimensional.

In two dimensions a natural set of matrices for the a would be the Pauli matrices

01=((1) (1)), 02=<? —Oz)’ 03=((1) _01) (2.3)

However, there is no other independent 2 x 2 matrix with the right properties for 3, so
the smallest dimension for which the Dirac matrices can be realised is four. One choice
is the Dirac representation

- (2 5) 53 %) 2

Note that each entry above denotes a two-by-two block and that the 1 denotes the 2 x 2
identity matrix.

There is a theorem due to Pauli which states that all sets of matrices obeying the
relations in (2.2) are equivalent. Since the Hermitian conjugates o' and ' clearly obey
the relations, you can, by a change of basis if necessary, assume that a and f are
Hermitian. All the common choices of basis have this property. Furthermore, we would
like ; and B to be Hermitian so that the Dirac Hamiltonian (2.14) is Hermitian.
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> Exercise 2.2
Derive the continuity equation 8,J# = 0 for the Dirac equation with

p=J"=¢'a)p(z), I =9y (@)ay(z). (2.5)

We will see in section 2.6 that (p,J) does indeed transform as a four-vector.

2.1 Free Particle Solutions I: Interpretation

We look for plane wave solutions of the form

v = (i’) —i(Et—px)

where ¢ and x are two-component spinors, independent of z. Using the Dirac represen-
tation, the Dirac equation gives

(0= (% ) ()

so that
_OP 4 4 TP
X=Em® E-mX

For E # —m there are solutions,

w(z_) — ( d) ) e—i(Et—p-x) (2 6)

~ gz | .
while for E # m there are solutions,
P .
,d)(x) — (E—;(nx) e—z(Et—p.x)’ (27)

for arbitrary constant ¢ and x. Now, since E2 = p2+m? by construction, we find, just as
we did for the Klein-Gordon equation (1.5), that there exist positive and negative energy
solutions given by equations (2.6) and (2.7) respectively. Once again, the existence of
negative energy solutions vitiates the interpretation of ¢ as a wavefunction.

Dirac interpreted the negative energy solutions by postulating the existence of a
“sea” of negative energy states. The vacuum or ground state has all the negative energy
states full. An additional electron must now occupy a positive energy state since the
Pauli exclusion principle forbids it from falling into one of the filled negative energy
states. By promoting one of these negative energy states to a positive energy one, by
supplying energy, you create a pair: a positive energy electron and a hole in the negative
energy sea corresponding to a positive energy positron. This was a radical new idea, and
brought pair creation and antiparticles into physics. Positrons were discovered in cosmic
rays by Carl Anderson in 1932.

The problem with Dirac’s hole theory is that it doesn’t work for bosons, such as
particles governed by the Klein Gordon equation, for example. Such particles have no
exclusion principle to stop them falling into the negative energy states, releasing their
energy. We need a new interpretation and turn to Feynman for our answer.
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time

Figure 2.1 Feynman interpretation of a process in which a negative energy electron is absorbed.
Time increases moving upwards.

According to Feynman and quantum field theory, we should interpret the emission
(absorption) of a negative energy particle with momentum p* as the absorption (emission)
of a positive energy antiparticle with momentum —p#. So, in Figure 2.1, for example, an
electron—positron pair is created at point A. The positron propagates to point B where
it is annihilated by another electron.

Thus Feynman tells us to keep both types of free particle solution. One is to be used
for particles and the other for the accompanying antiparticles. Let’s return to our spinor
solutions and write them in a conventional form. Take the positive energy solution of
equation (2.6) and write,

VE+m ( op ) eTPT = yle P (2.8)
E4+mAT

For the former negative energy solution of equation (2.7), change the sign of the energy,

E — —F, and the three-momentum, p — —p, to obtain,

i . .
VE+m ( E+er> e?" = ype't. (2.9)

In these two solutions E is now (and for the rest of the course) always positive and given
by E = (p? + m?)'/2. The subscript r takes the values 1,2, with

X1 = ((1)) Xz = ((1’) (2.10)

At this point I would like to introduce another notation, and define

wp = \/p? + m?2, (2.11)

so that, w, is the energy (positive) of a particle or anti-particle with three-momentum
p (I write the subscript p instead of p, but you should remember it really means the
three-momentum). I will tend to use E or w, interchangeably.

The wu-spinor solutions will correspond to particles and the v-spinor solutions to
antiparticles. The role of the two x’s will become clear in the following section, where it
will be shown that the two choices of r are spin labels. Note that each spinor solution
depends on the three-momentum p, so it is implicit that p® = w,. In the expansion of
the Dirac quantum field operator in terms of plane waves,

U(z) = /(& > [l;(p, r)une”?* + (i*(p,r)v;eip"] (2.12)

271’)3 2wP r=1,2

-53-



the operator b annihilates a fermion of momentum (w,, p) and spin 7, whilst dt creates
an antifermion of momentum (w,,p) and spin r. The Hermitian conjugate Dirac field
contains operators which do the opposite. This discussion should be clearer after your
quantum field theory lectures.

The vacuum state |0) is defined by,

b(p,r) |0) = d(p,7)[0) =0, (2.13)

for every momentum p = (wp, p) and spin label r. This ensures the interpretation above:
particles are created by the “daggered” operators and destroyed by the undaggered ones.

2.2 Free Particle Solutions II: Spin

Now it’s time to justify the statements we have been making that the Dirac equation |
describes spin-1/2 particles. The Dirac Hamiltonian in momentum space is

H=ap+pm (2.14)
and the orbital angular momentum operator is
L=rxp.

Normally you have to worry about operator ordering ambiguities when going from classical
objects to quantum mechanical ones. For L the problem does not arise — why not?

Evaluating the commutator of L with H,

[L,H] = [rxp,ap]

[r,ap] X p (2.15)
= i Xp,

‘we see that the orbital angular momentum is not conserved. We'd like to find a total
angular momentum J which is conserved, by adding an additional operator S to L,

J=L+S.

To this end, consider the three matrices,

o 0 .
Y= (0 a) = —io 0no3a. (2.16)

The ¥ /2 have the correct commutation relations to represent angular momentum, since
the Pauli matrices do, and their commutators with a and £ are,

[2, ﬂl = 0, ‘ [E,-,aj] = 2ieijkak. (217)

> Exercise 2.3
Verify the commutation relations in equation (2.17).



From the relations in (2.17) we find that
[, H] = —2ia x p.

Comparing this with the commutator of L with H in equation (2.15), you readily see
that

[L+1x, H] =0,
and we can set )
S==-3.
2

We interpret S as an angular momentum intrinsic to the particle. Now

Sz=l(a-a 0 )=§(1 O)
4\ 0 oo 4\0 1)’
and recalling that the eigenvalue of J? for spin j is j(j+1), we conclude that S represents
spin-1/2 and the solutions of the Dirac equation have spin-1/2 as promised.
We worked in the Dirac representation for convenience, but the result is of course

independent of the representation.
Now consider the u-spinor solutions uj, of equation (2.8). Choose p = (0,0, p.) and

write
' vVE+m 0
0 vVE+m
up = u;,z = 5= | uy = uf,z = 0 (2.18)

0 : —vVE-m

It is easy to see that,

' 1 1

SzuT = EUT, Szul = —Eul.

So, these two spinors represent spin up and spin down along the 2-axis respectively. For
the v-spinors, with the same choice for p, write,

E-m 0
0 —VE-m
'Ul = 'U:;z = \/'m N 'UT = ’ng = 0 y (219)
0 vVE+m
where now,
1 1
S;vy = FU S,up = —35ut

This apparently perverse choice of up and down for the v’s is because, as you see in
equation (2.12) for the quantum Dirac field, u4 multiplies an annihilation operator which
destroys a particle with momentum p, and spin up, whereas v, multiplies an operator
which creates an antiparticle with momentum p, and spin up.

2.3 Normalisation, Gamma Matrices
We have included a normalisation factor /E+m in our spinors. With this factor,

u;*u; = 'U;"v; = 2wpd™. (2.20)

This corresponds to the standard relativistic normalisation of 2w, particles per unit
volume. It also means that u'u transforms like the time component of a 4-vector under
Lorentz transformations as we will see in section 2.6.
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> Exercise 2.4
Check the normalisation condition for the spinors in equation (2.20).

I will now introduce (yet) more standard notation. Define the gamma matrices,

V=8 v=pa (2.21)

In the Dirac representation,

(%) (%) o2

In terms of these, the relations between the a and f in equation (2.2) can be written
compactly as,
{r*, 7} = 2¢". (2.23)

Combinations like a,v* occur frequently and are conventionally written as,
¢ = au'y# = a“')’p»

pronounced “a slash.” Note that v* is not, despite appearances, a 4-vector — it just
denotes a set of four matrices. However, the notation is deliberately suggestive, for when
combined with Dirac fields you can construct quantities which transform like vectors and
other Lorentz tensors (see the next section).

Let’s close this section by observing that using the gamma matrices the Dirac equa-
tion (2.1) becomes

(i¢ —m)y =0, (2.24)
or in momentum space,
(¥ —m)y=0. (2.25)

The spinors u and v satisfy

(2.26)

> Exercise 2.5

Derive the momentum space equations satisfied by up, and vy,

2.4 Lorentz Covariance

We want the Dirac equation (2.24) to preserve its form under Lorentz transformations
(LT’s). Let A*, represent an LT,

zt = o' = A* ¥ (2.27)
The requirement is,
(V0 —m)p(z) =0 — ("3, —m)y'(z') =0,

where 0, = A?,0,. We know that 4-vectors get their components mixed up by LT’s, so
we expect that the components of 1 might get mixed up also,

¥(z) = ¢/(2') = S(A)p(A™'z) (2.28)
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where S(A) is a 4 x 4 matrix acting on the spinor index of 9. Note that the argument
A~'2’ is just a fancy way of writing z, so each component of 1(z) is transformed into a
linear combination of components of ¥(z).

To determine S we rewrite the Dirac equation in terms of the primed variables,
(iv*A° 8, — m)Yp(A~ ') = 0. (2.29)
The matrices 77 = y#A, satisfy the same anticommutation relations as the y*’s in
equation (2.23),
{v*, 7"} = 2¢". (2.30)
> Exercise 2.6

Check relation (2.30).

Now we invoke the theorem (Pauli’s theorem) which states that any two represen-
tations of the gamma matrices are equivalent. This means that there is a matrix S(A)
such that

* = STHA)Y*S(A). (2.31)

This allows us to rewrite equation (2.29) as
(i8], — m)S(A)w(A™'z) = O,

so that the Dirac equation does indeed preserve its form. To construct S explicitly for
an infinitesimal LT, let, ‘

A¥, = 6%, — €(gPé°, — g°Hé%,) (2.32)

where € is an infinitesimal parameter and p and o are fixed. Since this expression is
antisymmetric in p and o there are six choices for the pair (p, o) corresponding to three
rotations and three boosts. Writing,

S(A) =1+ ies™ (2.33)

where 57 is a matrix to be determined, we find that equation (2.31) for v is satisfied by,

] 1
7 = i =50 (2.34)

Here, I have taken the opportunity to define the matrix o#7.

> Exercise 2.7

Verify that equation (2.31) relating 4/ and « is satisfied by s? defined through equa-
tions (2.33) and (2.34).

We have thus determined how v transforms under LT’s. To find quantities which
are Lorentz invariant, or transform as vectors or tensors, we need to introduce the Pauli
and Dirac adjoints. The Pauli adjoint i of a spinor 9 is defined by

P =9y’ =yiB. (2.35)
The Dirac adjoint is defined by

(YAQ) = ¢ Ay. (2.36)
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For Hermitian ~° it is easy to show that
A=4"At40 (2.37)
Some properties of the Pauli and Dirac adjoints are:

(A+pB) = »A+u'B,

AB = B4,
Ay = YA

With these definitions, ¥ transforms as follows under LT’s:
=P =9SHA) (2.38)
> Exercise 2.8

(1) Verify that vt = %y#~%. This says that * = v*.

(2) Using (2.33) and (2.34) verify that v°ST(A)y® = S~1(A), i.e. S =S"1. So S is not
unitary in general, although it is unitary for rotations (when p and o are spatial
indices). This is because the rotations are in the unitary O(3) subgroup of the
nonunitary Lorentz group. Here you show the result for an infinitesimal LT, but it
is true for finite LT’s.

(3) Show that ¥ satisfies the equation

B(-ip—m)=0

where the arrow over @ implies the derivative acts on ).

(4) Hence prove that 3 transforms as in equation (2.38).

Note that result (2) of the problem above can be rewritten as S(A) = S~!(A), and
equation (2.31) for the similarity transformation of v* to v'# takes the form,

SYS = A* 4. (2.39)

Combining the transformation properties of ¥ and 1 from equations (2.28) and (2.38)
we see that the bilinear 19 is Lorentz invariant. In section 2.6 we’ll consider the trans-
formation properties of general bilinears. -

Let me close this section by recasting the spinor normalisation equations (2.20) in
terms of “Dirac inner products.” The conditions become,

‘a‘;u; = 2mé"*

1S p— — a8

vy, = 0 = Tyu, (2.40)
TpUp, = —2mé"*

> Exercise 2.9
Verify the normalisation properties in the above equations (2.40).
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2.5 Parity

In the next section we are going to construct quantities bilinear in 1 and ¥, and classify
them according to their transformation properties under LT’s. We normally use LT’s
which are in the connected Lorentz Group, SO(3,1), meaning they can be obtained by
a continuous deformation of the identity transformation. Indeed in the last section we
considered LT’s very close to the identity in equation (2.32). The full Lorentz group has
four components generated by combining the SO(3,1) transformations with the discrete
operations of parity or space inversion, P, and time reversal, T,

1 0 0 o0 -1 0 0 0
0 -1 0 O 01 0 0
Ap = 0 0 -1 o} Ar = 0010
0 0 0 -1 0 0 01

LT’s satisfy ATgA = g (see the preschool problems), so taking determinants shows
that det A = £1. LT’s in SO(3,1) have determinant 1, since the identity does, but the
P and T operations have determinant —1.

Let’s now find the action of parity on the Dirac wavefunction and determine the
wavefunction ¥p in the parity-reversed system. According to the discussion of the previ-
ous section, and using the result of equation (2.39), we need to find a matrix S satisfying

5+°5 =1, Sv'S = —'.

It’s not hard to see that S = S = 4 is an acceptable solution, from which it follows that
the wavefunction ¥p is

¥p(t,x) = 1°9(t, —x). (2.41)

In fact you could multiply 7° by a phase and still have an acceptable definition for the
parity transformation.
In the nonrelativistic limit, the wavefunction 3 approaches an eigenstate of parity.

( )
0 1 ’

the u-spinors and v-spinors at rest have opposite eigenvalues, corresponding to particle
and antiparticle having opposite intrinsic parities.

2.6 Bilinear Covariants

Now, as promised, we will construct and classify the bilinears. To begin, observe that by
forming products of the gamma matrices it is possible to construct 16 linearly independent
quantities. In equation (2.34) we have defined

1
o = p, v ,
2[7 7]
and now it is convenient to define
vs = 7° = iy"y'y%R, (2.42)

with the properties,
r=rv  {mr=0
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Then the set of 16 matrices
I {19, 7, v*ys, 0}
form a basis for gamma matrix products. _
Using the transformations of 1 and 1 from equations (2.28) and (2.38), together

with the similarity transformation of v* in equation (2.39), construct the 16 fermion
bilinears and their transformation properties as follows:

W oo Yy S scalar
Py —  det(A) Pysy P pseudoscalar
Py = ALYy V vector (2.43)
Yyr sy — det(A) AX Py sy A axial vector
Yo = APANY Py T tensor

> Exercise 2.10
Verify the transformation properties of the bilinears in equation (2.43).

Observe that ¥y*1 = (p,J) is just the current we found earlier in equation (2.5).
Classically p is positive definite, but for the quantum Dirac field you find that the space
integral of p is the charge operator, which counts the number of electrons minus the
number of positrons,

Q~ [ty ~ [dplpto - dia]

The continuity equation 8,J* = 0 expresses conservation of electric charge.

2.7 Charge Conjugation

There is one more discrete invariance of the Dirac equation in addition to parity. It is
charge conjugation, which takes you from particle to antiparticle and vice versa. For
scalar fields the symmetry is just complex conjugation, but in order for the charge conju-
gate Dirac field to remain a solution of the Dirac equation, you have to mix its components
as well:

Y= P =CyPT.

Here 1) T = 4T4* and C is a matrix satisfying the condition
TH-1_ .

Cv,C7" = =,

In the Dirac representation,
. 0 —io?
— in2a0
C=n'y = (—i02 0 )

I refer you to textbooks such as [1] for details.

When Dirac wrote down his equation everybody thought parity and charge conju-
gation were exact symmetries of nature, so invariance under these transformations was
essential. Now we know that neither of them, nor the combination CP, are respected by
the standard electroweak model.
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2.8 Neutrinos

In the particle data book [2] you will find only upper limits for the masses of the three
neutrinos, and in the standard model they are massless. Let’s look therefore at solu-
tions of the Dirac equation with m = 0. Specialising from equation (2.1), we have, in
momentum space,

IplY = a-py.

For such a solution,

p

- S.
Yot = Y5 orth = 20
|p|

Ip|
using the spin operator S = ;¥ = Zvsa, with ¥ defined in equation (2.16). But S-p/|p|
is the projection of spin onto the direction of motion, known as the helicity, and is equal
to £1/2. Thus (1+7s)/2 projects out the neutrino with helicity 1/2 (right handed)
and (1—7s)/2 projects out the neutrino with helicity —1/2 (left handed). To date, only
left handed neutrinos have been observed, and only left handed neutrinos appear in the
standard model. Since

¥,

%%04M¢=%0+%h%u

any theory involving only left handed neutrinos necessarily violates parity.

The standard model contains only left handed massless neutrinos. It is really the elec-
troweak symmetry which prevents them having masses, not the fact that they are left
handed only. It would be possible to doctor the standard model to contain so-called Ma-
jorana neutrinos which can be massive. However, this would entail relinquishing lepton
number conservation and break the electroweak symmetry (or involve the introduction of
new particles).

2.9 Dirac Lagrangian

In the spirit of the field theory course, we could have started out by looking for objects,
transforming in the right way under Lorentz boosts and rotations, to represent spin-1/2
particles. This would have led us to Dirac spinors, for which we would have shown that

£ =i - m)y

is a Lorentz invariant Lagrangian.

Then Lagrange’s equations immediately give the Dirac equation, as you can see
simply from 8L£/8¢ = 0 (observing that £ is independent of 83/8t). Now you could
quantise by Hamiltonian or path integral methods. A new feature that appears is that,
for consistency, you must impose canonical anticommutation relations in the Hamilto-
nian form, or use anticommuting (Grassman) variables in the path integral. Thus, the
connection between spin and statistics appears. For example, if 5f(p,r) is the creation
operator for an electron of momentum p and spin label 7, then bt(p, ) |0) is a Fock state
with one electron, but

bt (p, )8 (p,7) 0) = 0,

so you can never put more than one electron into the same state. This contrasts with
the behaviour of bosons.
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3 Cross Sections and Decay Rates

In section 4 we will learn how to calculate quantum mechanical amplitudes for elec-
tromagnetic scattering and decay processes. These amplitudes are obtained from the
Lagrangian of QED, and contain information about the dynamics underlying the scat-
tering or decay process. This section is a brief review of how to get from the quantum
mechanical amplitude to a cross section or decay rate which can be measured. We will
commence by recalling Fermi’s golden rule for transition probabilities.

