
A GPU Sparse Symmetric Indefinite Solver with
Pivoting

Jonathan Hogg,
Evgueni Ovtchinnikov,

Jennifer Scott*

STFC Rutherford Appleton Laboratory

4 June 2014
Sparse Days

CERFACS, Tolouse

* Thanks also to Jeremy Appleyard of NVIDIA

1 / 26

Sparse Direct Solver for GPUs Hogg, Ovtchinnikov and Scott

Factorization

A

=

= L D LT

I Sparse

I Symmetric: A = AT

I Non-singular (for purposes of talk)

I Do it on a GPU

I Aim to be bit-compatible

2 / 26

Sparse Direct Solver for GPUs Hogg, Ovtchinnikov and Scott

Why GPU

Chip Cores GB/ TFLOP/ GFLOPS/
sec sec Watt

NVIDIA K40 15× 64 288 1.43 6.1
NVIDIA Titan Z 2× 15× 64 672 2.66 7.1
AMD R9 295X2 2× 44× 8∗ 640 1.43 2.9
Intel Xeon Phi 60× 8 320 1.00 4.5
Intel Desktop E5-2687W 16× 4 50 0.40 1.3

∗ double precision cores. single precision is 8×.

3 / 26

Sparse Direct Solver for GPUs Hogg, Ovtchinnikov and Scott

Results preview

0

2

4

6

8

10

12

14

16

GHS
indef/c-71

GHS
indef/ncvxqp3

Schenk
IBM

NA/c-big

D
NVS/shipsec1

GHS
psdef/bm

wcra
1

D
NVS/ship

003

ND
/nd6k

PARSEC/Si5H12

Andrianov/m
ip1

ti
m

e
(s

)

Host
C2050

K20

5.0×

3.0×

5.7×

2.5× 2.2×
2.9×

4.8×

6.8×

2.3×

4 / 26

Sparse Direct Solver for GPUs Hogg, Ovtchinnikov and Scott

Modern direct solver design

Four phases

Ordering Find fill-reducing permutation

Analyse Find dense submatrix structure.
Setup data representation.

Factor Perform factorization with pivoting.

Solve Use factorization to solve Ax = b.

GPU Challenges

I Thousands of small dense subproblems (e.g. 8× 1)

I Pivoting on large dense subproblems (e.g. 4000× 2000)

I Substantial sparse scatter/gather

I Complicated kernels (register pressure)

5 / 26

Sparse Direct Solver for GPUs Hogg, Ovtchinnikov and Scott

Modern direct solver design

Four phases

Ordering Find fill-reducing permutation

Analyse Find dense submatrix structure.
Setup data representation.

Factor Perform factorization with pivoting.

Solve Use factorization to solve Ax = b.

GPU Challenges

I Thousands of small dense subproblems (e.g. 8× 1)

I Pivoting on large dense subproblems (e.g. 4000× 2000)

I Substantial sparse scatter/gather

I Complicated kernels (register pressure)

5 / 26

Sparse Direct Solver for GPUs Hogg, Ovtchinnikov and Scott

Previous work

Pre-existing work

I Just offloading large BLAS 3/LAPACK operations.
Very modest speedups on whole problem.

I A few codes go beyond this.
None publicly available?
No pivoting: potentially unstable
Fairly modest speedups: CPU↔GPU bottleneck

Our implementation

I Puts entire factorization and solve phases on GPU

I Open source, including all auxiliary codes

I Delivers over 5× speedup vs 2 CPU sockets on large problems

6 / 26

Sparse Direct Solver for GPUs Hogg, Ovtchinnikov and Scott

Tree parallelism

=

Operations in first two block columns are independent.
Data flow graph called Assembly Tree

3

1 2

7 / 26

Sparse Direct Solver for GPUs Hogg, Ovtchinnikov and Scott

Real world assembly tree: PARSEC/SiNa

Original:

Reordered:

8 / 26

Sparse Direct Solver for GPUs Hogg, Ovtchinnikov and Scott

Node parallelism

For an individual block, in order:

Assemble contributions from children
(sparse gather)

Factor m × k matrix with threshold pivoting
(partial dense LDLT)

Contribution given by Schur complement
(dgemm)

Each task itself can be parallelized (some better than others!)

9 / 26

Sparse Direct Solver for GPUs Hogg, Ovtchinnikov and Scott

First challenge: Exploit both tree and node parallelism

Note: CUBLAS only supports multiple BLAS on same dimensions.
⇒Have to write our own routines.

