
Adaptive augmented Lagrangian methods:
algorithms and practical numerical
experience

Curtis FE, Gould NIM, Jiang H, Robinson DP

August 2014

Submitted for publication in Optimization Methods and Software

 Preprint
RAL-P-2014-011

RAL Library
STFC Rutherford Appleton Laboratory
R61
Harwell Oxford
Didcot
OX11 0QX

Tel: +44(0)1235 445384
Fax: +44(0)1235 446403
email: libraryral@stfc.ac.uk

Science and Technology Facilities Council preprints are available online
at: http://epubs.stfc.ac.uk

ISSN 1361- 4762

Neither the Council nor the Laboratory accept any responsibility for
loss or damage arising from the use of information contained in any of
their reports or in any communication about their tests or
investigations.

mailto:libraryral@stfc.ac.uk�
http://epubs.stfc.ac.uk/�

Adaptive augmented Lagrangian methods:

algorithms and practical numerical experience

Frank E. Curtis,1,2 Nicholas I. M. Gould,3,4, Hao Jiang5,6 and Daniel P. Robinson5,6

ABSTRACT

In this paper, we consider augmented Lagrangian (AL) algorithms for solving large-scale non-

linear optimization problems that execute adaptive strategies for updating the penalty param-

eter. Our work is motivated by the recently proposed adaptive AL trust region method by

Curtis, Jiang, and Robinson [Math. Prog., DOI: 10.1007/s10107-014-0784-y, 2013]. The first

focal point of this paper is a new variant of the approach that employs a line search rather

than a trust region strategy, where a critical algorithmic feature for the line search strategy is

the use of convexified piecewise quadratic models of the AL function for computing the search

directions. We prove global convergence guarantees for our line search algorithm that are on

par with those for the previously proposed trust region method. A second focal point of this

paper is the practical performance of the line search and trust region algorithm variants in

Matlab software, as well as that of an adaptive penalty parameter updating strategy incor-

porated into the Lancelot software. We test these methods on problems from the CUTEst

and COPS collections, as well as on challenging test problems related to optimal power flow.

Our numerical experience suggests that the adaptive algorithms outperform traditional AL

methods in terms of efficiency and reliability. As with traditional AL algorithms, the adaptive

methods are matrix-free and thus represent a viable option for solving extreme-scale problems.

1 Department of Industrial and Systems Engineering, Lehigh University,

Harold S. Mohler Laboratory, 200 West Packer Avenue Bethlehem, PA 18015-1582, USA.

Email : frank.e.curtis@gmail.com .

2 This work was supported by U.S. Department of Energy grant DE–SC0010615.

3 Scientific Computing Department, Rutherford Appleton Laboratory,

Chilton, Oxfordshire, OX11 0QX, England, EU. Email: nick.gould@stfc.ac.uk .

Current reports available from “http://www.numerical.rl.ac.uk/people/nimg/pubs.html”.

4 This work was supported by the EPSRC grant EP/I013067/1.

5 Department of Applied Mathematics and Statistics, Johns Hopkins University,

100 Whitehead Hall, 3400 N. Charles Street, Baltimore, MD 21218-2682, USA.

Email : hjiang13@jhu.edu , daniel.p.robinson@gmail.com .

6 This work was supported by the U.S. National Science Foundation grant DMS–1217153.

Scientific Computing Department

Rutherford Appleton Laboratory

Oxfordshire OX11 0QX

August 22, 2014

http://link.springer.com/article/10.1007/s10107-014-0784-y

Adaptive augmented Lagrangian methods: algorithms and practical numerical experience 1

1 Introduction

Augmented Lagrangian (AL) methods [25, 32] have recently regained popularity due to growing

interests in solving extreme-scale nonlinear optimization problems. These methods are attrac-

tive in such settings as they can be implemented matrix-free [2, 3, 11, 28] and have global and

local convergence guarantees under relatively weak assumptions [18, 26]. Furthermore, certain

variants of AL methods [20, 21] have proved to be very efficient for solving certain structured

problems [6, 33, 35].

A new AL trust region method was recently proposed and analyzed in [14]. The novel

feature of that algorithm is an adaptive strategy for updating the penalty parameter inspired

by techniques for performing such updates in the context of exact penalty methods [7, 8, 29].

This feature is designed to overcome a potentially serious drawback of traditional AL methods,

which is that they may be ineffective during some (early) iterations due to poor choices of the

penalty parameter and/or Lagrange multiplier estimates. In such situations, the poor choices

of these quantities may lead to little or no improvement in the primal space and, in fact,

the iterates may diverge from even a well-chosen initial iterate. The key idea for avoiding

this behavior in the algorithm proposed in [14] is to adaptively update the penalty parameter

during the step computation in order to ensure that the trial step yields a sufficiently large

reduction in linearized constraint violation, thus steering the optimization process steadily

toward constraint satisfaction.

The contributions of this paper are two-fold. First, we present an AL line search method

based on the same framework employed for the trust region method in [14]. The main differ-

ence between our new approach and that in [14], besides the differences inherent in using line

searches instead of a trust region strategy, is that we utilize a convexified piecewise quadratic

model of the AL function to compute the search direction in each iteration. With this modi-

fication, we prove that our line search method achieves global convergence guarantees on par

with those proved for the trust region method in [14]. The second contribution of this paper

is that we perform extensive numerical experiments with a Matlab implementation of the

adaptive algorithms (i.e., both line search and trust region variants) and an implementation

of an adaptive penalty parameter updating strategy in the Lancelot software [12]. We test

these implementations on problems from the CUTEst [22] and COPS [5] collections, as well

as on test problems related to optimal power flow [36]. Our results indicate that our adaptive

algorithms outperform traditional AL methods in terms of efficiency and reliability.

The remainder of the paper is organized as follows. In §2, we present our adaptive AL line

search method and state convergence results. Details about these results, which draw from

those in [14], can be found in Appendices 4 and A.2 with further details in [15]. We then

provide numerical results in §3 to illustrate the effectiveness of our implementations of our

adaptive AL algorithms. We give conclusions in §4.

Notation. We often drop function arguments once a function is defined. We also use a subscript

on a function name to denote its value corresponding to algorithmic quantities using the same

subscript. For example, for a function f : Rn → R, if xk is the value for the variable x during

iteration k of an algorithm, then fk := f(xk). We also often use subscripts for constants

to indicate the algorithmic quantity to which they correspond. For example, γµ denotes a

parameter corresponding to the algorithmic quantity µ.

2 F. E. Curtis, N. I. M. Gould, H. Jiang and D. P. Robinson

2 An Adaptive Augmented Lagrangian Line Search Algorithm

2.1 Preliminaries

We assume that all problems under our consideration are formulated as

minimize
x∈Rn

f(x) subject to c(x) = 0, l ≤ x ≤ u. (1)

Here, we assume that the objective function f : Rn → R and constraint function c : Rn → Rm

are twice continuously differentiable, and that the variable lower bound vector l ∈ Rn and

upper bound vector u ∈ Rn satisfy l ≤ u. Our goal is to design an algorithm that will compute

a first-order primal-dual stationary point for problem (1). However, in order for the algorithm

to be suitable as a general-purpose approach, it should have mechanisms for terminating and

providing useful information when an instance of (1) is (locally) infeasible. In such cases, we

have designed our algorithm so that it transitions to finding a point that is infeasible with

respect to (1), but is a first-order stationary point for the nonlinear feasibility problem

minimize
x∈Rn

v(x) subject to l ≤ x ≤ u, (2)

where v : Rn → R is defined as v(x) = 1
2‖c(x)‖22.

As implied by the previous paragraph, our algorithm requires first-order stationarity con-

ditions for problems (1) and (2), which can be stated in the following manner. First, intro-

ducing a Lagrange multiplier vector y ∈ Rm, we define the Lagrangian for problem (1), call it

` : Rn × Rm → R, by

`(x, y) = f(x)− c(x)Ty.

Then, defining the gradient of the objective function g : Rn → Rn by g(x) = ∇f(x), the

Jacobian of the constraint functions J : Rn → Rm×n by J(x) = ∇c(x), and the projection

operator onto the bounds P : Rn → Rn, component-wise for i ∈ {1, . . . , n}, by

[P (x)]i =

li if xi ≤ li
ui if xi ≥ ui
xi otherwise

we may introduce the primal-dual stationarity measure FL : Rn × Rm → Rn given by

FL(x, y) = P (x−∇x`(x, y))− x = P (x− (g(x)− J(x)Ty))− x.

First-order primal-dual stationary points for (1) can then be characterized as zeros of the

primal-dual stationarity measure FOPT : Rn×Rm → Rn+m defined by stacking the stationarity

measure FL and the constraint function −c, i.e., a first-order primal-dual stationary point for

(1) is any pair (x, y) with l ≤ x ≤ u satisfying

0 = FOPT(x, y) =

(
FL(x, y)

−c(x)

)
=

(
P (x−∇x`(x, y))− x

∇y`(x, y)

)
. (3)

Similarly, a first-order primal stationary point for (2) is any x with l ≤ x ≤ u satisfying

0 = FFEAS(x), (4)

Adaptive augmented Lagrangian methods: algorithms and practical numerical experience 3

where FFEAS : Rn → Rn is defined by

FFEAS(x) = P (x−∇xv(x))− x = P (x− J(x)Tc(x))− x.

In particular, if l ≤ x ≤ u, v(x) > 0, and (4) holds, then x is an infeasible stationary point for

problem (1).

Over the past decades, a variety of effective numerical methods have been proposed for

solving large-scale bound-constrained optimization problems. Hence, the critical issue in solv-

ing problem (1) is how to handle the presence of the equality constraints. As in the wide

variety of penalty methods that have been proposed, the strategy adopted by AL methods is

to remove these constraints, but influence the algorithm to satisfy them through the addition

of terms in the objective function. In this manner, problem (1) (or at least (2)) can be solved

via a sequence of bound-constrained subproblems—thus allowing AL methods to exploit the

methods that are available for subproblems of this type. Specifically, AL methods consider a

sequence of subproblems in which the objective is a weighted sum of the Lagrangian ` and the

constraint violation measure v. By scaling ` by a penalty parameter µ ≥ 0, each subproblem

involves the minimization of a function L : Rn×Rm×R→ R, called the augmented Lagrangian

(AL), defined by

L(x, y, µ) = µ`(x, y) + v(x) = µ(f(x)− c(x)Ty) + 1
2‖c(x)‖22.

Observe that the gradient of the AL with respect to x, evaluated at (x, y, µ), is given by

∇xL(x, y, µ) = µ
(
g(x)− J(x)Tπ(x, y, µ)

)
,

where we define the function π : Rn × Rm × R→ Rm by

π(x, y, µ) = y − 1
µc(x).

