GMRES preconditioned by a perturbed $L D L^{T}$ decomposition with static pivoting

M. Arioli, I. S. Duff, S. Gratton, and S. Pralet

Outline

- Multifrontal
- Static pivoting
-GMRES and Flexible GMRES
■ Flexible GMRES: a roundoff error analysis
■ GMRES right preconditioned: a roundoff error analysis
■ Numerical experiments

Linear system

We wish to solve large sparse systems
$\mathrm{Ax}=\mathrm{b}$

where $\mathbf{A} \in \mathbf{R}^{n \times n}$

Linear system

We wish to solve large sparse systems
$\mathbf{A x}=\mathbf{b} \quad$ where $\mathbf{A} \in \mathbf{R}^{n \times n}$
$\mathbf{A}=\left[\begin{array}{ll}H & B \\ B^{T} & 0\end{array}\right]$

Multifrontal method

ASSEMBLY TREE

Multifrontal method

ASSEMBLY TREE

AT EACH NODE

Multifrontal method

ASSEMBLY TREE

AT EACH NODE

$$
F_{22} \leftarrow F_{22}-F_{12}^{T} F_{11}^{-1} F_{12}
$$

Pivoting (1×1)

Choose x as 1×1 pivot if $|x|>u|y|$ where $|y|$ is the largest in column.

Pivoting (2 $\times 2$)

For the indefinite case, we can choose 2×2 pivot where we require

$$
\left|\left[\begin{array}{ll}
x_{1} & x_{2} \\
x_{2} & x_{3}
\end{array}\right]^{-1}\right|\left[\begin{array}{l}
|y| \\
|z|
\end{array}\right] \leq\left[\begin{array}{c}
\frac{1}{u} \\
\frac{1}{u}
\end{array}\right]
$$

where again $|y|$ and $|z|$ are the largest in their columns.

Pivoting

If we assume that $k-1$ pivots are chosen but $\left|x_{k}\right|<u|y|$:

Pivoting

If we assume that $k-1$ pivots are chosen but $\left|x_{k}\right|<u|y|$:
\square we can either take the RISK and use it or

Pivoting

If we assume that $k-1$ pivots are chosen but $\left|x_{k}\right|<u|y|$:
■ we can either take the RISK and use it or

- DELAY the pivot and then send to the parent a larger Schur complement.

Pivoting

If we assume that $k-1$ pivots are chosen but $\left|x_{k}\right|<u|y|$:
■ we can either take the RISK and use it or
DELAY the pivot and then send to the parent a larger Schur complement.
This can cause more work and storage

Static Pivoting

An ALTERNATIVE is to use Static Pivoting, by replacing x_{k} by

$$
x_{k}+\tau
$$

and CONTINUE.

Static Pivoting

An ALTERNATIVE is to use Static Pivoting, by replacing x_{k} by

$$
x_{k}+\tau
$$

and CONTINUE.
This is even more important in the case of parallel implementation where static data structures are often preferred

Static Pivoting

An ALTERNATIVE is to use Static Pivoting, by replacing x_{k} by

$$
x_{k}+\tau
$$

and CONTINUE.
Several codes use (or have an option for) this device:
■SuperLU (Demmel and Li)
$■$ PARDISO (Gärtner and Schenk)

- MA57 (Duff and Pralet)

Static Pivoting

An ALTERNATIVE is to use Static Pivoting, by replacing x_{k} by

$$
x_{k}+\tau
$$

and CONTINUE.
We thus have factorized

$$
A+E=L D L^{T}=M
$$

where $|E| \leq \tau I$
The three codes then have an Iterative Refinement option.
IR will converge if $\rho\left(M^{-1} E\right)<1$

Roundoff error 1

The computed \hat{L} and \hat{D} in floating-point arithmetic satisfy

$$
\left\{\begin{array}{l}
A+\delta A+\tau E=M \\
\|\delta A\| \leq c(n) \varepsilon\left\||\hat{L}||\hat{D}|\left|\hat{L}^{T}\right|\right\| \\
\|E\| \leq 1
\end{array}\right.
$$

The perturbation δA must have a norm smaller than τ, in order to not dominate the global error.

Roundoff error 1

The computed \hat{L} and \hat{D} in floating-point arithmetic satisfy

$$
\left\{\begin{array}{l}
A+\delta A+\tau E=M \\
\|\delta A\| \leq c(n) \varepsilon\left\||\hat{L}||\hat{D}|\left|\hat{L}^{T}\right|\right\| \\
\|E\| \leq 1 .
\end{array}\right.
$$

The perturbation δA must have a norm smaller than τ, in order to not dominate the global error.