3.1 Fermi’s Golden Rule
Consider a system with Hamiltonian H which can be written
H=Hy+V (3.1)

We assume that the eigenstates and eigenvalues of Hj are known and that V is a small,
possibly time-dependent, perturbation. The equation of motion of the system is,

2 (e)) = (Ho+ V) Ib(0) (3:2)

If V vanished, we could calculate the time evolution of |(¢)) by expanding it as a
linear combination of energy eigenstates. When V does not vanish, the eigenstates of
H, are no longer eigenstates of the full Hamiltonian so when we expand in terms of
H, eigenstates, the coefficients of the expansion become time dependent. To develop
a perturbation theory in V we will change our basis of states from the Schrddinger
picture to the interaction or Dirac picture, where we hide the time evolution due to Hj
and concentrate on that due to V. Thus we define the interaction picture states and
operators by,

[r(t)) = ot |y(t)),  Ot) = eHotO(t)eHo!, (3.3)
so that the interaction picture and Schrodinger picture states agree at time ¢t = 0,
|41(0)) = |¥(0)), with a similar relation for the operators. In the new basis, the equation
of motion becomes, ‘

.0
i [¥r(8) = Vi) 91 (1)), (3.4)
which can be integrated formally as an infinite series in V,
o0 1 t ty tn—1
t)=1|1 — [ dty [ dty--- [ dt, Vi(t1)Vi(t2) - Vi(tn -T/2)) . .
e = |1+ 2 [t [T VieVite) - Vi) |WETI2). (39

Here, we have chosen to start with some (known) state |;(~7/2)), at time —T/2, and
have evolved it to |11 (¢)) at time ¢. The evolution is done by the operator, U, that you've
seen in the field theory course:

[v:(2)) = U(t, -T/2) [¥:1(-T/2)) -

Now consider the calculation of the probability of a transition to an eigenstate |b)
at time t. The amplitude is,

@l(t)) = (brlyu(t))
= (b] e~ Hot (1))
= e B (blyy (1)),
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C) l(blw(t l = l(blwl(t | We let V' be time independent and consider the amplitude
for a transition from an eigenstate |a) of Hy at ¢ = —T/2 to an orthogonal eigenstate
|b) at t = T/2. The idea is that at very early or very late times Hy describes some set
of free particles. We allow some of these particles to approach each other and scatter
under the influence of V, then look again a long time later when the outgoing partlcles
are propagating freely under H, again. To first order in V,

(bl41(T/2)) = —i /_ o (Vi) @) dt = ~i(B1V]a) /_i/; gty

where wp, = Ep —

> Exercise 3.1
Show that for T — oo the first order transition amplitude for general V can be written
in the covariant form

(bl1(00)) = =i [d*z 6}(z)V u(c),

where ¢;(z) = ¢:(x)e~Ei* and ¢;(x) is the usual Schrodinger wavefunction for a stationary
state of Hy, with energy E;.

The transition rate for time independent V is,

b T/2
G/ _ 1)

If E, # E,, this probability tends to zero as T — oo. However for E, = E, we use the
result,

2 4sin (wbaT/ 2)

1 sinz(wbaT/Z) T
T 2] 2% §(wba)- (3.6)

For long times the transition rate becomes,

Rio = 21|(0|V1a)| 6(E, — Ea). (3.7)

We need V small for the first order result to be useful and T large so that the delta-
function approximation is good. However, T cannot be too large since the transition
probability grows with time and we don’t want probabilities larger than one.

If we allow for a number of final states |b), with density p(Es) around energy Ep, the
transition rate becomes,

[ 2|@Ivia)[ (B, - Eo(B)dE, = 2mo(En)|blVIa)] (3.:8)

This is Fermi’s golden rule.

>Exercise 3.2
Justify the result of equation (3.6) and hence verify Fermi’s golden rule in equation (3.8).

I’ll stop at first order in V. The answer you get from the formal solution in equa-
tion (3.5) depends on the form of V and the initial conditions. Your field theory course
gives you a systematic way to perform perturbative calculations of transition amplitudes
in field theories by the use of Feynman diagrams. In particular, you've seen the operator
method of generating these diagrams, which I've mirrored in deriving the Golden Rule.
Let’s now move on to see how to get from these amplitudes to cross-sections and decay
rates. This corresponds to finding the density of states factor in the Golden Rule.
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Figure 3.1 Scattering (a) and decay (b) processes.

3.2 Phase Space

We saw in the previous section that (b|¢r(c0)) gives the probability amplitude to go
from state |a) in the far past to state |b) in the far future. In quantum field theory you
calculate the amplitude to go from state |¢) to state |f) to be,

iMi(2n)*54(Py — P), (3.9)

where iMy; is the result obtained from a Feynman diagram calculation, and the overall
energy-momentum delta function has been factored out (so when you draw your Feynman
diagrams you conserve energy-momentum at every vertex). We have in mind processes
where two particles scatter, or one particle decays, as shown in Figure 3.1.

Attempting to take the squared modulus of this amplitude produces a meaningless
square of a delta function. This is a technical problem because our amplitude is expressed
between non-normalisable plane wave states. These states extend throughout space-time
so the scattering process occurs everywhere all the time. To deal with this properly you
can construct normalised wavepacket states which do become well separated in the far
past and the far future. We will be low-budget and put our system in a box of volume V.
We also imagine that the interaction is restricted to act only over a time of order T'. The
final answers come out independent of V' and T', reproducing the luxury wavepacket ones.
We are in good company here: Nobel Laureate Steven Weinberg says 3], when discussing
cross sections and decay rates, “...(as far as I know) no interesting open problems in
physics hinge on getting the fine points right regarding these matters.”

Relativistically normalised one particle states satisfy,

(kK'Y = (2m)* 2w % (k — k'), (3.10)
but the discrete nonrelativistically normalised box states satisfy,
(k[k') = - (3.11)

We want to know the transition probability from an initial state of one or two
particles to a set of final states occupying some region of k-space, where the density of
states in the box normalisation is,

3

d’k
box state density = e v, (3.12)



recalling that the spacing of allowed momenta is 2 /L. A particular final state is labelled,
|f) = |ki,.-.,kn), and the initial state is,

\_ k) one particle
) = { |k, k) VvV two particles (3.13)

Note the factor of v/V in the two particle case. Without this, as V becomes large the
probability that the two particles are anywhere near each other goes to zero. From the
viewpoint of one particle hitting another, the one particle state is normalised to one
(probability 1 of being somewhere in the box), and the two particle state is normalised
as a density (think of one particle having probability 1 of being in any unit volume and
the second having probability 1 of being somewhere in the box).

The transition probability from i to f is given by (3.9). We want to convert this to the
box normalisation. One ingredient of the conversion is the delta function of momentum
conservation, arising from,

()64 (P — P) = [d'nePrR* = [ dta 1A= = (am)istn(Py ~ P),

using the box normalisation. Now,

[ entsta)f = [ ate =V,

so we will say, \
|(2m)*657(p)| = VT (2r)'6* (p).

The second ingredient is a factor of 1/(2E;V)'/? for every particle in the initial or final
state (here I am using E; synonymously with wy,). This comes from converting between
relativistic and box normalisations for the states.

To see where this arises from we write here the expression for a free field expanded in terms
of annihilation and creation operators using three different normalisations: nonrelativistic,
(k|k') = 83(k — K'); relativistic, (k|k') = (27)32wd*(k — k'); box, (k|k') = Sk

3 . .
P(x) = / m)ifkm[ake_'k‘ + aLe’k'z] nonrelativistic
dsk —tk-x t ik-x it l
= / m— [a(k)e +al(k)e ] relativistic
1 ) .
= T pplae et o

Since the discrete sum on k in the box case corresponds to [ d3k V/(27)3, we see that,
|k)rel v 2wk\/‘7|k)box'

The box states are normalised to one particle in volume V and the relativistic states have
2wy, particles per unit volume.
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So in the box normalisation, with one or two particles in the initial state and any number
in the final state,

box amp = iM s;(27)*6*(P; — P) IIt [ \/227] H [ \/;F] \/1‘7 ,

where the initial state energy product depends on the choice of normalisation in equa-
tion 3.13 above. The squared matrix element is thus:

1 1
[box amp|? = |[M T (27)*6*(Ps — P.) [] [2Efv] II [2E,-] ’

out in

and the differential transition probability into a region of phase space becomes,

differential prob

1 N .
12 i relativistic density
anit Gime — © Ml H [ZEJ % (of final states ) (3.14)

where the relativistic density of final states, or rdfs, is,

d%k;

rdfs=D = (27T)4(54(Pf - P,) H (_27T_)§_2—E‘—f

out

(3.15)

You also sometimes hear the name LIPS, standing for Lorentz invariant phase space. Ob-
serve that everything in the transition probability is Lorentz invariant save for the initial
energy factor (using d%k /2F = d*k 6*(k? — m?)6(k®), which is manifestly Lorentz invari-
ant, where E = (k? +m?)'/2). T have smuggled in one extra factor, S, in equation (3.14)
for the transition probability. If there are some identical particles in the final state, we
will overcount them when integrating over all momentum configurations. The symmetry
factor S takes care of this. If there n; identical particles of type ¢ in the final state, then

s=1I 7—11—, (3.16)

> Exercise 3.3
Show that the expression for two-body phase space in the centre of mass frame is given

by
d3k; d3k;
(27)3 2wy, (27)3 2wy,

1
3272s

(2m)464 (P — ky —~ kg) = A2 (s, m2, m2)dQ*, (3.17)

where s = P? is the centre of mass energy squared, dQ2* is the solid angle element for the
angle of one of the outgoing particles with respect to some fixed direction, and

Ma,b,c) = a® + b* + ¢* — 2ab — 2bc — 2ca. (3.18)

3.3 Cross Sections

The cross section for two particles to scatter is a sum of the differential cross sections for
scattering into distinct final states:

transition prob 1 1 2
= . . = 1= —t S M 1 D’ 3'19
7 = Unit time x unit flux |th — Tp| 4E1Es Myl (3.19)
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Dy y 2

Figure 3.2 2 — 2 scattering.

where the velocities in the flux factor, 1/|U) — 45|, are subtracted nonrelativistically. 1
denote them with arrows to remind you that they are ordinary velocities, -not the spatial
parts of 4-velocities. The amplitude-squared and phase space factors are manifestly
Lorentz invariant. What about the initial velocity and energy factors? Observe that

E©Ey (0 — ¥2) = Eap1 — Er1po.

In a frame where p; and p; are collinear,

|Eap1 — Eipa|? = (p1-p2)? — mim3,

and the last expression is manifestly Lorentz invariant. Hence the differential cross section
is Lorentz invariant, as is the total cross section,

1 1
— S / Mi[2D. 3.20
d |'U1 - 'UQI 4E1E2 Z final statesl d | ( )

3.3.1 Two-body Scattering

An important special case is 2 — 2 scattering (see Figure 3.2),

a(pa) + b(ps) — c(pc) + d(pa).

> Exercise 3.4
Show that in the centre of mass frame the differential cross section is,

do S A2 (s, m2, m3) 9
= A |°. 3.21
aQ*  64n2s Al/z(s,mﬁ,mg)lel (3:21)

The result of equation (3.21) is valid for any | M |2, but if [M;|? is a constant you
can trivially get the total cross section.

Invariant 2 — 2 scattering amplitudes are frequently expressed in terms of the
Mandelstam variables, defined by,

s = (Patm)? = (pc+pa)?
(Pa = p)* = (ps—pa)? (3.22)
(pa - pd)2 = (pb - pc)2

u

In fact there are only two independent Lorentz invariant combinations of the available
momenta in this case, so there must be some relation between s, ¢t and u.
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> Exercise 3.5
Show that
s+t+u=m+ms+m?+md
>Exercise 3.6
Show that for two body scattering of particles of equal mass m,

s> 4m?, t<0, u < 0.

3.4 Decay Rates

With one particle in the initial state,
total decay prob 1
T - - = S / f 2 .
unit time 2E 2 final statesle "D

Only the factor 1/2F is not manifestly Lorentz invariant. In the rest frame, for a particle
of mass m,

tdp
ut

1
= — / M |2D. 3.
rest frame 2m Z final statesl f | ( 23)

This is the “decay rate.” In an arbitrary frame we find, (tdp/ut) = (m/E)I', which
has the expected Lorentz dilatation factor. In the master formula (equation 3.14) this is
what the product of 1/2E; factors for the initial particles does.

3.5 Optical Theorem

When discussing the Golden Rule, we encountered the evolution operator U(t',t), which
you also met in the field theory course. This takes a state at time ¢ and evolves it to
time t'. The scattering amplitudes we calculate in field theory are between states in
the far past and the far future: hence they are matrix elements of U(oo, —o0), which is
known as the S-matrix,

S = U(oo, —00) = T exp —i /°° dt Hy(t).

Since the S-matrix is unitary, we can write,
(S-I(ES'-N=-((S-D+(S-D). (3.24)

Note that S — I is the quantity of interest, since we generally ignore cases where there is
no interaction (the “I” piece of S). In terms of the invariant amplitude,

(fIS—1Ili) = iMy(2m)*6*(Ps - P)
(FI(S =Dy = —iM;ip(2m)*6*(P; — P)

Sandwiching the above unitarity relation (equation 3.24) between states i) and |f), and’
inserting a complete set of states between the factors on the left hand side,

S {fIS ~ I'm) (m| 8" - I'li)

Tm d3k.
_ * 8s4(p, _ 4p —
= T MM, (278" (Py = Pa)(P. Pm)jl;11(2,,)32Ej

S [ MymMin(2m)5(Py = P)Dn
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where D,, is the phase space factor for the state labelled by m, containing r,,, particles,
Dy, =D, (P;k,..., k.. ). Hence, ‘

) / MM D = i(M}; — Myy).

If the intermediate state m contains n; identical particles of type i, there is an extra
symmetry factor S, with,
1
S=1|—
H n,-!

i
on the left hand side of the above equation to avoid overcounting. The same factor (see

equation 3.16) appears in the cross section formula (equation 3.19) when some of the final
state particles are identical.

If |7) and |f) are the same two particle state,
4ETpi oc=2Im M,’i. (325)

this is the optical theorem, relating the forward part of the scattering amplitude to the
total cross section. If particles of masses m, and m, scatter, then Er = s/2 and 4sp? =
A(s,m?,m2), where X is the function defined in equation (3.18). Then the optical theorem

1
reads, Im M;; = A2(s,m?,m?) 0.
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4 Quantum Electrodynamics

In this section we are going to get some practice calculating cross sections and decay rates
in QED. The starting point is the set of Feynman rules derived from the QED Lagrangian,

L= _%F,WFW - %(6,,#)2 + TGP — m). (4.1)

Here, D, = 0, +ieA, is the electromagnetic covariant derivative, F,, = 0,4, -0, A, and
(8-A)%/2 is the gauge fixing term for Feynman gauge. This gives the rules in Table 4.1.

The fermion propagator is (up to factors of i) the inverse of the operator,  — m,
which appears in the quadratic term in the fermion fields, as you expect from your
field theory course. The derivation of the photon propagator, along with the need for
gauge fixing, is also discussed in the field theory course. The external line factors are
easily derived by considering simple matrix elements in the operator formalism, where
they are left behind from the expansions of fields in terms of annihilation and creation
operators, after the operators have all been (anti-)commuted until they annihilate the
vacuum. In path integral language the natural objects to compute are Green functions,
vacuum expectation values of time ordered products of fields: it takes a little more work
to convert them to transition amplitudes and see the external line factors appear.

The spinor indices in the Feynman rules are such that matrix multiplication is per-
formed in the opposite order to that defining the flow of fermion number. The arrow on

For every ... draw ... write ...
Internal photon line { L —ig™
nter .
Y ANNNNN  + e
T B p+m
Internal fermion line z M
p— p? —m? + ie
B [
Vertex g ~i€Y6p
. o
Outgoing electron T,
Incoming electron Uy
Outgoing positron v,
Incoming positron A
Outgoing photon e
Incoming photon e

e Attach a directed momentum to every internal line

e Conserve momentum at every vertex

Table 4.1 Feynman rules for QED. u, v are Lorentz indices and «, 3 are spinor indices.
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Figure 4.1 Lowest order Feynman diagram for electron-muon scattering.

the fermion line itself denotes the fermion number flow, not the direction of the momen-
tum associated with the line: I will try always to indicate the momentum flow separately
as in Table 4.1. This will become clear in the examples which follow. We have already
met the Dirac spinors v and v. I will say more about the photon polarisation vector e
when we need to use it.

4.1 Electron—Muon Scattering

To lowest order in the electromagnetic coupling, just one diagram contributes to this
process. It is shown in Figure 4.1. The amplitude obtained from this diagram is

iMj, = (—ie) T(p )y ulpa) (‘q") (—ie) B(pa) wu(z). (4.2)

Note that I have changed my notation for the spinors: now I label their momentum as an
argument instead of as a subscript, and I drop the spin label unless I need to use it. In
constructing this amplitude we have followed the fermion lines backwards with respect
to fermion flow when working out the order of matrix multiplication.

The cross-section involves the squared modulus of the amplitude, which is

4
2= & g
IMal™ = 2 Ly Ly
where the subscripts e and p refer to the electron and muon respectively and,

L?eu) = T(pe) 7" u(Pa)W(pa)y u(pe),
with a similar expression for L{,).

> Exercise 4.1
Verify the expression for | M g;|2.

Usually we have an unpolarised beam and target and do not measure the polarisation
of the outgoing particles. Thus we calculate the squared amplitudes for each possible spin
combination, then average over initial spin states and sum over final spin states. Note that
we square and then sum since the different possibilities are in principle distinguishable.
In contrast, if several Feynman diagrams contribute to the same process, you have to
sum the amplitudes first. We will see examples of this below.

The spin sums are made easy by the following results (I temporarily restore spin
labels on spinors):

Y u(p)u(p) = p+m

(4.3)
YU (P)T(p) = p-m
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>Exercise 4.2
Derive the spin sum relations in equation (4.3).

Using the spin sums we find,

£ 5 IMAP = £ tr (P ebmdr (etma)) b (vt mawtm),
spms

Since all calculations of cross sections or decay rates in QED require the evaluation of
traces of products of gamma matrices, you will generally find a table of “trace theorems”
in any quantum field theory textbook [1]. All these theorems can be derived from the
fundamental anticommutation relations of the gamma matrices in equation (2.23) to-
gether with the invariance of the trace under a cyclic change of its arguments. For now
it suffices to use,

tr(df) = 4ab
tr(dfidd) = 4(a-bcd—a-cbd+ a-dbc) (4.4)
tr(y#*---y*) = 0 forn odd

>Exercise 4.3
Derive the trace results in equation (4.4)

Using these results, and expressing the answer in terms of the Mandelstam variables
of equation (3.22), we find,

—ZlMﬁ|2 (s +u? — 4(m2 + m2)(s +u) + 6(m? +m ))

spms

This can now be used in the 2 — 2 cross section formula (3.21) to give, in the high energy

. . 2 2
limit, s,u > mg, my,,

do e s°+u?
dQr 32725 2
for the differential cross section in the centre of mass frame.

