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ABSTRACT

The dimer method is a Hessian-free algorithm for computing saddle points. We augment

the method with a linesearch mechanism for automatic step size selection as well as pre-

conditioning capabilities. We prove local linear convergence. A series of numerical tests

demonstrate significant performance gains.
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1 Introduction

The problem of determining saddle points on high dimensional surfaces has received a great

deal of attention from the chemical physics community over the past few decades. These

surfaces arise, in particular, as potential energies of molecules or materials. The local min-

ima of such functions describe stable atomistic configurations, while saddle points provide

information about the transition rates between minima in the harmonic approximation of

transition state theory. Independently, they are useful for mapping the energy landscape

and are used to inform accelerated MD type schemes such as hyperdynamics [24, 22] or

kinetic Monte Carlo (KMC) [25].

While the problem of determining the minima of such an energy function is well known

in the numerical analysis community, the problem of locating saddles point has received

little attention. Saddle search algorithms can be broadly categorised into two groups.

The first group has been called ‘chain of states’ methods. A chain of ‘images’ are placed

on the energy surface, often the two end points of the chain are placed at two different local

minima, for which the connecting saddle is being sought. The chain is then ‘relaxed’ by

some dynamics for which the mininum energy path (MEP) is (thought to be) an attractor.

Two archetypical methods of this class are the nudged elastic band (NEB) method [11]

and the string method [26, 27].

The second group of methods for finding the saddle have been called ‘walker’ methods.

Here a single ‘image’ moves from its initial point (sometimes, but not obligatorily, a local

minimum) until it becomes sufficiently close to a saddle point. The first method to work

in this framework was Rational Function Optimization (RFO) and later its derivative, the

Partitioned RFO (PRFO) [7, 21, 3]. Here, the full eigenstructure of the Hessian is explicitly

calculated and then one or more eigenvalues are manually shifted. In particular, if the

minimum eigenvalue is shifted in the correct manner, and a Newton step is applied using

the resultant modified Hessian, then the walker moves uphill in the direction corresponding

to the lowest eigenvector and downhill in all other directions. If the Hessian is expensive to

calculate, or even unavailable, it can be approximated as the computation proceeds by any

variety of techniques, for example the symmetric rank-one approximation [18]. Of course

any useful Hessian approximation should necessarily have the flexibility to be indefinite.

Other walker type techniques are satisfied with computing the lowest eigenpair only. One

such technique is the Activation Relaxation Technique (ART) nouveau [16, 15, 17, 6]. The

original ART method used an ascent step not along the minimum eigenvector, but along

a line drawn between the image and a known local minimum [4, 5]. In ART nouveau this

is replaced by the minimum eigenpair which is calculated by means of the Lanczos [13]

method.

The technique which forms the basis of the present paper, is the dimer method [9,

10]. In this method a pair of ‘walkers’ is placed on the energy surface and aligned with

the minimum eigenvector (irrespective of the sign of the corresponding eigenvalue) by

minimizing the sum of the energies at the two end points. This can be thought of as

the computation of the minimal eigenvalue using a finite difference approximation to the



2 N. I. M. Gould, C. Ortner and D. Packwood

Hessian matrix. In practice this ‘rotation step’ is not converged to great precision. More

advanced modifications can be used to improve walker search directions, e.g., an L-BFGS

[14] scaling, rather than just using a default steepest descent type scheme [12].

In the only rigorous analysis of the dimer method that we are aware of Zhang and Du

[28] prove local convergence of a variation where the ‘dimer length’ (the separation distance

between the two walkers) shrinks to zero. In that work the dimer evolution is treated as a

dynamical system, and the stability of different types of equilibria is investigated.

In the present paper we present three new results:

1. We augment the dimer method with preconditioning capabilities to improve its ef-

ficiency for ill-conditioned problems, in particular with an eye to high-dimensional

molecular energy landscapes. This modification is based on the elementary obser-

vation that the dimer method can be formulated with respect to an arbitrary inner

product. (The ℓ2-inner product was previously used exclusively.)

2. We introduce a linesearch procedure. To that end, the main difficulty is the ab-

sence of a merit function for saddles. Instead, we proposed a local merit function,

which we minimise at each dimer iteration using traditional linesearch strategies from

optimisation, and which is updated between steps.

3. We present a variation of the analysis of Zhang and Du [28] that demonstrates that it

is unnecessary to shrink the dimer length, h, to zero. Indeed, shrinking h can cause

severe numerical difficulties due to round-off. We prove that, if it is kept fixed, then

the dimer walkers converge to a point that lies within O(h2) of a saddle. We also

extend this analysis to incorporate preconditioning and linesearch.

Concerning (2), it would of course be preferable to construct a global merit function

as this would provide a path towards constructing a globally convergent scheme. Indeed,

our (non-trivial) generalisation of the convergence analysis to the linesearch variant of the

dimer method only yields local results, and we even present counterexamples to global

convergence.

The paper is organised as follows: having established preliminary concepts, we describe

two variants of the basic dimer method, and establish their local convergence, in §2. A

linesearch enhancement is proposed, and its local convergence behaviour is analysed, in §3.
Numerical experiments illustrating the advantages of the linesearch are given in §4. We

conclude in §5. Full details of our analysis are given in Appendix A.
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2 Local Convergence of the Dimer Method

2.1 Preliminaries

Let X be a Hilbert space with norm ‖x‖ and inner product x · y. We write x ⊥ y if

x · y = 0. I : X → X denotes the identity. For x, y ∈ X , x ⊗ y : X → X denotes the

operator defined by (x⊗ y)z = (y · z)x.
Given two real functions f and g defined in some neighbourhood N of the origin, we

say that f(x) = O(g(x)) as x → 0 if |f(x)| ≤ C|g(x)| for some constant C > 0 and all

x ∈ N .

For a bounded linear operator A ∈ L(X) we denote its spectrum by σ(A). We say that

(λ, v) ∈ R×X is an eigenpair if Av = λv. If (λ, v) is an eigenpair and λ = inf σ(A), then

we call it a minimal eigenpair. We say that A has index-1 saddle structure if there exists

a unique minimal eigenpair (λ, v) with λ < 0 and A is positive definite in {v}⊥.
If F : X → R is Fréchet differentiable at a point x then we denote its gradient by

∇F (x), i.e.,
∇F (x) · y = lim

t→0
t−1(F (x+ ty)− F (x)).

(Note that ∇F (x) is the Riesz representation of the first variation δF (x) ∈ X∗.) Similarly,

if F : X → X is Fréchet differentiable at x, then ∇F (x) ∈ L(X) is a bounded linear

operator satisfying ∇F (x)u = limt→0 t
−1(F (x+ tu)− F (x)). In particular, if F : X → R,

then the Hessian ∇2F (x) ∈ L(X) (rather than ∇2F (x) : X → X∗). Higher derivatives are

defined analogously, but we shall avoid their explicit use as much as possible.

We say that x∗ is an index-1 saddle of E if

∇E(x∗) = 0 and ∇2E(x∗) has index-1 saddle structure. (1)

With slight abuse of notation, we shall also call (x∗, v∗, λ∗) an index-1 saddle if x∗ is an

index-1 saddle and (v∗, λ∗) the associated minimal eigenpair.

Given a dimer length h and a vector v ∈ S1 := {u ∈ X | ‖u‖ = 1}, we define

Eh(x, v) := 1
2

(

E(x+ hv) + E(x− hv)
)

and

Eh(x) := inf
v∈S1

Eh(x, v).

If # argminv∈S1
Eh(x, v) = 1, then we also define

V (x) := argmin
v∈S1

Eh(x, v)

and we can then write Eh(x) = Eh(x, V (x)).
Finally, we observe that

∇vEh(x, v) = h
2

(

∇E(x+ hv)−∇E(x− hv)
)

= h2∇2E(x)v +O(h4) and (2)

∇2
vEh(x, v) = h2

2

(

∇2E(x+ hv) +∇2E(x− hv)
)

= h2∇2E(x) +O(h4), (3)

and we therefore define the discrete Hessian operator

Hh(x; v) := h−2∇vEh(x, v). (4)



4 N. I. M. Gould, C. Ortner and D. Packwood

2.2 Two basic dimer variants

We now make precise two basic variants of the dimer method. The first algorithm is a

variation of the original dimer method [9, 20], alternating steps in the position (xk) and

direction (sk) variables, but employs a modification proposed by [28]. Indeed, the following

algorithm can be thought of as [28] with λ (h in our case) taken to be constant instead of

h→ 0 as k → ∞.

Algorithm 1

(0) Choose x0, v0 ∈ X with ‖v0‖ = 1, h > 0 and step lengths (αk)k∈N, (βk)k∈N.

(1) For n = 0, 1, 2, . . . do

(2) sk := −(I − vk ⊗ vk)h
−2∇vEh(xk, vk)

(3) vk+1 := cos(‖sk‖βk)vk + sin(‖sk‖βk) sk
‖sk‖

(4) xk+1 := xk − αk(I − 2vk ⊗ vk)∇xEh(xk, vk).

Our second variant of the dimer method that we consider is closer in spirit to the class

of walking methods which employ the minimal eigenpair. These include Rational Function

Optimization (RFO) [7, 21, 3], which uses either an exact or approximate Hessian directly,

or the Activation Relaxation Technique nouveau (ART Nouveau)[16, 15, 17], which uses the

Lanczos method to find the minimal eigenvector. This modification of the dimer method

can also be motivated by observations in [20] that undertaking more accurate rotation

steps may lead to fewer iterations. As an idealised variant of this idea we consider a dimer

algorithm where, at each iteration, an exact rotation v is computed.

Algorithm 2

(0) Choose x0 ∈ X, h > 0, (αk)k∈N.

(1) For k = 0, 1, 2, . . . do

(2) vk ∈ argmin‖v‖=1 Eh(xk, v)
(3) xk+1 = xk − αk(I − 2vk ⊗ vk)∇xEh(xk, vk)

Remark 1. 1. Algorithm 1 is clearly well-defined. Algorithm 2 is well-defined if

dim(X) < ∞, however, step (2) in Algorithm 2 is not necessarily well-defined in Hilbert

space. We shall show in Theorem 3(b) that this step is well-defined if the starting guess

is close to a saddle point. In practice, the minimisation with respect to v may only be

performed to within a specified tolerance (see §3.2).
2. Both Algorithm 1 and Algorithm 2 may be rewritten such that a step in the position

variable x is performed by employing the gradient ∇E(x) instead of the averaged gradient

∇xEh(xk, vk). For the sake of uniformity and simplicity of presentation we do not explicitly

consider these as well.