A sufficient condition for this is

$$
\begin{array}{|l|}
\hline n \varepsilon\left\||\hat{L}||\hat{D}|\left|\hat{L}^{T}\right|\right\| \leq \tau \\
\hline
\end{array}
$$

Roundoff error 1

The computed \hat{L} and \hat{D} in floating-point arithmetic satisfy

$$
\left\{\begin{array}{l}
A+\delta A+\tau E=M \\
\|\delta A\| \leq c(n) \varepsilon\left\||\hat{L}||\hat{D}|\left|\hat{L}^{T}\right|\right\| \\
\|E\| \leq 1 .
\end{array}\right.
$$

The perturbation δA must have a norm smaller than τ, in order to not dominate the global error.

A sufficient condition for this is

$$
\begin{array}{|l|l|||}
\hline n \varepsilon||\hat{L}|| \hat{L}^{T}| | \\
\hline
\end{array}
$$

$\||\hat{L}||\hat{D}|\left|\hat{L}^{T}\right|| | \approx \frac{n}{\tau} \Longrightarrow \varepsilon \leq \frac{\tau^{2}}{n^{2}}$

Static Pivoting

Choosing τ

Static Pivoting

Choosing τ
Increase $\tau \Longrightarrow$ increase stability of decomposition

Static Pivoting

Choosing τ
Increase $\tau \Longrightarrow$ increase stability of decomposition
Decrease $\tau \Longrightarrow$ better approximation of the original matrix, reduces $\|E\|$

Static Pivoting

Choosing τ
Increase $\tau \Longrightarrow$ increase stability of decomposition
Decrease $\tau \Longrightarrow$ better approximation of the original matrix, reduces $\|E\|$
Trade-off
$\square \approx \varepsilon \Longrightarrow$ big growth in preconditioning matrix M
$■ \approx 1 \Longrightarrow$ huge error $\|E\|$.

Static Pivoting

Choosing τ
Increase $\tau \Longrightarrow$ increase stability of decomposition
Decrease $\tau \Longrightarrow$ better approximation of the original matrix, reduces $\|E\|$
Trade-off
$\square \approx \varepsilon \Longrightarrow$ big growth in preconditioning matrix M
$■ \approx 1 \Longrightarrow$ huge error $\|E\|$.
Conventional wisdom is to choose

$$
\tau=\mathcal{O}(\sqrt{\varepsilon})
$$

Static Pivoting

Choosing τ
Increase $\tau \Longrightarrow$ increase stability of decomposition
Decrease $\tau \Longrightarrow$ better approximation of the original matrix, reduces $\|E\|$
Trade-off
$\square \approx \varepsilon \Longrightarrow$ big growth in preconditioning matrix M
$\square \approx 1 \Longrightarrow$ huge error $\|E\|$.
Conventional wisdom is to choose

$$
\tau=\mathcal{O}(\sqrt{\varepsilon})
$$

In real life $\rho\left(M^{-1} E\right)>1$

Right preconditioned GMRES and Flexible GMRES

procedure $[\mathrm{x}]=$ right_Prec_GMRES(A,M,b)

$$
\begin{aligned}
& x_{0}=M^{-1} b, r_{0}=b-A x_{0} \text { and } \beta=\left\|r_{0}\right\| \\
& v_{1}=r_{0} / \beta ; \mathrm{k}=0 \\
& \text { while }\left\|r_{k}\right\|>\mu\left(\|b\|+\|A\|\left\|x_{k}\right\|\right) \\
& \quad k=k+1 ; \\
& z_{k}=M^{-1} v_{k} ; w=A z_{k} ; \\
& \text { for } i=1, \ldots, k \text { do } \\
& \quad h_{i, k}=v_{i}^{T} w ; \\
& \quad w=w-h_{i, k} v_{i} \\
& \quad \text { end for; } \\
& \quad h_{k+1, k}=\|w\| ; \\
& \quad v_{k+1}=w / h_{k+1, k} ; \\
& V_{k}=\left[v_{1}, \ldots, v_{k}\right] \\
& H_{k}=\left\{h_{i, j}\right\}_{1 \leq i \leq j+1 ; 1 \leq j \leq k} ; \\
& y_{k}=\arg \min y\left\|\beta e_{1}-H_{k} y\right\| ; \\
& x_{k}=x_{0}+M_{1}-1 V_{k} y_{k} \text { and } r_{k}=b-A x_{k} ;
\end{aligned}
$$