I For lots of small nodes, dominant cost is kernel setup!

I CPU populates a data structure of tasks

I Assigns an appropriate number of blocks to each task

I Launches a kernel on
∑

blocks

Limited registers:

I Costs several registers to do this (can’t use constant cache)

10 / 26

Sparse Direct Solver for GPUs Hogg, Ovtchinnikov and Scott

Enforcing task ordering

Need to enforce assembly tree ordering

I Ideally would do so via global memory with single kernel

I Want to support Fermi, insufficient registers

I Use level based approach instead

7

3

1 2

6

4 5

level 3

level 2

level 1

Outstanding Issues
Load balance:

I Disparate node sizes

I Freedom of assignment

11 / 26

Sparse Direct Solver for GPUs Hogg, Ovtchinnikov and Scott

Enforcing task ordering

Need to enforce assembly tree ordering

I Ideally would do so via global memory with single kernel

I Want to support Fermi, insufficient registers

I Use level based approach instead

7

3

1 2

6

4 5

level 3

level 2

level 1

Outstanding Issues
Load balance:

I Disparate node sizes

I Freedom of assignment

11 / 26

Sparse Direct Solver for GPUs Hogg, Ovtchinnikov and Scott

Factorization: basics

Basic Algorithm

1. Factor A11 = L11D1L
T
11

2. Divide L21 = A21 L−T
11

3. Form C = L21 D1 LT21

Stability

I All entries in L21 < u−1

I Entries of D1 calculated
in stable fashion

Typically u = 0.01.

12 / 26

Sparse Direct Solver for GPUs Hogg, Ovtchinnikov and Scott

Factorization: basics

Basic Algorithm

1. Factor A11 = L11D1L
T
11

2. Divide L21 = A21 L−T
11

3. Form C = L21 D1 LT21

Stability

I All entries in L21 < u−1

I Entries of D1 calculated
in stable fashion

Typically u = 0.01.

12 / 26

Sparse Direct Solver for GPUs Hogg, Ovtchinnikov and Scott

Factorization: parallel pivoting I

Traditional algorithm

I Work column by column

I Bring column up-to-date

I Find maximum element α in column of A21

I Pivot test α/a11 < u−1. Accept/reject pivot

Problems

I Very stop-start (one column at a time)

I All-to-all communication for every column

13 / 26

Sparse Direct Solver for GPUs Hogg, Ovtchinnikov and Scott

Factorization: parallel pivoting I

Traditional algorithm

I Work column by column

I Bring column up-to-date

I Find maximum element α in column of A21

I Pivot test α/a11 < u−1. Accept/reject pivot

Problems

I Very stop-start (one column at a time)

I All-to-all communication for every column

13 / 26

Sparse Direct Solver for GPUs Hogg, Ovtchinnikov and Scott

Size distributions

m

k

1

16

256

4096

1 16 256 2048

Schenk IBMNA/c-big

m

k

1

16

256

2048

1 16 256 1024

GHS psdef/bmwcra 1

I Wide range of sizes

I Often m� k

14 / 26

Sparse Direct Solver for GPUs Hogg, Ovtchinnikov and Scott

Factorization: parallel pivoting II

Solution

I Try-it-and-see pivoting (a posteriori pivoting)

New algorithm

I Work by blocks of L21

I Every block factorizes copy of A11

I Every block checks max | l21 | < u−1

I All-to-all communication when all blocks are done

I Discard columns that have failed on any block

We use a block size of 32× 8.

15 / 26

Sparse Direct Solver for GPUs Hogg, Ovtchinnikov and Scott

Factorization: parallel pivoting III

Implementation Issues

I Inefficient if lots of rejected pivots

I Still quite stop-start

I High register pressure (especially on Fermi)

Future work

I Implement Subset pivoting or other CA technique
as fall back

I Move to DAG-based implementation (Kepler only)
(Significant performance improvement expected)

16 / 26

Sparse Direct Solver for GPUs Hogg, Ovtchinnikov and Scott

Factorization: parallel pivoting III

Implementation Issues

I Inefficient if lots of rejected pivots

I Still quite stop-start

I High register pressure (especially on Fermi)

Future work

I Implement Subset pivoting or other CA technique
as fall back

I Move to DAG-based implementation (Kepler only)
(Significant performance improvement expected)

16 / 26

Sparse Direct Solver for GPUs Hogg, Ovtchinnikov and Scott

A posteriori pivoting samples

0%

20%

40%

60%

80%

100%

0 5 10 15 20 25 30 35
Problem

All succeed Some fail All fail

17 / 26

Sparse Direct Solver for GPUs Hogg, Ovtchinnikov and Scott

Assembly: Sparse gather/scatter

Can be framed as either sparse gather or sparse scatter.

