An Overview of the Recent
Development of Indirect Inelastic
Data Analysis in Mantid

Jackson, S

September 2014

vvf24852
Typewritten Text

vvf24852
Typewritten Text

vvf24852
Typewritten Text

©2014 Science and Technology Facilities Council

This work is licensed under a Creative Commons Attribution 3.0
Unported License.

Enquiries concerning this report should be addressed to:

RAL Library

STFC Rutherford Appleton Laboratory
Harwell Oxford

Didcot

OX11 0QX

Tel: +44(0)1235 445384
Fax: +44(0)1235 446403
email: libraryral@stfc.ac.uk

Science and Technology Facilities Council reports are available online
at: http://epubs.stfc.ac.uk

ISSN 1358-6254

Neither the Council nor the Laboratory accept any responsibility for
loss or damage arising from the use of information contained in any of
their reports or in any communication about their tests or
investigations.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
mailto:libraryral@stfc.ac.uk
http://epubs.stfc.ac.uk/
http://creativecommons.org/licenses/by/3.0/�

An Overview of the Recent Development of Indirect
Inelastic Data Analysis in Mantid

Samuel Jackson

ISIS Facility
STFC Rutherford Appleton Laboratory

samuel. jackson@stfc.ac.uk

September 1, 2014

Contents

I__Abstractl
[2__Introduction

[3 Indirect Geometry Instruments|

4.1 Data Reduction Theory|
[4.1.1 Diffraction Reductionl o

4.2 Data Analysis Theoryl e

4.2.1 Convolution Theory|

4.2.2 Bayesian Analysis|

4.2.3 Absorption Corrections| e

5D Reduchi ih Mantid

b.1 Convert To Energy|

p.1.1 Energy Transfer]

0.1.2 Calibration
5.1.3 Diagnostics|

5.1.4 Transmissionl e e e e e

515 S(Q.uw) . .

5.1.6 S(Q,w) Moments|.

[b.1.7 Support for the ILL|

[6 Data Analysis with Mantid|

6.1 Basic Analysig| . .

6.1. ury|]
6.1.4 FuryFit| . .
[6.1.5 ConvEitl] . .

[6.1.7 Apply Corrections|

6.2 Advanced Analysis|

6.2.4 Jumpkit|. .

6.3 TOSCA Data Analysis|

6.4 VESUVIO Data Analysis| e

6.5 Data Analysis GUI|

16.5.1 Indirect Data Analysis GUI Overview|

16.5.2 Indirect Bayes GUI Overview|

6.6 An Example of Basic Data Analysis| o o000

6.7 An Example of Advanced Data Analysis| 0oL,

[/ Materials Modelling|
T Iod Sonlaton

10
10
10
11
11

13
13
13
15
16
17
18
19
19
20
22
22
23
23

26
26
26
27
27
28
29
30
30
31
32
32
32
33
33
33
34
34
35
35
38

40

72 OMOIDYL] .« . o o oo e 40

[7.3 Density Of States|. e 40
[8 Planning For the Future 41
[8.1 Conversion of Existing Routines to Algorithms and Work-Flow Algorithms| 41
8.2 Better Automated Test Coverage| e 42
8.3 Improved GUI structure and design|. Lo 42
8.4 Simulation Support in Mantid|.o oL 44
[8.5 Conversion of Remaining Fortran Routines| 44
8.6 Support for VESUVIO|. o o 44
[8.7 Additional Support for TOSCA|« o 45
[8.8 Improved Support for Other Facilities] 45
8.9 Multiple Scattering Support|o 45

1 Abstract

Mantid [I], the Manipulation and Analysis Toolkit for Instrument Data, is an open source and cross
platform data analysis application specialising in neutron and muon scattering data. Recent development
work has been undertaken to improve support for indirect geometry spectrometers, particularly in regard
to those based at ISIS. This document aims to provide an overview of the current progress of development
and describe from a technical perspective the procedures used in data reduction and analysis. The final
section of the document then loosely outlines areas to focus on in further development in relation to the
requirements described by instrument scientists.

2 Introduction

Mantid [I] is an open source, cross platform framework for the analysis of neutron and muon scattering
data. The project is primarily written in C+4 with a Python API. The project includes a GUI based off
of the QtiPlot project and is primarily written using the Qt library.

Mantid aims to provide a single platform for neutron and muon scattering data analysis to all facilities
across the world. It is developed by two teams of developers, one based at the ISIS facility at Rutherford
Appleton Laboratory UK, the other at the Spallation Neutron Source (SNS) at Oak Ridge, Tennessee,
USA. Recently additional partners from the Institut Laue-Langevin located in Grenoble and the Paul
Scherrer Institute in Wrenlingen, Switzerland have also contributed.