Hence, each subproblem to be solved in an AL method has the form

minimize
x∈Rn

L(x, y, µ) subject to l ≤ x ≤ u. (5)

Given a pair (y, µ), a first-order stationary point for problem (5) is any zero of the primal-dual

stationarity measure FAL : Rn×Rm×R→ Rn, defined similarly to FL but with the Lagrangian

replaced by the augmented Lagrangian; i.e., given (y, µ), a first-order stationary point for (5)

is any x satisfying

0 = FAL(x, y, µ) = P (x−∇xL(x, y, µ))− x. (6)

Given a pair (y, µ) with µ > 0, a traditional AL method proceeds by (approximately)

solving (5), which is to say that it finds a point, call it x(y, µ), that (approximately) satisfies

(6). If the resulting pair (x(y, µ), y) is not a first-order primal-dual stationary point for (1), then

the method would modify the Lagrange multiplier y or penalty parameter µ so that, hopefully,

the solution of the subsequent subproblem (of the form (5)) yields a better primal-dual solution

estimate for (1). The function π plays a critical role in this procedure. In particular, observe

that if c(x(y, µ)) = 0, then π(x(y, µ), y, µ) = y and (6) would imply FOPT(x(y, µ), y) = 0, i.e.,

that (x(y, µ), y) is a first-order primal-dual stationary point for (1). Hence, if the constraint

violation at x(y, µ) is sufficiently small, then a traditional AL method would set the new value

of y as π(x, y, µ). Otherwise, if the constraint violation is not sufficiently small, then the

penalty parameter is decreased to place a higher priority on reducing it during subsequent

iterations.

4 F. E. Curtis, N. I. M. Gould, H. Jiang and D. P. Robinson

2.2 Algorithm Description

Our AL line search algorithm is similar to the AL trust region method proposed in [14], except

for two key differences: it executes line searches rather than using a trust region framework, and

it employs a convexified piecewise quadratic model of the AL function for computing the search

direction in each iteration. The main motivation for utilizing a convexified model is to ensure

that each computed search direction is a direction of strict descent for the AL function from the

current iterate, which is necessary to ensure the well-posedness of the line search. However, it

should be noted that, practically speaking, the convexification of the model does not necessarily

add any computational difficulties when computing each direction; see §3.1.1. Similar to the

trust region method proposed in [14], a critical component of our algorithm is the adaptive

strategy for updating the penalty parameter µ during the search direction computation. This

is used to ensure steady progress—i.e., steer the algorithm—toward solving (1) (or at least

(2)) by monitoring predicted improvements in linearized feasibility.

The central component of each iteration of our algorithm is the search direction computa-

tion. In our approach, this computation is performed based on local models of the constraint

violation measure v and the AL function L at the current iterate, which at iteration k is

given by (xk, yk, µk). The local models that we employ for these functions are, respectively,

qv : Rn → R and q̃ : Rn → R, defined as follows:

qv(s;x) = 1
2‖c(x) + J(x)s‖22

and q̃(s;x, y, µ) = L(x, y) +∇xL(x, y)Ts+ max{1
2s
T(µ∇2

xx`(x, y) + J(x)TJ(x))s, 0}.

We note that qv is a typical Gauss-Newton model of the constraint violation measure v, and q̃ is

a convexification of a second-order approximation of the augmented Lagrangian. (We use the

notation q̃ rather than simply q to distinguish between the model above and the second-order

model—without the max—that appears extensively in [14].)

Our algorithm computes two types of steps during each iteration. The purpose of the first

step, which we refer to as the steering step, is to gauge the progress towards linearized feasibility

that may be achieved (locally) from the current iterate. This is done by (approximately)

minimizing our model qv of the constraint violation measure v within the bound constraints

and a trust region. Then, a step of the second type is computed by (approximately) minimizing

our model q̃ of the AL function L within the bound constraints and a trust region. If the

reduction in the model qv yielded by the latter step is sufficiently large—say, compared to

that yielded by the steering step—then the algorithm proceeds using this step as the search

direction. Otherwise, the penalty parameter may be reduced, in which case a step of the latter

type is recomputed. This process repeats iteratively until a search direction is computed that

yields a sufficiently large (or at least not too negative) reduction in qv. As such, the iterate

sequence is intended to make steady progress toward (or at least approximately maintain)

constraint satisfaction throughout the optimization process, regardless of the initial penalty

parameter value.

We now describe this process in more detail. During iteration k, the steering step rk is

computed via the optimization subproblem given by

minimize
r∈Rn

qv(r;xk) subject to l ≤ xk + r ≤ u, ‖r‖2 ≤ θk, (7)

Adaptive augmented Lagrangian methods: algorithms and practical numerical experience 5

where, for some constant δ > 0, the trust region radius is defined to be

θk := δ‖FFEAS(xk)‖2 ≥ 0. (8)

A consequence of this choice of trust region radius is that it forces the steering step to be

smaller in norm as the iterates of the algorithm approach any stationary point of the constraint

violation measure [34]. This prevents the steering step from being too large relative to the

progress that can be made toward minimizing v. While (7) is a convex optimization problem

for which there are efficient methods, in order to reduce computational expense our algorithm

only requires rk to be an approximate solution of (7). In particular, we merely require that

rk yields a reduction in qv that is proportional to that yielded by the associated Cauchy step

(see (13a) later on), which is defined to be

rk := r(xk, θk) := P (xk − βkJTk ck)− xk

for βk := β(xk, θk) such that, for some εr ∈ (0, 1), the step rk satisfies

∆qv(rk;xk) := qv(0;xk)− qv(rk;xk) ≥ −εrrTkJTk ck and ‖rk‖2 ≤ θk. (9)

Appropriate values for βk and rk—along with auxiliary nonnegative scalar quantities εk
and Γk to be used in subsequent calculations in our method—are computed by Algorithm 1.

The quantity ∆qv(rk;xk) representing the predicted reduction in constraint violation yielded

by rk is guaranteed to be positive at any xk that is not a first-order stationary point for v

subject to the bound constraints; see part (i) of Lemma A.4. We define a similar reduction

∆qv(rk;xk) for the steering step rk.

Algorithm 1 Cauchy step computation for the feasibility subproblem (7)

1: procedure Cauchy feasibility(xk, θk)

2: restrictions : θk ≥ 0.

3: available constants : {εr, γ} ⊂ (0, 1).

4: Compute the smallest integer lk ≥ 0 satisfying ‖P (xk − γlkJTk ck)− xk‖2 ≤ θk.
5: if lk > 0 then

6: Set Γk ← min{2, 1
2(1 + ‖P (xk − γlk−1JTk ck)− xk‖2/θk)}.

7: else

8: Set Γk ← 2.

9: end if

10: Set βk ← γlk , rk ← P (xk − βkJTk ck)− xk, and εk ← 0.

11: while rk does not satisfy (9) do

12: Set εk ← max(εk,−∆qv(rk;xk)/rTkJTk ck).
13: Set βk ← γβk and rk ← P (xk − βkJTk ck)− xk.
14: end while

15: return : (βk, rk, εk,Γk)

16: end procedure

After computing a steering step rk, we proceed to compute a trial step sk via

minimize
s∈Rn

q̃(s;xk, yk, µk) subject to l ≤ xk + s ≤ u, ‖s‖2 ≤ Θk, (10)

6 F. E. Curtis, N. I. M. Gould, H. Jiang and D. P. Robinson

where, given Γk > 1 from the output of Algorithm 1, we define the trust region radius

Θk := Θ(xk, yk, µk,Γk) = Γkδ‖FAL(xk, yk, µk)‖2 ≥ 0. (11)

As for the steering step, we allow inexactness in the solution of (10) by only requiring the

step sk to satisfy a Cauchy decrease condition (see (13b) later on), where the Cauchy step for

problem (10) is

sk := s(xk, yk, µk,Θk, εk) := P (xk − αk∇xL(xk, yk, µk))− xk

for αk = α(xk, yk, µk,Θk, εk) such that, for εk ≥ 0 returned from Algorithm 1, sk yields

∆q̃(sk;xk, yk, µk) := q̃(0;xk, yk, µk)− q̃(sk;xk, yk, µk)

≥ − (εk + εr)

2
sTk∇xL(xk, yk, µk) and ‖sk‖2 ≤ Θk.

(12)

Algorithm 2 describes our procedure for computing αk and sk. (The importance of incorpo-

rating Γk in (11) and εk in (12) is revealed in the proofs of Lemmas A.2 and A.3; see [15].) The

quantity ∆q̃(sk;xk, yk, µk) representing the predicted reduction in L(·, yk, µk) yielded by sk is

guaranteed to be positive at any xk that is not a first-order stationary point for L(·, yk, µk) sub-

ject to the bound constraints; see part (ii) of Lemma A.4. A similar quantity ∆q̃(sk;xk, yk, µk)

is also used for the search direction sk.

Algorithm 2 Cauchy step computation for the Augmented Lagrangian subproblem (10)

1: procedure Cauchy AL(xk, yk, µk,Θk, εk)

2: restrictions : µk > 0, Θk > 0, and εk ≥ 0.

3: available constant : γ ∈ (0, 1).

4: Set αk ← 1 and sk ← P (xk − αk∇xL(xk, yk, µk))− xk.
5: while (12) is not satisfied do

6: Set αk ← γαk and sk ← P (xk − αk∇xL(xk, yk, µk))− xk.
7: end while

8: return : (αk, sk)

9: end procedure

Our complete algorithm is given as Algorithm 3 on page 8. In particular, the kth iteration

proceeds as follows. Given the kth iterate tuple (xk, yk, µk), the algorithm first determines

whether the first-order primal-dual stationarity conditions for (1) or the first-order stationarity

condition for (2) are satisfied. If either is the case, then the algorithm terminates, but otherwise

the method enters the while loop in line 13 to check for stationarity with respect to the AL

function. This loop is guaranteed to terminate finitely; see Lemma A.1. Next, after computing

appropriate trust region radii and Cauchy steps, the method enters a block for computing the

steering step rk and trial step sk. Through the while loop on line 21, the overall goal of this

block is to compute (approximate) solutions of subproblems (7) and (10) satisfying

∆q̃(sk;xk, yk, µk) ≥ κ1∆q̃(sk;xk, yk, µk) > 0, l ≤ xk + sk ≤ u, ‖sk‖2 ≤ Θk, (13a)

∆qv(rk;xk) ≥ κ2∆qv(rk;xk) ≥ 0, l ≤ xk + rk ≤ u, ‖rk‖2 ≤ θk, (13b)

and ∆qv(sk;xk) ≥ min{κ3∆qv(rk;xk), vk − 1
2(κttj)

2}. (13c)

Adaptive augmented Lagrangian methods: algorithms and practical numerical experience 7

In these conditions, the method employs user-provided constants {κ1, κ2, κ3, κt} ⊂ (0, 1) and

the algorithmic quantity tj > 0 representing the jth constraint violation target. It should be

noted that, for sufficiently small µ > 0, many approximate solutions to (7) and (10) satisfy (13),

but for our purposes (see Theorem 2.2) it is sufficient that, for sufficiently small µ > 0, they

are at least satisfied by rk = rk and sk = sk. A complete description of the motivations

underlying conditions (13) can be found in [14, Section 3]. In short, (13a) and (13b) are

Cauchy decrease conditions while (13c) ensures that the trial step predicts progress toward

constraint satisfaction, or at least predicts that any increase in constraint violation is limited

(when the right-hand side is negative).