(4.5)

> Exercise 4.4
Derive the result for the electron-muon scattering cross section in equation (4.5).

Other calculations of cross sections or decay rates will follow the same steps we have
used above. You draw the diagrams, write down the amplitude, square it and evaluate
the traces (if you are using spin sum/averages). There are one or two more wrinkles to
be aware of, which we will meet below.

4.2 Electron—Electron Scattering

Since the two scattered particles are now identical, you can’t just replace m, by m, in
the calculation we did above. If you look at the diagram of Figure 4.1 (with the muons
replaced by electrons) you will see that the outgoing legs can be labelled in two ways.
Hence we get the two diagrams of Figure 4.2.

The two diagrams give the amplitudes,
2

My = alp)rupup va)
iMy = = T(pa)*u(pa)T(Pe) ().
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Figure 4.2 Lowest order Feynman diagrams for electron—electron scattering.
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Figure 4.3 Lowest order Feynman diagrams for electron—positron scattering in QED.

Notice the additional minus sign in the second amplitude, which comes from the anti-
commuting nature of fermion fields. You should accept as part of the Feynman rules for
QED that when diagrams differ by an interchange of two fermion lines, a relative minus
sign must be included. This is important because

IMypil? = |IMy + Mo,

so the interference term will have the wrong sign if you don’t include the extra sign
difference between the two diagrams.

4.3 Electron—Positron Annihilation
4.3.1 ete” = ete”

For this process the two diagrams are shown in Figure 4.3, with the one on the right
known as the annihilation diagram. They are just what you get from the diagrams for
electron—electron scattering in Figure 4.2 if you twist round the fermion lines. The fact
that the diagrams are related this way implies a relation between the amplitudes. The
interchange of incoming particles/antiparticles with outgoing antiparticles/particles is
called crossing. This is a case where the general results of crossing symmetry can be
applied, and our diagrammatic calculations give an explicit realisation. Theorists spent
a great deal of time studying such general properties of amplitudes in the 1960’s when
quantum field theory was unfashionable.

4.3.2 ete” = utyp~ and ete” — hadrons

If electrons and positrons collide and produce muon—antimuon or quark-antiquark pairs,
then the annihilation diagram is the only one which contributes. At sufficiently high
energies that the quark masses can be neglected, this immediately gives the lowest order
QED prediction for the ratio of the annihilation cross section into hadrons to that into
phu,

o(ete™ — hadrons

R e S

) _ 3y Q% (4.6)
f
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Figure 4.4 Feynman diagrams for Compton scattering.

where the sum is over quark flavours f and Qy is the quark’s charge in units of e. The
3 comes from the existence of three colours for each flavour of quark. Historically this
was important: you could look for a step in the value of R as your ete™ collider’s cM
energy rose through a threshold for producing a new quark flavour. If you didn’t know
about colour, the height of the step would seem too large. Incidentally, another place
the number of colours enters is in the decay of a 7° to two photons. There is a factor of
3 in the amplitude from summing over colours, without which the predicted decay rate
would be one ninth of its real size.

At the energies used today at LEP, of course, you have to remember the diagram
with a Z replacing the photon. We will say some more about this later.

> Exercise 4.5
Show that the cross-section for ete™ — utp~ is equal to 4ma?/(3s), neglecting the lepton
masses.

4.4 Compton Scattering

The diagrams which need to be evaluated to compute the Compton cross section for
ve — ~e are shown in Figure 4.4. For unpolarised initial and/or final states, the cross
section calculation involves terms of the form

; " (p) &(p), (4.7)

where A represents the polarisation of the photon of momentum p. Since the photon
is massless, the sum is over the two transverse polarisation states, and must vanish
when contracted with p, or p,. In addition, however, since the photon is coupled to
the electromagnetic current J# = 1)y*1 of equation (2.5), any term in the polarisation
sum (4.7) proportional to p* or p¥ does not contribute to the cross section. This is
because the current is conserved, 8,J# = 0, so in momentum space p,J* = 0. The
upshot is that in calculations you can use,

>k (p) ex(p) = —g*, (4.8)
A
since the remaining terms on the right hand side do not contribute.

4.5 Form Factors

So far we have considered processes where the strong interactions were absent, or ignored.
There are many electroweak processes where a complete computation would require a
better understanding of QCD, especially its non-perturbative aspects, than we currently
‘have. However, by using Lorentz and gauge invariance, and any other known symmetries
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Figure 4.5 Electron-pion scattering (top diagram) and some contributions to the pion electro-
magnetic form factor (lower diagrams). Wavy lines denote photons and curly lines are gluons.
Ordinary lines between the shaded ellipses denote quarks.

of a process, we can parcel up the strong interaction effects in a small number of invariant
functions. Let’s see how this goes in an example, the electromagnetic form factors of pions
and nucleons.

4.5.1 Pion Form Factor

Consider electron—pion scattering as depicted in the top diagram in Figure 4.5. The
shaded blob represents all the strong interaction effects in the pion electromagnetic form
factor. In the lower part of the figure are represented some contributions to the shaded
blob. Note that the blob itself contains more blobs (the shaded ellipses) indicating the
unknown wavefunction of the pion in terms of quarks. The electron’s coupling to the
photon is understood in QED and has been discussed above. Let’s see how much we
can say about the pion’s coupling to photons. This coupling is given by the matrix
element (w(p')| J#(0) |7(p)), where J#(0) is the electromagnetic current at the origin.
Using Lorentz covariance we can write,

(m()] J#(0) Im(p)) = € [F(¢*)(p+P)* + Glg")e"],

where ¢ = p — p/. Electromagnetic gauge invariance implies that g,J* = 0 so that
G(q?) = 0. Hence all the strong interaction effects are contained in F'(¢%) and

(m(®")| J#(0) v (p)) = e F(¢*)(p + p')*. (4.9)

> Exercise 4.6
Starting from the kinetic term in the Lagrangian for a free charged scalar field, 0,¢*0*¢,
and introducing the electromagnetic field by minimal substitution, 8, — 8, —ieA,, show
that, to lowest order in perturbation theory F(q%) =1 for all ¢2. Note that the change
of sign in the coupling compared to QED is because QED involves the negatively charged
electron, whilst here ¢ is taken as the field which destroys positively charged objects and
creates negatively charged ones. You may need to normal order the current.

An additional general piece of information is that F(0) = 1 since at ¢* = 0 the photon
cannot resolve the structure of the pion. This result is a consequence of the conservation
of the electromagnetic current, since the space integral of J° gives the charge operator.
For ¢ # 0 we expect F(q?) to fall with > owing to the pion’s composite nature.
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> Exercise 4.7
Given that the electric charge operator is defined by

eQ = /dsx JO(2),

show that current conservation implies @ is time independent, and that F(0) = 1 for a
positively charged pion.

4.5.2 Nucleon Form Factor

For nucleons there are two form factors consistent with Lorentz covariance, current con-
servation and parity conservation (which holds for electromagnetic and strong interac-
tions). They are defined as follows (again we are working to first order in electromag-
netism):

(NG, ) IN@,9) = eT(0) [P*Fie) + mFa(gDo™a] w'(p),  (410)

where u and T are the nucleon spinors, and M the nucleon mass. At zero momentum
transfer only the first term contributes and Fy(0) = 1[0] for the proton[neutron]. The
factor  is chosen so that F5(0) = 1: « is 1.79 for the proton and —1.91 for the neutron.
In writing the expression (4.10), use is made of the Gordon identity, '

u(p') v u(p) = 51—,1-5(19’) [(p+p)* +i0™ (0 = p)|ulp),

to replace a term in (p + p')* with terms of the form given. Given the form factor
expression you can compute the angular distribution of electrons in electron-nucleon
scattering in terms of Fy and F5.

> Exercise 4.8
Use Lorentz covariance, current conservation and parity invariance to show that there
are two electromagnetic form factors for the nucleon in (4.10).
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5 Quantum Chromodynamics

In the 1960’s most theorists lost interest in quantum field theory. They were discouraged
by the apparent non renormalisability of massive vector boson theories which precluded
a field theory description of weak interactions. For the strong interactions, their strength
and the menagerie of hadrons seemed also to preclude a field theory description. The
renaissance of field theory came with the realisation that spontaneous symmetry breaking,
the Higgs mechanism and the property of asymptotic freedom made renormalisable gauge
theories viable candidates to describe the electroweak and strong interactions.

Our discussion in this section will lead to the property of asymptotic freedom which
enables us to make phenomenological predictions using perturbation theory for QCD.
Since perturbative calculations beyond tree level are not in the scope of this course, the
discussion will necessarily be somewhat qualitative. We'll proceed by going back to QED
to introduce the idea of renormalisation then work up to the running coupling in QCD
and thence to asymptotic freedom.

Qcp is a theory of interactions between spin-1/2 quarks and spin-1 gluons. It is a
nonabelian gauge theory based on the group SU(3), with Lagrangian,

1 — fixing and
—_— a a pv gauge nxing an
L=—7GLG"+ ijwf(zlb = M )s + Bhoet terme (5.1)

Here, a is a colour label, taking values from 1 to 8 for SU(3), and f runs over the quark
flavours. The covariant derivative and field strength tensor are given by,
D, = 08,-1igA;T",
Go, = 9,A - 9,AL + gf AL AL

nir

(5.2)

i

where the f° are the structure constants of SU(3) and the T* are a set of eight in-
dependent Hermitian traceless 3 x 3 matrix generators in the fundamental or defining
representation (see the pre school problems and the quantum field theory course).

As in QED gauge fixing terms are needed to define the propagator and ensure that
only physical degrees of freedom propagate. The gauge fixing procedure is more compli-
cated in the nonabelian case and necessitates, for certain gauge choices, the appearance
of Faddeev—Popov ghosts to cancel the contributions from unphysical polarisation states
in gluon propagators. However, the ghosts first appear in loop diagrams, which we will
not compute in this course.

There are no Higgs bosons in pure QCD. The only relic of them is in the masses for
the fermions which are generated via the Higgs mechanism, but in the electroweak sector
of the standard model.

A fundamental difference between QCD and QED is the appearance in the nonabelian
case of interaction terms (vertices) containing gluons alone. These arise from the nonva-
nishing commutator term in the field strength of the nonabelian theory in equation (5.2).
The photon is electrically neutral, but the gluons carry the colour charge of QCD (specif-
ically, they transform in the adjoint representation). Since the force carriers couple to
the corresponding charge, there are no multi photon vertices in QED but there are multi
gluon couplings in QCD. This difference is crucial: it is what underlies the decreasing
strength of the strong coupling with increasing energy scale.



%

Figure 5.1 Schematic depiction of deep inelastic scattering. An incident lepton radiates a
photon which knocks a quark out of a proton. The struck quark is detected indirectly only
after hadronisation into observable particles.

In Qcp, hadrons are made from quarks. Colour interactions bind the quarks, produc-
ing states with no net colour: three quarks combine to make baryons and quark-antiquark
pairs give mesons. It is generally believed that the binding energy of a quark in a hadron
is infinite. This property, called confinement, means that there is no such thing as a free
quark. Because of asymptotic freedom, however, if you hit a quark with a high energy
projectile it will behave in many ways as a free (almost) particle. For example, in deep
inelastic scattering, or DIS, a photon strikes a quark in a proton, say, imparting a large
momentum to it. Some strong interaction corrections to this part of the process can be
calculated perturbatively. As the quark heads off out of the proton, however, the brown
muck of myriad low energy strong interactions cuts in again and “hadronises” the quark
into the particles you actually detect. This is illustrated schematically in Figure 5.1.

5.1 Renormalisation: An Introduction
'5.1.1 Renormalisation in Quantum Electrodynamics

Let’s start by going back to QED and considering how the electric charge is defined and
measured. This will bring up the question of what happens when you try to compute
higher loop corrections. In fact, the expansion in the number of loops is an expansion in
Planck’s constant ki, as you can show if you put back the factors of /i for once.

The electric charge é is usually defined as the coupling between an on-shell electron
and an on-shell photon: that is, as the vertex on the left hand side of Figure 5.2 with
p? = p2 = m?, where m is the electron mass, and ¢ = 0. It is & and not the Lagrangian
parameter e which we measure. That is,

é2 1

4~ 137

We call é the renormalised coupling constant of QED. We can calculate € in terms of e
in perturbation theory. To one loop, the relevant diagrams are shown on the right hand
side of Figure 5.2, and the result takes the form, |

M?
A‘— 3 e—— . o 0
é=e+e [a1 In — +b1] + (56.3)
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ORI

Figure 5.2 Diagrams for vertex renormalisation in QED up to one loop.

DESENG S 1 0

Figure 5.3 Some diagrams for electron—electron scattering in QED up to one loop.

where a; and b, are constants obtained from the calculation. The e* term is divergent,
so we have introduced a cutoff M to regulate it. This is called an ultraviolet divergence
since it arises from the propagation of high momentum modes in the loops. The cutoff
amounts to selecting only those modes where each component of momentum is less than
M in magnitude. Despite the divergence in (5.3), it still relates the measurable quantity é
to the coupling e we introduced in our theory. This implies that e itself must be divergent.
The property of renormalisability ensures that in any relation between physical quantities
the ultraviolet divergences cancel: the relation is actually independent of the method used
to regulate divergences.

~ As an example, consider the amplitude for electron-electron scattering, which we
considered at tree level in section 4.2. Some of the contributing diagrams are shown in
Figure 5.3, where the crossed diagrams are understood (we showed the crossed tree level
diagram explicitly in Figure 4.2). Ultraviolet divergences are again encountered when
the diagrams are evaluated, and the result is of the form,

. M?
IMy; = coe? + €* [c1 In — + dl] + .. (5.4)

where ¢y, ¢; 'and d; are constants, determined by the calculation. In order to evalu-

ate My; numerically, however, we must express it in terms of the known parameter é.
Combining (5.3) and (5.4) yields,

. 2 M?
My = coé? + & [(cl —2a;¢0) In e +d; — 2b1¢0] 4. (5.5)

where the ellipsis denotes terms of order &% and above. Since |My;|* is measurable,
consistency (renormalisability) requires,

Cy = 20100.
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This result is indeed borne out by the actual calculations, and the relation between M;
and é contains no divergences:

iMy; = coé® + é4(dy — 2bico) + O(€°). (5.6)

To understand how this cancellation of divergences happened we can study the con-
vergence properties of loop diagrams (although we shall not evaluate them). Consider
the third diagram on the right hand side in Figure 5.2 and the middle diagram in Fig-
ure 5.3. These both contain a loop with one photon propagator, behaving like 1/k% at
large momentum k, and two electron propagators, each behaving like 1/k. To evaluate
the diagram we have to integrate over all momenta, leading to an integral,

d*k

I~ —_—
large k k4’

(5.7)

which diverges logarithmically, leading to the In M2 terms in (5.3) and (5.4). Notice,
however, that the divergent terms in these two diagrams must be the same, since the
divergence is by its nature independent of the finite external momenta (the factor of two
in equation (5.5) arises because there is a divergence associated with the coupling of each
electron in the scattering process). In this way we can understand that at least some of
the divergences are common in both (5.3) and (5.4). What about diagrams such as the
third box-like one in Figure 5.37 Now we have two photon and two electron propagators,
leading to,

[ o
large & kS '
This time the integral is convergent.

Detailed study like this reveals that ultraviolet divergences always disappear in re-
lations between physically measurable quantities. We discussed above the definition of
the physical electric charge é. A similar argument applies for the electron mass: the
Lagrangian bare mass parameter m is divergent, but we can define a finite physical mass
m.

In fact you find that all ultraviolet divergences in QED stem from graphs of the
type shown in Figure 5.4 and known as the primitive divergences. Any divergent graph
will be found on inspection to contain a divergent subgraph of one of these basic types.
For example, Figure 5.5 shows a graph where the divergence comes from the primitive
divergent subgraph inside the dashed box. Furthermore, the primitive divergences are
always of a type that would be generated by a term in the initial Lagrangian with a
divergent coefficient. Hence by rescaling the fields, masses and couplings in the original
Lagrangian we can make all physical quantities finite (and independent of the exact
details of the adjustment such as how we regulate the divergent integrals). This is what
we mean by renormalisability.

This should be made clearer by an example. Consider calculating the vertex correc-
tion in QED to one loop,

rliq
=T(p) [Av" + Bo*q, + Cg*+* + - - -]U(p)-

/'p PN\
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Figure 5.4 Primitive divergences of QED.

Figure 5.5 Diagram containing a primitive divergence.

The calculation shows that A is divergent. However, we can absorb this by adding a
cancelling divergent coefficient to the ¥ A term in the QED Lagrangian (4.1). The B
and C terms are finite and unambiguous. This is just as well, since an infinite part of B,
for example, would need to be cancelled by an infinite coefficient of a term of the form,

o' Fu b,

which is not available in (4.1).

In fact, the B term gives the QED correction to the magnetic dipole moment, g, of
the electron or muon (see page 160 of the textbook by Itzykson and Zuber [1]). These
are predicted to be 2 at tree level. You can do the one-loop calculation (it was first done
by Schwinger between September and November 1947 [4]) with a few pages of algebra to

find,
(87
g—2(1+-2‘7-r'>.

This gives g/2 = 1.001161, which is already impressive compared to the experimental
values [2]:
(9/2)etectron = 1.001159652193(10),
(9/2)muon = 1.001165923(8).

Higher order calculations show that the electron and muon magnetic moments differ at
two loops and above. Kinoshita and collaborators have devoted their careers to these
calculations and are currently at the four loop level. Theory and experiment agree for
the electron up to the 11th decimal place.

The C term gives the splitting between the 2s,/, and 2p,/; levels of the hydrogen
atom, known as the Lamb shift. Bethe’s calculation {5} of the Lamb shift, done during a
train ride to Schenectady in June 1947, was an early triumph for quantum field theory.
Here too, the current agreement between theory and experiment is impressive.

5.1.2 Bare Versus Renormalised

In discussing the vertex correction in QED, we said that the divergent part of the A term
could be absorbed by adding a cancelling divergent coefficient to the ¥ Ay term in the
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QED Lagrangian (4.1). When a theory is renormalisable, all divergences can be removed
in this way. Thus, for QED, if the original Lagrangian is (ignoring the gauge-fixing term),

L= —iF“,,F“" + 1Py — e Ay — mapy,

then redefine everything by:

w — Z21/2wR, AH = Z;/zAl;%,

Z
e=Zeé=—11/26, m= Znh,
7,73

where the subscript R stands for “renormalised.” In terms of the renormalised fields,

1 W — . —
L= —ZstR;wFﬁ + 2o YR — Z18Y R ARYR — Zin ZoTn YR

Writing each Z as Z =1+ §Z, reexpress the Lagrangian one more time as,

1 . — .=
L= —1FruFp" + WpPYr — ePrArdr — MibpYr + (62 terms).