However, we note that (1) all our results can be extended to these variants, and (2) it

seems to us that this has minor effects on the accuracy and efficiency of the algorithms,

with the exception that it requires additional gradient evaluations.
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Instead, it might be advisable to “post-process” the dimer Algorithms 1 and 2 using

such a modified scheme. Namely, we shall prove that Algorithms 1 and 2 converge to a

point (xh, vh) that is O(h
2) close to an index-1 saddle. Post-processing would then yield

the exact saddle point.

3. A natural variant of step (4) of Algorithm 1 is to replace it with

xk+1 := xk − αk(I − 2vk+1 ⊗ vk+1)∇xEh(xk, vk+1).

We have observed that, in practise, this does not change the number of iterations required

to reach a specified residual, but that it doubles the number of force (gradient) evaluations.

Note that with the formulation we use, ∇vEh(xk, vk) = 1
2
(∇E(xk + hvk)−∇E(xk − hvk)),

and ∇xEh(xk, vk) = 1
2
(∇E(xk + hvk) +∇E(xk + hvk)) and therefore only two force evalu-

ations ∇E(xk ± hvk) are required. The variant proposed in item 2. of the present remark

would require three force evaluations in each step.

2.3 The dimer saddle

Our first observation is that the dimer method (in both variants we consider) approximates

the Hessian by a finite difference and the gradient by an average. Therefore, the dimer

iterates (xk, vk) with fixed dimer length h cannot in general converge to a saddle but only

to a critical point (xh, vh) near a saddle, satisfying

∇xEh(xh, vh) = 0 and (I − vh ⊗ vh)∇vEh(xh, vh) = 0. (5)

The existence (and local uniqueness) of such critical points is established in the following

result.

Proposition 2. Let (x∗, v∗, λ∗) be an index-1 saddle, then there exists h0 > 0 such that,

for all h ≤ h0, there exist xh, vh ∈ X, λh ∈ R and a constant C, such that

∇xEh(xh, vh) ≡ 1
2

(

∇E(xh + hvh) +∇E(xh − hvh)
)

= 0,
1
h2∇vEh(xh, vh) ≡ 1

2h

(

∇E(xh + hvh)−∇E(xh − hvh)
)

= λhvh,
1
2
‖vh‖2 = 1

2
.

(6)

and moreover

‖xh − x∗‖+ ‖vh − v∗‖+ |λh − λ∗| ≤ Ch2. (7)

Idea of proof. The result is a consequence of the inverse function theorem. Comparing (6)

with the exact saddle (x∗, v∗, λ∗) a Taylor expansion shows that the residual is of order

O(h2). Similarly, the linearisation can be shown to be O(h2) close (in operator norm) to

the linearisation of the exact saddle system ∇E(x∗) = 0,∇2E(x∗)v∗ = λ∗v∗, ‖v∗‖ = 1.

The linearisation of the latter is an isomorphism by the assumption that x∗ is an index-1

saddle. The complete proof is given in A.1.

We shall refer to a triple (xh, vh, λh) ∈ X ×X ×R that satisfies (6) as a dimer saddle.



6 N. I. M. Gould, C. Ortner and D. Packwood

2.4 Local convergence

We now state local convergence results for the two dimer variants formulated in Algo-

rithm 1 and Algorithm 2. The main observation is that Algorithm 1 need not converge

monotonically, but that Algorithm 2 is in fact contractive.

Theorem 3. Let x∗ be an index-1 saddle with minimal eigenpair (λ∗, v∗). Then there

exists a radius r, a maximal dimer length h0 and maximal step sizes ᾱ and β̄ (independent

of one another) as well as a dimer saddle (xh, vh, λh) satisfying (6) such that the following

hold for all h ≤ h0:

(a) Let x0 ∈ Br(x∗), v0 ∈ Br(v∗), supk αk ≤ ᾱ, sup βk ≤ ᾱ, infk αk > 0, inf βk > 0, and let

(xk, vk) be the iterates generated by Algorithm 1, then there exist C > 0, η ∈ (0, 1)

such that

‖xk − xh‖+ ‖vk − vh‖ ≤ Cηk
(

‖x0 − xh‖+ ‖v0 − vh‖
)

. (8)

(b) Let x0 ∈ Br(x∗), h ≤ h0, supk αk ≤ ᾱ, infk αk > 0, then Algorithm 2 is well-defined

(i.e., step (2) has a unique solution) and there exists η ∈ (0, 1) such that

‖xk+1 − xh‖ ≤ η‖xk − xh‖ for all k ≥ 0. (9)

Moreover, there exists a constant C such that ‖vk − vh‖ ≤ C‖xk − xh‖.
Idea of proof. (a) The proof of case (a) is a modification of the proofs of [28, Thm. 2.1 and

Thm. 3.1]. Upon linearisation of the updates about the exact saddle (x∗, v∗), the updates

can be re-written as

(

xk+1 − xh
vk+1 − vh

)

=

[

I −
(

αkA 0

βkB βkC

)](

xk − xh
vk − vh

)

+O
(

(αk + βk)(h
2 + rk)rk

)

, (10)

where r2k = ‖xk − xh‖2 + ‖vk − vh‖2,

A = (I − 2v∗ ⊗ v∗)∇2E(x∗), C = (I − v∗ ⊗ v∗)∇2E(x∗)− λ∗I, (11)

and B is a bounded linear operator (the precise form is not important).

Clearly, A,C are both symmetric and positive definite, hence the spectrum of A =

(αA, 0; βB, βC) is strictly positive. If we chose αk ≡ α, βk ≡ β constant, then (8) follows

from standard stability results for dynamical systems. The (straightforward) generalisa-

tion, together with complete proof of (10) are given in §A.2
(b) We first note that step (2) of Algorithm 2 is well-defined due to the fact that∇2E(x)

has index-1 structure for all x ∈ Br(x∗), if r is chosen sufficiently small. In this case an

implicit function argument guarantees the existence of a unique solution vk = V (xk). This

is made precise in Lemma 13.

In the same lemma we also show that ∇2Eh(x) = ∇2E(x) + O(h2) for all x ∈ Br(x∗).

This allows us to linearize step (3) in Algorithm 2 to obtain

xk+1 − xh =
(

I − αkA
)

(xk − xh) +O(r2k + h2 + α2
k)rk,
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where, again, A = (I − 2v∗ ⊗ v∗)∇2E(x∗) and rk = ‖xk − xh‖. Since A is positive definite

the result follows easily. The complete proof is given in §A.3.

3 A Dimer Algorithm with Linesearch

3.1 Motivation: a local merit function

Let x∗ ∈ X be an index-1 saddle with minimal eigenpair (v∗, λ∗), and consider the modified

energy functional

F (x) := E(x) +
κ

2

(

v∗ · (x− x∗)
)2
.

Then, ∇F (x∗) = 0 and ∇2F (x∗) = (I +κv∗⊗ v∗)∇2E(x∗), which is positive definite if and

only if κ > −λ∗. For this choice, it follows that x∗ is a strict local minimizer of F .

The dimer variant of this observation is that, if (xh, vh, λh) is a dimer saddle point (cf.

Theorem 2) and we define a modified energy functional

Fh(x) := Eh(x, vh) +
κ

2

(

vh · (x− xh)
)2
,

then choosing κ > −λ∗ and h sufficiently small again guarantees that xh becomes a local

minimizer of Fh. We can make this precise (and generalise) as follows.

Lemma 4. Let x0 ∈ X such that ∇2E(x0) has index-1 saddle structure with minimal

eigenpair (V (x0), λ) and µ > 0 such that y · (∇2E(x0)y) ≥ µ‖y‖2 for y ∈ {V (x0)}⊥. Fix

r, h0 > 0.

Let 0 < h ≤ h0, v0 ∈ X, ‖v0‖ = 1, g0 ∈ X and

F0(x) := Eh(x, v0) + g0 · (x− x0) +
κ
2

(

v0 · (x− x0)
)2
,

then there exists C = C(x0, r, h0) such that, for all x ∈ Br(x0), h < h0, y ∈ X,

y · (∇2F0(x)y) ≥
(

min
(

µ, κ+ λ
)

− C
(

h2 + ‖v0 − V (x0)‖+ ‖x− x0‖
)

)

‖y‖2.

Proof. For x = x0, we compute ∇2F0(x0) = ∇2E(x0) +O(h2) + κv0 ⊗ v0. Then, the result

follows readily from the observation that

(v0 · y)2 = (v · y)2 + ((v0 − v) · y)((v0 + v) · y)
≥ (v · y)2 − 2‖v0 − v‖‖y‖2.

For general x, the result follows from local Lipschitz continuity of ∇2E.

To complete the definition of F0 we must specify g0, κ. The strategy is to choose it in

such a way that minimising F0 will lead to an improved approximation for x.
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From the inverse function theorem it follows that there exists x̃ = x∗ + O(h2) =

xh + O(h2) such that ∇xEh(x̃, v0) = 0 (we will make this precise below), and Lemma 4

allows us to assume that it is in fact a local minimiser of F0. When minimising F0, we

therefore hope to obtain a point “close to” x̃. To test this, we evaluate the residual at

x = x̃,

∇F0(x̃) = ∇xEh(x̃, v0) + g0 + κ(v0 ⊗ v0)(x̃− x0)

≈ g0 + κ(v0 ⊗ v0)∇2
xEh(x0, v0)−1

(

∇xEh(x̃, v0)−∇xEh(x0, v0)
)

≈ g0 − κ
λ0

(v0 ⊗ v0)∇xEh(x0, v0),

where λ0 = Hh(x0; v0) · v0. This leads to the choice

g0 :=
κ

λ0
(v0 ⊗ v0)∇xEh(x0, v0).

Note in particular, that the steepest descent direction for F0 at x0 is

−∇F0(x0) =
(

I + κ
λ0
(v0 ⊗ v0)

)

∇xEh(x0, v0).

For the special choice κ = −2λ0, this yields the standard dimer search direction.

3.2 Dimer algorithm with linesearch

Given an iterate xk, vk and λk := vk · Hh(xk; vk), we define the auxiliary functional Fk ∈
C4(X),

Fk(x) := Eh(x, vk)− 2
[

(vk ⊗ vk)∇xEh(xk, vk)
]

· (x− xk)− λk
∥

∥(vk ⊗ vk)(x− xk)
∥

∥

2
(12)

= Eh(x, vk)− 2
(

(vk · ∇xEh(xk, vk)
)

·
(

vk · (x− xk)
)

− λk
(

vk · (x− xk)
)2
,

motivated by the discussion in §3.1. Instead of locally minimising Fk we only perform a

minimisation step in the steepest descent direction, using a standard linesearch procedure

augmented with the following sanity check: For a trial xt = xk − α∇Fk(xk) we require

that vk is still a reasonable dimer orientation for xt by checking the residual ‖(I − vk ⊗
vk)Hh(x

t; vk)‖. If this residual falls above a certain tolerance then we reject the step and

reduce the step size.