With the search direction sk in hand, the method proceeds to perform a backtracking

line search along the strict descent direction sk for L(·, yk, µk) at xk. Specifically, for a given

γα ∈ (0, 1), the method computes the smallest integer l ≥ 0 such that

L(xk + γlαsk, yk, µk) ≤ L(xk, yk, µk)− ηsγlα∆q̃(sk;xk, yk, µk), (14)

and then sets αk ← γlα and xk+1 ← xk + αksk. The remainder of the iteration is then

composed of potential modifications of the Lagrange multiplier vector and target values for

the accuracies in minimizing the constraint violation measure and AL function subject to the

bound constraints. First, the method checks whether the constraint violation at the next

primal iterate xk+1 is sufficiently small compared to the target tj > 0. If this requirement is

met, then a multiplier vector ŷk+1 that satisfies

‖FL(xk+1, ŷk+1)‖2 ≤ min {‖FL(xk+1, yk)‖2, ‖FL(xk+1, π(xk+1, yk, µk))‖2} (15)

is computed. Two obvious potential choices for ŷk+1 are yk and π(xk+1, yk, µk), but another

viable candidate would be an approximate least-squares multiplier estimate (which may be

computed via a linearly constrained optimization subproblem). The method then checks if

either ‖FL(xk+1, ŷk+1)‖2 or ‖FAL(xk+1, yk, µk)‖2 is sufficiently small with respect to the target

value Tj > 0. If so, then new target values tj+1 < tj and Tj+1 < Tj are set, Yj+1 ≥ Yj is

chosen, and a new Lagrange multiplier vector is set as

yk+1 ← (1− αy)yk + αyŷk+1, (16)

where αy is the largest value in [0, 1] such that

‖(1− αy)yk + αyŷk+1‖2 ≤ Yj+1. (17)

This updating procedure is well-defined since the choice αy ← 0 results in yk+1 ← yk, for which

(17) is satisfied since ‖yk‖2 ≤ Yj ≤ Yj+1. If either line 28 or line 30 in Algorithm 3 tests false,

then the method simply sets yk+1 ← yk. We note that unlike more traditional augmented

Lagrangian approaches [2, 11], the penalty parameter is not adjusted on the basis of a test

like that on line 28, but instead relies on our steering procedure. Moreover, in our approach

we decrease the target values at a linear rate for simplicity, but more sophisticated approaches

may be used [11].

2.3 Well-posedness and global convergence

In this section, we state two vital results, namely that Algorithm 3 is well posed, and that limit

points of the iterate sequence have desirable properties. Vital components of these results

8 F. E. Curtis, N. I. M. Gould, H. Jiang and D. P. Robinson

Algorithm 3 Adaptive Augmented Lagrangian Line Search Algorithm

1: Choose {γ, γµ, γα, γt, γT , κ1, κ2, κ3, εr, κt, ηs, ηvs} ⊂ (0, 1) such that ηvs ≥ ηs.
2: Choose {δ, ε, Y } ⊂ (0,∞).

3: Choose an initial primal-dual pair (x0, y0).

4: Choose {µ0, t0, t1, T1, Y1} ⊂ (0,∞) such that Y1 ≥ max{Y, ‖y0‖2}.
5: Set k ← 0, k0 ← 0, and j ← 1.

6: loop

7: if FOPT(xk, yk) = 0, then

8: return the first-order stationary solution (xk, yk).

9: end if

10: if ‖ck‖2 > 0 and FFEAS(xk) = 0, then

11: return the infeasible stationary point xk.

12: end if

13: while FAL(xk, yk, µk) = 0, do

14: Set µk ← γµµk.

15: end while

16: Set θk by (8).

17: Use Algorithm 1 to compute (βk, rk, εk,Γk)← Cauchy feasibility(xk, θk).

18: Set Θk by (11).

19: Use Algorithm 2 to compute (αk, sk)← Cauchy AL(xk, yk, µk,Θk, εk).

20: Compute approximate solutions rk to (7) and sk to (10) that satisfy (13a)–(13b).

21: while (13c) is not satisfied or FAL(xk, yk, µk) = 0, do

22: Set µk ← γµµk and Θk by (11).

23: Use Algorithm 2 to compute (αk, sk)← Cauchy AL(xk, yk, µk,Θk, εk).

24: Compute an approximate solution sk to (10) satisfying (13a).

25: end while

26: Set αk ← γlα where l ≥ 0 is the smallest integer satisfying (14).

27: Set xk+1 ← xk + αksk.

28: if ‖ck+1‖2 ≤ tj , then

29: Compute any ŷk+1 satisfying (15).

30: if min{‖FL(xk+1, ŷk+1)‖2, ‖FAL(xk+1, yk, µk)‖2} ≤ Tj , then

31: Set kj ← k + 1 and Yj+1 ← max{Y, t−εj−1}.
32: Set tj+1 ← min{γttj , t1+ε

j } and Tj+1 ← γTTj .

33: Set yk+1 from (16) where αy satisfies (17).

34: Set j ← j + 1.

35: else

36: Set yk+1 ← yk.

37: end if

38: else

39: Set yk+1 ← yk.

40: end if

41: Set µk+1 ← µk.

42: Set k ← k + 1.

43: end loop

Adaptive augmented Lagrangian methods: algorithms and practical numerical experience 9

are given in Appendices A and B. (The proofs of these results are similar to the corresponding

results in [14]; for reference, complete details can be found in [15].) In order to show well-

posedness of the algorithm, we make the following formal assumption.

Assumption 2.1 At each given xk, the objective function f and constraint function c are both

twice-continuously differentiable.

Under this assumption, we have the following theorem.

Theorem 2.2 Suppose that Assumption 2.1 holds. Then the kth iteration of Algorithm 3 is

well posed. That is, either the algorithm will terminate in line 8 or 11, or it will compute

µk > 0 such that FAL(xk, yk, µk) 6= 0 and for the steps sk = sk and rk = rk the conditions

in (13) will be satisfied, in which case (xk+1, yk+1, µk+1) will be computed.

According to Theorem 2.2, we have that Algorithm 3 will either terminate finitely or

produce an infinite sequence of iterates. If it terminates finitely—which can only occur if

line 8 or 11 is executed—then the algorithm has computed a first-order stationary solution

or an infeasible stationary point and there is nothing else to prove about the algorithm’s

performance in such cases. Therefore, it remains to focus on the global convergence properties

of Algorithm 3 under the assumption that the sequence {(xk, yk, µk)} is infinite. For such

cases, we make the following additional assumption.

Assumption 2.3 The primal sequences {xk} and {xk+sk} are contained in a convex compact

set over which the objective function f and constraint function c are both twice-continuously

differentiable.

Our main global convergence result for Algorithm 3 is as follows.

Theorem 2.4 Suppose that Assumptions 2.2 and 2.3 hold. Then one of the following must

hold:

(i) every limit point x∗ of {xk} is an infeasible stationary point;

(ii) µk 9 0 and there exists an infinite ordered set K ⊆ N such that every limit point of

{(xk, ŷk)}k∈K is first-order stationary for (1); or

(iii) µk → 0, every limit point of {xk} is feasible, and if there exists a positive integer p such

that µkj−1 ≥ γpµµkj−1−1 for all sufficiently large j, then there exists an infinite ordered

set J ⊆ N such that any limit point of either {(xkj , ŷkj)}j∈J or {(xkj , ykj−1)}j∈J is

first-order stationary for (1).

Observe that the conclusions are exactly the same as in [14, Theorem 3.14]. We also

call the readers attention to the comments following [14, Theorem 3.14], which discuss the

consequences of these results. In particular, these comments suggest how Algorithm 3 may

be modified to guarantee convergence to first-order stationary points, even in case (iii) of

the theorem. However, as mentioned in [14], we do not consider these modifications to the

algorithm to have practical benefits. This perspective is supported by the numerical tests

presented in the following section.

10 F. E. Curtis, N. I. M. Gould, H. Jiang and D. P. Robinson

3 Numerical Experiments

In this section, we provide evidence that steering can have a positive effect on the performance

of AL algorithms. To best illustrate the influence of steering, we implemented and tested

algorithms in two pieces of software. First, in Matlab, we implemented our adaptive AL line

search algorithm, i.e., Algorithm 3, and the adaptive AL trust region method given as [14,

Algorithm 4]. Since these methods were implemented from scratch, we had control over every

aspect of the code, which allowed us to implement all features described in this paper and

in [14]. Second, we implemented a simple modification of the AL trust region algorithm in

the Lancelot software package [12]. Our only modification to Lancelot was to incorporate

a basic form of steering; i.e., we did not change other aspects of Lancelot, such as the

mechanisms for triggering a multiplier update. In this manner, we were also able to isolate

the effect that steering had on numerical performance, though it should be noted that there

were differences between Algorithm 3 and our implemented algorithm in Lancelot in terms

of, e.g., the multiplier updates.

While we provide an extensive amount of information about the results of our experiments

in this section, further information can be found in [15, Appendix C].

3.1 Matlab implementation

3.1.1 Implementation details

Our Matlab software was comprised of six algorithm variants. The algorithms were imple-

mented as part of the same package so that most of the algorithmic components were exactly

the same; the primary differences related to the step acceptance mechanisms and the manner in

which the Lagrange multiplier estimates and penalty parameter were updated. First, for com-

parison against algorithms that utilized our steering mechanism, we implemented line search

and trust region variants of a basic augmented Lagrangian method, given as [14, Algorithm 1].

We refer to these algorithms as BAL-LS (basic augmented Lagrangian, line search) and BAL-TR

(trust region), respectively. These algorithms clearly differed in that one used a line search

and the other used a trust region strategy for step acceptance, but the other difference was

that, like Algorithm 3 in this paper, BAL-LS employed a convexified model of the AL function.