Now it looks like the old lagrangian, but written in terms of the renormalised fields, with
the addition of the §Z counterterms. Now when you calculate, the counterterms give you
new vertices to include in your diagrams. The divergences contained in the counterterms
cancel the infinities produced by the loop integrations, leaving a finite answer.

The old A and % are called the bare fields, and e and m are the bare coupling and
mass.

Note that to maintain the original form of £, you want Z; = Z;, so that the @ and
éA terms combine into a covariant derivative term. This relation does hold, and is a
consequence of the electromagnetic gauge symmetry: it is known as the Ward identity.

5.2 Renormalisation in Quantum Chromodynamics

We now try to repeat the procedure we used for the coupling in QED, but this time in
QCD, which is also a renormalisable theory. If we define the renormalised coupling § as the
strength of the quark—gluon coupling, then in addition to the diagrams of Figure 5.2, with
the photons replaced by gluons, there are more diagrams at one loop, shown in Figure 5.6.
Looking at the second of these new diagrams, it is ultraviolet divergent (containing a
In M? term), but also infrared divergent, since there is no mass to regulate the low
momentum modes. In QED all the loop diagrams contain at least one electron propagator
and the electron mass provides an infrared cutoff (you still have to worry when the
electron is on-shell, but this is not our concern here). In the second diagram of Figure 5.6
there is no quark in the loop. Now suppose we choose to define the renormalised coupling
off-shell at some non-zero ¢2. The finite value of ¢? provides the infrared regulator and
the diagram has a term proportional to In(M?/¢?).

Thus in QCD we can’t define a physical coupling constant from an on-shell vertex.
This is not really a serious restriction since the QCD coupling is not directly measurable
anyway. Now the renormalised coupling depends on how we define it and therefore on
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Figure 5.6 Additional diagrams for vertex renormalisation in QCD up to one loop. The dashed
line denotes a ghost. For some gauge choices and some regularisation methods not all of these
are required.

at least one momentum scale (in almost all practical cases, only one momentum scale).
The renormalised strong coupling is thus written,

a(d?).

When physical quantities are expressed in terms of §(q2) the coefficients of the pertur-
bation series are finite.

It would of course be possible to define the renormalised QED coupling to depend on
some momentum scale. However, the on-shell definition used above is a natural one to
pick.

You can define counterterms for QCD in the same way as was demonstrated for
QED. Now the gauge coupling g enters in many terms where it could get renormalised
in different ways. In fact, the gauge symmetry imposes a set of relations between the
renormalisation constants, known as the Slavnov-Taylor identities, which generalise the
Ward identity of QED.

5.3 Asymptotic Freedom

We have just seen that the renormalised coupling in QcD, §(¢?), depends on the mo-
mentum at which it is defined. We say it depends on the renormalisation scale, and
commonly refer to § as the “running coupling constant.” We would clearly like to know
just how g depends on ¢2, so we calculate the diagrams in Figures 5.2 and 5.6, to get the
first terms in a perturbation theory expansion:

M2
J(W =g+ laln = +b] +-- (5.8)
7]

where a; and b, are constants and g is the “bare” coupling from the Lagrangian (5.1).
I have switched to using u? in place of ¢%, and have written § as a function of u for
convenience. From this equation it follows that,

Lo Ji] . .3
- _ 5.9
Fy B(3) = —2a: §° + (5.9)

The discovery by Politzer and by Gross and Wilczek, in 1973, that a; > 0 led to the
possibility of using perturbation theory for strong interaction processes, since it implies
that the strong interactions get weaker at high momentum scales — §(oo) = 0 is a stable
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Figure 5.7 Running of the strong coupling constant with renormalisation scale.

solution of the differential equation (5.9). Keeping just the §* term, we can solve (5.9)
to find,
W) 4m

4 Boln(u?/A?)’
where A is a constant of integration and f, = 32m%a;. Thus as(u) decreases logarith-
mically with the scale at which it is renormalised, as shown in Figure 5.7. If for some

process the natural renormalisation scale is large, there is a chance that perturbation
theory will be applicable. The value of f; is,

os(p) = (5.10)

2
fo =11 — 3™ (5.11)

where ny is the number of quark flavours. The crucial discovery when this was first
calculated was the appearance of the “11” coming from the self-interactions of the gluons
via the extra diagrams of Figure 5.6. Quarks, and other non-gauge particles, always con-
tribute negatively to . Nonabelian gauge theories are the only ones we know where you
can have asymptotic freedom (providing you don’t have too much “matter” — providing
the number of flavours is less than or equal to 16 for QCD).

What is the significance of the integration constant A? The original Qcp La-
grangian (5.1) contained only a dimensionless bare coupling g (the quark masses don’t
matter here, since the phenomenon occurs for a pure glue theory), but now we have a
dimensionful parameter. The real answer is that the radiative corrections (in all field
theories except finite ones) break the scale invariance of the original Lagrangian. In
QED there was an implicit choice of scale in the on-shell definition of é. Lacking such a
canonical choice for QCD, you have to say “measure o at u = Mz"” or “find the scale
where as = 0.2, so that a scale is necessarily involved. The phenomenon was called
dimensional transmutation by Coleman. A is given by,

(1)
e (- 555

and is p-independent. The explicit i dependence is cancelled by the implicit p depen-
dence of the coupling constant. Today it has become popular to specify the coupling by
giving the value of A itself.

We've seen that the coupling depends on the scale at which it is renormalised.
Moreover, there are many ways of defining the renormalised coupling at a given scale,
depending on just how you have regulated the infinities in your calculations and which

(5.12)
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momentum scales you set equal to . The value of §(u) thus depends on the renormal-
isation scheme you pick, and with it, A. In practice, the most popular scheme today
is called modified minimal subtraction, MS, in which integrals are evaluated in 4 — ¢
dimensions and divergences show up as poles of the form e~ for positive integer n. In
the particle data book (2] you will find values quoted for Agz around 200 MeV (it also
depends on the number of quark flavours). Don’t buy a value of A unless you know which
renormalisation scheme was used to define it.

In Figure 5.7 you see that the coupling blows up at 4 = A. This is an artifact of
using perturbation theory. We can’t trust our calculations if as(u) > 1. In practice,
you can perhaps use scales for x4 down to about 1GeV, but not much lower, and 2 GeV
is probably safer. This region is a murky area where people try to match perturbative
calculations onto results obtained from a variety of more or less kosher techniques.

>Exercise 5.1
Extending the expansion of § in terms of g in (5.8) to two loops gives

n M? M2 M?
9(w) =9+93{011n7+b1] +gs[a21n27 +b21nF+02],

with a similar equation for §(uo) in terms of g. Renormalisability implies that g(u) can
be expanded in terms of §(u,),

o0
3(w) = 3> 5 (1o)X,
n=0
where the X,, are finite coefficients. Show that this implies that a, is determined once
the one loop coefficient a, is known. In fact a; determines all the terms (a5 In u)*, called
the leading logarithms: from a one loop calculation, you can sum up all the leading
~ logarithms.

For QED there is no positive contribution to the beta function, so the electromagnetic
coupling has a logarithmic increase with renormalisation scale. However the effect is small
even going up to LEP energies: « goes from 1/137 to about 1/128. The so called Landau
pole, where a blows up, is safely hidden at an enormous energy scale.

5.4 Applications

In this section we will briefly consider some places where perturbative QCD can be applied.

5.4.1 ete~ — hadrons

In section 4.3.2 we considered the ratio R of the annihilation cross section for e*e™ into
hadrons to that into pu*p~. The result we found from the lowest order annihilation
diagram proceeding via an intermediate virtual photon was,

o(ete” — hadrons

) _ 2
R olete = ptp~) 3%:(2”

(5.13)

where I remind you that sum is over quarks f with Q; the quark’s charge in units of e.
Now I would like to extend the discussion in two ways: QED and QCD corrections, and
contributions of intermediate Z bosons.
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Figure 5.8 QED radiative corrections in ete™ annihilation.
e+>m< q e+>\/\/\/\/\/\/\< q |
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Figure 5.9 QcCD radiative corrections in e*e~ annihilation.

Turning first to QED corrections, consider the two diagrams in Figure 5.8 illustrating
two possibilities. The graph on the left contributes to the order a correction to the
amplitude. It is ultraviolet divergent, but we have discussed above how to deal with this.
However, it is also infrared divergent when the momentum of the photon in the loop goes
to zero. The treatment of this problem involves a cancellation of divergences between
this graph and the bremsstrahlung diagram on the right of Figure 5.8. Physically, limited
detector resolution means you can'’t tell if the final state you detect is accompanied by one
(or infinitely many) very soft photons. So, the rate you calculate should also include these
undetected photons, and in summing all the terms, the infrared divergences disappear.
Since quarks have electric charge, we can also, of course, have QED corrections where the
photon lines connect to the quark legs of the annihilation diagram

For the strong interactions, if o is not too large and we aren’t near a hadronic
resonance, then we expect that calculating the diagrams in Figure 5.9 will give the leading
QcD corrections. The gluon is exchanged only between the quarks since the incoming

‘ete™ don't feel the strong force. The result of the computation is

R=3;Q§(1+as—7(r“l+---).

What value should we choose for u in this expression? To answer this you need to know
that higher order terms in the perturbation series contain powers of In(s/u?), where s is
the square of the centre of mass energy. So, to avoid large coefficients in the higher order
terms, the preferred choice is u? ~ s. Observe that the leading order graph predicts a
back-to-back ¢ pair. Owing to hadronisation, what we actually see is a pair of back-
to-back jets. Experimentally, the jets follow the angular distribution predicted for the
underlying qg process, that is, a (1 + cos? ) distribution, where 8 is the scattering angle
in the centre of mass frame. Three jet events can arise from QCD bremsstrahlung where
a “hard” (high momentum) gluon radiates from one of the quark legs (see Figure 5.10).
The observation of such three jet events at DESY in the 1980’s was hailed as the “discovery
of the gluon.”

At present day e*e™ colliders, the most important contributions to e*e™ annihilation -
come from other diagrams in the standard model. In Figure 5.11 we show two diagrams
where the e*e™ can annihilate into a neutral Z boson or a neutral Higgs scalar, H°. The
Z and Higgs propagators contain factors 1/(¢?> — m?) where ¢> = s and m refers to the
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Figure 5.10 QcCD bremsstahlung producing a three jet event.
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Figure 5.11 Z bosons and Higgs particles in ete™ annihilation.

Z or Higgs mass respectively. For the Z graph, the ratio of its amplitude to the QED
amplitude is,
Mgz '

Magep @2 —m%’

In the Higgs case the ratio is,

Mo ¢ mem,

~v
2 2
MQED q'-’ — Mz My

- The extra factors of the electron and quark masses for the Higgs contribution arise
because of the standard model mass generation mechanism (see your standard model
lectures), and the factor of m, means that the Z contribution is most important. These
amplitude ratios make it clear that as the centre of mass energy approaches mz, the Z
process will dominate the pure QED one. This, of course, is exactly the situation at LEP.

- T will not go further with this subject, but in closing I note that the agreement
between the LEP results and the standard model depends on the inclusion of radiative
corrections. This agreement provides compelling evidence for the quantum field theoretic
aspects of the standard model.

5.4.2 Deep Inelastic Lepton Hadron Scattering

The process of interest is
lepton + hadron — lepton + X,

where X denotes “anything” and the momentum transfer ¢ between the initial and final
leptons is large. The initial state lepton may be an electron, muon or neutrino, and
the interaction can proceed via the exchange of a photon, W or Z. In Figure 5.12 we
illustrate this for electron-proton deep inelastic scattering (DIS), mediated by a photon.
The photon couples to one of the qurks in the proton, and since the interaction of the
photon and lepton is understood, the strong interaction physics resides in the virtual-
photon—proton scattering amplitude.

Choose a Lorentz frame in which the proton is highly relativistic and let the struck
quark carry a fraction € of the proton’s momentum p. Neglecting the struck quark’s
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Figure 5.12 DIS process and a QCD correction.

transverse momentum, since the transverse momentum of secondary particles in hadronic
experiments is generally small, we have,

(ép+q)* =0,

where we assume the struck quark is nearly on shell and has negligible mass. This leads

to,
2

=3 =% (5.14)
The fraction of the proton’s momentum carried by the struck quark is given by the
kinematic variable z (known as Bjorken’s z variable). Measurements of the differential
DIS cross section thus provide information about the momentum distribution of quarks
inside hadrons. '

What can we say about this process in perturbation theory? In calculating higher
order contributions such as that from gluon radiation in the right hand diagram in Fig-
ure 5.12, there is an important difference from the calculation of the R ratio for ete~
annihilation in (5.13). The region of phase space where the struck quark is nearly on
shell is important, as was anticipated above in the identification of £ with z in (5.14).
This manifests itself in the appearance of terms of the form o In"(¢%/ A?), where A is
some lower cutoff on the quark’s momentum. The choice of A depends on details of the
proton wavefunction and hence these terms can’t be calculated in perturbation theory.
In other words, the relevant momenta are small, and DIS cross sections are not calculable
in perturbation theory. However, for large ¢, it is possible to to compute the evolution
of these cross sections with g2, since these effects depend on the region of phase space
where the quark is far off shell (g2 > A?). So, in summary, although DIS cross sections are
not themselves calculable, their dependence on ¢? is. This is sufficient for a considerable
amount of phenomenology.

Dis cross sections, and hence the momentum distribution of quarks in a proton,
depend on ¢?. As ¢? increases, theory predicts that there should be fewer quarks at
large £ and more at small z. This result has a physical interpretation. Imagine probing
a proton with a virtual photon and seeing a quark carrying fraction y of the proton’s
momentum. If you increase the photon energy, you may see that what you thought was a
quark with momentum yp is actually a quark with momentum zp together with a gluon
of momentum (y — z)p. Thus the total momentum of the quark and gluon is yp and the
quantum numbers of the pair are those of a single quark. In the first case, the pair was
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Figure 5.13 Drell-Yan process and a QCD correction.

not resolved, but in the second case we see that since z < y the quark’s momentum is
less now than when we looked with a lower energy photon.

There is currently great interest in DIS processes at HERA, which is allowing us to
explore smaller values of z, giving a new testing ground for theoretical ideas.

5.4.3 Drell-Yan and Related Processes

Now consider a process with two initial state hadrons. For illustration, consider the
Drell-Yan process,

hadron + hadron — e*(u*) + e (17) + X,

where the centre of mass energy of the hadrons and the invariant mass of the lepton
pair are large and comparable. A parton model for this process, proposed by Drell and
Yan is illustrated in Figure 5.13. A quark from one of the initial hadrons, labelled with
subscript 1 in the figure, annihilates an antiquark from the other hadron, producing a
virtual photon which in turn decays into a lepton—antilepton pair.

The momentum distribution of the quarks in the initial state hadrons can be deter-
mined from DIS experiments, so the process is calculable in terms of those distributions:

d 2
x6(z122 — Q*/5)T 12, [(Iu(ﬂ?l)ﬁz;(ﬂ?z) + fhf(fﬂz)ﬁu(ml)]a (5.15)

where s = (p; + p2)? and gif(z) is the probability density for finding a quark of flavour f
in hadron 4 carrying a fraction z of its momentum (similarly for g;;). Now consider some
higher order correction such as the gluon radiation graph on the right of Figure 5.13.
Just as for DIS there are important contributions from the “long-distance” region of
phase space, where the quark and antiquark are almost on-shell. However, close study
reveals that these long-distance contributions are precisely the same as in DIS, so can
be absorbed into the quark distribution functions. Thus the Drell-Yan and DIS cross
sections can be related in perturbation theory. The relation is just equation (5.15) with
the ¢if(z;) replaced by g;s(z;, M?), which is the probability density determined from DIS
experiments with ¢2 = M?2. There are further perturbative corrections to (5.15), but
the large logarithms coming from long-distance physics can always be absorbed into the
distribution functions.
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The factorisation of long distance effects into the distribution functions is a common
feature of hard inclusive processes, including, besides Drell-Yan production, the produc-
tion of particles or jets with large transverse momenta. In each case the cross section is
a convolution of the partonic distribution functions with the cross section for the quark
or gluon hard scattering process. Thus hadrons can be viewed as broad band beams of
quarks and gluons, with a known (experimentally determined) momentum distribution.
These beams are what we use to search for the Higgs scalar, or signals of new physics
such as technicolour or supersymmetry — but that is all material for another course.

-90 -



Acknowledgements

I would like to thank Tim Jones and Chris Sachrajda for lending me copies of their notes
from previous YHEP schools from which I stole shamelessly. These notes are based heavily
on those, and some sections are copied almost verbatim.

It is a pleasure to thank Ken Peach for organising and cheerleading the school and
Ann Roberts for keeping everything running smoothly. I would also like to thank my
fellow lecturers, the tutors and the students for making the school so entertaining.

References

[1] T J R Aitchison and A J G Hey Gauge theories in particle physics, 2nd ed Adam
Hilger 1989
B F Hatfield Quantum Field Theory of Point Particles and Strings Addison Wesley
1992
C Itzykson and J-B Zuber Quantum Field Theory McGraw-Hill 1980
M Le Bellac Quantum and Statistical Field Theory Oxford 1991
F Mandl and G Shaw Quantum Field Theory Wiley 1984
P Ramond Field Theory: a Modern Primer, 2nd ed Addison Wesley 1989
L H Ryder Quantum Field Theory Cambridge 1991 (reprint)

[2] Particle Data Group, Physical Review D50 (1994) 1173

[3] S Weinberg The Quantum Theory of Fields Cambridge University Press 1995, p 134
[4] J Schwinger, Physical Review 73 (1948) 416

[5]) H A Bethe, Physical Review 72 (1947) 339

-91-



-92-



A Pre School Problems

The main aim of this course will be to teach the techniques required for performing
simple calculations of amplitudes, cross sections and decay rates, particularly in Quan-
tum Electrodynamics but also in Quantum Chromodynamics. Some aspects of quantum
mechanics, special relativity and electrodynamics will be assumed during the lectures at
the school. The following problems should be helpful in consolidating your knowledge in
these areas. The solutions can be found in many standard textbooks.

Probability Density and Current Density

Starting from the Schrédinger equation for the wave function v¥(x,t), show that the
probability density p = ¥*1 satisfies the continuity equation

ap _
£ +V-J=0
where
3= L [w(99) - (V)
2tm

What is the interpretation of J?