Algorithm 3:

1. Input: x0, v−1, h

Parameters: β−1, α0, αmax > 0,Θ ∈ (0, 1),Ψ > 1

2. For k = 0, 1, 2, . . . do

%% Rotation %%

3. [vk, βk] := Rotation[xk, vk−1, βk−1]

%% Translation %%

4. p := −∇Fk(xk)
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5. α := min(αmax, 2αk−1)

6. While (Fk(xk + αp) > Fk(xk)−Θα‖p‖2)
. or (‖(I − vk ⊗ vk)Hh(xk + αp; vk)‖ > Ψ‖∇xEh(xk, vk−1)‖) do

7. α := α/2

8. xk+1 := xk + αp; αk := α

It remains to specify step (3) of Algorithm 3. Any method computing an update vk
satisfying ‖(I − vk ⊗ vk)Hh(xk; vk)‖ ≤ TOL, for given TOL, is suitable; we prescribe the

tolerance TOL = ‖∇xEh(xk, vk−1)‖ so long as this isn’t too large. A basic choice of method

is the following projected steepest descent algorithm.

Rotation:

1. Input: x, v, β

Parameters: TOL = min(‖∇xEh(x, v)‖,TOLhi
v ), βmax, Θ

2. While ‖(I − v ⊗ v)Hh(x; v)‖ > TOL do

3. s := −(I − v ⊗ v)Hh(x; v)

4. r := ‖s‖; β := min(βmax, 2β)

5. vβ := cos(βr)v + sin(βr) s
r

6. While Eh(x, vβ) > Eh(x, v)−Θβ‖s‖2 do

7. β := β/2

8. v := vβ
9. Output: v, β

Proposition 5. Algorithm 3 is well-defined in that the rotation step (3) as well as the

linesearch loop (6, 7) both terminate after a finite number of iterations, the latter provided

that ∇xEh(xk, vk) 6= 0.

Proof. The Rotation Algorithm employed in step (3) of Algorithm 3 terminates for any

starting guess due to the fact that it is a steepest descent algorithm on a Stiefel manifold

(the unit sphere) with a backtracking linesearch employing the Armijo condition [23].

Convergence of this iteration to a critical point is well known [1, Chap.4]. The loop (6,7)

terminates after a finite number of iterations [19] since p is a descent direction for Fk ∈ C4,

that is, Fk(xk + αp) = Fk(xk)− α‖p‖2 +O(α2).

Remark 6. 1. In practise, the algorithm terminates, once the entire dimer saddle

residual reaches a prescribed tolerance, i.e., ‖∇xEh(xk, vk)‖ ≤ TOLx in addition to ‖(I −
vk ⊗ vk)Hh(xk; vk)‖ ≤ ‖∇xEh(xk, vk)‖.

2. The two basic backtracking linesearch loops (5)–(8) and (11)–(12) can (and should)

be replaced with more effective linesearch routines in practise, in particular choosing more

effective starting guesses and using polynomial interpolation to compute linesearch steps.

However, the discussion in §3.3 indicates that a Wolfe-type termination criterion might be

inappropriate.
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Figure 1: (a) Double-well energy defined in (13). (b) The auxiliary functional Fk(x) with

xk = t+h ; cf. §3.3. The second turning point t−h = −t+h is an admissible descent step for Fk,

hence the dimer method can potentially cycle.

3.3 Failure of global convergence

The modifications of the original dimer algorithms that we have in Algorithm 3 would,

in the case of optimisation, yield a globally convergent scheme. Unfortunately, this is not

the case in the saddle search case. To see this, consider a one-dimensional double-well

example,

E(x) = 1
4
(1− x2)2 = 1

4
x4 − 1

2
x2 + 1

4
; (13)

cf. Figure 1(a). There are only two possible (equivalent) dimer orientation v = ±1, and

therefore the rotation steps in Algorithm 3 are ignored. We always take v = 1 without

loss of generality. The translation search direction at step k is always given by p =

−(1− 2)∇xEh(xk, 1) = ∇xEh(xk, 1), i.e., an ascent direction.

It is easy to see that x∗ = 0 is an index-1 saddle (i.e., a maximum), and that there

are two turning points t± = ±3−1/2. Thus, there exist “discrete turning points” t±h =

±3−1/2+O(h2) such that λ(t±h ) = 0, where λ(x) = Hh(x; 1) ·1 = 1
2h2 (E

′(x+h)−E ′(x−h)).
Suppose that we have an iterate xk = t+h , then the translation search direction is

p+ = ∇xEh(t+h , 1) < 0. Since Eh(t−h ) = Eh(t+h ) it follows that

Fk(t
−
h ) = Eh(t−h )− 2p+(t−h − t+h ) < Eh(t−h ) = Fk(t

+
h ).

Thus, for Θ sufficiently small, the update xk+1 = t−h satisfies all the conditions for termi-

nation of the loop (11)–(12) in Algorithm 3. See also Figure 1 (b), where Fk is visualised.

We therefore conclude that our newly proposed variant of the dimer algorithm does

not excluded cycling behaviour. We also remark that the example is not exclusively one-

dimensional, but that analogous constructions can be readily made in any dimension.
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3.4 Local convergence

We now establish a local convergence rate.

Theorem 7. Let (x∗, v∗, λ∗) be an index-1 saddle then there exist r, h0, C > 0 and

γ ∈ (0, 1) such that, for x0 ∈ Br(x∗), v−1 ∈ Br(v∗) with ‖v−1‖ = 1 and h ≤ h0, the iterates

xk, vk generated by the algorithm satisfy

‖xk − xh‖+ ‖vk − vh‖ ≤ Cγk
(

‖x0 − xh‖+ h2‖v−1 − vh‖
)

, (14)

where (xh, vh) is the dimer saddle associated with (x∗, v∗, λ∗); cf. Theorem 2.

Sketch of proof. Let rk = ‖xk − xh‖ and sk := ‖vk − vh‖.
0. We recall basic contraction results for Armijo-based linesearch methods both in a

general Hilbert space and for iterates constrained to lie on the unit sphere in §A.4.
1. As a first proper step we establish that, under the termination criterion ‖(1 −

vk ⊗ vk)Hh(xk; vk)‖ ≤ ‖∇xEh(xk, vk−1)‖ for the rotation step, it follows that ‖vk − vh‖ .

rk + h2sk−1. This is proven in Lemma 16 and Lemma 17.

2. Next, we use this result to establish that there exists a local minimizer yk of Fk

satisfying ‖yk − xh‖ . r2k + h2rk + h4sk−1. This is established in Lemma 18.

3. The linesearch procedure and the upper bound on the step length ensure that the

step of xk to xk+1 contracts towards yk, that is, ‖xk+1 − yk‖∗ ≤ γ∗‖xk − yk‖∗ for some

γ∗ ∈ (0, 1) and ‖ · ‖∗ the energy norm induced by (I − 2v∗ ⊗ v∗)∇2E(x∗) ≈ ∇2Fk(yk). This

is obtained in Lemma 19.

4. The three preceding steps can then be combined to establish that, for r0, s−1, h

sufficiently small, there exists a constant γ3 ∈ (γ∗, 1) such that

r∗k+1 + h2sk ≤ γ3(r
∗
k + h2sk−1),

where r∗k := ‖xk − xh‖∗. This contraction result readily implies the result of the theorem.

The complete proof is given in §A.5.

4 Numerical Tests

4.1 Remarks on the implementation

Here, we remark on how preconditioning is implemented and on some further details of

our implementation that slightly deviate from the theoretical formulations of Algorithms

1 and 3.

In all cases the underlying space is X = R
N for some N ∈ N. The main deviation from

Algorithms 1 and 3 is that we admit general Euclidean norms and inner products that may

change from one step to another,

‖u‖ =
√

uTMku, and u · v = uTMkv,
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where Mk is symmetric and positive definite. That is, our implementation is a variable

metric variant.

Let E ∈ C4(X) = C4(RN), and let∇′ denote the standard gradient and ⊗′ the standard

tensor product (i.e., the gradient and tensor products with respect to the ℓ2-norm), then

the gradient and tensor products in step k become

∇E(x) =M−1
k ∇′E(x), and (v ⊗ v)∇E(x) = (v ⊗′ v)∇′E(x).

The variable metric variant of Algorithm 1, augmented with a termination criterion, is

given below. For the purposes of the numerical testing we call this the simple dimer

method, it is effectively a forward Euler ODE integrator for the dimer dynamics. (Note also

that here the rotation step is performed by a simple descent step followed by a projection,

rather than a step on the manifold.)

Algorithm 1vm:

1. Input: x0, v0 ∈ X , h > 0,α, β > 0,TOLx,TOLv > 0; k := 0;

2. While ‖M−1/2
k ∇′

xEh(xk, vk)‖ℓ2 > TOLx

. or ‖(M−1/2
k −M

1/2
k vk ⊗′ vk)h

−2∇′
vEh(xk, vk)‖ℓ2 > TOLv do

%% Metric %%

3. Compute a spd matrix Mk ∈ R
N×N ;

4. vk := vk/‖M1/2
k vk‖;

5. vk+1 := vk − β(M−1
k − vk ⊗ vk)h

−2∇′
vEh(xk, vk)

6. xk+1 := xk − α(M−1
k − 2vk ⊗ vk)∇′

xEh(xk, vk).
7. k := k + 1

Remark 8. In our experiments we observe that the rotation residual decreases more

quickly than the translation residual, hence the convergence criteria could be based on the

translation residual only, without affecting the results.

Analogous modifications are made to Algorithm 3. The auxiliary functional Fk now

reads

Fk(x) = Eh(x; vk)− 2
(

vTk ∇′
xEh(xk, vk)

)(

vTkMk(x− xk)
)

+ λk
(

vTkMk(x− xk)
)2
,

λk = h−2vTk ∇′
vEh(xk, vk),

∇′
xEh(x, v) = 1

2

(

∇′E(x+ hv) +∇′E(x− hv)
)

,

∇′
vEh(x, v) = h

2

(

∇′E(x+ hv)−∇′E(x− hv)
)

,

where we recall that ∇′ denotes the standard gradient (i.e., the gradient with respect to

the ℓ2-norm).

Algorithm 3vm:

1. Input: x0, v0 ∈ X , h > 0,TOLx,TOLv > 0; k := 0;

2. While ‖M−1/2
k ∇′

xEh(xk, vk)‖ℓ2 > TOLx
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%% Metric %%

3. Compute a spd matrix Mk ∈ R
N×N ;

4. v′k := vk/‖M1/2
k vk−1‖;

%% Rotation %%

5. vk+1 := Rotation (VM)[xk, v
′
k, β,Mk]

%% Translation %%

6. pM := −(M−1
k − 2vk+1 ⊗ vk+1)∇′

xEh(xk; vk+1)

7. α := min(αmax, 2α)

8. While (Fk(xk + αpM) > Fk(xk)−ΘαpTMMkpM)

. or (‖M1/2
k (M−1

k − vk+1 ⊗ vk+1)h
−2∇′

vEh(xk + αpM ; vk+1)‖ℓ2 >
. Ψ‖M1/2

k (M−1
k − vk+1 ⊗ vk+1)h

−2∇′
vEh(xk; vk+1)‖ℓ2) do

9. α := α/2

10. xk+1 := xk + αpM .