The project is currently still under heavy development and provides regular incremental releases for
evaluation and feedback from instrument scientists and scientific community in general and is therefore
constantly evolving with each release. Until recently, Mantid operated on a three month release cycle.
This has now been changed to so that the project releases every four months, with a longer emphasis on
the testing and integration phase of development.

Time-of-flight neutron scattering instruments supported by Mantid, such as those based at ISIS and the
SNS, can broadly be split into three categories based on the geometry of the instrument. In a direct
instrument geometry the incident energy is fixed using choppers to select a specific incident wavelength
directed towards the sample. Indirect or inverted geometry instruments use a polychromatic incident beam
to scatter from the sample and select the final energy using a crystal analyser. Triple axis spectrometers
use crystals both to moderate the incident beam and select the final energy of scattered neutrons [2]. This
document focuses on the development progress of indirect geometry instruments within Mantid.

Up until now the indirect geometry section of Mantid has largely been based off of the the existing
MODES application which in turn was based on OpenGenie [3] and the IRIS Data Analysis package
[4]. The majority of the functionality has now been integrated into the Mantid framework in one form
or another and we are now beginning to reach a point where we can expand the existing functionality
further.

This document aims to give an overview of the current stage of development for the indirect geometry
instruments section of the application as it currently exists in as much detail as possible to provide a
historical snapshot of the progress so far. The remainder of the document then provides a weak outline of
suggested directions for future development.

3 Indirect Geometry Instruments

Indirect geometry time-of-flight instruments, like the IRIS, OSIRIS, TOSCA, and VESUVIO spectrometers
at ISIS are those in which the incident beam is polychromatic and crystal analysers are typically used to
determine the final energy. Together these instruments cover a broad energy range. IRIS and OSIRIS
operate in a low energy range of -0.4 - 0.4 meV (depending on the analyser used) and can be used to
carry out Quasi-elastic neutron scattering around the elastic line [8, 9]. This is useful for studying the
effects of diffusion and tunneling. TOSCA covers the 0 - 500 meV range for investigating the lattice and
intra-molecular structure of matter [10]. VESUVIO operates at high energies of 5 - 150 eV and is used to
perform deep inelastic neutron scattering [14]. Diagram compares the energy range covered by the
indirect geometry instruments at ISIS and the applicable techniques at each energy range.

Timescales [sec]

1x107 to
1o x107 ax10™ 1x10™ 1x10™ 1x10™ 1x10™
PR [T T
9 Brillouin, THz & Raman Infrared & Raman VIS, UV, Xvay |
E Spectroscopy Spectroscopy (not precisely equivalent)
I e T E R -
_______ Proton_______Surface ___(Catalytic ___Quantum ________
! conduction Adsorption Activity Effects

Inelastic
(lattice & intramolecular modes)

w

c

g ! Deep Inelastic

3 | Single-parice (Gompton Scatiering

2
! Quasielastic .
| (diﬂusion!tunnelliMJ |
e e R e

line 10 10 10 10 10 10
Energy [meV]

Figure 3.1: Energy ranges of various inelastic techniques. The ISIS instruments IRIS and OSIRIS cover the
Quasi-elastic range, TOSCA covers the inelastic range and VESUVIO covers deep inelastic neutron
scattering.

IRIS and OSIRIS share the N6 beamline in target station 1 at the ISIS facility. Both instruments are
fed via curved guides from the source moderator. Two choppers positioned at 10m and 6.3m from the
instruments define the incident wavelength band and prevent frame overlap [5]. TOSCA is located on the
N4 beamline in target station 1 with a incident flight path of 17m and also has a chopper on the incoming
beamline to prevent overlap and remove fast neutrons [6]. VESUVIO is located on the S2 beamline and
has an incident flight path of 11.005m [7].

The final energy for inelastic instruments such as TRIS, OSIRIS and TOSCA is determined by the
reflections from analyser crystals by means of Bragg scattering. IRIS and OSIRIS both have pyrolytic
graphite crystal analysers with reflection planes 002 and 004 delivering a final energy of E;=1.845 and
7.38 meV respectively [8, [9]. This design leads to a resolution of 17.5 and 54.5 peV for the 002 and 004
reflections on IRIS and 25 and 99 peV on OSIRIS. IRIS additionally has a mica (muscovite or fluorinated)
crystal analyser bank with reflections 002, 004, and 006, and Ey corresponding to 0.207, 0.826, and
1.86 meV respectively which provide better resolutions (at the cost of intensity) of 11ueV (006), 4.5ueV
(004) and 1.2peV (002) compared to graphite. Recently, OSIRIS has had an upgrade which expands the
operational energy range to -0.25 to 25 meV with the pyrolytic graphite analyser with reflection 002. The
primary setting for both instruments is graphite with reflection 002. TOSCA has just a pyrolytic graphite
analyser with 002 reflection [6] and achieves a resolution of roughly 1.25% of the measured energy transfer
[10].