Rotations and the Pauli Matrices

Show that a 3-dimensional rotation can be represented by a 3 x 3 orthogonal matrix R
with determinant +1 (Start with x’ = Rx, and impose x"-x’ = x-x). Such rotations form
the special orthogonal group, SO(3).
For an infinitesimal rotation, write R = 1+ iA where 1 is the identity matrix and
A is a matrix with infinitesimal entries. Show that A is antisymmetric (the 7 is there to
make A hermitian). '
Parameterise A as
0 —ia3 iaz 3
A= ia3 0 —ial = Z a,~L,~
—iay 14y 0 i=1
where the a; are infinitesimal and verify that the L; satisfy the angular momentum
commutation relations
[L,', LJ] = ifijkLk
Note that the Einstein summation convention is used here. In general, I will switch
around between different notational conventions without warning. You should be able to
tell from the context what is meant: notation should be your slave, not your master.
The Pauli matrices o; are,

0 1 0 —i 1 0
”1=(1 0)’ "2=(i o)’ "3=(0 -1)'

Verify that %oi satisfy the same algebra as L;. If the two-component spinor

_ (" )
v (1,1)2
transforms into (1+4a-0/2)% under an infinitesimal rotation, check that 1y is invariant
under rotations.
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Raising and Lowering Operators

From the angular momentum commutation relations,
[Li, LJ] = 'I:éijkLk

show that the operators

Ly=L,%iL,
satisfy
(L4, L-] = 2L
[Ls,Ls) = FLs
and show that
[L2, L3] =0

where L2 = L2+ L2+ L2. From the last commutator it follows that there are simultaneous
eigenstates of L? and Lj. Let ¢, be such an eigenvector of L? and L3 with eigenvalues
(1 + 1) and m respectively. Show that each of L1 either vanishes or is an eigenstate
of L? with eigenvalue [(l + 1) and of L3 with eigenvalue m + 1.

Four Vectors

A Lorentz transformation on the coordinates z* = (ct,x) can be represented by a 4 x 4
matrix A as follows:
* = A* ¥

For a boost along the z-axis to velocity v, show that

vy =By 00
_|-Br ~ 00
A= 0 0 1 0 (A.1)
0 0 0 1
where 3 = v/c and v = (1 — 32)71/2 as usual.
By imposing the condition
Gz = gu ¥z’ (A.2)
where
1 0 0 O
o -1 0 o
=10 0 -1 o
0 O 0 -1
show that

g,“,A“,,A”,,'= Gpos OT ANgAh=g

This is the analogue of the orthogonality relation for rotations. Check that it works for
the A given by equation (A.1) above. ’
Now introduce

. v
Ty = Guv
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and show, by reconsidering equation (A.2) using z#z,, or otherwise, that

T, = (A7),

Vectors A* and B, that transform like z* and z, are sometimes called contravariant
and covariant respectively. A simpler pair of names is vector and covector. A particularly
important covector is obtained by letting 0/9z* act on a scalar ¢:

d¢

dz

=00
Show that d, does transform like z, and not z*.
Electromagnetism

The four Maxwell equations are:

p

0
0B OE
VxE:———at— VXB:NOJ'*'NOGO_a—t‘
Which physical laws are represented by each of these equations? Show that
dp
—+V-J=0
5 + J

and explain the significance of this equation. Verify that it can be written in manifestly
covariant form

3,J* =0

where J* = (¢cp,J). :
Introduce scalar and vector potentials ¢ and A by defining B =V x A and E =

—~V¢ — OA/dt, and recall the gauge invariance of electrodynamics which says that E
and B are unchanged when

A—->A+VA and ¢—)¢—%

for any scalar function A. Using this gauge freedom we can set

194
V-A=-3%

Assuming that ¢ and A can be combined into a four vector A* = (¢/c, A), this can be
written as 9, A* = 0, which is known as the Lorentz gauge condition. Defining O = §,0*,
show that with this condition Maxwell’s equations are equivalent to

OA4* = ﬂo.] s
The tensor F,, is defined by

F,, =0,A, - 0,A,
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How many independent components does F),, have? Rewrite F,, in terms of E and B.
Show that,
v E2 2
F,F¥ = — (c_z_B )
vpo 8
etP F,“,Fpa = —EEB
where

—1 if pyvpo is an odd permutation of 0123
0  otherwise
This gives the relativistic invariants which can be constructed from E and B.

{ +1 if pvpo is an even permutation of 0123
6;wptr —

Group Theory: in Particular SU(N)

Unitary matrices U satisfy UtU = 1. Verify that they form a group by showing that
W = UV is unitary if U and V are. In general, you should also show that there is an
identity element and that every U has an inverse, but these are both obvious. U(N) is
the group of complex unitary N x N matrices and SU(N) is the subgroup of matrices
with determinant +1.

Let U be a U(N) matrix close to the identity. Write

U=1+:G

where G has infinitesimal entries. Show that G is hermitian. If, in addition, U has
determinant 1, so U € SU(N), show that G is traceless.

Any N x N traceless hermitian matrix can be written as a linear combination of a
chosen basis set. So, for any G we can choose infinitesimal numbers ¢; such that

NZ-1

G= Z Ei:n
i=1

where the T} are our basis. Explain why the summation runs from 1 to N% — 1.
Show that [T}, Tj] is antihermitian and traceless, and hence can be written

(T3, 1] = ifijn T (A.3)

for some constants f;jx. The commutation relations between the different 7; define the Lie
algebra of SU(N). The T; are called the generators and the fi;: are called the structure
constants.

Find a set of 3 independent 2 x 2 matrices which are generators for SU(2) and a set
of 8 independent 3 x 3 generators for SU(3).

Verify the Jacobi identity,

[Ti’ [E’Tk]] + [TJ’ [Tvai]] + [Tkv [T,,T_',]] =0

and hence show that
fikifim + fritfitm + fijifuim =0
Define a new set of (N2 — 1) x (N2 — 1) matrices

(Tiai)ie = —ifijn
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and show that they obey the same commutation relations as the T; in equation (A.3). The
Tjdj define the adjoint representation. The W'’s of the weak interactions and the gluons
of the strong interactions belong to the adjoint representations of SU(2);, left-handed
weak SU(2), and SU(3), the strong interaction colour algebra, respectively.

The generators, and hence the algebra, were found by looking at group elements
near the identity. Other group elements can be recovered by combining lots of these
infinitesimal “rotations”

U = hm (]1 + 10,71/N)N = eial'Ti
N-ooo

where the 6; are finite. This construction generates what mathematicians call a simply
connected group. There is a theorem stating that every Lie algebra comes from exactly
one simply connected group: SU(N) and its algebra give us one example.

However, we have seen that both SU(2) and the rotation group SO(3) have the
same, angular momentum, algebra. What is going on? It must be that SO(3) is not
simply connected. In fact, there is a mapping, called a covering, from SU(2) to SO(3)
which preserves the group property: that is if U € SU(2) is mapped to f(U) € SO(3),
then f(UV) = f(U)f(V). In the SU(2) — SO(3) case, two elements of SU(2) are
mapped on to every element of SO(3). Whenever a group G has the same Lie algebra as
a simply connected group S there must be such a covering S — G.

The double covering of SO(3) by SU(2) underlies the behaviour of spin-1/2 and
other half-odd-integer spin particles under rotations: they really transform under SU(2),
and rotating them by 27 only gets you half way around SU(2), so you pick up a minus
sign. A second 2r rotation gets you back to where you started.
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1 Introduction

The standard model is a beautifully crafted and brilliantly predictive theory of
all known phenomena in elementary particle physics. It was conceived in the
decade from the mid 1960s to the mid 1970s when quantum field theory made a
spectacular revival and non-abelian gauge theories were shown to provide a quan-
titative understanding of particle physics. Those were (I am told) heady times
for theorists. Writing in 1984, Sidney Coleman remembers them nostalgically:

“This was a great time to be a high-energy theorist, the period of the famous
triumph of quantum field theory. And what a triumph it was, in the old sense of
the word: a glorious victory parade, full of wonderful things brought back from
far places to make the spectator gasp with awe and laugh with joy.”

Since then, the SU(3)¢ x SU(2)r x U(l)y standard model, the fusion of
quantum chromodynamics with the electroweak theory of Glashow, Salam and
Weinberg, has successfully described (or at least not contradicted) all experimen-
tal data.

These lectures describe the construction of the standard model, with particu-
lar reference to the symmetry structure and tree-level dynamics of the electroweak
interactions. I have tried to adopt a ‘constructive’ point of view, emphasising
how the phenomenological structure of the fermion currents is incorporated into
a gauge field theory. The complete standard model Lagrangian therefore appears
as the culmination of the lecture course, rather than the starting point. These
notes are complementary to the other lecture courses in this volume, which de-
scribe in more depth the quantum dynamics of gauge theories.

Some sections of these notes assume rather more familiarity with quantum
field theory than the rest, particularly those associated with anomalies and chiral
symmetry. These are marked in the text with an asterisk and may be disregarded.
The importance of anomaly freedom in ensuring unitarity and constraining the
fermion spectrum of the standard model cannot, however, be overemphasised.

There are many excellent books on gauge theories and the standard model.
The description given in these lectures follows quite closely the presentation in
the book by Halzen and Martin, ‘Quarks and Leptons’. This would provide a
good source of supplementary reading and further examples.

-107 -



2 Elementary particles, QED and QCD

We begin by listing the elementary particles which are currently known to exist
in nature. These are the leptons ¢, quarks ¢ and the gauge bosons which mediate
the fundamental forces.

Leptons = e I T Ve vy, Vr
mass(MeV) | 0.51 | 105.6 1784 <46eV | <0.25 <70
Quarks q= u d $ c b t
mass T™MeV | 15MeV | 200MeV | 1.3GeV | 4.8GeV | 175 GeV
R T T O -

The quarks do not exist as free particles, but are permanently bound into hadrons.
This is confinement. If we consider just the three quarks u, d, s, we form the
baryon and meson octets and decuplets of ‘flavour’ SU(3):

S S
P+ Pt
)= 2 X 10 x ] -3 X X Lo x X
n P A A" A* At
z b T I 50 py +
- Al-1 H - 1 H

t
'
"~

.’:(.. 3(_.0 1_‘. T2 é-o
Qx-3
P - S _ S
J=0 I=1
’](<0 Ir ’;(+ ’l(('o 1T ’;(.+
n o ln® T . 4 ol p? xp+ .
n 3 o 3
x -lr x -1+ X
K K" K" K"

With the discovery of charm, bottom, ... the picture can be extended. New
hadrons exist and fit into multiplets of higher flavour symmetries SU(4), ... For
example, there are the charmed mesons such as Dt = ¢d with m = 1.86GeV
which decays by Dt — K~rtr*.  Of course, because of the mass differences
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between the quarks, these flavour symmetries are only approximate. All this
phenomenology establishes the quarks as the elementary particles; mesons and
baryons are bound states.

The next category of elementary particles are the gauge bosons:

v g w+ 7

The photon v mediates the electromagnetic interaction, described by quantum
electrodynamics (QED). It is massless. The strong (inter-quark, not inter-nuclear)
force is mediated by a ‘colour’ octet of massless gluons and described by another
gauge theory, quantum chromodynamics (QCD). Finally, the gauge bosons cor-
responding to the weak interactions are the charged W* and neutral Z, with
masses of 80.2 and 91.2GeV respectively. These were discovered in 1983 by the
UA1 and UA2 collaborations at CERN.

Finally, as we shall see, a further ingredient is required to make the picture
work. The minimal standard model also predicts the existence of a scalar particle
H°, the famous Higgs boson.

In the standard quantum field theory model, all these elementary particles

are considered to be the quanta of elementary fields.

The simplest example of a gauge theory of this type is QED, describing the
interaction of electrons and photons. The action is

S = / da [@,u(au —ieA ) — iFu,,F‘“’ + mPyp (1)

where 1 is the electron field and A, is the photon field. Green functions (and
hence S-matrix elements, etc.) are constructed from the path integral,

7 = eW[J,I\',I;'] — /D?,[)D’J)DA eifdz LHIHAL+RY+9K (2)
usually using perturbation theory, Feynman diagrams, etc.

In the early 1970s, it was realised that the strong interaction could be de-
scribed by a non-abelian gauge theory, quantum chromodynamics. Each quark is
assigned a colour quantum number, corresponding to the gauge group SU(3)c.
QCD is ‘flavour blind’, i.e. independent of the type of quark.The action is

S = / dzl = ﬂz / dz [Jw"(a,, +1gT*A%)Y — iG;‘wG”“" +m*pp|  (3)

where 1 is the colour triplet quark-field, A is the colour octet gluon field and T
is the matrix specifying the quark representation (for quarks, the fundamental
representation of SU(3)c¢).
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The physics of non-abelian gauge theories is very different from QED. In
particular QCD exhibits asymptotic freedom - the effective coupling — 0 at small
distances. This implies simple (quasi-free) behaviour of quarks in deep inelastic
scattering experiments probing the structure of the proton. The inverse effect
(infrared slavery), viz. the increase in the effective coupling at long distances, is
related to confinement.

At this point, with QED and QCD, we have a theory of the strong and the
electromagnetic interactions:

Gauge group SU3)e x U(1)em
Elementary fields g v

e i

u d s c

SU(3)c acts only on the colour degree of freedom of the quarks. U(1)en, acts on
all charged particles. The theory is parametrised by two coupling constants e and
g, the latter being traded for Agcp according to dimensional transmutation, plus
masses. There are no constraints on the masses, mass terms in £ being gauge
invariant.

This leaves the weak interactions to be incorporated. These are much more
complicated - they act on the flavour degrees of freedom of the quarks and be-
tween v, e, etc. The following are examples of weak interaction processes:

n — pe vy
(d — ue D)
O A T
Hoo— €T ey
vpem — U v
v, N — p~ X

If the weak interactions were really distinct from the other two, we would simply
have to enlarge the gauge group to include a new ‘quantum flavourdynamics’
group Gw acting on the quark flavours and lepton types. However, the picture
which will emerge from the following discussion is more subtle. The weak in-
teractions mix with electromagnetism and weave together the intricate tapestry
that is the standard model.
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3 Weak Interactions

3.1 Effective current-current interaction

The weak interactions were originally described by a phenomenological current-
current interaction. From a modern viewpoint, we understand this interaction in
terms of the effective low-energy Lagrangian implied by a gauge theory of massive
vector bosons. :

To motivate this, consider integrating out the gauge field in the QED La-
grangian

Q 1 v em
5= [do [§A“DWA — eAMS 4)

where D, = 0%g,, — (1 — @)0,0,, where « is the gauge-fixing parameter. Com-
pleting the square, we find

/DAeiS _ /DAeif%(A—eJ/D)D(A—eJ/D)-e’J’/2D | (5)
= eifLes ‘ (6)

with ,
Less = —%62JﬁmA“”J§m - ™

where A is the photon propagator, DA = 6.
The QED interaction is therefore of current-current type, but mediated by a
propagator ~ . It is therefore a long-range interaction. The electromagnetic

q
current is
SN = ey — frvupt . (8)

where e, y, ... are Dirac fields for the electron, muon, etc.

At low energies (¢ € myy), the weak interactions can be well described by an
effective theory comprising a current-current interaction. Since the weak inter-
actions are short range, a good approximation is to replace the propagator by a
constant, which is equivalent to a point interaction, i.e.

Lysk = GABIA B 9)

Notice that G has dimensions of mass™? which implies that this is a non-
renormalisable interaction. It violates unitarity (cross sections o ~ s for large
energy). This means that the current-current interaction cannot be fundamental.
Nevertheless, it gives an excellent description of weak interaction processes for
momenta below my.

Our aim is to build a renormalisable gauge theory of the weak interactions.
The next step, therefore, is to extract the form of the weak currents J "} from the
phenomenology of weak interactions.
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3.2 Lorentz structure of currents

The general Lorentz structure for a bilinear fermion current is
J =9yl (10)

where I' = 1, s, Yy, Yu7s, Ouv (total=16)

Now, if the current-current interaction is derived from a gauge theory with
vector bosons, we will have either I = 4, or 7,75 (the so-called V or A currents).
Extensive studies of weak interaction phenomenology in the 1950s showed that
this is indeed true — the other forms (S, P and T) are excluded by experiment.

The original assumption was that I' must be 7,, based on the analogy with
the electromagnetic current. This was the basis of the 1932 Fermi theory of 8
decay. The 7,75, or A, interaction would violate parity.

However, in 1956, Lee and Yang surveyed weak interaction data and concluded
that parity may not be conserved (e.g. K* — 77 and 77w both occur). The
experimental confirmation of parity violation by Wu (¥°C — ®*Nie~ 7, polarised
beta decay), Ledermann (7~ — u~ 7, followed by u~ — e~ ¥, v,) and others
followed shortly after.

The cumulative experimental evidence led to the identification (by Feynman
and Gell-Mann and Marshak et al.) of the Lorentz structure of the charged weak
current as V—A, i.e. T' = (1 — 45)y,. Also, only the left-handed (helicity —%,
vy = 3(1 — 7s)v) neutrino seems to occur in nature, together with the right-
handed antineutrino. There is no vg state.

Because left and right handed states enter differently in weak interaction
theory, it is convenient to use the left and right handed projections for all particles.
So, e.g.

1
er = 5(1 - ")’5)6 (11)
1
er=5(1+7)e (12)
are the helicity —7 and + components of the electron.

Under parity (P~'ysP = —7s)
P
e, «— €R (13)

Under charge conjugation (¢ = C%%* = CyT)

e << T (14)
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We can show that

Jy £, Jy Jg £, & (time cpt.) (15)
JY £, -JY JA F, JA  (space cpts.) (16)
J s gy Ji L ga (17)

so that L\!f'fA violates P and C individually, but is CP invariant.

This discussion of C'P invariance needs to be re-assessed when we have the
full weak currents, where 9 is a multiplet of fields and we must allow for flavour
mixing. It turns out that C' P violation is generic in the physical three generation
model. (See the discussion of the CKM matrix in section 5.5)

In terms of left and right-handed fields, the electron mass term in the La-
grangian is written as

L= m(éL eR+éReL) (18)

Since there is no vr state, we cannot construct a similar Dirac mass term for
neutrinos.

3.3 Charged weak current (leptons)

The individual lepton numbers L., L, and L, are separately conserved (e.g.
& — e~ is forbidden). This implies that we should construct separate lepton
currents for the 3 generations. To deduce the structure of these currents, consider
the following weak processes:

1. = = e vy,

2. vpeT —vep”
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u
e v,
3. vee” = v.e”
VC e
e \Y

4. voe” o Ve~

<!
(¢4

The crossed diagrams for (3) and (4) do not occur. These would require gauge
bosons carrying lepton number.