11. k := k + 1

Rotationvm:

1. Input: x, v, β,Mk

Parameters: TOL = max(‖M−1/2
k ∇′

xEh(x, v)‖ℓ2 ,TOLv), Θ ∈ (0, 1), βmax;

2. While ‖M1/2
k (M−1

k − v ⊗ v)h−2∇′
vEh(x; v)‖ > TOL do

3. s := −(M−1
k − v ⊗ v)h−2∇′

vEh(x; v)
4. t := ‖M1/2

k s‖ℓ2 ; β := min(βmax, 2β)

5. vβ := cos(tβ)v + sin(tβ)t−1s

6. While Eh(x, vβ) > Eh(x, v)−Θβt2 do

7. β := β/2

8. v := vβ
9. Output: v, β

Remark 9. 1. In this formulation we compute only one metric update during each outer

iterate. In particular, the metric remains fixed during the rotation step. Alternatively one

could also allow metric updates during the rotation iterates.

2 An additional (optional) modification that can give significant performance gains is

to employ a different heuristic for the initial guess of α in Step (7) of Algorithm 3vm: With

pM,k := −(M−1
k − 2vk ⊗ vk)∇′

xEh(xk; vk) and pI,k := −(I − 2vk ⊗ vk)∇′
xEh(xk, vk) let, for

k ≥ 2, γk := (pM,k−1 ·′ pI,k−1)/(pM,k ·′ pI,k), then for k ≥ 2 we replace Step (7) with

α := min
(

avg(γmax(2,k−4), . . . , γk), 2α, αmax)

An analogous modification can be made for the rotation algorithm.

In all numerical tests we use the following parameters: h = 10−3, Θ =
√
0.1, TOLx =

10−5, TOLv = 10−1, αmax = 1 and Ψ = 100. We briefly discuss these choices:



14 N. I. M. Gould, C. Ortner and D. Packwood

• h should be small enough such that the dimer saddle is sufficiently close to the true

saddle (with respect to the length scales of the given problem), while large enough

that numerical robustness does not become a problem for the rotation. In all our

tests, h = 10−3 was a good compromise.

• Θ should be sufficiently large (though, ≤ 1/2) to ensure that the linesearch method

finds steps which give a large decrease in dimer energy. It is often chosen much

smaller than our choice of Θ =
√
0.1 to immediately accept steps that make some

progress. Our experience is that, with preconditioned search direction, our more

stringent choice gives better performance.

• The choice of TOLx simply controls the desired level of convergence to the dimer

saddle.

• The parameter TOLv should be chosen as weakly as possible such that either algo-

rithm converges to the saddle. In Algorithm 3vm rotations are performed such that

the rotation residual is at least as good as the translation residual until it moves be-

low this value. Subsequent translations may increase the rotation residual such that

further applications of the rotation algorithm are needed. In practise this means that

the rotation algorithm is performed at every iteration of Algorithm 3’ for the first few

steps, then only sporadically or not at all once the rotation residual reaches TOLv.

The use of this parameter then decreases the overall number of gradient evaluations

needed to find the dimer saddle, by only performing the rotation as necessary.

• The maximum step αmax should principally be chosen such that the dimer cannot

translate into non-physical regimes for the given problem.

• The parameter Ψ should be chosen > 1 and restricts the translation step from moving

the dimer to a point where it becomes too badly orientated. In our numerical tests

this parameter is set sufficiently large that this termination criteria for the translation

never occurs (the translation always terminates by finding a sufficient decrease in the

auxiliary functional Fk).

Remark 10. 1. Since our convergence analysis is purely local it is relatively straightfor-

ward (though notationally tedious) to generalise it under mild assumptions on the metrics

Mk. For example, in all our test cases, we have Mk = M(xk) where M : X → L(X) is

continuous. In this case, the generalisation is straightforward.

2. We observe during numerical testing that the rotation component of the linesearch

dimer is somewhat vulnerable to rounding error in the objective function E. As the

dimer becomes increasingly well orientated, ∇E becomes almost orthogonal to the dimer

orientation and any small rotation may result in a zero change (to numerical precision) in

the dimer energy. In the numerical examples presented in this section, this never occurs

since we use a relatively high value for TOLv, that is the rotation is only ever weakly
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Figure 2: Energy function for Test 1 with 2 symmetric minima and a unique index-1 saddle

converged. In our examples this is sufficient for the the dimer to converge to the saddle. If

a stronger level of converge were required, another technique should be used to improve the

rotation residual further, such as changing to a gradient based method or simply making

fixed steps.

4.2 Test 1: A simple 2D example

Our first example is taken from [28]. We equip X = R
2 with the standard Euclidean inner

product. The energy function is given by E(x, y) = (x2 − 1)2 + y2, which has two simple

symmetric minima at (±1, 0) and a unique index-1 saddle at (0, 0). The energy function

is given graphically in Figure 2.

Figure 3 shows the x-residual ‖∇xEh(x, v)‖ plotted against the number of function

evaluations and the number of iterations.

The performance of the linesearch dimer is compared with a simple dimer method with

different step sizes. Evidently a good choice of step is important. If a poor choice is made

the algorithm may perform poorly or diverge. The linesearch dimer method requires a

certain amount of overhead versus a simple dimer with well chosen step sizes. We can see

in Figure 3 that the linesearch dimer may find a solution in fewer dimer iterations than

the best fixed step tested (indicating that it found better steps), but using more gradient

evaluations.

4.3 Test 2: Vacancy Diffusion

Our second test case is a standard example from molecular physics. A single atom is

removed from a 2D lattice and a neighbouring atom is moved partway into the gap. Atoms

within a certain radius of the vacancy are allowed to move, while those beyond that radius
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Figure 3: Convergence of the dimer to the saddle in a simple 2D example (Test 1).(A,B)

The ℓ2 norm of the x gradient versus the number of force evaluations and the number of

dimer iteration where the initial dimer state is x = [0.2, 1], v = [1, 1]. In this case the

choice α, β = 0.5 diverges immediately. (C,D) The ℓ2 norm of the x gradient versus the

number of force evaluations and the number of dimer iterations where the initial dimer

state is x = [0.2, 1], v = [1, 1].
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Figure 4: Initial configuration of the atoms in the vacancy diffusion problem (Test 2) .

Black squares are fixed atoms while blue circles are atoms which move freely. (A) The

initial dimer orientation is selected so that the translated atom has an orientation along

the y = 0 direction, and is zero for all other atoms. (B) The Delaunay Tk triangulation

used for the connectivity norm.

are fixed. This configuration is illustrated in Figure 4(A).

The energy function is given by the simple Morse potential,

E({xi}) =
∑

i,j

V (‖xi − xj‖2), V (r) = e−2a(r−1) − 2e−a(r−1), (15)

with stiffness parameter a = 4.

This test case demonstrates the importance of selecting the correct norm for high-

dimensional problems. The experiment is run both using the generic ℓ2 norm (no pre-

conditioner), as well as a ‘connectivity’ norm. Such a norm can be defined based on the

Delaunay triangulation of the atomistic positions (Figure 4(B))

〈Mku, u〉 =
∫

|∇ITku|2,

where Tk is the triangulation depicted in the figure and ITk the associated nodal interpolant.

Figure 5 demonstrates the convergence to the saddle with different numbers of free

atoms nA (giving different dimensionality of the system) in the two norms for the linesearch

dimer. We can also observe the benefit of the linesearch vs a simple dimer scheme when

using the connectivity norm (Figure 6). The linesearch dimer selects very efficient stepsizes

with no a-priori information, while the simple dimer method might exhibit either slow

convergence, or no convergence, if the fixed steps are poorly chosen.
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Figure 5: Convergence of the linesearch dimer to the saddle in the vacancy diffusion

problem (Test 2) with (A),(C) the ℓ2 norm and (B),(D) connectivity norm versus the

number of force evaluations and dimer iterations for increasing numbers of free atoms.
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Figure 6: Convergence of the linesearch dimer vs the simple dimer method for Test 2 some

choice of the of simple dimer step sizes with nA = 69 using the connectivity norm.

4.4 Test 3: A Phase Field Example

Our final example is based on a simple phase field model where the global energy is given

by,

E(u) =

∫

Ω

ǫ

2
|∇u|2 + 1

2ǫ
(u2 − 1)2. (16)

In our test Ω is the unit square, and the boundary conditions are,

u(x) =

{ −1, x1 ∈ {0, 1}
1, x2 ∈ {0, 1}. (17)

There are 2 minima of such an energy, these are given in Figure 7(A),(B). The saddle

between these two minima is given in Figure 7(C).

A possible choice for a preconditioner for this system is a stabilized Laplacian,

P = ǫ∆+
1

ǫ
I. (18)

In order to compute either a minimum or a saddle point for such a system we triangulate

the domain into a variable number of elements, thereby creating a discrete system of

variable dimensionality. In our tests we take the initial dimer point as a small random

perturbation of one of the local minima, and the initial dimer orientation is the metric

inverted against a vector of ones.

In Figure 8 we demonstrate the necessity of using a preconditioner to solve this prob-

lem using the simple dimer method. When using the preconditioner (18), the algorithm

performs well when the step size is chosen appropriately. We observe the expected be-

haviour, that there exists an optimal step size where convergence is fastest, and beyond
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Figure 7: Minima (A,B) and saddle point (C) of the phase field problem (Test 3) with

ǫ = 1/10. The shading is linearly interpolated between white(-1) and black(1).
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Figure 8: Convergence of the simple dimer to the saddle in the phase field problem (Test

3) with (A) the ℓ2 metric and (B) the stabilized Laplacian metric where ǫ = 1/10 for a

triangulation with 3485 degrees of freedom.

that step size the dimer diverges. In fact we observe that the stabilized Laplacian metric

is so effective, that the optimal step size seems very close to the unit step. If the ℓ2 norm

(identity preconditioner) is used then for all step sizes tested the dimer diverges, indicating

that at best a very small step would need to be chosen for convergence.

In Figure 9 we demonstrate that the used of the scaled Laplacian metric for different

system sizes. We observe that the use of this metric gives almost perfect scale invariance.