(We discuss more details about the use of this convexified model below.) The other algorithms

implemented in our software included two variants of Algorithm 3 and two variants of [14,

Algorithm 4]. The first variants of each, which we refer to as AAL-LS and AAL-TR (adaptive,

as opposed to basic), were straightforward implementations of these algorithms, whereas the

latter variants, which we refer to as AAL-LS-safe and AAL-TR-safe, included an implementa-

tion of a safeguarding procedure for the steering mechanism. The safeguarding procedure will

be described in detail shortly.

The main per-iteration computational expense for each algorithm variant can be attributed

to the search direction computations. For computing a search direction via an approximate

solve of (10) or [14, Prob. (3.8)], all algorithms essentially used the same procedure. For simplic-

ity, all algorithms considered variants of these subproblems in which the `2-norm trust region

was replaced by an `∞-norm trust region so that the subproblems were bound-constrained.

(The same modification was used in the Cauchy step calculations.) Then, starting with the

Cauchy step as the initial solution estimate and defining the initial working set by the bounds

Adaptive augmented Lagrangian methods: algorithms and practical numerical experience 11

identified as active by the Cauchy step, a projected conjugate gradient (PCG) method was used

to compute an improved solution. During the PCG routine, if a new trial solution violated a

bound constraint that was not already part of the working set, then this bound was added to

the working set and the PCG routine was reinitialized. By contrast, if the reduced subproblem

(corresponding to the current working set) was solved sufficiently accurately, then a check for

termination was performed. In particular, multiplier estimates were computed for the working

set elements. If these multiplier estimates were all nonnegative (or at least larger than a small

negative number), then the subproblem was deemed to be solved and the routine terminated.

Otherwise, an element corresponding to the most negative multiplier estimate was removed

from the working set and the PCG routine was reinitialized. We do not claim that the precise

manner in which we implemented this approach guaranteed convergence to an exact solution of

the subproblem. However, the approach just described was based on well-established methods

for solving bound-constrained quadratic optimization problems (QPs), and we found that it

worked very well in our experiments. It should be noted that if, at any time, negative curva-

ture was encountered in the PCG routine, then the solver terminated with the current PCG

iterate. In this manner, the solutions were generally less accurate when negative curvature was

encountered, but we claim that this did not have too adverse an effect on the performance of

any of the algorithms.

A few additional comments are necessary to describe our search direction computation

procedures. First, it should be noted that for the line search algorithms, the Cauchy step

calculation in Algorithm 2 was performed with (12) as stated (i.e., with q̃), but the above

PCG routine to compute the search direction was applied to (10) without the convexification

for the quadratic term. However, we claim that this choice remains consistent with the stated

algorithms since, for all algorithm variants, we performed a sanity check after the computation

of the search direction. In particular, the reduction in the model of the AL function yielded by

the search direction was compared against that yielded by the corresponding Cauchy step. If

the Cauchy step actually provided a better reduction in the model, then the computed search

direction was replaced by the Cauchy step. In this sanity check for the line search algorithms,

we computed the model reductions with the convexification of the quadratic term (i.e., with

q̃), which implies that, overall, our implemented algorithm guaranteed Cauchy decrease in the

appropriate model for all algorithms. Second, we remark that for the algorithms that employed

a steering mechanism, we did not employ the same procedure to approximately solve (7) or

[14, Prob. (3.4)]. Instead, we simply used the Cauchy steps as approximate solutions of these

subproblems. Finally, we note that in the steering mechanism, we checked condition (13c) with

the Cauchy steps for each subproblem, despite the fact that the search direction was computed

as a more accurate solution of (10) or [14, Prob. (3.8)]. This had the effect that the algorithms

were able to modify the penalty parameter via the steering mechanism prior to computing the

search direction; only Cauchy steps for the subproblems were needed for steering.

Most of the other algorithmic components were implemented similarly to the algorithm

in [14]. As an example, for the computation of the estimates {ŷk+1} (which are required to

satisfy (15)), we checked whether ‖FL(xk+1, π(xk+1, yk, µk))‖2 ≤ ‖FL(xk+1, yk)‖2; if so, then

we set ŷk+1 ← π(xk+1, yk, µk), and otherwise we set ŷk+1 ← yk. Furthermore, for prescribed

tolerances {κopt, κfeas, µmin} ⊂ (0,∞), we terminated an algorithm with a declaration that a

12 F. E. Curtis, N. I. M. Gould, H. Jiang and D. P. Robinson

stationary point was found if

‖FL(xk, yk)‖∞ ≤ κopt and ‖ck‖∞ ≤ κfeas, (18)

and terminated with a declaration that an infeasible stationary point was found if

‖FFEAS(xk)‖∞ ≤ κopt, ‖ck‖∞ > κfeas, and µk ≤ µmin. (19)

As in [14], this latter set of conditions shows that we did not declare that an infeasible stationary

point was found unless the penalty parameter had already been reduced below a prescribed

tolerance. This helps in avoiding premature termination when the algorithm could otherwise

continue and potentially find a point satisfying (18), which was always the preferred outcome.

Each algorithm terminated with a message of failure if neither (18) nor (19) was satisfied within

kmax iterations. It should also be noted that the problems were pre-scaled so that the `∞-norms

of the gradients of the problem functions at the initial point would be less than or equal to

a prescribed constant G > 0. The values for all of these parameters, as well as other input

parameter required in the code, are summarized in Table 1. (Values for parameters related to

updating the trust region radii required by [14, Algorithm 4] were set as in [14].)

Table 1: Input parameter values used in our Matlab software.

Parameter Value Parameter Value Parameter Value Parameter Value

γ 0.5 κ1 1 ηs 10−4 κfeas 10−5

γµ 0.1 κ2 1 ηvs 0.9 µmin 10−8

γα 0.5 κ3 10−4 ε 0.5 kmax 104

γt 0.1 εr 10−4 µ0 1 G 102

γT 0.1 κt 0.9 κopt 10−5

We close this subsection with a discussion of some additional differences between the algo-

rithms as stated in this paper and in [14] and those implemented in our software. We claim

that none of these differences represents a significant departure from the stated algorithms;

we merely made some adjustments to simplify the implementation and to incorporate features

that we found to work well in our experiments. First, while all algorithms use the input pa-

rameter γµ given in Table 1 for decreasing the penalty parameter, we decrease the penalty

parameter less significantly in the steering mechanism. In particular, in line 22 of Algorithm 3

and line 20 of [14, Algorithm 4], we replace γµ with 0.7. Second, in the line search algorithms,

rather than set the trust region radii as in (8) and (11) where δ appears as a constant value,

we defined a dynamic sequence, call it {δk}, that depended on the step-size sequence {αk}. In

this manner, δk replaced δ in (8) and (11) for all k. We initialized δ0 ← 1. Then, for all k, if

αk = 1, then we set δk+1 ← 5
3δk, and if αk < 1, then we set δk+1 ← 1

2δk. Third, to simplify

our implementation, we effectively ignored the imposed bounds on the multiplier estimates by

setting Y ←∞ and Y1 ←∞. This choice implies that we always chose αy ← 1 in (16). Fourth,

we initialized the target values as

t0 ← t1 ← max{102,min{104, ‖ck‖∞}} (20)

and T1 ← max{100,min{102, ‖FL(xk, yk)‖∞}}. (21)

Adaptive augmented Lagrangian methods: algorithms and practical numerical experience 13

Finally, in AAL-LS-safe and AAL-TR-safe, we safeguard the steering procedure by shutting it

off whenever the penalty parameter was smaller than a prescribed tolerance. Specifically, we

considered the while condition in line 21 of Algorithm 3 and line 19 of [14, Algorithm 4] to

be satisfied whenever µk ≤ 10−4.

3.1.2 Results on CUTEst test problems

We tested our Matlab algorithms on the subset of problems from the CUTEst [24] collection

that have at least one general constraint and at most 1000 variables and 1000 constraints. This

set contains 383 test problems. However, the results that we present in this section are only

for those problems for which at least one of our six solvers obtained a successful result, i.e.,

where (18) or (19) was satisfied. This led to a set of 323 problems that are represented in the

numerical results in this section.

To illustrate the performance of our Matlab software, we use performance profiles as

introduced by Dolan and Moré [17] to provide a visual comparison of different measures of

performance. Consider a performance profile that measures performance in terms of required

iterations until termination. For such a profile, if the graph associated with an algorithm passes

through the point (α, 0.β), then, on β% of the problems, the number of iterations required by

the algorithm was less than 2α times the number of iterations required by the algorithm that

required the fewest number of iterations. At the extremes of the graph, an algorithm with

a higher value on the vertical axis may be considered a more efficient algorithm, whereas an

algorithm on top at the far right of the graph may be considered more reliable. Since, for most

problems, comparing values in the performance profiles for large values of α is not enlightening,

we truncated the horizontal axis at 16 and simply remark on the numbers of failures for each

algorithm.

Figures 1 and 2 show the results for the three line search variants, namely BAL-LS, AAL-LS,

and AAL-LS-safe. The numbers of failures for these algorithms were 25, 3, and 16, respectively.

The same conclusion may be drawn from both profiles: the steering variants (with and without

safeguarding) were both more efficient and more reliable than the basic algorithm, where

efficiency is measured by either the number of iterations (Figure 1) or the number of function

evaluations (Figure 2) required. We display the profile for the number of function evaluations

required since, for a line search algorithm, this value is always at least as large as the number of

iterations, and will be strictly greater whenever backtracking is required to satisfy (14) (yielding

αk < 1). From these profiles, one may observe that unrestricted steering (in AAL-LS) yielded

superior performance to restricted steering (in AAL-LS-safe) in terms of both efficiency and

reliability; this suggests that safeguarding the steering mechanism may diminish its potential

benefits.

Figures 3 and 4 show the results for the three trust region variants, namely BAL-TR, AAL-TR,

and AAL-TR-safe, the numbers of failures for which were 30, 12, and 20, respectively. Again, as

for the line search algorithms, the same conclusion may be drawn from both profiles: the steer-

ing variants (with and without safeguarding) are both more efficient and more reliable than the

basic algorithm, where now we measure efficiency by either the number of iterations (Figure 3)

or the number of gradient evaluations (Figure 4) required before termination. We observe the

number of gradient evaluations here (as opposed to the number of function evaluations) since,

for a trust region algorithm, this value is never larger than the number of iterations, and will

14 F. E. Curtis, N. I. M. Gould, H. Jiang and D. P. Robinson

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16

BAL-LS
AAL-LS

AAL-LS-safe

Figure 1: Performance profile for iter-

ations: line search algorithms on the

CUTEst set.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16

BAL-LS
AAL-LS

AAL-LS-safe

Figure 2: Performance profile for function

evaluations: line search algorithms on the

CUTEst set.

be strictly smaller whenever a step is rejected and the trust-region radius is decreased because

of insufficient decrease in the AL function. These profiles also support the other observation

that was made by the results for our line search algorithms, i.e., that unrestricted steering may

be superior to restricted steering in terms of efficiency and reliability.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16

BAL-TR
AAL-TR

AAL-TR-safe

Figure 3: Performance profile for iter-

ations: trust region algorithms on the

CUTEst set.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16

BAL-TR
AAL-TR

AAL-TR-safe

Figure 4: Performance profile for gradient

evaluations: trust region algorithms on the

CUTEst set.