Elastic v.e~ and 7. e~ scattering also have neutral current contributions.
However, only the charged current contributes to (2).
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All these interactions are of the current-current form:

4G
Lesy = 7

where the lepton charged current is

Jge Jecut (19)

JC = vemi(—vw)etmumi(l—w)p+myni1—y)r  (20)
= VeLVuerL + VuLYu L + VL Yu TL (21)

and
TSN = &L veL + AL Yu VuL + TLYu VrL (22)
Notice that cross terms linking, for example, electron and muon type currents
are possible — the gauge bosons are independent of the generation. This is known
as “universality” of the weak interactions.
The coupling strength &' (the Fermi constant) is the same for all these pro-
cesses. This indicates a single underlying explanation. If we postulate that the
interaction is due to the exchange of a massive vector boson W* with propagator

e (g ) () 29

2 2
q° — My myy My

A,, =i

then the effective Lagrangian hecomes

_ (9 2 cc uv 7CC t g CC 1CC ut
ce,,_—z.(ﬁ) R A (24)

I

So we can identify

7= = 2 (25)

The V—A structure can be verified from ve scattering. If we assume a Lorentz
structure JCC = v y,(a + bys){ for the weak current, then process (2) gives

da( _ _ G?s
-_— —_— =
aq\me k) =0

(A+ + A~ cos* g) (26)
where A% = (a? + b?)? + 4a%b

(See Halzen and Martin, sect. 12.7 for cross-sections for charged current v e and
v e scattering.)
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3.4 Neutral weak current (leptons)

In 1973, neutral current weak interactions were observed in neutrino interactions

in the Gargamelle bubble chamber at CERN, e.g.

v,e” =y, e
vy N -y, X
v N—-v, X
(27)

These require a new interaction to be added to the effective Lagrangian, viz.

4G
Ling = —=2p JNCJNCx 28
t \/é' /) I ( )
The factor p allows for a different strength of coupling compared with the charged
current interaction.

Unlike the charged currents, the neutral current is not V—A. In fact, we
parametrise

NC 1 . .
J, 7 = 3 (v + cperyuer + R ERVuER)
1
2

(P7i(l =) v + Evulcy — chs)e) (29)

where ¢, = cy + ¢4 and cg = ¢y — c4.
For the electron (Halzen and Martin, fig. 13.5), experiment gives

¢ = 0.06+0.08
¢, = —0.52+0.06 | (30)

1

Since there is no right-handed neutrino vg, we have ¢f, = ¢} = 3.

4 Weinberg-Salam Model (leptons)

The Weinberg-Salam model was proposed in 1967 (see also Glashow, 1961), an-
ticipating the discovery of neutral currents as well as the gauge bosons W and

Z.

4.1 Currents, gauge bosons and the electroweak group

If we are to derive the effective current-current interaction
4G

ﬁint = \/-2-

(JEC JoCut 4 2pJNC JNOK) (31)
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from a non-abelian gauge theory with interaction J‘f A4*# then the currents must
form a representation of the gauge group.
For one lepton generation, these currents are

IO =T = myer
J‘?CT=J: = EL’)’ul/L
1, .o _
,]LVC = E(VL'ypVL + CrerYu€r + C;QGR"/;;CR) (32)

The charged currents J* can form two of the three components of the adjoint
representation of SU(2). In the fundamental (2-dimensional) representation of

SU(2), the generators are T# = 174 and satisfy the commutation relations

(T4, T?) = 14B°T°, A=1,2,3 (33)

For the charged components,

1
Tt = 5(r! £ir?) (34)

Lo f(01) - _(00
00) 10

Now construct lepton doublets

XL = ( I:L ) , 2-dim SU(2)r representation (35)
L

The currents J* can then be written as
Jf = X’L’YMT%XL = J; + iJz (36)
i.e. as components of the SU(2) current
Ji = xevnT*xe (37)

The remaining component is

1 1 0
Jy = S XLYu ( 0 —1 )XL
1
= 3 (PLYuvL — ELVueL) (38)

However, this has no right-handed part and so it obviously cannot be identified
with the remaining current JVC.

The solution is to introduce a new current, corresponding to a new U(1)y
interaction. The proposal is to define

JY = vy — eryuer — 28rYueR (39)
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so that U(1)y commutes with SU(2)z.

Now try and express J)° and JZ™ as linear combinations of J: and JY

1

Jim = —€LYu€L — ERYuER = JS + EJ:

JNC = aJd+bJ) (40)
a—2b = 1
= a+2b = —¢ solution only if 1 + ¢, —cp =0 (41)
4b = —CR
Then, a=13(1—c,) and b= —3cr. So,provided we have 1+4cp—cpr =0,
we can express
NC 1 s 1 oy
Ju = 5(1 - CL)J” - ECRJM (42)
1 em

= ‘]3 - §CRJ“ (43)

where recall cg = cv — ¢4
The condition 1 + ¢;, — cg = 0 requires ¢4 = —
mixing scheme to work.

. This is necessary for this

N |-

To incorporate this structure into a gauge theory, choose a gauge group
SU(2)L x U(1)y, with gauge bosons W and B,. The interaction term in the
Lagrangian is

!
Ling = —g JAWA# - %J,}’B“ (44)

In terms of Jf, J™ and J”LVC we have

Liw= - %(J;WW + J;WH)

1 .
— gem (g LeaW® + /(1 — §(;R)B“)
JNe (gW3“ - g'B“) (45)

where W¥ = 715 (Wl} F sz)

In the Weinberg-Salam model, the mixing between W? and B,, to give A, and
Z, is of the following form:-

Z, = Wf cos O — B, sin Ow
A, W2 sin @w + B, cos fw (46)
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Then the Lagrangian becomes

1 e
_ +iy/t e “W ok
£ 2 Sy W+ TTw)
e
- eJmA, - ———— JNCz*
©u sin Qw cos 0w *
where we identify
e = gsinfy = g’ cos fw
and
3 cr = sin® Oy
This last result implies that
JVC = T2 —sin® Oy ™
The resulting current-current effective interaction is
2
g ce_l jocu ( g )2 ne L ne
L=|=F) J,"—J""M+|—) J"—I""*
(\/5) *omi, * \cos 0w/ * m
Comparing with
4G ¢ cc qc0 NC JNC
| czﬁ(@ JOOut 4 2p N JNCH)
we 1dentify
G ¢ e?
V2  8my  8mi,sin?fw
and
_ ™My
p= m% cos? Ow
4.2 Weinberg-Salam Lagrangian (leptons)
The SU(2)r x U(1)y Lagrangian is therefore
L —_ IFA F,uuA lFa Frve
- = Z pwy - Z uv
!
+ ¥ ix (a,, +igTAWA + i%—YB“) X,
i=e,u,T B g, .
+ D ik (8u+z'—2—YBu) VYR
i=e,u,T
1
where T4 = ETA determines the SU(2), representation of xr
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and Y _ —1 for XL = ( Vel ) ’ ( V;LL ) : ( VrL ) (57)
€L, HL TL
Yy = =2 for 9r = €r, pr, TR (58)
The parameters are

'
9,9, Mw, mz

or equivalently
e, sin By, mw, mz

The interaction terms are

€

L=—eJA* - mj[ﬁcz“ (59)
where
Z, = Wi’ cos Oy — B, sin fw
A, = W2sinbw + B, cosfw (60)
and

1
em  __ 3 Y
Jro= J,+ —2-Ju
JNC = J2—sin’ g™ (61)
The effective interaction is
o 4G
nt — \/(Z

together with electromagnetism. This phenomenological description has the pa-
rameters e, G, p, ¢y, 5.

L

(JECTCH 1 2pgNCINCH) (62)

The Weinberg-Salam model requires ¢ = ——%. The other equivalences are
G e?
—_— = 63
V2 8miy sin? Oy (63)
2
My
= — 64
P m% cos? fw (64)
¢y =—1+2sin’0, (65)

Universality implies that c§, , = ¢}, 4 = ¢}, as well as a single G, p.
VA= CtvAa =%

In fact, the full Weinberg-Salam model including the Higgs mechanism also
implies p = 1 because of an additional (custodial SU(2)) symmetry which is built
into the model. (See section 9.)
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5 Quarks in the Electroweak Model

An analysis of weak interactions involving hadrons leads to a very similar struc-
ture for the quark sector of the electroweak model.

5.1 Charged weak current (quarks)

A selection of key processes includes the following:

1. fdecay n —pe i ie.d = ue P,

2. mdecay wt —putuy,

+
i
u
Tt+
d
Vu

(see Halzen and Martin, sect. 12.6 for a discussion of the “hadronisation”
of ud into 7 *.)

3. vuN—-pu~ X eg v, d— pu u

Ly,

-121-



This is realised in deep inelastic scattering. It is the weak interaction ana-
logueof e N — e™ X

Y .
N——v%\ix

All these processes can be described at low energies, ¢ < my, by an effective
current-current interaction, also of Lorentz structure V — A :

AG
Liny = \%JECJCC#* (66)

with ch ~ UL Y, dr. Lin uses the same G as before. This extends electron-muon
universality to lepton-quark universality.

In fact, this is too simple. Consider the next generation, with strange and
charm quarks. These almost obey

JC ~ v, dp, + e, st (67)

This corresponds to a structure like the leptons, with families of SU(2), doublets

(i) (3)

However, processes such as K* — ut*v also occur, involving a u — s transition:

Kt — uty,

4
13
u
+
K
s \Y
"
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To incorporate this flavour mixing, we add an ad-hoc quark mixing angle (the
Cabibbo angle) and define

d = dcosf.+ ssiné,
s = —dsinf.+ scosé. (68)

so that the SU(2),, eigenstates are
ur, Cr,
dlL 3 S,L ¢

~ sin’ 0, (up to kinematic factors)

Then
DKt — pty,)
[(rt — ptu,)

The Cabibbo angle is small: 8, = 13°, sin 0, = 0.23 (see also the discussion of the
CKM matrix in sect. 5.4).

5.2 Neutral current (quarké)

Processes such as v,N — »,X were observed at CERN (Gargamelle) in 1973
with strength

o(vN — vX)
They can be described by "
Lint = ﬁgsz,f’CJNC” (70)

V2
with .
JNC = 537 (ch — i) ¢ (71)

This is the same as for the leptons, except for the different cy, c4 parameters
(see sect. 5.6).

5.3 Charm and flavour changing neutral currents

Suppose there was no ¢ quark. With any u « d' transitions, we would have
the flavour changing neutral current (AS = 1) decay K° — p*p~ from the top
diagram overleaf.

The Cabibbo factors from the (du) (us) vertices give cos.sinf.. However,
experimentally, flavour changing neutral current (FCNC) decays are found to be
strongly suppressed, e.g.

I'(KE = ptp”)

~ 1078 72
['(K? — anything) 0 (72)
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~ cosB@. sin@;

~ -cos 8. sin Gc

With charm, there is another diagram, shown above. The Cabibbo factors
have the opposite sign, giving a cancellation. So FCNCs are strongly suppressed.
This is the famous GIM (Glashow, Iliopoulos, Maiani) mechanism.

This was one of the main motivations for the proposal of charm by GIM in
1970. Another was anomalies.

Theoretical Interlude — Anomalies

*Theory

It can happen that a symmetry which holds in the classical theory is no
longer a good symmetry in the corresponding quantum theory. This is known as
an anomaly. This phenomenon is particularly associated with chiral symmetries
(i.e. involving ~s) such as occur in the electroweak model.

As the simplest example, consider massless QED with the action
T : 1
S=[dec= [as [up(au —ieAu)p - 7Fu P (73)
This is invariant under the (global) chiral transformation,

P — ey (74)

By Noether’s theorem, there is a conserved current J,s = 9,7s% corresponding
to this symmetry. It satisfies the equation of motion (conservation law)

0"J.5 =0 (75)
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Does this remain true in the quantum theory? The equivalent statement would
be the chiral Ward identity for, e.g. the two—point Green function

<0|T*9"J s <I>|0 > (60) (76)

where (6®) is the vacuum expectation value of the chiral variation of some arbi-
trary (elementary or composite) field ®.

To compute Green functions in the quantum theory, we need the generating
functional,

W= / DYDPDA &' f ¢ (77)

Now consider the behaviour of W under a change of integration variable, ¢ —
e 1h — e %), Since this is only a change of variable, W does not change.
So (taking @ = a(z) as a technical device), we get

W, - :
— = _, A O 1fd:c£
oy = / DYDFDA 8" J 5 ¢ (78)
since &f(x) —0*J,s . Since the variation is a total derivative, the global trans-

formation is a symmetry. This gives the naive Ward identity.

However, the integration measure DY D), which is the key ingredient in tak-
ing us from the classical to the quantum theory, is not invariant under chiral
transformations. In fact,

- - - =2 _“u
D"LD‘I’ - D»(/)Dd,elfdra(z)meuF (79)

where F#* = ¢#*PF, 5. The derivation of this is subtle and difficult. However,
the final result for the Ward identity is simple:

e?

e Fwb)e (80)

0= —i / DYDPDA (8,5 —

that is,
e2

<O|T"9"),5 @10 > = <O[T" = — FuF* 90 >= (69) (81)

This result is exact and non-perturbative. In fact, with an appropriate choice of
renormalisation for the composite operators J,s and F,, F**, it holds in the same
form to all orders (Adler-Bardeen theorem). This is the anomalous chiral Ward
identity.

In perturbation theory, the anomaly is manifested in the 1-loop triangle dia-
gram shown overleaf.
Naively, we expect this amplitude to satisfy ¢*M,», Z 0 because of the classical
current conservation. However a careful treatment of the divergent integrals
involved in its calculation actually gives
ie?

¢“Murp = T eunokihky # 0 (82)
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in accordance with the anomalous Ward identity.

The result for non-abelian currents is similar. In this case, the currents at the
vertices of the triangle diagram (or equivalently the external gauge fields) include
group generators 1%, T® and T°. The anomaly is then proportional to

A=Tr{T*,T")T* (83)

We have described the ‘AVV’ anomaly. In theories such as the electroweak
model which also has axial gauge bosons there are also ‘AAA’ and higher-point
anomalies.

The physical significance of anomalies depen.ds entirely on whether or not the
axial current is coupled to gauge fields.

*Global currents:

This is the case where the current is not coupled to a gauge field. Here,
there is no problem. The quantum theory (anomalous Ward identity) does not
look like the classical theory (conserved current), but this does not damage the
consistency of the theory. In fact, the existence of these anomalies is an essential
and experimentally verified part of the standard model.

For example, the anomaly is essential for the neutral pion decay 7% — ~~.
The pion couples to the axial current J,s5 according to < 0|J,s|m >= ik, f, where
fx is the pion decay constant, 93MeV (see section 7). This allows us to calculate
the 7° — vy decay amplitude from the matrix element < 0|J,s|yy >. The
divergence of this would vanish if the naive Ward identity was true, predicting
7%—4 7. In fact, because of the anomaly,

2
e o
2> QF <O|F F¥|yy >
7

H =
< 0|0*Js]yy > Tor

# 0 (84)

and this permits a non-zero decay amplitude 7% — v in QED and QCD.
The constant multiplying the anomaly, 3¢ Q%, measures the sum of the
squares of the charges for all the fermions which make up J,5 (i.e. which go
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round the loop in the triangle diagram). Initial calculations with quarks gave a
result for the decay amplitude 3 times smaller than experiment. This is resolved
if we take the number of colours into account. So, experiment and the anomaly
explanation of 7° — ~v implies that QCD must have N¢g = 3.

Gauged currents:

The situation is quite different if we couple a dynamical gauge field to the
anomalous current (i.e. promote the anomalous symmetry to a local transfor-
mation). Here, the anomaly completely destroys the consistency of the quantum
theory. The gauge symmetry is broken (since the current is not conserved) and
the quantum theory is non-unitary (the unphysical and Faddeev-Popov ghost
degrees of freedom do not decouple).

To see why this is so, consider again the QED action. This can be written as
1 7
S = / ~ 3 Fu P 4 7 0, + e, A" (85)

where J, = —7,9 is the electromagnetic current. This action is U(1) gauge
invariant provided the current is conserved, i.e. 3*J, = 0 using the equations of
motion. '

Now consider the photon self-energy diagram below:

This can be expressed as Ay, II**A,,, where I1,,, is the two current Green function
(0]J, J,]0) and the photon propagator is Ay, = ;lz—(g,\u—(l— i)%‘,’“—) The current
conservation condition implies that ¢*II,, = 0. In turn, this means that the
unphysical, longitudinal degrees of freedom in the photon propagator decouple.
This must happen for the theory to be unitary. Otherwise, if the longitudinal
degrees of freedom are allowed to propagate, the high energy behaviour of the
theory is uncontrolled and cross-sections violate unitarity bounds. The conclusion
is that the theory is only unitary if the gauged current is conserved. This is true
for QED since the gauged current is pure vector, i.e. contains no <s part.

Moving on to the electroweak interactions, we can write the interaction part
of the Lagrangian as

S = [ Jzw» +J¥ B* + kinetic terms (86)

Now consider Feynman diagrams describing the coupling of three gauge bosons,
for example:

-127 -



I wo (k)

SAVAVAVAVAVIR A1)

This can be expressed as Aj, e A%, A, where the A are the vector boson

propagators and M2 is the three current Green function (to lowest order in
perturbation theory, this is just the single fermion loop shown above). Gauge
invariance (current conservation) here would imply q“Mﬁf’\; = 0, which just as
above is essential if the unphysical degrees of freedom of the vector bosons are
to decouple leaving a unitary theory with good high-energy behaviour. But as
we have seen, this is not assured. Evaluating the triangle diagram using the
Feynman rules, we actually find

"M = €307 k7K Stermions Tr[{T°, T*}T| (87)

1

where the T are the generators in the fermion currents. The theory will therefore
only be gauge-invariant and unitary if the fermion spectrum is chosen so that the
r.h.s. of this equation (‘the anomaly’) vanishes.

This is therefore dangerous for a chiral gauge theory such as the electroweak
model, since we have gauge fields coupled to axial currents. The theory will only
be unitary if all the potential anomalies vanish.

Rewriting in terms of left and right-handed fields, the anomaly coefficient is
proportional to

A=Y Tr[{T¢, TEYTE — {T5, Th} T (88)

reps

There are four possible anomalies to check in the electroweak sector:

(1) a,b;¢all SU(2)L currents:-
All fermions are in doublets, so

P Tb ¢
A= XT3ty
XX
~ 8§ TrT°=0 (89)
since the trace of an SU(2) matrix vanishes.

(2) a= SU(2)L and b,c=U(1)y :-
In this case,

A=Y 2Tr12- Y2 =0 (90)
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for the same reasons.

(3) a,b=SU(2); and ¢ =U(1)y :-
Here,

a b
A = ZTT‘ %,ZZ—}YL
~ 85N Tryp ~ Y TrQ (91)

Lreps
since for the left-handed representations 1Y, = —T7 + Q
(4) a,b,call ULy :-

Here,

A = 2{¥ Ty~ 3 TrYd)

Lreps Rreps

~ S TrQ (92)

Lreps
since for the right-handed representations 3Yr = Q.

So, the anomalies of type (1) and (2) necessarily vanish. But the anomalies
for type (3) and (4) vanish if and only if

> Q=0 (93)
!

i.e. anomaly cancellation requires the sum of the electric charges of the fermions
to vanish. '

In the standard model, this is true individually for each generation:-

2 1 1
= 0-14+Neg(z—2)=-1+4 2N,
legyu’de + 0(3 3) + 3 /Vc

= 0 for Nc=3 (94)

This theoretical analysis tells us several important things about the standard
model

1. The SU(N¢) x SU(2)L x U(1)y gauge theory (QCD plus electroweak) with
the known quark and lepton spectrum must have N¢ = 3

2. Anomaly cancellation within each generation means that a model with two
lepton generations and the quarks u, d, s does not exist. Anomaly freedom
implies that charm exists! :

3. 3 lepton generations implies that top exists.
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4. The condition 37, Qs = 0 as described above looks contrived. This suggests
that the quarks and leptons may have originally been in some single larger
representation. This hints at some form of grand unification.