In Figure 10 we give the results of applying the simple and linesearch dimers with

varying ǫ; the coarseness of the discretization in each experiment is chosen such that ∆x ≈
ǫ/5. In some of these cases the linesearch dimer fails due to rounding error. Specifically, due

to rounding error in the naive implementation of the energy function (simple summation

over the elements), the translation step fails to find a sufficient decrease in the dimer energy,

the step size selected shrinks to zero (to rounding error) and the method stagnates. In
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Figure 9: Convergence of the linesearch dimer to the saddle in the phase field problem

(Test 3) with the stabilized Laplacian metric and triangulations of varying coarseness.

order to correct this a more robust method of evaluating the energy or a more advanced

optimization algorithm should be implemented which can either choose better linesearch

directions or more robustly deal with numerically zero energy changes.

We also observe, in the case ǫ = 1/30 that the rate of convergence of even the simple

dimer changes once the residual moves below a certain value. We are unable to give a

satisfactory explanation for this effect, but speculate that the singularity in the boundary

condition (which excludes admissible H1-states) might be the case. (In particular, we

observed that this behaviour is independent of the mesh coarseness and of the dimer

length.)

5 Conclusions

We have described a dimer method for finding a saddle point in which the dimer length

h is not required to shrink to zero, but which converges to a point that lies within O(h2)

of a saddle. We have enhanced this algorithm with a lineasearch to improve its robust-

ness, and use the observation that the dimer method may be formulated and applied in a

general Hilbert space to allow preconditioning that improves the method’s efficiency. The

linesearch uses a local merit function. Unfortunately our particular merit function may

not lead to global convergence of the iterates, and it is an open question as to whether

there is another merit function that ensures global convergence. We have illustrated the

positive effects of our algorithms on three realistic examples.
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Figure 10: Convergence to the saddle in the phase field problem (Test 3) using the stabi-

lized Laplacian metric with (A),(B) the simple dimer with unit step length and (C),(D)

the linesearch dimer for a triangulation with 2405,9805,22205 degrees of freedom for the

respective choices of ǫ.
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A Proofs

A.1 Proof of Proposition 2

We prove the result using the inverse function theorem. We write (6) as F (xh, vh, λh) = 0

and show that ‖F (x∗, v∗, λ∗)‖ ≤ Ch2 and that ∇F (x∗, v∗, λ∗) is an isomorphism with

bounds independent of h. The inverse function theorem then yields the stated result.

Residual estimate. Let the residual components be

rx := Fx(x∗, v∗, λ∗) =
1
2

(

∇E(x∗ + hv∗) +∇E(x∗ − hv∗)
)

,

rv := Fv(x∗, v∗, λ∗) =
1
2h
(∇E(x∗ + hv∗)−∇E(x∗ − hv∗))− λ∗v∗,

rλ := Fλ(x∗, v∗, λ∗) =
1
2
(‖v∗‖2 − 1).

Then,

rx = ∇E(x∗) + 1
2
∇2E(x∗)(hv∗ − hv∗) +O(h2) = O(h2),

rv = ∇2E(x∗)v∗ − λ∗v∗ +
1
h

(

∇3E(x∗)[hv∗ ⊗ hv∗ − hv∗ ⊗ hv∗] +O(h2) = O(h2),

rλ = 0.

Thus, ‖F (x∗, v∗, λ∗)‖ ≤ Ch2.

Stability. ∇F (x∗, v∗, λ∗) can be written in the form

∇F (x∗, v∗, λ∗) =







∇2E(x∗+hv∗)+∇2E(x∗−hv∗)
2

h∇2E(x∗+hv∗)−∇2E(x∗−hv∗)
2

0
∇2E(x∗+hv∗)−∇2E(x∗−hv∗)

2h
∇2E(x∗+hv∗)+∇2E(x∗−hv∗)

2
− λ∗I v∗

0 vT∗ 0







=





∇2E(x∗) 0 0

∇3E(x∗) · v∗ ∇2E(x∗)− λ∗I v∗
0 vT∗ 0



+O(h2) =: A+O(h2).

By assumption, ∇2E(x∗) is an isomorphism on X . Since, also by assumption, λ∗ is a

simple eigenvalue, the block
[∇2E(x∗)− λ∗I v∗

vT∗ 0

]

(19)

is an isomorphism on X × R as well. Thus, A is an isomorphism on X × X × R and

consequently, for all h sufficiently small, ∇F (x∗, v∗, λ∗) = A+O(h2) is also an isomorphism,

with a uniform bound on its inverse.

Thus, the inverse function theorem shows that there exist a radius r0 > 0 and a dimer

length h0 > 0, such that, for h ≤ h0, there exists a unique solution (xh, vh, λh) to (6) in a

ball of radius r0 about (x∗, v∗, λ∗), satisfying the estimate (7).

A.2 Proof of Theorem 3 (a)

Fix r and h0 sufficiently small so that Theorem 2 applies. Let ek := xk − xh, fk := vk − vh
and rk :=

√

‖ek‖2 + ‖fk‖2, so that trivially ‖ek‖ ≤ rk and ‖fk‖ ≤ rk.
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Lemma 11. Let p := −(I − 2vk ⊗ vk)∇xE(xk, vk) and s := −(I − vk ⊗ vk)Hh(xk; vk),

then, under the assumptions of Theorem 3,

p = −Aek +O(r2k + h2rk), and (20)

s = −Bek − Cfk +O(r2k + h2rk), (21)

where the operators A and C are defined in (11) and B is a bounded linear operator.

Proof. To prove (20) we first note the following identities which are easy to establish:

∇xEh(x, v) = ∇E(x) +O(h2),

∇xEh(xk, vk)−∇xEh(xh, vh) = O(rk),

vk ⊗ vk − vh ⊗ vh = O(rk),

∇2
xEh(xh, vh) = ∇2E(xh) +O(h2) = ∇2E(x∗) +O(h2)

∇x∇vEh(xh, vh) = 1
2

(

∇2E(xh + hvh)−∇2E(xh − hvh)
)

= O(h2). (22)

Using these identities, we can expand

p = −(I − 2vk ⊗ vk)
(

∇xEh(xk, vk)−∇xEh(xh, vh)
)

,

= −(I − 2vh ⊗ vh)
(

∇2
xEh(xh, vh)ek +∇x∇vEh(xh, vh)fk

)

+O(r2k)

= −(I − 2vh ⊗ vh)∇2E(xh)ek +O(r2k + h2rk)

= −(I − 2v∗ ⊗ v∗)∇2E(x∗)ek +O(r2k + h2rk)

= −Aek +O(r2k + h2rk).

To prove (21), we first note that, with ‖v‖ = 1,

Hh(x; v) = −
∫ 1

−1

∇2E(x+ thv) dt v = ∇2E(x)v +O(h2),

Hh(xh; vh) = ∇2E(xh)vh +O(h2) = ∇2E(x∗)v∗ +O(h2),

Hh(xk; vk)−Hh(xh; vh) = −
∫ 1

−1

(

∇2E(xk + thvk)−∇2E(xh + thvh)
)

dt vk

+−
∫ 1

−1

∇2E(xh + thvh) dt(vk − vh)

= −
∫ 1

−1

(

∇3E(xh + thvh)
[

(xk − xh) + th(vk − vh)
]

dtvh

+∇2E(x∗)(vk − vh) +O(r2k + h2rk)

= (∇3E(x∗)v∗)ek +∇2E(x∗)fk +O(h2rk + r2k),

where we interpret ∇3E(x) · v ∈ L(X) via the action w · ((∇3E(x) · v)z) = limt→0 t
−1w ·



An efficient dimer method with preconditioning and linesearch 25

((∇2E(x+ tv)−∇2E(x))z). Finally, we also have

(vk ⊗ vk − vh ⊗ vh)Hh(xh; vh) = (vk ⊗ vk − vh ⊗ vh)∇2E(x∗)v∗ +O(h2rk)

= λ∗(vk ⊗ vk − vh ⊗ vh)v∗ +O(h2rk)

= λ∗(vk ⊗ vk − vh ⊗ vh)vh +O(h2rk)

= λ∗(vk − vh) + λ∗vk((vk − vh) · vh) +O(h2rk)

= λ∗fk +O(r2k + h2rk).

In the very last line we also used the fact that vk · vh − 1 = 1
2
‖vk − vh‖2.

Using these identities, we can compute

s = −(I − vk ⊗ vk)Hh(xk; vk)

= (I − vh ⊗ vh)Hh(xh; vh)− (I − vk ⊗ vk)Hh(xk; vk)

= −(I − vk ⊗ vk)
(

Hh(xk; vk)−Hh(xh; vh)
)

+ (vk ⊗ vk − vh ⊗ vh)Hh(xh; vh)

= −(I − vk ⊗ vk)
(

(∇3E(x∗)v∗)ek +∇2E(x∗)fk
)

+O(h2rk + r2k)

+ λ∗fk +O(r2k + h2rk)

=: −Bek +
[

λ∗I − (I − v∗ ⊗ v∗)∇2E(x∗)
]

fk +O(r2k + h2rk)

= −Bek − Cfk +O(r2k + h2rk).

From Lemma 11 it follows in particular that s = O(rk). Hence, Taylor expansions of

sine and cosine in the identity

vk+1 = cos
(

‖s‖βk)vk + sin(‖s‖βk) s
‖s‖
,

yield

fk+1 = fk + βks+O(β2
ks

2
k)

Using Lemma 11, the identity ek+1 = ek+αkp, and the fact that βk is bounded, we therefore

obtain identity (10) in the proof outline.

Upon defining

Ak :=

(

αkA 0

βkB βkC

)

and ek =

(

ek
fk

)

(10) reads

ek+1 = (I −Ak)ek + tk, (23)

where

‖tk‖ ≤ Ct(αk + βk)(h
2 + rk)rk.

Due to the fact that A is symmetric and positive definite, it follows that, for ᾱ, β̄ chosen

sufficiently small and α = infk αk, β = infk βk > 0, the spectrum of I − Ak is real and

belongs to [0, 1− ǫ] for some ǫ > 0, that depends on α, β. This will be crucial later in the

proof.
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Lemma 12. Let Pn,k :=
∏k

i=n(I − Ai), for 0 ≤ n ≤ k, then there exist constants

C1 > 1, µ ∈ (0, 1) such that

‖Pn,k‖ ≤ C1µ
k−n+1. (24)

Proof. We assume, without loss of generality, that n = 0. First, we note that the diagonal

blocks

Ak := [P0,k]xx =

k
∏

i=0

(I − αkA), and Ck := [P0,k]vv =

k
∏

i=0

(I − βkC),

and it is easy to see that, for α ≤ αi ≤ ᾱ, β ≤ βi ≤ β̄ chosen sufficiently small, that

‖Ak‖ ≤ µ̄k and ‖Ck‖ ≤ µ̄k. (25)

where µ̄ := max
(

1− α inf σ(A), 1− β inf σ(C)
)

∈ (0, 1).