The performance profiles in Figures 1–4 suggest that steering has practical benefits, and

that safeguarding the procedure may limit its potential benefits. However, to be more confident

in these claims, one should observe the final penalty parameter values typically produced by

the algorithms. These observations are important since one may be concerned whether the

algorithms that employ steering yield final penalty parameter values that are often significantly

smaller than those yielded by basic AL algorithms. To investigate this possibility in our

experiments, we collected the final penalty parameter values produced by all six algorithms;

the results are in Table 2. The column titled µfinal gives a range for the final value of the penalty

parameter. (For example, the value 27 in the BAL-LS column indicates that the final penalty

parameter value computed by our basic line search AL algorithm fell in the range [10−2, 10−1)

for 27 of the problems.)

We remark on two observations about the data in Table 2. First, as may be expected, the

algorithms that employ steering typically reduce the penalty parameter below its initial value

on some problems on which the other algorithms do not reduce it at all. This, in itself, is not a

Adaptive augmented Lagrangian methods: algorithms and practical numerical experience 15

Table 2: Numbers of CUTEst problems for which the final penalty parameter values were in

the given ranges.

µfinal BAL-LS AAL-LS AAL-LS-safe BAL-TR AAL-TR AAL-TR-safe

1 139 87 87 156 90 90

[10−1, 1) 43 33 33 35 46 46

[10−2, 10−1) 27 37 37 28 29 29

[10−3, 10−2) 17 42 42 19 49 49

[10−4, 10−3) 22 36 36 18 29 29

[10−5, 10−4) 19 28 42 19 25 39

[10−6, 10−5) 15 19 11 9 11 9

(0, 10−6) 46 46 40 44 49 37

major concern, since a reasonable reduction in the penalty parameter may cause an algorithm

to locate a stationary point more quickly. Second, we remark that the number of problems

for which the final penalty parameter was very small (say, less than 10−4) was similar for all

algorithms, even those that employed steering. This suggests that while steering was able to aid

in guiding the algorithms toward constraint satisfaction, the algorithms did not reduce the value

to such a small value that feasibility became the only priority. Overall, our conclusion from

Table 2 is that steering typically decreases the penalty parameter more than does a traditonal

updating scheme, but one should not expect that the final penalty parameter value will be

reduced unnecessarily small due to steering; rather, steering can have the intended benefit of

improving efficiency and reliability by guiding a method toward constraint satisfaction more

quickly.

3.1.3 Results on COPS test problems

We also tested our Matlab software on the large-scale constrained problems available in the

COPS [5] collection. This test set was designed to provide difficult test cases for nonlinear op-

timization software; the problems include examples from fluid dynamics, population dynamics,

optimal design, mesh smoothing, and optimal control. For our purposes, we solved the smallest

versions of the AMPL models [1, 19] provided in the collection. All of our solvers failed to solve

the problems named chain, dirichlet, henon, lane emden, and robot1, so these problems were

excluded. The remaining set consisted of the following 17 problems: bearing, camshape, cat-

mix, channel, elec, gasoil, glider, marine, methanol, minsurf, pinene, polygon, rocket, steering,

tetra, torsion, and triangle. Since the size of this test set is relatively small, we have decided

to display pair-wise comparisons of algorithms in the manner suggested in [30]. That is, for

a performance measure of interest (e.g., number of iterations required until termination), we

compare solvers, call them A and B, on problem j with the logarithmic outperforming factor

rjAB := − log2(mj
A/m

j
B), where

{
mj
A is the measure for A on problem j

mj
B is the measure for B on problem j.

(22)

Therefore, if the measure of interest is iterations required, then rjAB = p would indicate that

solver A required 2−p the iterations required by solver B. For all plots, we focus our attention

16 F. E. Curtis, N. I. M. Gould, H. Jiang and D. P. Robinson

on the range p ∈ [−2, 2].

The results of our experiments are given in Figures 5–8. For the same reasons as discussed in

§3.1.2, we display results for iterations and function evaluations for the line search algorithms,

and display results for iterations and gradient evaluations for the trust region algorithms. In

addition, here we ignore the results for AAL-LS-safe and AAL-TR-safe since, as in the results

in §3.1.2, we did not see benefits in safeguarding the steering mechanism. In each figure, a

positive (negative) bar indicates that the algorithm whose name appears above (below) the

horizontal axis yielded a better value for the measure on a particular problem. The results are

displayed according to the order of the problems listed in the previous paragraph. In Figures 5

and 6 for the line search algorithms, the red bars for problems catmix and polygon indicate

that AAL-LS failed on the former and BAL-LS failed on the latter; similarly, in Figures 7 and 8

for the trust region algorithms, the red bar for catmix indicates that AAL-TR failed on it.

The results in Figures 5 and 6 indicate that AAL-LS more often outperforms BAL-LS in

terms of iterations and functions evaluations, though the advantage is not overwhelming. On

the other hand, it is clear from Figures 7 and 8 that, despite the one failure, AAL-TR is generally

superior to BAL-TR. We conclude from these results that steering was beneficial on this test

set, especially in terms of the trust region methods.

0 2 4 6 8 10 12 14 16 18
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

BAL−LS

AAL−LS

Figure 5: Outperforming factors for itera-

tions: line search algorithms on the COPS

set.

0 2 4 6 8 10 12 14 16 18
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

BAL−LS

AAL−LS

Figure 6: Outperforming factors for func-

tion evaluations: line search algorithms on

the COPS set.

3.1.4 Results on optimal power flow (OPF) test problems

As a third and final set of experiments for our Matlab software, we tested our algorithms

on a collection of optimal power flow (OPF) problems modeled in AMPL using data sets

obtained from MATPOWER [36]. OPF problems represent a challenging set of nonconvex

problems. The active and reactive power flow and the network balance equations give rise to

equality constraints involving nonconvex functions while the inequality constraints are linear

and result from placing operating limits on quantities such as flows, voltages, and various

control variables. The control variables include the voltages at generator buses and the active-

power output of the generating units. The state variables consist of the voltage magnitudes

and angles at each node as well as reactive and active flows in each link. Our test set was

Adaptive augmented Lagrangian methods: algorithms and practical numerical experience 17

0 2 4 6 8 10 12 14 16 18
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

BAL−TR

AAL−TR

Figure 7: Outperforming factors for it-

erations: trust region algorithms on the

COPS set.

0 2 4 6 8 10 12 14 16 18
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

BAL−TR

AAL−TR

Figure 8: Outperforming factors for gradi-

ent evaluations: trust region algorithms on

the COPS set.

comprised of 28 problems modeled on systems having 14 to 662 nodes from the IEEE test

set. In particular, there are seven IEEE systems, each modeled in four different ways: (i)

in Cartesian coordinates; (ii) in polar coordinates; (iii) with basic approximations to the sin

and cos functions in the problem functions; and (iv) with linearized constraints based on DC

power flow equations (in place of AC power flow). It should be noted that while linearizing

the constraints in formulation (iv) led to a set of linear optimization problems, we still find it

interesting to investigate the possible effect that steering may have in this context. All of the

test problems were solved by all of our algorithm variants.

We provide outperforming factors in the same manner as in §3.1.3. Figures 9 and 10 reveal

that AAL-LS typically outperforms BAL-LS in terms of both iterations and function evaluations,

and Figures 11 and 12 reveal that AAL-TR more often than not outperforms BAL-TR in terms

of iterations and gradient evaluations. Interestingly, these results suggest more benefits for

steering in the line search algorithm than in the trust region algorithm, which is the opposite

of that suggested by the results in §3.1.3. However, in any case, we believe that we have

presented convincing numerical evidence that steering often has an overall beneficial effect on

the performance of our Matlab solvers.

3.2 An implementation of Lancelot that uses steering

3.2.1 Implementation details

The results for our Matlab software in the previous section illustrate that our adaptive line

search AL algorithm and the adaptive trust region AL algorithm from [14] are often more

efficient and reliable than basic AL algorithms that employ traditional penalty parameter

and Lagrange multiplier updates. Recall, however, that our adaptive methods are different

from their basic counterparts in two key ways. First, the steering conditions (13) are used

to dynamically decrease the penalty parameter during the optimization process for the AL

function. Second, our mechanisms for updating the Lagrange multiplier estimate are different

than the basic algorithm outlined in [14, Algorithm 1] since they use optimality measures for

both the Lagrangian and the AL functions (see line 30 of Algorithm 3) rather than only that

18 F. E. Curtis, N. I. M. Gould, H. Jiang and D. P. Robinson

0 5 10 15 20 25
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

BAL−LS

AAL−LS

Figure 9: Outperforming factors for itera-

tions: line search algorithms on OPF tests.

0 5 10 15 20 25
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

BAL−LS

AAL−LS

Figure 10: Outperforming factors for func-

tion evaluations: line search algorithms on

OPF tests.

0 5 10 15 20 25
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

BAL−TR

AAL−TR

Figure 11: Outperforming factors for it-

erations: trust region algorithms on OPF

tests.

0 5 10 15 20 25
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

BAL−TR

AAL−TR

Figure 12: Outperforming factors for gra-

dient evaluations: trust region algorithms

on OPF tests.

for the AL function. We believe this strategy is more adaptive since it allows for updates to the

Lagrange multipliers when the primal estimate is still far from a first-order stationary point

for the AL function subject to the bounds.

In this section, we isolate the effect of the first of these differences by incorporating a

steering strategy in the Lancelot [12, 13] package that is available in the Galahad library

[23]. Specifically, we made three principle enhancements in Lancelot. First, along the lines

of the model q in [14] and the convexified model q̃ defined in this paper, we defined the model

q̂ : Rn → R of the AL function given by

q̂(s;x, y, µ) = sT∇x`
(
x, y + c(x)/µ

)
+ 1

2s
T
(
∇xx`(x, y) + J(x)TJ(x)/µ

)
s

as an alternative to the Newton model qN : Rn → R, originally used in Lancelot,

qN(s;x, y, µ) = sT∇x`(x, y + c(x)/µ) + 1
2s
T (∇xx`(x, y + c(x)/µ) + J(x)TJ(x)/µ)s.