5.4 Third generation and the CKM matrix

To keep the success of the GIM mechanism when we extend the standard model

to three generations, we assign the quarks to SU(2),, eigenstates :ZZ ), where
w;r, = ur, cr, tr, and d;;, = dyp, s, b, with
dip = Viid;L (95)
If V is unitary (VIV = 1), then
did. = dViVd = d; d; (96)

This property suppresses the FCNC diagrams discussed in sect. 5.3 and ensures
the neutral current is flavour diagonal. V enters the vertices with the W* but
not with the Z.

V is the CKM (Cabibbo-Kobayashi-Maskawa) matrix. First, note the param-
eter counting for an arbitrary number N of generations:

Unitary N x N matrix — N? parameters.

1
Orthogonal N x N matrix — §N(N — 1) parameters.

But (2N —1) relative phases for the quarks are irrelevant. So Vog s has %N (N-1)
real parameters and N> — (2N —1) — ZN(N — 1) = 2(N — 1)(N —2) phases.

In the standard model, N = 3, so Voxam has 3 angles and 1 phase (important
for CP violation). The Kobayashi-Maskawa parametrisation is

/ 1 0 0 C1 31 0 10 0 1 0 0
Vekm = 0 ¢ s -5 ¢ 0 01 0 0 c¢3 33
\ 0 —82 Cp 0 0 1 00 6‘5 0 —S83 C3

[ o s13 5183
= —81Cy  C1CaC3 — S283€  ¢1c083 + 32636'6. (97)
\ $182  —C189C3 — Cp83€"  —c18283 + cpcae®
where we let ¢; = cos 6, etc.
The current experimental values are approximately
[Vud| = 0.975  |Vis| = 0.222 |V, = 0.005
Vekm = | V| =0.222 |V, =0.974 |V| = 0.043 (98)
|Via| = 0.010 |Vis| =0.041 |Vip| = 0.999
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For precise values and errors and a recent review, see Ali and London (Glasgow
Conference, 1994).
These arise from:-

Vie : PBdecay n—ope b , 7t o aletu,

Ve ¢+ KY = 1%*ty, , K°> r ety

semileptonic hyperon decays A — pe™ v,

Vi : b— ue . , need B decays with no K in final state
Va : v,d— p e, asin the diagram
T "
v W
H \*Y4 {\N\N\< v
; ) c

4 s

M
d,s
N{ }x

Vs ¢ vus — p~c, needs estimate of s-content of nucleon
Dt - K%*w,

Vo : B — D*ly, , plus heavy quark effective theory

§ : The phase is determined by the e parameter in K° — K°

Vi : B°-RB° mixing, from diagrams like
W
d.s u,C,t b ds  nvvvin b
B’ W W B? B° u,c t u,c,t B®
] BN GV VVaVV
b u,c,t d,s b w d,s
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Clearly a great deal of experimental work (and theoretical analysis — much
depending on models and approximations for heavy quark states) is being done
to determine the quark mixing parameters and verify the assumption that Vog
is a unitary matrix. There is at present no accepted theory of these mixing angles
— they are all free parameters in the standard model.

5.5 CP violation and the CKM matrix

Much of the interest in Vogas is because it is the only source of C' P violation in
the standard model. We show here why the appearance of a phase in Vogpr leads
to C P violation. Let

M = (wr*(1 = vs) View) (@57, (1 — v5) Virwr)?
= Vi V(@™ (1 — ys)us) (@y,(1 = 75)u;) (99)
be the charged-current induced matrix element for ¢;¢; — qxqi. u are the appro-
priate Dirac spinors. If we can show that the C'P transformed matrix element

satisfies Mgp = M, then the theory conserves C P. Otherwise, C P is violated.
Under C,

u — uc = Cu’
@ — Gg = —ulC! (100)
where C~1y,C = —’)’Z , C7lsC o= ()T

Under P, P7'4,(1+ )P = ~(1 — 7s) where W=, 7=-9
So,

@y (1 — )iy =5 —Vistir (1 — s)un (101)
and then,
Mcp = Vi V(" (1 = 5 )ue) (@74(1 = vs)w) (102)
compared with
M = Vi Va(ay* (1 = vs)ur) (@57u(1 = vs)w) (103)

We find that Mgp = M? provided V;; are real.

It follows that in the three generation model where Vogpr has a complex
parameter, C P is violated. This will show up in K° — K° or B® — B°® mixing (see
figure).

In the two generation model, K° and K° are linear combinations of the CP =
+1, -1 eigenstates, Ks = 2=(K°+ K°) and K = J=(K°~ K°) , which decay by
Ks — 27 and K, — 3. gowever'l( L — 27 does occur with a small branching
ratio of ~ 1073,

-132-



JaVAVAVAVAVA! s

K uct u,c,t K°
S AVAVAVAVAVA I
5 W d

5.6 Gauge boson-current interaction (quarks)

The same construction as for the lepton sector now goes through essentially
unchanged. In the electroweak Lagrangian, the interaction of the A, W and Z
bosons with the quarks is

L= _ﬁ_ (J:LV*L“ + J;W"ﬂ) _ eJ;mA“ - _LJNCZu (104)

V2 cos By *
where
JI = Yoty = UL Y.Viid; L
J. = XiL T XiL = diL')’uVi}ujL (105)
since
u,L . ?
XiL = d,'L Wlth d L = V,‘j djL (106)
and .
IS = NiL v XiL = Bin Yutin — dip YudiL (107)

the CKM matrix V dropping out due to its assumed unitarity. The electromag-
netic and weak neutral currents are

J;m = (If'YﬂQ as, f =1, ¢t d’ S b. (108)
and |
'];]:VC = J2—sin’0yJ"
= " (% (1 =)t — sin’ HWQ) 9
= a3 (V- ciw) s ()

where t? is the eigenvalue of T§ and Q is the charge.

The eigenvalues 3, Q and parameters ¢y and ¢4 in the neutral current JZ‘V ¢
are listed in the table below (sin® fy ~ 0.234).
The general formulae are

cA=t3
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| [ £ ]1Q |ca cv
u, c, t HERE > —2sin°4,, = 0.19
ds,b [|-I]-I[-2]-%+%sin’0,=-034
Vey Vo r || 2 | 0 | 2 z
e, p, T || —z | -1|—-z[—5+2sin°0, =—0.03

This determines the Z f f vertex:-

—1e

f f
—_— v, =, — ¢
sin Ow cos 9W7”2 ( v A’Ys)

along with the W¥ vertices for leptons

e (un,1)
W
Ve(u,t)
—%sin69w7u§ (1 =)
e (u,1)
w
Ve(u,1)

) e

1
_ H_ (1 —
\/_Sin0W7 2( 75)

and for quarks, including the CKM matrix,
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\\%
d;
) e 1
—ﬁm’ng(l ~7s) Vi;
uj
W'
d.
j
? e 1

~(1— 1
\/isin 0W7ﬂ2 (]' 75) V]l

6 Electroweak Processes

In this section, we consider some simple examples of electroweak processes using
the structure of the currents described above.

6.1 ~ — Z interference in ete™ — putp~

Consider the following diagrams, which mediate electron-positron annihilation
into leptons:

+ Ty & wh
Y Z
- W . n
The amplitudes are
2
€ /_ _
M‘Y = '—EE (uu'yl\u#) (ue')')\ue) (111)
and
kxk
2 -
g _ 2 g/\P m
Mz ~TeosTl (@7 () — chvs) wa) m«;‘)

X (Uey” (¢y — c47s) ue)
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\/_sz

= RULR Mup+ S, UL)
a—mz( pRY Uy LUe LY Ue

X (cRue RY\UeR + CLﬁeL’Y)\ueL) (112)

where s = k? and we neglect lepton masses. Recall CL(r) = Cv T cq4

To calculate the cross section, we first add these amplitudes then square, i.e.
|M,, + Mz|*. This is electroweak interference.

The unpolarised ete™ — putp~ cross section is found by averaging over the
four allowed L, R helicity combinations for e and u. We find

do
= [A0 (1 + cos?6) + Ay cos ] (113)
where
Ao = 14+2R(r)& + |r|? (c%, + ci)2
A = AR(r)c4 +8|r|*ch (114)
with Y ,
i S 2Gmyz (115)

e? s —m% +imzl'y
r comes from the Z propagator, modified to include the finite resonance width

Tz which must be included when s ~ m%. In pure QED, Ao = 1 and A; = 0.
This cross section is usually expressed as a forward-backward asymmetry.

Define,

F-B
Arp=Frg  F= / €40, B= /lgﬁdﬂ (116)
Then we have 5 A
Apg = ==L 2
FB = 84 (s €« m%) (117)
and
C%/ Ci 2
Arpp =3 ———5— (s @ m3%) (118)

() +ch)?

6.2 Z partial widths

From the Z f f vertex,

9 Yis
cos 0W 7/»42 ( CA75) (119)

we can calculate the decay rate,
2

(2 ff) = —25r (cfvz + c{,2> mz (120)

487 cos? Oy
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This enables us to compute the partial widths for the set of decays:-

— l'\O _ g2 mz
(Z — Ve l/e) = z = m = 0.17GeV
(Z —ete ) = 1"% (1 — 4sin% 0w + 8sin* Hw) = 0.09GeV
I'(Z—-au) = 3I% (l—gsinzﬂw-{-%sin"ﬂw) = 0.30GeV
r(z-dd) = 3r% (1 - gsirﬁ 0w + —2—sin4 ow) =0.39GeV (121)

(The 3 in the last two expressions is the number of colours, Ng = 3)

The more light generations, i.e. with mass less than mz/2, the bigger the Z
width. LEP measurements can therefore determine the number of light genera-
tions. The experimental value

I'z (total) ~ 2.6GeV (122)

confirms N, = 3.

Cosmological Interlude — N, = 3 from Big Bang
Nucleosynthesis

As well as the LEP measurement of 'z, there is good evidence for N, = 3 from
measurements of the *He abundance in the universe. This is based on primordial
nucleosynthesis in the big bang model. Very roughly, the argument is as follows:-

1. Most (~ 90%) of the present day *He abundance is primordial. *He pro-
duction in stars contributes < 10%.

2. At high temperatures (kT 3> 1MeV) just after the big bang, neutrons and
protons were in equilibrium through the reversible processes

n — pe v, (123)
n+et - p+ 7 (124)
n4+ve - p+ e (125)

with a neutron to proton ratio (n/p) of

D~ emam/iT | (126)
P

where Am = m, — m, = 1.3MeV.
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3. When kT drops below 1MeV (after t = 10sec), the rate for p — n pro-
cesses becomes much smaller than n — p. When this rate falls below the
expansion rate of the universe, the p — n transitions “freeze-out”, fixing
the n/p ratio (apart from neutron decay.)

Now, the expansion rate depends on the square root of the energy density
of relativistic particles, so is greater for a larger number of light particles,
viz. neutrinos with m, < 100MeV.

So, a bigger N, = faster expansion rate
= earlier freeze-out of n/p at higher T
= bigger freeze-out n/p ratio.

In fact, N, =3 & n/p ~ 1/6 at freeze-out.

4. Nucleosynthesis begins later, at around ¢ = 2 mins, when the temperature
is low enough for deuterons to be stable against photodisintegration. By
this time, free neutron decay has reduced n/p to 1/7.

5. Virtually all the neutrons in existence at the start of primordial nucleosyn-
thesis end up as “He.
So, the bigger the n/p ratio the greater the abundance of *He.

The present value for *He abundance (= 24%) rules out N, = 4 and is con-
sistent with N, = 3. Further evidence comes from a detailed investigation of
abundances of *He, D and "Li.

6.3 3 and 4 gauge boson vertices

Recalling that

FA =0,Wp - 3,Wh — ge*BCWPW? (127)
we see from the field strength terms in the Lagrangian
1 , 1 )
Loauge = /d:v [_ZF‘ﬁ’FA“ = g Fw " ], (128)

where the first term corresponds to SU(2)r and the second to U(1)y, that there
will be vertices with 3 and 4 gauge field propagators.
In terms of the A, W* and Z fields, these are:
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e[(k—=grgw + (¢=Dhgru + (P—Kk)ugr]

geosOw [(F—=qrgw + (=D grn + (P—k)ugr)
* w -
Q)L M .
Kpgrs [29ugrp — 9uagvp — gupgvA

where for the different possible vertices:-

I P I Q R S J Kpgrs
Wt W | W | W- 7g”
A [WH A [W- —1e?
Z |Wr | Z |w- —1g% cos? 0,
A |WH Z [wW- —tegcosb,

(recall e = gsinfw)

At LEP 200, with e*e™ collisions at 100 + 100GeV, it will soon be possible
to pair produce W+W~ through the diagrams:
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This will provide the first direct measurement of the 3 gauge boson coupling.

7 Spontaneous Symmetry Breaking I — Global
Symmetries and Goldstone’s Theorem

7.1 A global U(1) model

As a toy model, consider a complex scalar field with Lagrangian
L=0,40"¢"-V(¢,9") (129)

with
V(4,¢%) = —p2¢" ¢ + M4 4)’ (130)

We have chosen the opposite sign from usual for the quadratic term.

\%

Plot of V over the complex ¢ plane.

Rewriting ¢ in modulus-phase form, ¢ = %p e'X, the Lagrangian is

L= @) + 570~ V() (131)
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where ) \
V(p) = =510 + 70" (132)

This theory has a global U(1) symmetry, i.e. invariance under ¢ — ¢e'®, a =
constant, i.e. x — x + «. This is reflected in the potential, which depends only
on p.

With the sign of p? chosen, the minimum of V(p) is not p = 0, but at the
bottom of the rim. The minimum is not unique - there is a family of degenerate
minima connected by U(1) transformations.

Select one of these equivalent minima, say x = 0, p = v, then write p = v+ H.
In the quantum theory v is the vacuum expectation value (VEV) of ¢, i.e.

(0]¢]0) = v # 0. (133)
Then,
L= -;-(auH)2 202007+ (v H+ LH?) (B0 = V(H)  (134)

&

where ) \
V(H) = -ZAU‘* + AiH? 4+ MH? + ZH“ (135)
At the minimum, v? = p?/\.

In perturbation theory about this minimum, the H field describes a massive
scalar particle with m% = 2\v?.

Rewriting in terms of A and mpy, and rescaling y = vy so that, as usual for a
scalar field, x has dimension 1, the Lagrangian is

L= 30X+ HOH) — iy B + LEH(9,%)
+ 23 H0,%)? — S maH - 2H + Limi, (136)

We can read off the spectrum of the quantum theory from L. The theory has
one massive scalar H — this corresponds to fluctuations up the side of the walls
in the potential. Crucially, it also has one massless scalar x, corresponding to
fluctuations around the circle of degenerate minima. This is known as a Goldstone
boson.

There are also interaction terms, and a constant non-zero vacuum energy

density. (This could be a problem if we think of including gravity in a theory
with SSB.)

7.2 Goldstone’s theorem

This model illustrates a general theorem. We say that a symmetry is sponta-
neously broken if the vacuum is not invariant under the symmetry, i.e. if a field
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which varies under the symmetry acquires a VEV. This field is said to be an
“order parameter” in the language of statistical mechanics.
"In the model above, £ is invariant under U(1), but the vacuum state has no
residual invariance. U(1) is broken to the identity.
In general, £ will have a symmetry G' and the vacuum will have a residual
invariance under a subgroup Gy. We say the symmetry is broken from G to Gy.
In that case, the space of degenerate minima is the coset manifold G/Gp.

Goldstone’s theorem:

This states that corresponding to each broken generator of G (i.e. a generator
in G which is not in Gy) there is a massless scalar boson in the spectrum.

The corresponding scalar field x(z) takes values in the coset manifold G/Gp.

*Proof:

We give a general, non-perturbative proof in quantum theory. Corresponding
to each symmetry generator in G there is a conserved current. The Ward Identity
is

(0|T*8*J% ®|0) = (0]5°®|0) (137)

where 6*® is the variation of ® under the generator T* of the group G.
The VEV is equal to zero for the unbroken generators, i.e. T® in Gy. But for
the broken generators, i.e. T® in G but not in Gy, we have

E4(01J2 (k) ®(—F)]0) # 0 (138)

writing the Green function in momentum space. This is true for all momenta, in
particular k, = 0.

The only way this can be true is if there exists a massless state |x) in the
spectrum coupling to the broken current. Then

_ 1
X) Bxx (X[210) = k*ik,Fy -5 (x|®|0)

ng

£ 0. (139)

where A,, is the y propagator ~ 7z and F) is the decay constant. Clearly there
is one massless x state for each broken current.

k(0|2

7.3 *Chiral symmetry breaking in QCD

An important example of global spontaneous symmetry breaking occurs in QCD.
Consider QCD with just two flavours u and d and neglect their masses. Since
QCD is independent of flavour, there is a rotation symmetry between u and
d. Also, since parity is conserved for massless quarks, we can rotate the left
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and right handed fields separately. So, massless QCD has a global symmetry
SU(2)r, x SU(2)rg.
This is spontaneously broken to the SU(2)y subgroup (the axial generators are
all broken) by the appearance of a VEV (0|au+ dd|0), also called a “condensate”.
Since we have SSB with G = SU(2), x SU(2)r and Go = SU(2)v, Goldstone’s
theorem says there are 3 massless pseudoscalar bosons (since 3 = dim G/Gb).
These are the pions, 7+, 7=, 7% which would be exactly massless in QCD
with m, = mq = 0.

8 Spontaneous Symmetry Breaking II — Gauged
Symmetries and the Higgs Mechanism

8.1 A local U(1) model

Now go back to the toy model of section 7.1 and make the U(1) into a local
(gauge) symmetry. The Lagrangian is

1
L= (Dug)(D*¢) = V(¢,¢") = 7 Fu ™ (140)
where F,, = 0,A, — 0,A, and D,¢ = (J, — teA,)d. The potential is the

same, with a non-zero vacuum expectation value for ¢. Making the substitution

¢ = 715(0 + H)e™ we have

L= %(atu + (v + H)2(auX - eAu)2 -V(H) - iFuVFW (141)

o] —

with V(H) as before. Now write
1
W,=A4,- zaux (142)

Since this is a gauge transformation, F,, = d,W, —0,W,,, independent of x. This
leaves

1 1
L= 5(8uH)2 + §e2v2W,,W“ + e} (vH + %H2)WuW“ -V(H) - EF,WF“” (143)

In this form we can read off the particle content we expect the quantum theory
to have:

The x field has disappeared! So there are no massless scalar bosons.

The W, field is massive, with my = e?v?. It therefore has 3 degrees of freedom

(two inherited from A and one from x).
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So, starting from a theory with a U(1) gauge symmetry, we find that the spectrum
in the SSB phase has a massive gauge boson. This is the Higgs Mechanism.