Since the off-diagonal block [P0,k]xv = 0, it remains to estimate the off-diagonal block

Bk := [P0,k]vx. We use induction over k. Let C∗ := µ̄−1β‖B‖ and suppose that

‖Bk‖ ≤ C∗kµ̄
k. (26)

Then, using

Bk+1 = −βk+1BAk + (I − βk+1C)Bk,

as well as ‖I − βk+1C‖ ≤ µ̄ we can estimate

‖Bk+1‖ ≤ β‖B‖µ̄k + µ̄C∗kµ̄
k = C∗(k + 1)µ̄k+1,

which establishes the induction since the result is true by definition of C∗ when k = 0.

Now pick τ > 1 so that µ := τµ̄ < 1. Then (25) give that ‖Ak‖ ≤ µk and ‖Ck‖ ≤ µk,

while it follows from (26) and by maximizing xτ−x that

‖Bk‖ ≤ C∗(k/τ
k)µk ≤ (C∗/τ ln τ)µ

k.

The result now follows from the inequality

‖P0,k‖ ≤
(

‖[P0,k]xx‖2 + ‖[P0,k]vx‖2 + ‖[P0,k]vv‖2
)1/2

,

and by defining C1 := µ−1
√

2 + (C∗/τ ln τ)2.

It is straightforward to prove that

ek+1 = P0,ke0 + tk +Pk,ktk−1 +Pk−1,ktk−2 + · · ·+P1,kt0,

which implies

‖ek+1‖ ≤ C1µ
k+1‖e0‖+

k
∑

i=0

C1µ
i‖tk−i‖,
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that is,

rk+1 ≤ C2

(

µk+1r0 +
k

∑

i=0

µi+1(rk−i + h2)rk−i

)

, (27)

for some C2 ≥ C1.

We make another induction hypothesis that,

ri ≤ C3γ
ir0, (28)

where γ ∈ (µ, 1) and C3 > C2 are arbitrary. The statement (28) is clearly true for i = 0.

Assume now that it holds for i = 0, . . . , k, then (27), and using µ/γ < 1 yields

rk+1 ≤ C2γ
k+1r0

(

(

µ
γ

)k+1
+

k
∑

i=0

(

µ
γ

)i+1
(

C3γ
k−ir0 + h2

)

C3

)

≤ C2γ
k+1r0

(

1 +
C2

3r0 + C3h
2

1− µ/γ

)

.

Since C3 > C2, upon choosing r0, h sufficiently small, we can achieve that

C2

(

1 +
C2

3r0 + C3h
2

1− µ/γ

)

≤ C3,

hence (28) holds also for i = k + 1. This completes the proof of (28) and hence of

Theorem 3 (a).

A.3 Proof of Theorem 3 (b)

We begin with a basic auxiliary result.

Lemma 13. Let (x∗, v∗, λ∗) be an index-1 saddle and µ∗ := inf‖w‖=1,w⊥v∗(∇2E(x∗)w)·w >

0. Then, there exists r > 0 and h0 > 0 (chosen independently of one another) such that

the following hold:

(i) If x ∈ Br(x∗) then ∇2E(x) has index-1 saddle structure and, if (λ, v) is the smallest

eigenpair of ∇2E(x), then λ ≤ λ∗/2 and (∇2E(x)w) · w ≥ µ∗/2‖w‖2 for w ⊥ v.

(ii) V (x) is well-defined for all x ∈ Br(x∗) and h ∈ (0, h0], and x 7→ V (x) ∈ C1(Br(x∗)).

(iii) Eh ∈ C4(Br(x∗)) with

∇Eh(x) = ∇xEh(x, V (x)) = 1
2

(

∇E(x+ hV (x)) +∇E(x− hV (x))
)

, and

‖∇2Eh(x)−∇2E(x)‖ ≤ C0h
2

for x ∈ Br(x∗), where C0 is independent of x, h.

(iv) Let x ∈ Br(x∗) and let (λ, v) be the minimal eigenpair of ∇2Eh(x), then ‖v−V (x)‖ ≤
Ch2, where C is independent of x, h.
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Proof. For r sufficiently small, the statement (i) is an obvious consequence of x∗ being an

index-1 saddle and ∇2E locally Lipschitz continuous (which follows since E ∈ C4(X)).

The statement (ii) is proven similarly as Proposition 2, provided h0 is chosen sufficiently

small (depending on λ∗, µ∗ and on derivatives of E in B2r(x∗)). The C
1-dependence of V (x)

on x is a consequence of the implicit function theorem.

The statement (iii) follows from an elementary Taylor expansion.

Finally, (iv) follows again from (iii) and an argument analogous to Proposition 2.

To complete the proof of Theorem 3(b) we first note that, according to Lemma 13(ii),

Step (2) of Algorithm 2 is indeed well-defined, provided that we can ensure that the iterates

never leave a neighbourhood of xh and hence of x∗. This will be established.

Fix r, h0 sufficiently small so that Theorem 2 and Lemma 13 apply. Let ek := xk − xh
and rk := ‖ek‖. Let s := −(I − 2vk ⊗ vk)∇Eh(xk) be the search direction and αk > 0 the

step size, then

ek+1 = ek + αks

Applying Lemma 13(iii) we can expand

∇Eh(xk) = ∇Eh(xk)−∇Eh(xh) = ∇2Eh(xh)ek +O(r2k) = ∇2E(x∗)ek +O(h2rk + r2k).

Arguing similarly as in the proof of part (a),

ek+1 = ek − αk(I − 2vk ⊗ vk)∇2E(x∗)ek +O(h2rk)

= ek − αk(I − 2v∗ ⊗ v∗)∇2E(x∗)ek +O
(

h2rk + r2k
)

= (I − αkA)ek +O
(

h2rk + r2k
)

.

For ᾱ sufficiently small it is straightforward to see that ‖I−αkA‖ ≤ 1−αkǫ ≤ 1−αǫ =: γ,

where ǫ > 0 and γ ∈ (0, 1), and we therefore obtain

rk+1 ≤ (γ + C1h
2 + C2rk)rk.

Clearly, for h0 and r0 chosen sufficiently small we obtain a contraction, that is, rk+1 ≤ γ′rk
for some γ′ ∈ (γ, 1).

This completes the proof of Theorem 3(b).

A.4 Contraction of steepest descent with linesearch

In the section following this one, we will use statements about the steepest descent method

with backtracking that we suspect must be well known. Since we have been unable to find

precisely the versions we require, we give both below, the latter with a full proof.

Lemma 14. Let X be a Hilbert space, F ∈ C3(X), and x∗ ∈ X with ∇F (x∗) = 0

and ∇2F (x∗) positive definite, i.e., u · (∇2F (x∗)u) ≥ µ‖u‖2 for µ > 0. Let ‖u‖2∗ :=

u · (∇2F (x∗)u). Further, let ᾱ > α > 0, Θ ∈ (0, 1).
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Then, there exists r > 0 and γ ∈ (0, 1), depending only on α, ᾱ, µ, ‖∇jF (x)‖ for

x ∈ B1(x∗), such that, for all α ∈ [α, ᾱ] and for all x ∈ Br(x∗) satisfying the Armijo

condition

F (x− α∇F (x)) ≤ F (x)−Θα‖∇F (x)‖2,

we have
∥

∥[x− α∇F (x)]− x∗
∥

∥

∗
≤ γ‖x− x∗‖∗.

Proof. The proof is a simplified version of the proof of Lemma 15 below.

We now generalize the foregoing result to steepest descent on the unit sphere. Conver-

gence results for many methods on manifolds are given by [1, Chap.4]. See specifically [1,

Thm.4.5.6] and [2].

Lemma 15. Let X be a Hilbert space, SX := {u ∈ X | ‖u‖ = 1}, Pv := v ⊗ v and

P ′
v := I − Pv for v ∈ SX . Let F ∈ C3(X),

g(v) := P ′
v∇F (v) and H(v) := P ′

v∇2F (v)P ′
v −

(

∇F (v) · v
)

I.

We assume that there exists v∗ ∈ SX and µ > 0 such that

g(v∗) = 0 and u ·
(

H(v∗)u
)

≥ µ‖u‖2 ∀u ∈ X. (29)

Let ‖u‖∗ :=
√

u · (H(v∗)u).

Let ᾱ > 0, Θ ∈ (0, 1), and for v ∈ SX and α ∈ R, denote

vα := cos
(

α‖g(v)‖
)

v − sin
(

α‖g(v)‖
) g(v)

‖g(v)‖ .

Then, there exists r > 0 such that, for all v ∈ Br(v∗) ∩ SX and α ∈ (0, ᾱ] satisfying the

Armijo condition

F (vα) ≤ F (v)−Θα‖g(v)‖2,

there exists a constant γ(α) ∈ [0, 1) such that

∥

∥vα − v∗
∥

∥

∗
≤ γ(α)‖v − v∗‖∗.

The contraction factor γ(α) depends on α, µ and on ‖∇jF (x)‖, x ∈ B1(v∗). Moreover,

for any α ∈ (0, ᾱ], supα∈[α,ᾱ] γ(α) < 1.

Proof. We first note that ‖ · ‖∗ is an equivalent norm, that is, there exists a constant

C∗ = ‖H(v∗)‖ such that

√
µ‖u− u′‖ ≤ ‖u− u′‖∗ ≤ C∗‖u− u′‖ ∀u, u′ ∈ X. (30)
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Step 1: Expansions. There exists a constant CL such that, for all v, w ∈ SX ,

∥

∥g(v)− g(w)
∥

∥ ≤ CL‖v − w‖, and (31)
∥

∥∇2F (v)−∇2F (w)
∥

∥ ≤ CL‖v − w‖. (32)

since F ∈ C3(X) and SX is bounded. For v ∈ SX the identity

v∗ · (v − v∗) = −1
2
‖v − v∗‖2 (33)

and g(v∗) = 0 yields

∇F (v∗) · (v − v∗) = ∇F (v∗) ·
(

(v∗ ⊗ v∗)(v − v∗)
)

=
(

− 1
2
∇F (v∗) · v∗

)

‖v − v∗‖2, (34)

and therefore,

F (v)− F (v∗) = ∇F (v∗) · (v − v∗) +

(
∫ 1

0

(1− t)∇2F ((1− t)v∗ + tv) dt(v − v∗)

)

· (v − v∗)

= 1
2
(v − v∗) ·

(

H̄v(v − v∗)
)

+ 1
2
(v − v∗) ·

([

∇2F (v∗)−
(

∇F (v∗) · v∗
)

I
](

v − v∗)
)

,

(35)

where

H̄v := 2

∫ 1

0

(1− t)[∇2F ((1− t)v∗ + tv)−∇2F (v∗)] dt.