VESUVIO operates on the principle of neutron Compton scattering and uses a pair of gold foils which can

be moved into different positions for use with the foil cycling technique described in [I1] which produces
a neutron absorption resonance at 4.9 eV £ 0.15 eV, emitting a -ray cascade which is detected by the
instrument’s Yttrium Aluminium Perovskite v-ray detectors [12].

4 Theory

Neutron scattering experiments are used to probe the structure of materials at a fundamental level. The
results of such experiments can be used to learn a great deal about the internal structure of a sample and
how it can behave under different conditions. In a neutron scattering experiment, a beam of neutrons is
produced at a source (such as the one provided by ISIS) and directed to the various instruments attached
to the beam line. These neutrons then scatter from the sample placed in the instrument. The angle and
energy at which scattered neutrons are detected can then be used to deduce the structure and dynamics
of the sample.

There are two main types of neutron scattering: elastic and inelastic. Elastic scattering is the special
case when the final energy is equal to the incident energy and there is no energy transfer and the kinetic
energy of the incident neutrons remain unchanged. Inelastic scattering is the more general case where a
change in the kinetic energy of the incident neutron occurs [13].

4.1 Data Reduction Theory

Before data analysis can begin, the raw data collected from the instrument must be converted to an
instrument independent function that describes the proportion of incident neutrons scattered with a
given momentum and energy transfer known as S(Q,w). Obviously, in order to calculate S(Q,w) the
quantities of Q (wavevector transfer) and w (energy transfer) must first be derived.

Li>> 1.

G

SR

Lot

Figure 4.1: Diagram of the basic principle of an indirect geometry neutron scattering experiment. M is the
moderator, S is the sample, and D is the detector [5]

In order to convert the raw data collected from the instrument from units of time-of-flight to energy
transfer known parameters of the geometry of the instrument instrument are used, as illustrated in figure
The raw time-of-flight data is recorded in counts per microsecond and can be calculated using the
parameters of the instrument from the time-of-flight equation:

Ly Lo
t=—+ — 4.1
%1 * Vs (4.1)

Where L is the distance between moderator and sample, Lo is the distance between the sample and
detector, and V; and V4 are the incident and final velocities of a neutron. The final energy detected by
a detector can be written in terms of a neutron’s mass (m,,) and velocity (v) from the sample to the
detector:

= Sma(La/t2) (4.2)

Which can also be written in terms of the distance between sample and detector (L2) and the corresponding
time-of-flight over this distance (¢2). To calculate the transfer of energy knowledge of the flight path
between the moderator and sample (L;) and the time of flight over this distance (¢1) can be used to
calculate the incident energy using equation above. In indirect geometry instruments, the final energy
is fixed by the crystal analysers which filters any neutrons with wavelengths not satisfying the Bragg
condition:

A = 2dsin(0) (4.3)

Where) is the neutrons wavelength, d is the spacing between planes in the crystal lattice, and 6 is the
scattering angle. The transfer of energy is then simply the difference between the incident and final
energy:

AE =B, — E; - %mn[(L1 Jt1 = t2)? — (L1 /t2)?] (4.4)

This is the basic theory behind the convert to energy reduction routine described in section [5.1.1
Momentum transfer Q, is defined as the difference between the final and incident wave vectors.

Q=Fk;—k; (4.5)

Where k; and k; are the incident and final wave vectors. The magnitude of Q is defined as:

Q* =k} + k} — 2kikycos26 (4.6)

Where 0 is the scattering angle of the sample [I3]. In reality, the S(Q,w) cannot be directly measured
by experiment because of the resolution of the instrument. Instead, the quantity measured from the
instrument (denoted I(Q,w)) is a convolution between the scattering function and the instrument
resolution:

1(Q,w) = 5(Q,w) @ R(Q,w) (4.7)

Where S(Q,w) is given by:

b ? _ow 4 (w
S(Q,w) = Zjﬁ Q? < u;j >2Ze QWh(w) (4.8)
J

Where b; is the neutron scattering length of the atom, M; is the mass of the atom, < u; > is the amplitude
of vibration of each atom, Z(w) density of states of a molecule, and e~2" is the Debye-Waller factor [5]
to correct for thermal energy in which W is equal to:

1

And < u?v[gp > is the mean squared displacement of the scattering atom. The mean squared displacement
is the quantity that is analysed using the MSDFit routine described in section [6.1.2

This theory is only relevant for IRIS, OSIRIS, and TOSCA spectrometers. The theory behind data
reduction for the deep inelastic neutron scattering instrument VESUVIO is completely different and is
based on the validity of the impulse approximation at sufficiently high energy and momentum transfer. A
detailed description of the theory behind data analysis and reduction for VEUSVIO can be found in Ref.
[14].