Going back to £, in its original form it had 3 parameters, e, A, u. The fi-
nal theory has a massive W and a massive H, so we can write £ in terms of
e, my,mw.:

(Check: v2 = £, then m}, = 2\v? and m}, = e?v?).

This gives
L = —Z(ap.u v — aqu.) + §mWW#W + 5(6#H)
1 1
- §mi,H2 + emwHW, W* + 562H2WMW"
1 my 5 1 ,my 1 5 o
- 5617ZWH - ge m%VH + 862mH'nB‘/y”” (144)

8.2 Quantisation and renormalisation

Notice that the above description of the Higgs Mechanism was entirely at the
classical level. Strictly speaking, it is no more than a plausibility argument as to
what we expect in the full quantum theory.

Remember that to quantise a gauge theory, we have to start with the func-
tional integral, introduce a gauge-fixing term, and construct the Faddeev-Popov
ghosts. To obtain the physical spectrum, we have to prove that these ghosts
decouple along with the unphysical components of the gauge field.

All this has to be re-done in a theory with SSB. It works and the spectrum is
as described above.

Gauge invariance is essential to the renormalisation of the theory. We have
to prove ('t Hooft, 1971) that SSB does not spoil renormalisation, despite the
appearance of gauge boson masses.

The beauty of the Higgs Mechanism is that this is true — gauge theories with
spontaneous symmetry breaking are renormalisable.

9 The Higgs Mechanism and Mass Generation
in the SU(Z)L X U(l)y Model

9.1 Mass generation

In the form we have presented so far, the SU(2) x U(1)y electroweak model has
no mass for either the gauge bosons or fermions.

Gauge bosons:
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Mass terms for W* or Z simply added to £ violate the gauge symmetry.
(This is also true for any gauge theory.) But the gauge symmetry is necessary
for the theory to be renormalisable, and therefore predictive.

For example, consider e~ e~ scattering at 1-loop. The Feynman diagrams
include

< € € [

€ [ € €

The loop gives

- 1111 1
4 9—=o0 [ 14 4 —
/d gAA AN, T~ /d qagq—ij ~ /d qae- = convergent
for the photon diagram, since the photon propagator (in Feynman gauge) is
Ay = _q_le’guu- .
On the other hand, the Z propagator is Az = m;—( 9u + —“—%l) so the loop
gives

/cl"quAeAzAZ RPVa /d4q— = divergent

The divergence has to be cancelled by a counterterm

1
Lecounterterm = (d'l’l))—z / dreeece
mz

which is a four-Fermi interaction (dim = 6). But this introduces a new parame-
ter. The process continues and an infinite set of higher dimension operators are
induced. The theory is non-renormalisable.

We therefore need a dynamical mechanism to generate vector boson masses
while keeping gauge invariance. This is achieved by the Higgs mechanism.

Fermions:

In general, we can add fermion mass terms to the Lagrangian in a gauge
theory. For example, in QCD we can add quark masses, Lmass = [ dz m(Grqr +
JL qr)- Lmass 1s gauge invariant.

However, in SU(2);, x U(1)y, because SU(2)L, is a chiral gauge theory (the
group acts only on the left handed fields) fermion masses violate the gauge sym-
metry. For example L.5s = [dz m(eR eL + €L egr) is not invariant under an
SU(2) transformation.

We therefore need a mechanism to generate fermion masses dynamically in
the standard model. Remarkably, the Higgs fields can also achieve this, through
Yukawa couplings.
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9.2 Higgs mechanism in SU(2); x U(1)y.

We need to repeat the analysis of the U(1) Higgs mechanism described earlier,
generalised to a non-abelian theory. The aim is to find a Higgs sector which will
break SU(2)L x U(1)y to U(1)em-

The simplest choice (Weinberg and Salam, 1967) is to take

: ig'
Dy = (B +igT* W + —g—YBu)qb (145)
where ¢ is a complex SU(2), doublet with Y = 1. Then

ﬁHiggs = (D#¢)T(D#¢) - V(¢7 ¢T) (146)

with the potential V (¢, ¢') = —p24'é¢ + M(#!'¢)%. So, remembering the relation
Q =T} + 1Y, the charge assignment is

b= (‘j: ) (147)

If charge conservation is to remain unbroken, only the ¢° should get a vacuum
expectation value. This motivates rewriting

]. 1A A
¢=7§e’:TX (U+OH) (148)

where x4, H are real fields. The potential is V(H) = —1p? (v+H)? + 3 (v+H)*
and we have chosen v? = &\2- to give the minimum at H = 0.

Now substitute ¢ into Lpiges. We have

¢=%U(UEH> (149)

where U is an SU(2), gauge transformation. But since £ is gauge invariant, it
will not depend on U, which can be absorbed into a trivial redefinition of the
gauge fields, just as in section 8.1 for the U(1) transformation U = e'X.

In this so-called ‘unitary gauge’ the Lagrangian has the form

EHiggs = (Du¢)t(Du¢) - V(¢3 ¢'T) (150)

-3 (.2)

The Goldstone boson fields y#, which parametrise the space of flat directions in
the potential, disappear from the spectrum. The vacuum expectation value for

the scalar fields is (¢) = 71; ( 0 )

v

with
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This is not invariant under SU(2);, transformations or U(1)y, since we have
assigned Y = 1 to ¢. However it is invariant under U(1).,, transformations, since

1 1 {1({1 0 1{10 0
— 3 i % S R _
0w = 0= 5+ 1)) (0)
1 {10 0
500
So G = SU(2)L x U(1l)y is spontaneously broken to Go = U(1)em. There are
dim G/Gy = 3 broken generators, which implies 3 Goldstone boson x*. These

are absorbed by the vector bosons W#, Z, which acquire masses. The remaining
vector boson, the photon, is still massless because U(1)en is unbroken.

There is one massive neutral scalar left in the physical spectrum - the Higgs
boson H.

To find the masses and couplings, we expand out Lpiges. In the unitary gauge,
where
b= ()
T V2 \v+ H
we have

o - (Mo o )0y
QW) +iW?) 9, -YW3+¥B, ) V2\v+H
3 L( LW, — W) (v + H) )
V2 \ 0.H + (-2W3+2B,)(v+H)
1 YWt(v+ H) )

\/(Z ( a;LH - %(g cOS 0W +gl Sil'l 0W)Zy,(v + H) (153)

in terms of W*, W=, Z. Notice that, as expécted, the photon field A, does not
appear.
Substituting into Lpigges, we find the vector boson masses

mi = igzv2 (154)
1 1 g°

my = Z(gz+g’2)v2=zcoszawm3v (155)

my = 2\’ (156)

We therefore predict the p parameter, originally introduced as the relative
strength of the neutral and charged current interactions:-

miy

m

% cos? Ow
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in the Weinberg-Salam-Higgs model. This is a special property of the particular
representation of Higgs field we have chosen to induce the breaking of SU(2)L x
U(1)y. Other choices are possible — not all give p = 1 however.

The deeper reason is that p = 1 is a prediction of a global SU(2) (‘custodial’)
symmetry implicitin Lyig0s. Writing ¢ in terms of real components, ¢* = ¢! +1¢?
and ¢° = ¢ + i¢* gives V(¢l¢) = V(42 + ¢2 + ¢2 + ¢2). The potential has an
O(4) symmetry, broken to O(3) by the vacuum expectation value. In fact, the
Higgs sector is a linear sigma model with coset manifold O(4)/0(3) ~ SU(2) x
SU(2)/SU(2). The unbroken custodial global SU(2) ensures the mass relation
between my, mz that gives p = 1.

Finally, rewriting Lpiggs in terms of the parameters m?,, m%, m%, g rather
than the original set u, A, ¢’, g we have

1 1 1
LHiggs = —(8 H)? - 77n%,H2 +mpWIW+ 4+ §m%Z zZ*

1
+ ngHW+W by g2H2W+W S U ZHZ z¢

1 1
™7 g, gn — HY + —m? m¥l5
* sg m?, 169y L "33 Tt 5 HSS)

1 my o 1 ,m%
The corresponding Feynman rules for the vertices are shown in the figures.

9.3 Fermion masses

Yukawa interactions involving 2 fermion fields and the Higgs field can be con-
structed in such a way as to be SU(2);, x U(1)y invariant, and so preserve
renormalisability. When the Higgs field gets a vacuum expectation value, the
interaction terms give rise to mass terms for the fermions.

Leptons:

Choose the SU(2)L x U(1l)y invariant Yukawa terms,

Lyukawa = —Ge [(DeL eL) ( Z: ) er+Er(¢” ¢) ( VeLL )l te—pt+e—r

(159)
Setting
#Y_ 1 ( o0

(%)= 5(sn) a0

as above, we have

Ly ukawe = —&v(éLeR + éner) — £;—e—(é[, er + érer)H + p, 7 terms
V2 V2

= —m.e T terms (161)

mwy
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+
W
""""" H igmy g,,
Wy
Zy
......... H i m2
EE‘ZV &y
ZV

*H
Zy o H
i 2 m>
:jm 28 my, Buv
Zy S
H-
2
R R H l-gg-r—nﬂ
m w
Ha
H. H
2
= 3g2my
l4g my,

The Yukawa coupling (another free parameter) is traded for the lepton mass.
There is also a lepton-Higgs boson vertex, proportional to miepton/mw. This is a
general feature of the model - the Higgs boson couples to particles with a strength
proportional to their mass.

Quarks:

This is slightly trickier because we have to arrange masses for the upper
components of the SU(2);, doublets as well.

Define o . o
bo =it = (7 ) =S (H") (162)

in the unitary gauge.
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Allowing for quark mixing, remembering that the SU(2), eigenstates are

( L) with ) = VEEMd;, we can write

1L
Lyukawa = —(Gir dip)dc Gujp— (i dip)é GY djr + hec.
1 ~ u 1 7 t ~d
= —W’lliLGiju‘jR(v"'H) - —\/_idtL‘/lka]dJR(v-'_H) +h.C.
. (0 o 0
= —m&’) U; U — g%—ﬂi u; H — m((;) d; d; — g'Tn—dd, d;H (163)
2 mw 2 mw

where we have chosen G to be diagonal and G, such that V1G is diagonal.

10 The Standard Model Lagrangian

This completes the construction of the standard model Lagrangian. The standard
model is the SU(3)¢c x SU(2), x U(1l)y gauge theory with quarks, leptons and
the Higgs field, with Lagrangian:-

1 1 1
Lom = = ZFLF™ — JFuF* - 1GG™

SU@)L Uy SU(3)e

. . TA i 'g/
+ X0, +ig— W, +i5YBy)xe
SU(2)r and U(1)y fermion-gauge interaction on L fields

+ (9, + i%YBu-WR

U(1)y interaction on R fields

+ 14(igecp A G})g
SU(3)c interaction on quarks.
A* = SU(3)¢ triplet representation generators.
G = gluon field. ¢ = colour triplet quarks.
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) A q
+ @ +is5 Wi +iSYBII ~V(4'9)

Higgs sector = W, Z masses and H interactions.
¢ = SU(2)L doublet Higgs field (Y = 1) V is the Higgs potential

- (G*xL¢dr+G*XLdcur + h.c)
Yukawa interactions = fermion mass

With the construction of this Lagrangian, our task in these lectures comes to
a close. This is, however, more of a beginning than an end.

Many questions immediately arise. Going beyond the tree level dynamics and
symmetries we used to guide us to the Lagrangian, what does the standard model
actually predict and is it true? Here, the evidence for the model is strong and
compelling. Perturbative radiative corrections to the tree-level predictions are
impressively verified in precision electroweak experiments at LEP, and perturba-
tive QCD, exploiting the power of the renormalisation group, is well established.
Non-perturbative phenomena are much harder, but lattice gauge theories and
other approaches are beginning to make serious inroads into the physics of QCD
bound states. Beyond that, there are predictions, in general yet to be tested,
concerning the role played by extended objects such as instantons, monopoles
and strings which are implicit in the model.

The least tested and most controversial aspect of the standard model is of
course the symmetry breaking, Higgs sector. Here, even the confrontation of the
model with precision electroweak data provides little more than circumstantial
evidence in favour of the precise mechanism presented here. Experimental con-
firmation of the Higgs mechanism, or indeed an alternative dynamical symmetry
breaking scheme, will probably have to await the LHC.

Finally, we are led to the big questions. Assuming the standard model to be
true, why is it the way it is? What determines the symmetries and the represen-
tations in which the elementary quark and lepton fields lie? What determines the
parameters, nineteen in all? Aesthetic criteria, often so successful in fundamen-
tal physics, tempt us to the view that the standard model is just the low energy
effective theory of a deeper, more unified theory of the fundamental interactions.
But that would be another lecture course.
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Problems

1. Checkthat 42=1 and {v,7.}=0.
Show that P, = 1(1—-~;) and Pr= 2(1+7s) are projection operators,
1e.
PEZPL P,?i:PR P,Pr=PrP,=0 P+ Pr=1

Consider a massless fermion with p, = (E,0,0, F). Show that Pru(p) and
Pru(p) are eigenstates of helicity h with eigenvalues —1/2 and 1/2 respectively.

_lap _ 1ly%syp
T 20pl 2 E

h

2. Consider the current J, = 1@v,(1 —7s)u. Show that under a combined C P
transformation,

l_
Ju = —5ayi(1 = 7)u

Hence verify that the product J,J is C P invariant.
What happens if we have different types of fermions u; and a current J, =
38i7u(1 — 7s)Vijuy, for some matrix V?

3.  Suppose that the weak charged current had the Lorentz structure
J.¢ = vyt atbys)e + (n—e)
Calculate the cross section for v,e™ — p~ v, and show that

cl_a _ G?s
dQ  32x2

where A* = (a% 4 b%)? £ 4a?6®. Neglect m, and m, and assume

(At + A~ cos® g)

Try.ky'y by = 4(k*E" + K*k* — k.k'g*)
Trysy.ky'y.k'y = Sie“"’\”k,\k;

1
—56“"*%#,0,, = (6365 — 8362)

4. The decay rate for the 2-body decay Z — ff is

1 " 1 2
= - = Q) |M
r 2mz /D M| 647r2mZ/ M|

where D denotes the phase space measure.
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The Zff vertex is ——igg%;v—'y“%(c{, — chys).
First show that, summing over the fermion and averaging over the boson
spins,
2_1_ 98 g oy Lot
|M|* = 12 cos? 0W(Cv + ca (= gu ) Try*y b1y’ v ko

where ky, k, are the fermion momenta and the gauge boson polarisation sum is

2 (M) () 9u9v
€ € = —-q,, +
5 I v g# 2Z

Then show that the decay rate is

= L 9 (o cftym,
487 cos? Oy
5. Using the explicit forms for ¢y and c4 in the electroweak model, derive

expressions for the decay rates Z — v.b,, Z — ete™, Z — @iu and Z — dd in
terms of sin? 0w

What is the total width of the Z in the standard model?
[GFr = 1.2 x 107%GeV?, sin®fw = 0.23, mz = 91GeV ]

6. Consider a Higgs theory for a general gauge group G and Higgs field ¢.
Show that the vector boson mass matrix is

(m)AF = g ¢"{T4, TP} (g)

where (#) is the vacuum expectation value of ¢ and T* is the generator of G in
the representation to which ¢ belongs.

Specialise the above result to G = SU(2);, x U(1)y, with ¢ in an SU(2)L
doublet representation with Y = 1 and assume the breaking conserves U(1)em.
Show that in the charged sector, m?,s = g*v?, where v is the magnitude of the
VEV for ¢, while in the neutral sector, the mass matrix for W2 and B, is

L ( g —gg’)

4 __gg/ gl2
Diagonalise this to find the mass eigenstates. Show that these are the photon A,
and Z, defined as

zZ, = chosOw—-BusinGW

A, = W}sinfw + B, cosbw
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Topics in Standard Model
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. Structure of hadronic events

. Deep Inelastic Scattering and QCD

. Hadron Collider Physics
. Precision Electroweak Physics at LEP
. Higgs Physics

1. Structure of Proton

o Elastic Scattering

¢ Dcep Inelastic Scattering

e Structure Functions

¢ Scaling

¢ Parton Model

¢ Parton Density Functions
¢ Neutrino-Proton scattering

o DIS at high Q?

-o Momentum Sum Rule and Scaling Violations
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Process Ref. | [GeV] | a.(Q) a,(Mzo) exp.  theor. | Theory

GLS (CCFR) N5 1 173 | 0.2420.047 | 0007 L0050 | T a86r Pt | NNLO

0.302 2 0.021 | 0.116£0.003 | 0.002 0.002 ; NNLO

R. {CLEO) L6 | LTS

K- (ALEPH) 07 | 1.78 | 0.355£0.021 | 0.122:£0.003 | 0.002  0.002 | NNLO
R. (OPAL) a7 | 178 [ 0375 8232 1 0.123£0.003 | 0.002  0.002 | NXLO
R. (Raczka) 18] | 1.78 |0.333£0.021 | 0.120£0.003 | 0.002  0.002 | NNLO
e —= v+ (CLEO; 6] | 2.98 |{0.1874£0.029 [ 0.10L£0.010 | 0.008  0.006 | NLO

QQ states [19] | 5.0 {0.188+0.018 | 0.110£0.006 | 0.000 0.006 | q LGT
bb states (19) | 5.0 {0.203£0.007 | 0.115£0.002 | 0.000 0.002 } LGT

T(1S) (CLEO) (16) | 9.46 |0.164+0.013 | 0.111£0.006 | 0.001 0.006 { NLO

16) | 1053 | 0164 £0.015 | 0.113£0.006 | 0.002 0.006 | NLO-
120] | 5 - 60 0.123£0.018 | 0.014  0.000 | NLO
(21) | 80.6 |0.12340.015 | 0.121:£0.004 [ 0.012 0005 | NLO

ete” — jets (CLEQ)
ep — jets (H1}
pp— W jets (D3

evem = 2%

scal. viol. (ALEPH} | {17) | 91.2 0.127£0011 | - - NLO

ev. shapes (SLD: [22) | 91.2 0.120 £ 0.008 | 0.003  0.003 | resum.
! T{Z" - had.) {L.EP) [ [23] | 91.2 0.127£0.006 | 0.005 T 555 | NNLO

Table 1. Summary of most recent measurements of a,, presented at this conference. Abbreviations:
GLS-SR = Gross-L!zwellyn-Smith sum rules; (N)NLO = (next-)next-to-leading order p ion
theorv: LGT = latiice gauge theory (¢ stands for quenched appros
next-to-leading orde:. Most results are still preliminary.
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5. Hadron Collider Physics

o Parton Model in Hadron-Hadron Collisions

o Jets with large transverse momentum

¢ 2 — 2 QCD scattering processes

¢ Single Jet inclusive tranverse encrgy distribution

e Theoretical Uncertainties
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7. Higgs Physics

o General arguments

¢ Experimental bounds on my and m,
¢ Theoretical bounds on my and m,

¢ Higgs Decays

¢ Higgs search at LEP-1

o Higgs search at LEP-II

¢ Higgs search at LHC
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SM Higgs search at LHC

i) mass range explorable at Vs =14 TeV
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