end procedure.
procedure $[\mathrm{x}]=\operatorname{FGMRES}\left(\mathrm{A}, M_{i}, \mathrm{~b}\right)$

$$
\begin{aligned}
& x_{0}=M_{0}^{-1} b, r_{0}=b-A x_{0} \text { and } \beta=\left\|r_{0}\right\| \\
& v_{1}=r_{0} / \beta ; \mathrm{k}=0 ; \\
& \text { while }\left\|r_{k}\right\|>\mu\left(\|b\|+\|A\|\left\|x_{k}\right\|\right) \\
& \quad k=k+1 ; \\
& \quad z_{k}=M_{k}^{-1} v_{k} ; w=A z_{k} ; \\
& \quad \text { for } i=1, \ldots, k \text { do } \\
& \quad h_{i, k}=v_{i}^{T} w ; \\
& \quad w=w-h_{i, k} v_{i} \\
& \quad \text { end for; } \\
& \quad h_{k+1, k}=\|w\| ; \\
& \quad v_{k+1}=w / h_{k+1, k} ; \\
& \quad Z_{k}=\left[z_{1}, \cdots, z_{k}\right] ; V_{k}=\left[v_{1}, \ldots, v_{k}\right] \\
& H_{k}=\left\{h_{i, j}\right\}_{1 \leq i \leq j+1 ; 1 \leq j \leq k} \\
& \quad y_{k}=\arg \min _{y}\left\|\beta e_{1}-H_{k} y\right\| ; \\
& \quad x_{k}=x_{0}+Z_{k} y_{k} \text { and } r_{k}=b-A x_{k}
\end{aligned}
$$

end procedure.

Roundoff error FGMRES

Theorem 1.

$$
\sigma_{\min }\left(\bar{H}_{k}\right)>c_{7}(k, 1) \varepsilon\left\|\bar{H}_{k}\right\|+\mathcal{O}\left(\varepsilon^{2}\right) \quad \forall k,
$$

$$
\left|\bar{s}_{k}\right|<1-\varepsilon, \forall k
$$

(where \bar{s}_{k} are the sines computed during the Givens algorithm)
and

$$
2.12(n+1) \varepsilon<0.01 \text { and } 18.53 \varepsilon n^{\frac{3}{2}} \kappa\left(C^{(k)}\right)<0.1 \forall k
$$

$$
\exists \hat{k}, \quad \hat{k} \leq n
$$

such that, $\forall k \geq \hat{k}$, we have
$\left\|b-A \bar{x}_{k}\right\| \leq c_{1}(n, k) \varepsilon\left(\|b\|+\|A\|\left\|\bar{x}_{0}\right\|+\|A\|\left\|\bar{Z}_{k}\right\|\left\|\bar{y}_{k}\right\|\right)+\mathcal{O}\left(\varepsilon^{2}\right)$.

Roundoff error FGMRES

Moreover, if $M_{i}=M, \forall i$,

$$
\rho=1.3\left\|\hat{W}_{k}\right\|+c_{2}(k, 1) \varepsilon\|M\|\left\|\bar{Z}_{k}\right\|<1 \quad \forall k<\hat{k},
$$

where

$$
\hat{W}_{k}=\left[M \bar{z}_{1}-\bar{v}_{1}, \ldots, M \bar{z}_{k}-\bar{v}_{k}\right],
$$

we have:

$$
\left\|b-A \bar{x}_{k}\right\| \leq c(n, k) \gamma \varepsilon\left(\|b\|+\|A\|\left\|\bar{x}_{0}\right\|+\|A\|\left\|\bar{Z}_{k}\right\|\left\|M\left(\bar{x}_{k}-\bar{x}_{0}\right)\right\|\right)+\mathcal{O}\left(\varepsilon^{2}\right)
$$

$$
\gamma=\frac{1.3}{1-\rho}
$$

Giraud and Langou, Björck and Paige, and generalise Paige, Rozložník, and Strakoš