4.1.1 Diffraction Reduction

In the case of diffraction experiments, there is no need to convert to energy transfer or S(Q,w). Instead,
the results are converted from the raw time-of-flight data to d-spacing, the distance between the planes in
a lattice. Results are calculated using known parameters of the instrument via the time-of-flight equation
(equation and Bragg’s law (equation . Diffraction experiments may be run either on their own or
in parallel with spectroscopy.

At pulsed time-of-flight sources such as ISIS a wavelength scanning method can be used to determine the
scattering vector by varying the wavelength of the incident wavevector and keeping the scattering angle
constant thereby satisfying the Bragg condition [2]:

Q = 4wsin(0) /A (4.10)

Using equations [4.3] and the d-spacing of a sample is given as a function of the scattering angle 6 and
distances between the source and sample Ly and sample and detector Lq:

iy QtSm(e)MZ(Lo + L) (4.11)

Where t is the time-of-flight, M, is the mass of a neutron and A is the Planck constant.

4.2 Data Analysis Theory
4.2.1 Convolution Theory

Data analysis of inelastic scattering data is primarily concerned with separating the scattering function
from the instrument’s resolution function in the relation defined by equation [£.7]. In theory, these can
then be separated through the deconvolution of the two functions. There are several different functional
forms that may occur depending on the sample used:

e The simplest case is when there is a simple diffusive motion within the sample S(Q,w) and R(Q,w)
will both have the form of a Lorentzian and hence the convolution of the two will also be a Lorentzian.

e The second case is when both the scattering function and the resolution function have simple
functional forms. For example, when S(Q,w) is a Lorenztian and R(Q,w) is a Gaussian.

e The final case is when R(Q,w) does not have a simple functional form, and so must be convoluted
numerically with the S(Q,w).

The typical way to handle the latter case is through fitting the appropriate model to the convoluted data
and is the purpose of the ConvFit interface described in section which provides a least-squares fit to
the convolution of the measured data and the resolution.

An alternative method of deconvolution of the scattering and resolution functions is through the interme-
diate scattering function, denoted I(Q,t) which is proportional to the Fourier transform of the scattering
and resolution functions:

1(Q,t) = 5(Q,t) x R(Q,t) (4.12)

As the resolution of the instrument is known, the intermediate scattering function can be divided by the
resolution and back transformed to obtain the scattering function. This method has the advantage in that
the form of the function does not have to be assumed, but the back transformation from S(Q,t) to the
true scattering function is problematic due to the phase problem [I3] and the propagation of statistical
errors [15]. The Fury routine (section provides an interface to perform a Fourier transform on the
measured data and resolution, but does not provide an automated back transformation because of the
aforementioned issues.

10

4.2.2 Bayesian Analysis

An alternative method to model fitting is the use of Bayesian methods to select the best model for the
data based on a choice of possible functions. One method described by Sivia [16] selects the most likely
choice of model from sum of a §-function and zero or more Lorentzians convolved with the resolution
function of the instrument. Using this method, the number of Lorentzians is iteratively varied and the
optimum number selected as the final model. An extension of this method replaces the sum of Lorentzians
with a single stretched exponential function. For each group of spectra, the best value for the 8 and
I’ parameters is obtained [3]. This model can be used to fit the shape resulting from polymer samples
[4, 17, 18], and is the basis behind the Stretch program described in section

From the width parameters of the selected model diffusion can be interpreted. This is typically done by
modelling jump diffusion where it is assumed an atom remains at a given site for a length of time before
moving rapidly to a new site in a time that is negligible to the time spent being stationary. There are
several different models for diffusion depending on the application. The Chudley-Elliott form assumes the
atom jumps from one point to its nearest neighbour site [distance away in a Bravis lattice [I9] and has
the form:

Q) = (h/mt) - (1 — sin(Q1)/QL) /T (4.13)

The Hall-Ross [20] form models the diffusive jump motion as several steps and does oscillatory motion at
alternate sites.