Adaptive augmented Lagrangian methods: algorithms and practical numerical experience 19

As in our adaptive algorithms, the purpose of employing such a model was to ensure that

q̂ → qv (pointwise) as µ → 0, which was required to ensure that our steering procedure was

well-defined; see (A.1a). Second, we added routines to compute generalized Cauchy points

[9] for both the constraint violation measure model qv and q̂ during the loop in which µ was

decreased until the steering test (13c) was satisfied; recall the while loop starting on line 21

of Algorithm 3. Third, we used the value for µ determined in the steering procedure to

compute a generalized Cauchy point for the Newton model qN, which was the model employed

to compute the search direction. For each of the models just discussed, the generalized Cauchy

point was computed using either an efficient sequential search along the piece-wise Cauchy

arc [10] or via a backtracking Armijo search along the same arc [31]. We remark that this

third enhancement would not have been needed if the model q̂ were used to compute the

search directions. However, in our experiments, it was revealed that using the Newton model

typically led to better performance, so the results in this section were obtained using this third

enhancement. In our implementation, the user was allowed to control which model was used

via control parameters. We also added control parameters that allowed the user to restrict

the number of times that the penalty parameter may be reduced in the steering procedure in

a given iteration, and that disabled steering once the penalty parameter was reduced below a

given tolerance (as in the safeguarding procedure implemented in our Matlab software).

The new package was tested with three different control parameter settings. We refer to

algorithm with the first setting, which did not allow any steering to occur, simply as lancelot.

The second setting allowed steering to be used initially, but turned it off whenever µ ≤ 10−4 (as

in our safeguarded Matlab algorithms). We refer to this variant as lancelot-steering-safe.

The third setting allowed for steering to be used without any safeguards or restrictions; we refer

to this variant as lancelot-steering. As in our Matlab software, the penalty parameter

was decreased by a factor of 0.7 until the steering test (13c) was satisfied. All other control

parameters were set to their default lancelot values. The new package will be re-branded as

Lancelot in the next official release, Galahad 2.6.

Galahad was compiled with gfortran-4.7 with optimization -O and using Intel MKL BLAS.

The code was executed on a single core of an Intel Xeon E5620 (2.4GHz) CPU with 23.5 GiB

of RAM.

3.2.2 Results on CUTEst test problems

We tested lancelot, lancelot-steering, and lancelot-steering-safe on the subset of

CUTEst problems that have at least one general constraint and at most 10,000 variables

and 10,000 constraints. This amounted to 457 test problems. The results are displayed as

performance profiles in Figures 13 and 14, which were created from the 364 of these problems

that were solved by at least one of the algorithms. As in the previous sections, since the

algorithms are trust region methods, we use the number of iterations and gradient evaluations

required as the performance measures of interest.

We can make two important observations from these profiles. First, it is clear that

lancelot-steering and lancelot-steering-safe yielded similar performance in terms of

iterations and gradient evaluations, which suggests that safeguarding the steering mechanism

is not necessary in practice. Second, lancelot-steering and lancelot-steering-safe were

both more efficient and reliable than lancelot on these tests, thus showing the positive influ-

20 F. E. Curtis, N. I. M. Gould, H. Jiang and D. P. Robinson

ence that steering can have on performance.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8

Lancelot
Lancelot-steering

Lancelot-steering-safe

Figure 13: Performance profile for it-

erations: Lancelot algorithms on the

CUTEst set.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8

Lancelot
Lancelot-steering

Lancelot-steering-safe

Figure 14: Performance profile for gradient

evaluations: Lancelot algorithms on the

CUTEst set.

As in §3.1.2, it is important to observe the final penalty parameter values yielded by

lancelot-steering and lancelot-steering-safe as opposed to those yielded by lancelot.

For these experiments, we collected this information; see Table 3.

Table 3: Numbers of CUTEst problems for which the final penalty parameter values were in

the given ranges.

µfinal lancelot lancelot-steering lancelot-steering-safe

1 14 1 1

[10−1, 1) 77 1 1

[10−2, 10−1) 47 93 93

[10−3, 10−2) 27 45 45

[10−4, 10−3) 18 28 28

[10−5, 10−4) 15 22 22

[10−6, 10−5) 12 21 14

(0, 10−6) 19 18 25

We make a few remarks about the results in Table 3. First, as may have been expected, the

lancelot-steering and lancelot-steering-safe algorithms typically reduced the penalty

parameter below its initial value, even when lancelot did not reduce it at all throughout

an entire run. Second, the number of problems for which the final penalty parameter was

less than 10−4 was 171 for lancelot and 168 for lancelot-steering. Combining this fact

with the previous observation leads us to conclude that steering tended to reduce the penalty

parameter from its initial value of 1, but, overall, it did not decrease it much more aggres-

sively than lancelot. Third, it is interesting to compare the final penalty parameter values

for lancelot-steering and lancelot-steering-safe. Of course, these values were equal

in any run in which the final penalty parameter was greater than or equal to 10−4, since

this was the threshold value below which safeguarding was activated. Interestingly, however,

lancelot-steering-safe actually produced smaller values of the penalty parameter com-

pared to lancelot-steering when the final penalty parameter was smaller than 10−4. We

initially found this observation to be somewhat counterintuitive, but we believe that it can be

Adaptive augmented Lagrangian methods: algorithms and practical numerical experience 21

explained by observing the penalty parameter updating strategy used by lancelot. (Recall

that once safeguarding was activated in lancelot-steering-safe, the updating strategy be-

came the same used in lancelot.) In particular, the decrease factor for the penalty parameter

used in lancelot is 0.1, whereas the decrease factor used in steering the penalty parameter was

0.7. Thus, we believe that lancelot-steering reduced the penalty parameter more gradually

once it was reduced below 10−4 while lancelot-steering-safe could only reduce it in the

typical aggressive manner. (We remark that to (potentially) circumvent this inefficiency in

lancelot, one could implement a different strategy in which the penalty parameter decrease

factor is increased as the penalty parameter decreases, but in a manner that still ensures that

the penalty parameter converges to zero when infinitely many decreases occur.) Overall, our

conclusion from Table 3 is that steering typically decreases the penalty parameter more than

a traditional updating scheme, but the difference is relatively small and we have implemented

steering in a way that improves the overall efficiency and reliability of the method.

4 Conclusion

In this paper, we explored the numerical performance of adaptive updates to the Lagrange

multiplier vector and penalty parameter in AL methods. Specific to the penalty parameter

updating scheme is the use of steering conditions that guide the iterates toward the feasible

region and toward dual feasibility in a balanced manner. Similar conditions were first intro-

duced in [8] for exact penalty functions, but have been adapted in [14] and this paper to be

appropriate for AL-based methods. Specifically, since AL methods are not exact (in that, in

general, the trial steps do not satisfy linearized feasibility for any positive value of the penalty

parameter), we allowed for a relaxation of the linearized constraints. This relaxation was based

on obtaining a target level of infeasibility that is driven to zero at a modest, but acceptable,

rate. This approach is in the spirit of AL algorithms since feasibility and linearized feasibility

are only obtained in the limit. It should be noted that, like other AL algorithms, our adaptive

methods can be implemented matrix-free, i.e., they only require matrix-vector products. This

is of particular importance when solving large problems that have sparse derivative matrices.

As with steering strategies designed for exact penalty functions, our steering conditions

proved to yield more efficient and reliable algorithms than a traditional updating strategy.

This conclusion was made by performing a variety of numerical tests that involved our own

Matlab implementations and a simple modification of the well-known AL software Lancelot.

To test the potential for the penalty parameter to be reduced too quickly, we also implemented

safeguarded variants of our steering algorithms. Across the board, our results indicate that

safeguarding was not necessary and would typically degrade performance when compared to

the unrestricted steering approach. We feel confident that these tests clearly show that al-

though our theoretical global convergence guarantee is weaker than some algorithms (i.e., we

cannot prove that the penalty parameter will remain bounded under a suitable constraint

qualification), this should not be a concern in practice. Finally, we suspect that the steering

strategies described in this paper would also likely improve the performance of other AL-based

methods such as [4, 27].

Acknowledgments. We would like to thank Sven Leyffer and Victor Zavala from Argonne

National Laboratory for providing us with the AMPL [1, 19] files required to test the optimal

22 F. E. Curtis, N. I. M. Gould, H. Jiang and D. P. Robinson

power flow problems described in §3.1.4.

References

[1] AMPL Home Page, http://www.ampl.com.

[2] R. Andreani, E.G. Birgin, J.M. Mart́ınez, and M.L. Schuverdt, Augmented Lagrangian

methods under the constant positive linear dependence constraint qualification, Mathe-

matical Programming 111 (2008), pp. 5–32, Available at http://dx.doi.org/10.1007/

s10107-006-0077-1.

[3] E.G. Birgin and J.M. Mart́ınez, Augmented Lagrangian method with nonmonotone penalty

parameters for constrained optimization, Computational Optimization and Applications

51 (2012), pp. 941–965, Available at http://dx.doi.org/10.1007/s10589-011-9396-0.

[4] E.G. Birgin and J.M. Mart́ınez, Practical Augmented Lagrangian Methods for Constrained

Optimization, Fundamentals of Algorithms, SIAM, Philadelphia, PA, USA, 2014.

[5] A. Bondarenko, D. Bortz, and J.J. Moré, COPS: Large-scale nonlinearly constrained op-

timization problems, Technical Report ANL/MCS-TM-237, Mathematics and Computer

Science division, Argonne National Laboratory, Argonne, IL, 1998, revised October 1999.

[6] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed optimization and

statistical learning via the alternating direction method of multipliers, Foundations and

Trends in Machine Learning 3 (2011), pp. 1–122.

[7] R.H. Byrd, G. Lopez-Calva, and J. Nocedal, A line search exact penalty method using

steering rules, Mathematical Programming 133 (2012), pp. 39–73.

[8] R.H. Byrd, J. Nocedal, and R.A. Waltz, Steering exact penalty methods for nonlinear

programming, Optimization Methods and Software 23 (2008), pp. 197–213, Available at

http://dx.doi.org/10.1080/10556780701394169.

[9] A.R. Conn, N.I.M. Gould, and Ph.L. Toint, Global convergence of a class of trust region

algorithms for optimization with simple bounds, SIAM Journal on Numerical Analysis 25

(1988), pp. 433–460.

[10] A.R. Conn, N.I.M. Gould, and Ph.L. Toint, Testing a class of methods for solving mini-

mization problems with simple bounds on the variables, Mathematics of Computation 50

(1988), pp. 399–430.