But

(v − v∗) ·
(

∇2F (v∗)(v − v∗)
)

= (v − v∗) ·
(

P ′
v∗∇2F (v∗)P

′
v∗(v − v∗)

)

+O(‖v − v∗‖3).

since (v∗ ⊗ v∗)(v − v∗) = O(‖v − v∗‖2), and thus we obtain from (32) and (35) that

1
2
‖v − v∗‖2∗ − C1‖v − v∗‖3 ≤ F (v)− F (v∗) ≤ 1

2
‖v − v∗‖2∗ + C1‖v − v∗‖3, (36)

for some constant C1 that depends on CL.

Step 2: Bound on descent step. The Lipschitz bound (31) implies that, for all v ∈ SX ,

‖vα − v∗‖ ≤ ‖v − v∗‖+
∣

∣1− cos(α‖g(v)‖)
∣

∣+
∣

∣ sin(α‖g(v)‖)
∣

∣

≤ ‖v − v∗‖+ 1
2
(α‖g(v)‖)2 + α‖g(v)‖

≤ ‖v − v∗‖+ 1
2
α2C2

L‖v − v∗‖2 + αCL‖v − v∗‖
≤

(

1 + α2C2
L + αCL

)

‖v − v∗‖
=: c3(α)‖v − v∗‖,

as |1− cos θ| ≤ 1
2
θ2 and | sin θ| ≤ θ for θ ≥ 0, and ‖v − v∗‖ ≤ 2. In particular, for r > 0

‖vα − v∗‖ ≤ c3(ᾱ)r ∀v ∈ Br(v∗) ∩ SX . (37)
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Step 3. Bound on gradient. To obtain an error estimate from the Armijo condition,

we must bound ‖g(v)‖2 below. We write vt := (1− t)v∗ + tv, then

g(v) = g(v)− g(v∗)

=

∫ 1

0

d

dt

(

(I − vt ⊗ vt)∇F (vt)
)

dt (38)

=

∫ 1

0

(

(I − vt ⊗ vt)∇2F (vt)(v − v∗)−
(

(v − v∗)⊗ vt + vt ⊗ (v − v∗)
)

∇F (vt)
)

dt

= (I − v∗ ⊗ v∗)∇2F (v∗)(v − v∗) (39)

−
(

(v − v∗)⊗ v∗ + v∗ ⊗ (v − v∗)
)

∇F (v∗) +O(‖v − v∗‖2)
= H(v∗)(v − v∗) + (I − v∗ ⊗ v∗)∇2F (v∗)(v∗ ⊗ v∗)(v − v∗)

−
(

∇F (v∗) · (v − v∗)
)

v∗ +O(‖v − v∗‖2)
= H(v∗)(v − v∗) +O(‖v − v∗‖2), (40)

where we used (33) and (34) in the last step.

Thus, for some constant C2 that depends only on CL, and for v ∈ Br(v∗) ∩ SX , with

r ≤ r1 and r1 chosen sufficiently small, we obtain

‖g(v)‖2 ≥ ‖H(v∗)(v − v∗)‖2 − C2‖v − v∗‖3

≥ µ‖H(v∗)
1/2(v − v∗)‖2 − C2‖v − v∗‖3

≥
(

µ− C2µ
−1r

)

‖v − v∗‖2∗
≥ µ

2
‖v − v∗‖2∗ (41)

using (29) and (30).

Step 4. Short steps. For α sufficiently small, the Armijo condition is in fact not

needed, and we can proceed without it. From the definition of vα and Taylor’s theorem we

obtain, for α ≤ ᾱ

vα − v = αg(v) +O(α2‖g(v)‖2)
and hence using (40)

vα − v∗ =
[

I − αH(v∗)
]

(v − v∗) +O(α‖v − v∗‖2)

Taking the inner product with H(v∗)(vα−v∗), there exists a constant c4 that depends only

on the derivatives F in B1(v∗) such that

‖vα − v∗‖2∗ ≤ (v − v∗) ·
(

H(v∗)
[

I − αH(v∗)
]

)

(v − v∗) + c4rα‖v − v∗‖2∗.

The eigenvalues of H(v∗)
[

I − αH(v∗)
]

ψ = τH(v∗)ψ are precisely τ = 1 − αλ for λ ∈
σ(H(v∗)). Let α̂ > 0 such that τ ∈ [0, 1) for all α ≤ α̂. Then, the largest eigenvalue is

given by 1− αµ and we obtain that, for α ≤ α̂,

‖vα − v∗‖2∗ ≤ (1− αµ+ c4αr)‖v − v∗‖2∗.
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Choosing r ≤ r2 ≤ r1 sufficiently small, with the new restrictions depending only on µ and

c4, and using the bound
√
1− θ ≤ 1− 1

2
θ for θ ∈ [0, 1], we obtain that

‖vα − v∗‖∗ ≤ (1− αµ
4
)‖v − v∗‖∗.

This completes the proof of the Lemma, for the case α ≤ α̂.

Step 4. Long steps. Let α ∈ [α̂, ᾱ], r ≤ r1, v ∈ Br(v∗) ∩ SX , c3 ≡ c3(ᾱ), and vα
satisfying the Armijo condition, then (30), (36), (37) and (41) imply

(

1
2
− C1µ

−1c3r
)

‖vα − v∗‖2∗ ≤ F (vα)− F (v∗)

≤ F (v)− F (v∗)−Θα‖g(v)‖2

≤
(

1
2
+ C1µ

−1r −Θα̂µ
2

)

‖v − v∗‖2∗ ,

that is,

‖vα − v∗‖∗ ≤
(

1 + 2C1µ
−1r −Θα̂µ

1− 2C1µ−1c3r

)1/2

‖v − v∗‖∗.

Thus, choosing r ≤ r1, sufficiently small, we obtain again the desired contraction.

A.5 Proof of Theorem 7

Throughout this proof, we fix an index-1 saddle (x∗, v∗, λ∗), and assume that h0 is small

enough so that Proposition 2 ensures the existence of a dimer saddle (xh, vh, λh) in an

O(h2) neighbourhood of (x∗, v∗, λ∗).

The first step is an error bound on vk − vh in terms of xk − xh and the residual of vk.

Lemma 16. There exist r, h0, C1 > 0 such that, for h ∈ (0, h0], x ∈ Br(x∗) and

v ∈ Br(v∗) with ‖v‖ = 1, we have

‖v − vh‖ ≤ 1
2
C1

(

‖x− xh‖+
∥

∥(I − v ⊗ v)Hh(x; v)
∥

∥

)

.

Proof. Let λ := Hh(x; v) · v, then

Hh(xh; v) = λv + s,
1
2
‖v‖2 = 1

2
,

(42)

where

s =
(

Hh(xh; v)−Hh(x; v)
)

+ (I − v ⊗ v)Hh(x; v).

Since vh solves (42) with s = 0, and since

‖s‖ ≤ C2

(

‖x− xh‖+ ‖(I − v ⊗ v)Hh(x; v)‖
)

,

the stated result follows from the Lipschitz continuity of Hh(·; v) and an application of the

inverse function theorem, in a similar spirit as the proof in §A.1.
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Next, we present a result ensuring that the rotation step of Algorithm 3 not only termi-

nates but also produces a new dimer orientation vk which remains in a small neighbourhood

of the “exact” orientation vh.

Lemma 17. There exist r, h0, C2 > 0, C3 ≥ 1 such that, if h ∈ (0, h0], xk ∈ Br(x∗),

vk−1 ∈ BC3r(v∗), ‖vk−1‖ = 1, then Step (3) of Algorithm 3 terminates with outputs vk ∈
BC3r(v∗), ‖vk‖ = 1, βk > 0, satisfing

‖vk − vh‖ ≤ C2

(

‖xk − xh‖+ h2‖vk−1 − vh‖
)

. (43)

Proof. Let G(v) := h−2(Eh(xk; v) − Eh(xk;V (xk))), then each step of the Rotation Algo-

rithm is a steepest descent step of G on the manifold SX := {‖v‖ = 1}. We need to ensure

that these iterations do not “escape” from the minimiser.

Lemma 15 (with F (v) = G(v) and v∗ ≡ V (xk)) implies that each such step is a

contraction towards V (xk) with respect to the norm ‖ · ‖H induced by the operator

H := (I − V ⊗ V )∇2G(V )(I − V ⊗ V )− (∇G(V ) · V )I,

where V ≡ V (xk); provided that r is sufficiently small and H is positive definite.

To see that the latter is indeed true, we recall from (2) and (3) that

∇G(V (xk)) = ∇2E(xk)V (xk) +O(h2) and ∇2G(V (xk)) = ∇2E(xk) +O(h2)

and from Proposition 2 and Lemma 13 that

V (xk) = v∗ +O(h2 + r), (44)

and hence,

H = (I − v∗ ⊗ v∗)∇2E(x∗)(I − v∗ ⊗ v∗)−
(

(∇2E(x∗)v∗) · v∗
)

I +O(h2 + r)

= (I − v∗ ⊗ v∗)∇2E(x∗)− λ∗I +O(h2 + r).

Since (x∗, v∗, λ∗) is an index-1 saddle, (I − v∗ ⊗ v∗)∇2E(x∗) is positive definite in {v∗}⊥,
and λ∗ < 0. Thus, for h, r sufficiently small, H is positive definite as required.

From Lemma 15, it follows that all iterates v
(j)
k of the Rotation Algorithm satisfy

‖v(j)k − V (xk)‖H ≤ ‖vk−1 − V (xk)‖H . Since the eigenvalues of H are uniformly bounded

below and above, the norms ‖ · ‖H , ‖ · ‖ are equivalent, and hence in particular

‖vk − V (xk)‖ ≤ C7‖vk−1 − V (xk)‖ ≤ C7(‖vk−1 − v∗‖+ ‖V (xk)− v∗‖) = O(h2 + r)

for some constant C7 > 0, since vk−1 ∈ BC3r(v∗) and using (44). Combining this with (44)

and choosing h20 ≤ r, we deduce that the Rotation Algorithm terminates with an iterate

vk such that

‖v∗ − vk‖ ≤ ‖v∗ − V (xk)‖+ ‖vk − V (xk)‖ ≤ C4r
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for some constant that depends only on r but is independent of vk−1 and remains bounded

as r → 0.

At termination the Rotation Algorithm guarantees the estimate
∥

∥(I − vk ⊗ vk)Hh(xk; vk)
∥

∥ ≤ ‖∇xEh(xk, vk−1)‖.
We set xt = (1− t)xh + txk, v

t = vh + tvk−1 and expand

∥

∥∇xEh(xk, vk−1)
∥

∥ =

∥

∥

∥

∥

∫ 1

0

(

∇2
xEh(xt, vt)(xk − xh) +∇v∇xEh(xt, vt)(vk−1 − vh)

)

dt

∥

∥

∥

∥

≤ C ′
2

(

‖xk − xh‖+ h2‖vk−1 − vh‖
)

.

Combined with Lemma 16 this yields the estimate (43).

