
Sparse Communication Avoiding Pivoting

Jennifer Scott
Joint work with Jonathan Hogg

STFC Rutherford Appleton Laboratory

CSC Workshop Lyon
July 2014



Sparse Communication Avoiding Pivoting J.D. Hogg and J.A. Scott

Sparse direct solvers

Want to solve N × N system:

Ax = b

where A is large, sparse and, for this talk,
symmetric and indefinite

using a factorization
A = LDLT

where L is unit lower triangular and D block diagonal with
1× 1 and 2× 2 bocks.
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LDLT factorization

Most solvers work with supernodes that are held as dense matrices
of form:

Ajj

Aij

n

p

(1)

where N � n� p .
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LDLT factorization

Work by blocks:

I Factorize dense blocks on diagonal using dense algorithm
Ajj = LjjDjjL

T
jj

I “Divide” remainder of column by diagonal block Lij = AijL
−T
jj

I Update remaining matrix to right as Aik = Aik − LijDjjLkj
T

i

j

j

k
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Threshold Partial Pivoting (TPP)

Higham (1997) proves sufficient condition for stability of LDLT

factorization is

‖L‖∞‖D‖∞‖LT‖∞ ≤ constn‖A‖∞

for a modest constant constn, provided linear systems involving
2× 2 pivots are solved in a norm-wise backward stable fashion.

So we want to bound the entries of L.
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Threshold Partial Pivoting (TPP)

1× 1 pivot test

|a(q, q)| ≥ u max
i>q
|a(i , q)|

2× 2 pivot test∣∣∣∣∣
(

a(q, q) a(q, q + 1)
a(q, q + 1) a(q + 1, q + 1)

)−1
∣∣∣∣∣
(

maxi>q+1 |a(i , q)|
maxi>q+1 |a(i , q + 1)|

)
≤
(
u−1

u−1

)

where 0 < u ≤ 0.5 controls balance between stability and sparsity.
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Threshold Partial Pivoting (TPP)

Problem: comparisons with all entries in candidate column(s).
Thus

I The whole column must be up-to-date (limits parallelism)

I Communication needed between diagonal block and
off-diagonal blocks
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Alternatives?

Various a priori treatments to reduce/eliminate need for pivoting:

I Scaling: “Normalize” entries of A

I Ordering: Permute large entries onto subdiagonal and then
pick 2× 2 pivots

I Restricted pivoting: Limit checking to diagonal block and
perturb pivots that are too small (no delays)

I Use factorization as preconditioner e.g. iterative refinement

Our experience:
Combinations of these works for ∼95% of real matrices.

For remaining numerically challenging 5% we need pivoting!
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What’s done in the dense case?

I Key difference: in the dense case, pivots may be chosen from
off-diagonal block as well as from diagonal block.

I CALU algorithm of Grigori, Demmel and Xiang (2011) uses
tournament pivoting.

I Supernode is recursively bisected into sections upon which an
LU factorization is performed to select the best p pivot rows.
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Tournament pivoting

LU

LU

LU

LU

LU

LU

LU
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Tournament pivoting

I Tournament pivoting performs an optimal amount of
communication that is asymptotically less than Gaussian
elimination with partial pivoting.

I Hence, it is faster on platforms where communication is
expensive.

I Furthermore, it has been shown to be stable in practice.

But as pivots are selected from within off-diagonal blocks,
approach cannot be accommodated within a traditional sparse
symmetric factorization without significant additional fill and
departure from pre-planned data structures.
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Compressed pivoting

n

p

2p

p
Idea:

I Compress information into small matrix

I Select pivot order using small matrix

I Perform eliminations on supernodal matrix

I O(log n) messages rather than O(p log n)

?
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Strict Compressed Pivoting

1. Partition the rows of the supernodal matrix into sets according
to the column of maximum index of largest entry in the row.

2. Represent each set by single row: take maximum |aij |
3. Update using a “worst-case” formula

12 10 10

2 3 4

10 −3

4 −5 4

−6 8




Partitioned rows

12 10 10

4 10 4

2 6 8




Compressed matrix
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Strict Compressed Pivoting

This approach is

I Provably backwards stable

I Sometimes too pessimistic (rejects pivots TPP would have
accepted leading to more delayed pivots and hence denser
factors and more work/memory)
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Relaxed Compressed Pivoting

1. For each column, pick a “representative” row: largest |aij |
2. Apply standard threshold partial pivoting.
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Relaxed Compressed Pivoting

This approach is

I Not backwards stable!