[11] A.R. Conn, N.I.M. Gould, and Ph.L. Toint, A globally convergent augmented Lagrangian

algorithm for optimization with general constraints and simple bounds, SIAM Journal on

Numerical Analysis 28 (1991), pp. 545–572.

[12] A.R. Conn, N.I.M. Gould, and Ph.L. Toint, Lancelot: A Fortran package for large-

scale nonlinear optimization (Release A), Lecture Notes in Computation Mathematics 17,

Springer Verlag, Berlin, Heidelberg, New York, London, Paris and Tokyo, 1992.

http://www.ampl.com
http://dx.doi.org/10.1007/s10107-006-0077-1
http://dx.doi.org/10.1007/s10107-006-0077-1
http://dx.doi.org/10.1007/s10589-011-9396-0
http://dx.doi.org/10.1080/10556780701394169

Adaptive augmented Lagrangian methods: algorithms and practical numerical experience 23

[13] A.R. Conn, N.I.M. Gould, and Ph.L. Toint, Numerical experiments with the LANCELOT

package (Release A) for large-scale nonlinear optimization, Mathematical Programming

73 (1996), pp. 73–110.

[14] F.E. Curtis, H. Jiang, and D.P. Robinson, An adaptive augmented Lagrangian method

for large-scale constrained optimization, Mathematical Programming (2014), Available at

http://dx.doi.org/10.1007/s10107-014-0784-y.

[15] F.E. Curtis, N.I.M. Gould, H. Jiang, and D.P. Robinson, Adaptive augmented Lagrangian

methods: Algorithms and practical numerical experience, Available at http://xxx.tau.

ac.il/abs/1408.4500, arXiv:1408.4500.

[16] K.R. Davidson and A.P. Donsig, Real Analysis and Applications, Undergraduate Texts

in Mathematics, Springer, New York, 2010, Available at http://dx.doi.org/10.1007/

978-0-387-98098-0.

[17] E.D. Dolan and J.J. Moré, Benchmarking optimization software with performance profiles,

Mathematical Programming 91 (2002), pp. 201–213.

[18] D. Fernández and M.V. Solodov, Local convergence of exact and inexact augmented La-

grangian methods under the second-order sufficiency condition, SIAM Journal on Opti-

mization 22 (2012), pp. 384–407.

[19] R. Fourer, D.M. Gay, and B.W. Kernighan, AMPL: A Modeling Language for Mathemat-

ical Programming, Brooks/Cole—Thomson Learning, Pacific Grove, USA, 2003.

[20] D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational prob-

lems via finite element approximations, Computers and Mathematics with Applications 2

(1976), pp. 17–40.

[21] R. Glowinski and A. Marroco, Sur l’Approximation, par Elements Finis d’Ordre Un, el la

Resolution, par Penalisation-Dualité, d’une Classe de Problèmes de Dirichlet Nonlineares,

Revue Française d’Automatique, Informatique et Recherche Opérationelle 9 (1975), pp.

41–76.

[22] N.I.M. Gould, D. Orban, and Ph.L. Toint, CUTEr and sifdec: A constrained and un-

constrained testing environment, revisited, ACM Transactions on Mathematical Software

29 (2003), pp. 373–394.

[23] N.I.M. Gould, D. Orban, and Ph.L. Toint, Galahad—a library of thread-safe fortran

90 packages for large-scale nonlinear optimization, ACM Transactions on Mathematical

Software 29 (2003), pp. 353–372.

[24] N.I.M. Gould, D. Orban, and Ph.L. Toint, CUTEst: A constrained and unconstrained

testing environment with safe threads, Tech. Rep. RAL-TR-2013-005, Rutherford Appleton

Laboratory, 2013.

[25] M.R. Hestenes, Multiplier and gradient methods, Journal of Optimization Theory and

Applications 4 (1969), pp. 303–320.

http://dx.doi.org/10.1007/s10107-014-0784-y
http://xxx.tau.ac.il/abs/1408.4500
http://xxx.tau.ac.il/abs/1408.4500
http://dx.doi.org/10.1007/978-0-387-98098-0
http://dx.doi.org/10.1007/978-0-387-98098-0

24 F. E. Curtis, N. I. M. Gould, H. Jiang and D. P. Robinson

[26] A.F. Izmailov and M.V. Solodov, On attraction of linearly constrained Lagrangian meth-

ods and of stabilized and quasi-Newton SQP methods to critical multipliers, Mathemat-

ical Programming 126 (2011), pp. 231–257, Available at http://dx.doi.org/10.1007/

s10107-009-0279-4.

[27] M. Kočvara and M. Stingl, PENNON: A code for convex nonlinear and semidefinite pro-

gramming, Optimization Methods and Software 18 (2003), pp. 317–333.

[28] M. Kočvara and M. Stingl, PENNON: A generalized augmented Lagrangian method for

semidefinite programming, in High Performance Algorithms and Software for Nonlin-

ear Optimization (Erice, 2001), Applied Optimization, Vol. 82, Kluwer Academic Pub-

lishing, Norwell, MA, 2003, pp. 303–321, Available at http://dx.doi.org/10.1007/

978-1-4613-0241-4_14.

[29] M. Mongeau and A. Sartenaer, Automatic decrease of the penalty parameter in exact

penalty function methods, European Journal of Operational Research 83 (1995), pp. 686–

699.

[30] J.L. Morales, A numerical study of limited memory BFGS methods, Applied Mathematics

Letters 15 (2002), pp. 481–487.

[31] J.J. Moré, Trust regions and projected gradients, in System Modelling and Optimization,

Vol. 113, lecture Notes in Control and Information Sciences, Springer Verlag, Heidelberg,

Berlin, New York, 1988, pp. 1–13.

[32] M.J.D. Powell, A method for nonlinear constraints in minimization problems, in Opti-

mization, Academic Press, London and New York, 1969, pp. 283–298.

[33] Z. Qin, D. Goldfarb, and S. Ma, An alternating direction method for total variation de-

noising, arXiv preprint arXiv:1108.1587 (2011).

[34] Ph.L. Toint, Nonlinear stepsize control, trust regions and regularizations for unconstrained

optimization, Optimization Methods and Software 28 (2013), pp. 82–95, Available at

http://www.tandfonline.com/doi/abs/10.1080/10556788.2011.610458.

[35] J. Yang, Y. Zhang, and W. Yin, A fast alternating direction method for TVL1-L2 sig-

nal reconstruction from partial Fourier data, IEEE Journal of Selected Topics in Signal

Processing 4 (2010), pp. 288–297.

[36] R.D. Zimmerman, C.E. Murillo-Sánchez, and R.J. Thomas, Matpower: Steady-state op-

erations, planning, and analysis tools for power systems research and education, Power

Systems, IEEE Transactions on 26 (2011), pp. 12–19.

Appendix A: Well-posedness

Our goal in this appendix is to prove that Algorithm 3 is well-posed under Assumption 2.1.

Since this assumption is assumed to hold throughout the remainder of this appendix, we do

not refer to it explicitly in the statement of each lemma and proof.

http://dx.doi.org/10.1007/s10107-009-0279-4
http://dx.doi.org/10.1007/s10107-009-0279-4
http://dx.doi.org/10.1007/978-1-4613-0241-4_14
http://dx.doi.org/10.1007/978-1-4613-0241-4_14
http://www.tandfonline.com/doi/abs/10.1080/10556788.2011.610458

Adaptive augmented Lagrangian methods: algorithms and practical numerical experience 25

A.1 Preliminary results

Our proof of the well-posedness of Algorithm 3 relies on showing that it will either terminate

finitely or will produce an infinite sequence of iterates {(xk, yk, µk)}. In order to show this,

we first require that the while loop that begins at line 13 of Algorithm 3 terminates finitely.

Since the same loop appears in the AL trust region method in [14] and the proof of the result

in the case of that algorithm is the same as that for Algorithm 3, we need only refer to the

result in [14] in order to state the following lemma for Algorithm 3.

Lemma A.1 ([14, Lemma 3.2]) If line 13 is reached, then FAL(xk, yk, µ) 6= 0 for all suffi-

ciently small µ > 0.

Next, since the Cauchy steps employed in Algorithm 3 are similar to those employed in the

method in [14], we may state the following lemma showing that Algorithms 1 and 2 are well

defined when called in lines 17, 19, and 23 of Algorithm 3. It should be noted that a slight

difference between Algorithm 2 and the similar procedure in [14] is the use of the convexified

model q̃ in (12). However, we claim that this difference does not affect the veracity of the

result.

Lemma A.2 ([14, Lemma 3.3]) The following hold true:

(i) The computation of (βk, rk, εk,Γk) in line 17 is well defined and yields Γk ∈ (1, 2] and

εk ∈ [0, εr).

(ii) The computation of (αk, sk) in lines 19 and 23 is well defined.

The next result highlights critical relationships between qv and q̃ as µ→ 0.

Lemma A.3 ([15, Lemma A.3]) Let (βk, rk, εk,Γk) ← Cauchy feasibility(xk, θk) with

θk defined by (8) and, as quantities dependent on the penalty parameter µ > 0, let (αk(µ), sk(µ))←
Cauchy AL(xk, yk, µ,Θk(µ), εk) with Θk(µ) := Γkδ‖FAL(xk, yk, µ)‖2 (see (11)). Then, the

following hold true:

lim
µ→0

(
max
‖s‖2≤2θk

|q̃(s;xk, yk, µ)− qv(s;xk)|
)

= 0, (A.1a)

lim
µ→0
∇xL(xk, yk, µ) = JTk ck, (A.1b)

lim
µ→0

sk(µ) = rk, (A.1c)

and lim
µ→0

∆qv(sk(µ);xk) = ∆qv(rk;xk). (A.1d)

We also need the following lemma related to Cauchy decreases in the models qv and q̃.

Lemma A.4 ([15, Lemma A.4]) Let Ω be any scalar value such that

Ω ≥ max{‖µk∇2
xx`(xk, yk) + JTkJk‖2, ‖JTkJk‖2}. (A.2)

Then, the following hold true:

26 F. E. Curtis, N. I. M. Gould, H. Jiang and D. P. Robinson

(i) For some κ4 ∈ (0, 1), the Cauchy step for subproblem (7) yields

∆qv(rk;xk) ≥ κ4‖FFEAS(xk)‖22 min

{
δ,

1

1 + Ω

}
. (A.3)

(ii) For some κ5 ∈ (0, 1), the Cauchy step for subproblem (10) yields

∆q̃(sk;xk, yk, µk) ≥ κ5‖FAL(xk, yk, µk)‖22 min

{
δ,

1

1 + Ω

}
. (A.4)

The next lemma shows that the while loop at line 21, which is responsible for ensuring

that our adaptive steering conditions in (13) are satisfied, terminates finitely.