I Need to enforce ordering: prefer sparse gather

I Launch one kernel per child
(i.e. all first children, then all second, ...)

18 / 26

Sparse Direct Solver for GPUs Hogg, Ovtchinnikov and Scott

Auxiliary codes

Many auxiliary routines are required that are still CPU-based:

I Ordering (Nested Dissection)

I Analyse (Assorted Graph Algorithms)

I Scaling (MC64 or SpMv)

... but only run once for a sequence of problems

Auction-based scaling: alternative to MC64
For some problems, serial MC64 scaling takes > 75% of time

I 95% of the quality

I 10% of the time

I Parallelizable

19 / 26

Sparse Direct Solver for GPUs Hogg, Ovtchinnikov and Scott

Results

Test Problems

I 3× Optimization (IPM)

I 3× Finite Element

I 3× Other assorted

20 / 26

Sparse Direct Solver for GPUs Hogg, Ovtchinnikov and Scott

Times(s) and Speedup: Factor+Solve

Problem CPU GPU Speedup

GHS indef/c-71 2.76 0.64 4.3
GHS indef/ncvxqp3 4.75 1.61 2.9
Schenk IBMNA/c-big 11.81 2.35 5.0

DNVS/shipsec1 1.51 0.61 2.5
GHS psdef/bmwcra 1 2.09 0.93 2.3
DNVS/ship 003 3.12 1.08 2.9

ND/nd6k 6.42 1.36 4.7
PARSEC/Si5H12 14.65 2.20 6.7
Andrianov/mip1 0.82 0.38 2.2

CPU:
Westmere-EP

I 2× E5620
= 8 cores
[76.8GFlops,
160W TDP]

GPU: Fermi

I C2050 GPU
[515GFlops,
238 TDP]

Flops ratio about 7×

21 / 26

Sparse Direct Solver for GPUs Hogg, Ovtchinnikov and Scott

Times(s) and Speedup: Factor+Solve

Problem CPU GPU Speedup

GHS indef/c-71 1.67 0.43 3.9
GHS indef/ncvxqp3 2.31 1.42 1.6
Schenk IBMNA/c-big 6.63 1.49 4.4

DNVS/shipsec1 0.63 0.40 1.6
GHS psdef/bmwcra 1 0.77 0.60 1.3
DNVS/ship 003 1.24 0.68 1.8

ND/nd6k 2.84 0.82 3.5
PARSEC/Si5H12 7.20 1.32 5.4
Andrianov/mip1 0.40 0.28 1.5

CPU:
Sandybridge-EP

I 2×E5-2687W
= 16 cores
[397GFlops,
300W TDP]

GPU: Kepler

I K20 GPU
[1170Flops,
225 TDP]

Flops ratio about 3×

22 / 26

Sparse Direct Solver for GPUs Hogg, Ovtchinnikov and Scott

Factorization phase hot-spots

c-72 c-big shipsec1 Lin
Speedup 1.4 6.2 1.9 4.4

Contrib 19 780 1607 1568
Assembly 27 446 38 302
Factor 82 481 850 666
Waiting 143 525 405 352

Times are in ms.
Waiting = time not in kernels.

23 / 26

Sparse Direct Solver for GPUs Hogg, Ovtchinnikov and Scott

Dense factor is poor

Contrib AssemblyFactor

24 / 26

Sparse Direct Solver for GPUs Hogg, Ovtchinnikov and Scott

Conclusions and Future Work

Story so far
I New open source sparse direct solver in CUDA

I http://www.numerical.rl.ac.uk/spral/
I Report forthcoming

I Speedups over host of around 5 on large problems
I Needed to both:

I Handle peculiarities of device
I Use new algorithms for massive parallelism

Long-term

I DAG-based factor

I GPU-based scaling

I Auto-generation from stencil?

25 / 26

Thanks for listening!

Questions?

26 / 26

Sparse Direct Solver for GPUs Hogg, Ovtchinnikov and Scott

A Supplementary slide

Some supplementary text.
(Note numbering of supplementary slides is outside that of normal slides.)

1 / 1

	Appendix