I But we find it is stable in practice (see results)
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Numerical experiments

I 25 tough indefinite problems from UFL selected

I Problems scaled using symmetric version of MC64

I Sparse solver HSL MA97 run on 2× 8 core machine

I 10 steps of iterative refinement used
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Results: numerical stability default ordering
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Results: numerical stability matching-based ordering
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Results: numerical stability

Experiments show:

I TPP and strict compressed pivoting always good

I Relaxed compressed pivoting is better than restricted pivoting

I Matching-based ordering can really help ... but restricted
pivoting still unstable for some problems.
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Experiment on delayed pivots

I Want to check out whether the proposed compressed pivoting
leads to an increase in the number of delayed pivots.

I We consider a set of 25 general problems from UFL.

I These are not such tough problems ... TPP does not result in
a large number of delayed pivots.
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Results: delays
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Results: speed p = 512
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Results: speed n = 100000
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Summary of findings

I Compressed pivoting 2+ times faster on large problems

I Restricted pivoting not good enough for tough problems

I Strict compressed pivoting guarantees backwards stability

I Relaxed compressed pivoting works well and cheaper in
practice
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Another approach

Try-it-and-see pivoting:

I Store a copy of the supernodal matrix before pivoting

I Factorize diagonal block without reference to off-diagonal
blocks

I Do numerical test on entries of Lij a posteriori

I Back-track if test fails

I Still need a fall back plan ... pivots may be delayed
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Our new GPU code (Hogg, Ovtchinnikov and Scott)

Some key aspects of SSIDS:

I Multifrontal code, primarily for indefinite systems. All frontal
matrices (including small ones) factored on GPU.

I Incorporates ‘try-it-and-see’ pivoting.

I Both factorization and subsequent solves performed on GPU.

I Bit-compatible results.

Implementation was challenging! Report available with details.
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Times(s) and Speedup: Factor+Solve

Problem CPU GPU Speedup

GHS indef/c-71 2.76 0.64 4.3
GHS indef/ncvxqp3 4.75 1.61 2.9
Schenk IBMNA/c-big 11.8 2.35 5.0

DNVS/shipsec1 1.51 0.61 2.5
GHS psdef/bmwcra 1 2.09 0.93 2.3
DNVS/ship 003 3.12 1.08 2.9

ND/nd6k 6.42 1.36 4.7
PARSEC/Si5H12 14.6 2.20 6.7
Andrianov/mip1 0.82 0.38 2.2

CPU:
Westmere-EP

I 2× E5620
= 8 cores [77
GFlop/s,
160W TDP]

GPU: Fermi

I C2050 GPU
[515 GFlop/s,
238W TDP]

GPU to CPU flops ratio about 7×
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Times(s) and Speedup: Factor+Solve

Problem CPU GPU Speedup

GHS indef/c-71 1.67 0.43 3.9
GHS indef/ncvxqp3 2.31 1.42 1.6
Schenk IBMNA/c-big 6.63 1.49 4.4

DNVS/shipsec1 0.63 0.40 1.6
GHS psdef/bmwcra 1 0.77 0.60 1.3
DNVS/ship 003 1.24 0.68 1.8

ND/nd6k 2.84 0.82 3.5
PARSEC/Si5H12 7.20 1.32 5.4
Andrianov/mip1 0.40 0.28 1.5

CPU:
Sandybridge-EP

I 2×E5-2687W
= 16 cores
[397 GFlop/s,
300W TDP]

GPU: Kepler

I K20 GPU
[1170
GFlop/s,
225W TDP]

GPU to CPU flops ratio about 3×

[TDP = total board power]
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Percentage of candidate pivot columns accepting a given number
of pivots (candidate pivot columns can have at most 8 pivots).
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Thank you!

Paper on compressed pivoting to appear in SIMAX.

GPU code SSIDS is open source and is available from
http://www.numerical.rl.ac.uk/spral

Supported by EPSRC grants EP/I013067/1 and EP/J010553/1
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Stability

i

j

j

k

I What if diagonal block is singular?

I What if off-diagonal entries much larger than diagonal
entries?

Then factorization is not backwards stable
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