Lemma A.5 ([15, Lemma A.5]) The while loop that begins at line 21 of Algorithm 3 ter-

minates finitely.

The final lemma of this section shows that sk is a strict descent direction for the AL function.

The conclusion of this lemma is the primary motivation for our use of the convexified model

q̃.

Lemma A.6 ([15, Lemma A.6]) At line 26 of Algorithm 3, the search direction sk is a

strict descent direction for L(·, yk, µk) from xk. In particular,

∇xL(xk, yk, µk)
T sk ≤ −∆q̃(sk;xk, yk, µk) ≤ −κ1∆q̃(sk;xk, yk, µk) < 0. (A.5)

A.2 Proof of well-posedness result

Proof of Theorem 2.2. If, during the kth iteration, Algorithm 3 terminates in line 8

or 11, then there is nothing to prove. Thus, to proceed in the proof, we may assume that

line 13 is reached. Lemma A.1 then ensures that

FAL(xk, yk, µ) 6= 0 for all sufficiently small µ > 0. (A.6)

Consequently, the while loop in line 13 will terminate for a sufficiently small µk > 0. Next,

by construction, conditions (13a) and (13b) are satisfied for any µk > 0 by sk = sk and

rk = rk. Lemma A.5 then shows that for a sufficiently small µk > 0, (13c) is also satisfied

by sk = sk and rk = rk. Therefore, line 26 will be reached. Finally, Lemma A.6 ensures

that αk in line 26 is well-defined. This completes the proof as all remaining lines in the kth

iteration are explicit. �

Appendix B: Global Convergence

We shall tacitly presume that Assumption 2.3 holds throughout this section, and not state it

explicitly. This assumption and the bound on the multipliers enforced in line 33 of Algorithm 3

imply that there exists a positive monotonically increasing sequence {Ωj}j≥1 such that for all

kj ≤ k < kj+1 we have

‖∇2
xxL(σ, yk, µk)‖2 ≤ Ωj for all σ on the segment [xk, xk + sk], (B.1a)

‖µk∇2
xx`(xk, yk) + JTk Jk‖2 ≤ Ωj , (B.1b)

and ‖JTk Jk‖2 ≤ Ωj . (B.1c)

Adaptive augmented Lagrangian methods: algorithms and practical numerical experience 27

In the subsequent analysis, we make use of the subset of iterations for which line 31 of Algo-

rithm 3 is reached. For this purpose, we define the iteration index set

Y :=
{
kj : ‖ckj‖2 ≤ tj , min{‖FL(xkj , ŷkj)‖2, ‖FAL(xkj , ykj−1, µkj−1)‖2} ≤ Tj

}
. (B.2)

B.1 Preliminary results

The following result provides critical bounds on differences in (components of) the augmented

Lagrangian summed over sequences of iterations. We remark that the proof in [14] essentially

relies on Assumption 2.3 and Dirichlet’s Test [16, §3.4.10].

Lemma B.1 ([14, Lemma 3.7].) The following hold true.

(i) If µk = µ for some µ > 0 and all sufficiently large k, then there exist positive constants

Mf , Mc, and ML such that for all integers p ≥ 1 we have

p−1∑
k=0

µk(fk − fk+1) < Mf , (B.3)

p−1∑
k=0

µky
T
k(ck+1 − ck) < Mc, (B.4)

and

p−1∑
k=0

(L(xk, yk, µk)− L(xk+1, yk, µk)) < ML. (B.5)

(ii) If µk → 0, then the sums

∞∑
k=0

µk(fk − fk+1), (B.6)

∞∑
k=0

µky
T
k(ck+1 − ck), (B.7)

and

∞∑
k=0

(L(xk, yk, µk)− L(xk+1, yk, µk)) (B.8)

converge and are finite, and

lim
k→∞

‖ck‖2 = c̄ for some c̄ ≥ 0. (B.9)

We also need the following lemma that bounds the step-size sequence {αk} below.

Lemma B.2 There exists a positive monotonically decreasing sequence {Cj}j≥1 such that,

with the sequence {kj} computed in Algorithm 3, the step-size sequence {αk} satisfies

αk ≥ Cj > 0 for all kj ≤ k < kj+1.

Proof of Lemma B.2. By Taylor’s Theorem and Lemma A.6, it follows under Assump-

tion 2.3 that there exists τ > 0 such that for all sufficiently small α > 0 we have

L(xk + αsk, yk, µk)− L(xk, yk, µk) ≤ −α∆q̃(sk;xk, yk, µk) + τα2‖sk‖2. (B.10)

28 F. E. Curtis, N. I. M. Gould, H. Jiang and D. P. Robinson

On the other hand, during the line search implicit in line 26 of Algorithm 3, a step-size α

is rejected if

L(xk + αsk, yk, µk)− L(xk, yk, µk) > −ηsα∆q̃(sk;xk, yk, µk). (B.11)

Combining (B.10), (B.11), and (13a) we have that a rejected step-size α satisfies

α >
(1− ηs)∆q̃(sk;xk, yk, µk)

τ‖sk‖22
≥ (1− ηs)∆q̃(sk;xk, yk, µk)

τΘ2
k

.

From this bound, the fact that if the line search rejects a step-size it multiplies it by

γα ∈ (0, 1), (13a), (A.4), (B.1b), (11), and Γk ∈ (1, 2] (see Lemma A.2) it follows that, for

all k ∈ [kj , kj+1),

αk ≥
γα(1− ηs)∆q̃(sk;xk, yk, µk)

τΘ2
k

≥ γα(1− ηs)κ1κ5‖FAL(xk, yk, µk)‖22
τΓ2

kδ
2‖FAL(xk, yk, µk)‖22

min

{
δ,

1

1 + Ωj

}
≥ γα(1− ηs)κ1κ5

4τδ2
min

{
δ,

1

1 + Ωj

}
=: Cj > 0,

as desired. �

We break the remainder of the analysis into two cases depending on whether there are a

finite or an infinite number of modifications of the Lagrange multiplier estimate.

B.2 A finite number of multiplier updates

In this section, we suppose that the set Y in (B.2) is finite in that the counter j in Algorithm 3

satisfies

j ∈ {1, 2, . . . j̄} for some finite j̄. (B.12)

This allows us to define, and consequently use in our analysis, the quantities

t := tj̄ > 0 and T := Tj̄ > 0. (B.13)

We provide two lemmas in this subsection. The first considers cases when the penalty

parameter converges to zero, and the second considers cases when the penalty parameter

remains bounded away from zero. This first case—in which the multiplier estimate is only

modified a finite number of times and the penalty parameter vanishes—may be expected to

occur when (1) is infeasible. Indeed, in this case, we show that every limit point of the primal

iterate sequence is an infeasible stationary point.

Lemma B.3 ([15, Lemma B.3]) If |Y| < ∞ and µk → 0, then there exist a vector y and

integer k ≥ 0 such that

yk = y for all k ≥ k, (B.14)

and for some constant c̄ > 0, we have the limits

lim
k→∞

‖ck‖2 = c̄ > 0 and lim
k→∞

FFEAS(xk) = 0. (B.15)

Therefore, every limit point of {xk}k≥0 is an infeasible stationary point.

Adaptive augmented Lagrangian methods: algorithms and practical numerical experience 29

The next lemma considers the case when µ stays bounded away from zero. This is possible,

for example, if the algorithm converges to an infeasible stationary point that is stationary for

the AL function for the final Lagrange multiplier estimate and penalty parameter computed

in the algorithm.

Lemma B.4 ([15, Lemma B.4]) If |Y| <∞ and µk = µ for some µ > 0 for all sufficiently

large k, then with t defined in (B.13) there exist a vector y and integer k ≥ 0 such that

yk = y and ‖ck‖2 ≥ t for all k ≥ k, (B.16)

and we have the limit

lim
k→∞

FFEAS(xk) = 0. (B.17)

Therefore, every limit point of {xk}k≥0 is an infeasible stationary point.

This completes the analysis for the case that the set Y is finite.

B.3 An infinite number of multiplier updates

We now suppose that |Y| = ∞. In this case, it follows from the procedures for updating the

Lagrange multiplier estimate and target values in Algorithm 3 that

lim
j→∞

tj = lim
j→∞

Tj = 0. (B.18)

As in the previous subsection, we split the analysis in this subsection into two results. This

time, we begin by considering the case when the penalty parameter remains bounded below

and away from zero. In this scenario, we state the following result that a subsequence of the

iterates converges to a first-order stationary point.

Lemma B.5 ([14, Lemma 3.10].) If |Y| =∞ and µk = µ for some µ > 0 for all sufficiently

large k, then

lim
j→∞

ckj = 0 (B.19a)

and lim
j→∞

FL(xkj , ŷkj) = 0. (B.19b)

Thus, any limit point (x∗, y∗) of {(xkj , ŷkj)}j≥0 is first-order stationary for (1).

Finally, we consider the case when the penalty parameter converges to zero.

Lemma B.6 ([14, Lemma 3.13]) If |Y| =∞ and µk → 0, then

lim
k→∞

ck = 0. (B.20)

If, in addition, there exists a positive integer p such that µkj−1 ≥ γpµµkj−1−1 for all sufficiently

large j, then there exists an infinite ordered set J ⊆ N such that

lim
j∈J ,j→∞

‖FL(xkj , ŷkj)‖2 = 0 or lim
j∈J ,j→∞

‖FL(xkj , π(xkj , ykj−1, µkj−1))‖2 = 0. (B.21)

In such cases, if the first (respectively, second) limit in (B.21) holds, then along with (B.20) it

follows that any limit point of {(xkj , ŷkj)}j∈J (respectively, {(xkj , ykj−1)}j∈J) is a first-order

stationary point for (1).

30 F. E. Curtis, N. I. M. Gould, H. Jiang and D. P. Robinson

B.4 Proof of global convergence result

Proof of Theorem 2.4. Lemmas B.3, B.4, B.5 and B.6 cover the only four possible

outcomes of Algorithm 3; the result follows from those described in these lemmas. �

	RAL-P-2014-011 - cover
	RAL-P-2014-011 - report
	Introduction
	An Adaptive Augmented Lagrangian Line Search Algorithm
	Preliminaries
	Algorithm Description
	Well-posedness and global convergence

	Numerical Experiments
	Matlab implementation
	Implementation details
	Results on CUTEst test problems
	Results on COPS test problems
	Results on optimal power flow (OPF) test problems

	An implementation of Lancelot that uses steering
	Implementation details
	Results on CUTEst test problems

	Conclusion
	Preliminary results
	Proof of well-posedness result
	Preliminary results
	A finite number of multiplier updates
	An infinite number of multiplier updates
	Proof of global convergence result