The statement that vk ∈ BC3r(v∗) (instead of only BC4r(v∗)) is an immediate conse-

quence of (43) by ensuring that C3 ≥ C2 + C3h
2 + C ′h4, where ‖vh − v∗‖ ≤ C ′h2 for all

h ≤ h0 from Proposition 2. While there is an interdependence between C3 and C2, for r

and h0 sufficiently small, this is clearly achievable.

We now establish the existence of a minimiser of the auxiliary functional Fk under the

conditions ensured by the rotation step of Algorithm 3.

Lemma 18. Under the conditions of Lemma 17, possibly after choosing a smaller r, h0,

there exists a constant C4 > 0, such that the functional Fk defined in (12) has a unique

minimiser yk ∈ Br(x∗) satisfying

‖yk − xh‖ ≤ C4(r
2
k + h2rk + h4sk−1). (45)

Proof. We begin by estimating the residual

∇Fk(xh) = ∇xEh(xh, vk)− 2(∇xEh(xk, vk) · vk)vk + 2λk((xk − xh) · vk)vk,
where λk = Hh(xk; vk) · vk. We consider each constituent term in this expression in turn;

we expand about (xh, vh), and use the identities (4), (6) and (22) This gives

vk = vh +O(sk)

∇xEh(xh, vk) = ∇x∇vEh(xh, vh)(vk − vh) +O(s2k)

∇xEh(xk, vk) = ∇2
xEh(xh, vh)(xk − xh) +∇x∇vEh(xh, vh)(vk − vh) +O(r2k) +O(s2k)

= ∇2
xEh(xh, vh)(xk − xh) +O(h2sk) +O(r2k) +O(s2k),

∇xEh(xk, vk) · vkvk = (∇2
xEh(xh, vh)(xk − xh) +∇x∇vEh(xh, vh)(vk − vh)) · vhvh
+O(r2k) +O(s2k) +O(rksk)

= ∇2
xEh(xh, vh)(xk − xh) · vhvh +O(h2sk) +O(r2k) +O(s2k) +O(rksk)

Hh(xk; vk) = Hh(xh; vh) +O(rk) +O(sk)

λk = λh + vk ·Hh(xk; vk)− vh ·Hh(xh; vh) = λh +O(rk) +O(sk)

λk((xk − xh) · vk)vk = (λh +O(rk) +O(sk))((xk − xh) · vk)vk
= λh((xk − xh) · vh)vh +O(r2k) +O(rksk).
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Thus since (7) and our assumption that vk−1 ∈ BC3r(v∗) ensure that sk−1 = O(1 + h20),

while (43) implies that sk = O(rk) +O(h2sk−1), we combine the above to obtain

∇Fk(xh) = −2
[

(∇2
xEh(xh, vh)(xk − xh)) · vh

]

vh + 2λh((xk − xh) · vh)vh
+O

(

r2k + h2rk + h4sk−1

)

,

Next, we note that, by definition of Eh, ∇2
xEh(xh, vh)vh = ∇2E(xh)vh + O(h2), and thus

from (2) that ∇2
xEh(xh, vh)vh = Hh(xh; vh) +O(h2). Hence applying (6),

∇Fk(xh) =
[

− 2Hh(xh; vh) · (xk − xh) + 2λh(xk − xh) · vh
]

vh +O
(

r2k + h2rk + h4sk−1

)

= O
(

r2k + h2rk + h4sk−1

)

. (46)

Finally, we observe that ∇2Fk(xh) is positive definite, since

∇2Fk(xh) = ∇2
xEh(xh, vk)− 2λkvk ⊗ vk

= ∇2
xEh(xh, vh)− 2λhvh ⊗ vh +O(rk)

= ∇2E(x∗)− 2λ∗v∗ ⊗ v∗ +O(h2 + rk), (47)

which immediately implies that, for r, h0 sufficiently small, ∇2Fk(xh) is an isomorphism

with uniformly bounded inverse.

Thus an application of the inverse function theorem to ∇Fk at yk using (46) yields the

stated result.

We now turn towards analysing the linesearch for x. Recall the definition of the energy

norm ‖u‖∗ :=
√

u · ((I − 2v∗ ⊗ v∗)∇2E(x∗)u), which is equivalent to ‖ · ‖. In particular,

µ1/2‖u‖ ≤ ‖u‖∗ ≤ ‖∇2E(x∗)‖‖u‖ where µ := min(−λ∗, µ∗) > 0. (48)

Lemma 19. There exists r, h0, α ∈ (0, α0] and γ∗ ∈ (0, 1), such that, if h ∈ (0, h0],

xk ∈ Br(x∗), vk ∈ BC3r(v∗) and αk−1 ≥ α, then

αk ≥ α and ‖xk+1 − yk‖∗ ≤ γ∗‖xk − yk‖∗,

where yk is the minimiser of Fk established in Lemma 18.

Proof. We begin by noting that, for any r > 0, the norms ‖∇2Fk(x)‖ are uniformly

bounded among all choices of xk ∈ Br(x∗), x ∈ Br+1(x∗). This is straightforward to

establish.

Therefore, there exists α > 0 such that, for xk ∈ Br(x∗) and for any α ∈ (0, 2α],

the conditions in Step (6) of Algorithm 3 are met (this includes an Armijo condition for

Fk) since ∇Fk is Lipschitz in a neighbourhood of xk [8, Thm.2.1]. It is no restriction of

generality to require α ≤ α0. In particular, αk ≥ α.

For r, h0 sufficiently small, we have yk ∈ Br(x∗) as well. Upon choosing r sufficiently

small, u · (∇2Fk(y)u) ≥ µ/2‖u‖2 for all u ∈ X , y ∈ Br(x∗). Thus, we can apply Lemma 14
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(with x∗ ≡ yk) to deduce that, for r sufficiently small, the step xk+1 = xk − αk∇F (xk) is
a contraction with a constant γ1 that is independent of xk, vk. That is,

(xk+1 − yk) ·
[

∇2Fk(yk)(xk+1 − yk)
]

≤ γ21(xk − yk) ·
[

∇2Fk(yk)(xk − yk)
]

,

Recalling from (45) and (47) that ∇2Fk(yk) = (I − 2v∗ ⊗ v∗)∇2E(x∗) +O(r + h2) we find

that, for r, h0 sufficiently small,

‖xk+1 − yk‖∗ ≤ γ∗‖xk − yk‖∗, (49)

where γ∗ ∈ [γ1, 1), again independent of xk, vk, but depending on r, h0.

We have now assembled all prerequisites required to complete the proof of Theorem 7.

Inspired by Lemma 19, our aim is to prove that, for r sufficiently small, there exists

γ ∈ (0, 1) such that, for all j ≥ 0,

r∗j + h2sj−1 ≤ γj(r∗0 + h2s−1) =: γjt0, (50)

where γ := 1
2
(γ∗ + 1), r∗k := ‖xk − xh‖∗ and sk := ‖vk − vh‖.

A consequence of (50) would be that there exists a constant c such that ‖xj − x∗‖ ≤
cr =: r̂. Thus, under the assumptions of the Theorem, let r, h0 be chosen sufficiently small

so that Proposition 2, and Lemmas 16, 17, 18 and 19 apply with r replaced by r̂.

We now begin the induction argument adding to (50) the conditions that

vj−1 ∈ BC3r(v∗) and αj ≥ α, (51)

where C3 ≥ 1 is the constant from Lemma 17 and α the constant from Lemma 19. Clearly

(50) and (51) hold for j = 0. Suppose that they hold for j = 0, . . . , k, where k ≥ 0.

The choice of r implies that xk ∈ Br(x∗) again, and Lemma 17 implies that vk ∈
BC3r(v∗). Thus, the first condition in (51) is established for j = k + 1.

Applying Lemma 19 we obtain the second condition in (51) for j = k + 1, and in

addition that

‖xk+1 − yk‖∗ ≤ γ∗‖xk − yk‖∗,
where yk is the minimiser of Fk established in Lemma 18. Using (49), the fact that γ∗ < 1

and Lemma 18 we therefore deduce that there exists a constant C5 which depends on C4

and on the norm-equivalence between ‖ · ‖ and ‖ · ‖∗, such that

‖xk+1 − xh‖∗ ≤ ‖xk+1 − yk‖∗ + ‖yk − xh‖∗
≤ γ∗‖xk − yk‖∗ + ‖yk − xh‖∗
≤ γ∗‖xk − xh‖∗ + 2‖yk − xh‖∗
≤ (γ∗ + C5h

2 + C5rk)‖xk − xh‖∗ + C5h
4‖vk−1 − vh‖.

Adding h2‖vk − vh‖ to both sides of the inequality and applying (43) and (48) we thus

obtain

r∗k+1 + h2sk ≤ (γ∗ + C5h
2 + C5rk)r

∗
k + h2sk + C5h

4sk−1

≤
(

γ∗ + C5h
2 + µ−1/2C2h

2 + C5(c+ 1)r
)

r∗k + (C5 + C2)h
4sk−1.
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Recalling that γ = 1
2
(γ∗ + 1), choosing h0, r sufficiently small, we obtain that

r∗k+1 + h2sk ≤ γ(r∗k + h2sk−1).

This establishes (50) for j = k + 1 and thus completes the induction argument.

In summary, we have proven that (50) and (51) hold for all j ≥ 0. As a first consequence,

we obtain that rk := ‖xk − xh‖ ≤ µ−1/2‖∇2E(x∗)‖γk(r0 + h2s−1) using (48), which in

particular establishes the first part of (14).

To obtain a convergence rate for vk we combine (43) and (50), to obtain

‖vk − vh‖ ≤ C6(r
∗
k + h2sk−1) ≤ C6γ

kt0 ≤ C6‖∇2E(x∗)‖γk(r0 + h2s−1),

for a constant C6. Choosing C = 2max(C6, µ
−1/2)‖∇2E(x∗)‖ completes the proof of

Theorem 7.

Remark 20. We can slightly improve the convergence result by also analysing the

Rotation step in more detail:

Having established the convergence and in particular boundedness of the xk, vk iterates

of Algorithm 3 it follows immediately that there exists a lower bound β such that the

Armijo condition in Step (6) of the Rotation Algorithm is satisfied for all k and for all

β ∈ (0, 2β]. We can therefore conclude that always β ≥ β.

With this lower bound, and possibly choosing r smaller than above, Lemma 15 implies

that the steepest descent step, Step (8) of the Rotation Algorithm, is a contraction towards

V (xk) with a contraction factor γv that is independent of k. Thus, for r sufficiently small,

the number of gradient and energy evaluations per outer iteration of Algorithm 3 is bounded

by a constant m that is independent of k.

This allows us to conclude that there exist constants C > 0, ρ ∈ (0, 1) such that

rk + sk ≤ Cρ#E(k),

where #E(k) denotes the total number of gradient and energy evaluations carried out in

iterations k = 0 through k of Algorithm 3 (including the Rotation Algorithm).
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