Roundoff error FGMRES

Theorem 2

Under the Hypotheses of Theorem 1, and

$$
\mathbf{c}(n) \varepsilon\left\||\hat{L}||\hat{D}|\left|\hat{L}^{T}\right|\right\|<\tau
$$

$$
c(n, k) \gamma \varepsilon\|A\|\left\|\bar{Z}_{k}\right\|<1 \quad \forall k<\hat{k}
$$

$$
\max \left\{\left\|M^{-1}\right\|,\left\|\bar{Z}_{k}\right\|\right\} \leq \frac{\tilde{c}}{\tau}
$$

we have

Roundoff error FGMRES

Theorem 2

Under the Hypotheses of Theorem 1, and

$$
\mathbf{c}(n) \varepsilon\left\|| | \hat { L } | | \hat { D } \left|\left|\hat{L}^{T}\right| \|<\tau\right.\right.
$$

$$
c(n, k) \gamma \varepsilon\|A\|\left\|\bar{Z}_{k}\right\|<1 \quad \forall k<\hat{k}
$$

$$
\max \left\{\left\|M^{-1}\right\|,\left\|\bar{Z}_{k}\right\|\right\} \leq \frac{\tilde{c}}{\tau}
$$

we have

$$
\begin{gathered}
\left\|b-A \bar{x}_{k}\right\| \leq 2 \mu \varepsilon\left(\|b\|+\|A\|\left(\left\|\bar{x}_{0}\right\|+\left\|\bar{x}_{k}\right\|\right)\right)+\mathcal{O}\left(\varepsilon^{2}\right) . \\
\mu=\frac{c(n, k)}{1-c(n, k) \varepsilon\|A\|\left\|\bar{Z}_{k}\right\|}
\end{gathered}
$$

Roundoff error right preconditioned GMRES

Theorem 3
We assume of applying Iterative Refinement for solving $M\left(\bar{x}_{k}-\bar{x}_{0}\right)=\bar{V}_{k} \bar{y}_{k}$ at last step.
Under the Hypotheses of Theorem 1 and $c(n) \varepsilon \kappa(M)<1$

$$
\exists \hat{k}, \quad \hat{k} \leq n
$$

such that, $\forall k \geq \hat{k}$, we have

$$
\begin{aligned}
\left\|b-A \bar{x}_{k}\right\| \leq & c_{1}(n, k) \varepsilon\left\{\|b\|+\|A\|\left\|\bar{x}_{0}\right\|+\|A\|\left\|\bar{Z}_{k}\right\|\left\|M\left(\bar{x}_{k}-\bar{x}_{0}\right)\right\|+\right. \\
& \left\|A M^{-1}\right\|\|\|M\|\| \bar{x}_{k}-\bar{x}_{0} \|+ \\
& \left\|A M^{-1}\right\|\left\|\left|\left\|\hat{L}||\hat{D}|| \hat{L}^{T} \mid\right\|\left\|M\left(\bar{x}_{k}-\bar{x}_{0}\right)\right\|\right\}+\mathcal{O}\left(\varepsilon^{2}\right) .\right.
\end{aligned}
$$

MA57 tests

	n	nnz	nnz(L)+nnz(D)	Fact. time
CONT_201	80595	239596	9106766	9.0 sec
CONT_300	180895	562496	22535492	28.8 sec

MA57 without static pivot

MA57 tests

	n	nnz	nnz(L)+nnz(D)	Fact. time
CONT_201	80595	239596	9106766	9.0 sec
CONT_300	180895	562496	22535492	28.8 sec

MA57 without static pivot

	nnz(L)+nnz(D)+ FGMRES (\#it)	Fact. time	\# static pivots
CONT_201	$5563735(6)$	3.1 sec	27867
CONT_300	$12752337(8)$	8.9 sec	60585

MA57 with static pivot $\tau=10^{-8}$

MA57 tests

	n	nnz	nnz(L)+nnz(D)	Fact. time
CONT_201	80595	239596	9106766	9.0 sec
CONT_300	180895	562496	22535492	28.8 sec

MA57 without static pivot

	nnz(L)+nnz(D)+ FGMRES (\#it)	Fact. time	\# static pivots
CONT_201	$5563735(6)$	3.1 sec	27867
CONT_300	$12752337(8)$	8.9 sec	60585

MA57 with static pivot $\tau=10^{-8}$
IR does not converge!

Numerical experiments

FGMRES on CONT-300 test example

Numerical experiments

GMRES on CONT-300 test example

GMRES on CONT-300 test example

Summary

■IR with static pivoting is very sensitive to τ and not robust

Summary

-IR with static pivoting is very sensitive to τ and not robust
■GMRES is also sensitive and not robust

Summary

-IR with static pivoting is very sensitive to τ and not robust
■ GMRES is also sensitive and not robust
\square FGMRES is robust and less sensitive (see roundoff analysis)

Summary

■IR with static pivoting is very sensitive to τ and not robust
■ GMRES is also sensitive and not robust
\square FGMRES is robust and less sensitive (see roundoff analysis)
■ Gains from restarting. Makes GMRES more robust, saves storage in FGMRES (but not really needed)