L(Q) = (h/xt) - (1 — exp(—1Q%)) /7 (4.14)

Teixeria’s model [21] is used to study the dynamics of super cooled water and has the form:

I'(Q) = DQ*/(1+ DQR?) (4.15)

Where the diffusion constant D is equal to:

D=<1*> /67 (4.16)

Finally the Fick diffusion model [22] has the form:

1(Q) = DQ? (4.17)

Each of these functions are implemented as part of the JumpFit interface (section , but are also
available through the generic fit wizard in Mantid.

4.2.3 Absorption Corrections

A sample typically must be corrected for absorption by the sample and by its container. Typically a
sample will need to be corrected for flat plate geometry [23] or cylindrical geometry [24]. The methods
for cylindrical geometry used in Mantid have been adapted from the methods described in the ATLAS
manual [24].

Absorption corrections use the formalism specified by Paalman and Pings [25] to describe the attenuation
factors of a sample/container. They are denoted by A;; where i refers to scattering and j refers to
attenuation. For example, A, . is the attenuation factor for scattering in the sample plus container. The
scattering cross sections for the sample and container are denoted as ¢ and .. The scattering from an
empty container is then given by:

11

Ic - E0140,0 (418)

Scattering from the sample plus the container is then given by:

Iye = E5143,50 + Ecfélc,sc (419)

The scattering cross section for the sample can the be calculated as:

Ys = (IscIcAc,sc/Ac,c)/As,sc (4.20)
There are two routines in Mantid which perform these corrections. Calculate Corrections calculates the

attenuation parameters A; ;, while Apply Corrections uses them to calculate ¥ based on the geometry
as described here.

12

5 Data Reduction with Mantid

Mantid provides a collection of graphical user interfaces for the specialised indirect inelastic data reduction
routines under the menu Interfaces > Indirect. The majority of these routines are based on or directly
ported from the MODES 3 and IRIS Data Analysis (IDA) packages [3, 4]. As such, the core of the
functionality of these routines has mostly remained the same, but the implementation has changed. This
section outlines the current development of each of the interfaces and routines available.

The Convert to Energy interface provides the initial entry point for data into Mantid for indirect
instruments. The functionality of this interface is currently also shared with the direct instruments,
although a separation of the interfaces is planned in future releases.

The code for data reduction programs are primarily stored in the inelastic scripts folder of the Mantid
installation (<Installation Directory>/Mantid/scripts/Inelastic). The energy conversion reducer is in a
file called inelastic_indirect_reducer.py while the diffraction reducer is in IndirectDiffractionReduction.py.
The reduction steps used by both are in inelastic_indirect_reduction_steps.py. The generic reducer class
is stored in the reduction folder (<Installation Directory>/Mantid/scripts/reduction). Miscellaneous
energy reduction routines are stored in IndirectEnergyConversion.py which is also in the inelastic scripts
folder.

5.1 Convert To Energy
5.1.1 Energy Transfer

The Energy Transfer tab on the Convert To Energy interface is the starting point for data reduction.
The energy transfer routine, as the name suggests, is used to convert a raw file representing a sample run
from the time-of-flight measurement to units of energy transfer and also performs general preprocessing
of the data to get it ready for analysis.

The structure of the underlying energy transfer reduction routine is based on the older Mantid concept of
a Reducer class which has since been superseded by the concept of algorithms and work-flow algorithms.
The Reducer class contains a list of ReductionSteps which represent a single logical operation to be
carried out as part of the reduction. ReductionSteps just execute Mantid algorithms and contain the
actual implementation details of the operation to be performed.

1
Reducer » ReductionStep

-
P B o e

& LoadData HandleMonitors ConverfToEnergy Other Steps...

f)

MSGDiffractionReducer IndirectReducer

Figure 5.1: Diagram showing the class structure for the inelastic reducers and accompanying reduction steps.

Figure [5.1] shows the class structure of indirect reducers and a subset of the reduction steps that are
defined for indirect energy reduction. In indirect data analysis there are two concrete reducer objects.
One for energy conversion (IndirectReducer) and one for diffraction reduction (MSGDiffractionReduction).
This section will just focus on the IndirectReducer. For discussion on diffraction reduction see section
5.2

13

The IndirectReducer object defines what steps should be executed as part of a reduction work-flow
and is the point at which the parameters gathered from the user interface are passed to the program.
After setting up each reduction step with the relevant parameters, the reducer then iterates over the
list of steps and executes each one in turn on the sample run to be reduced. Reducer objects also have
the option to define a preprocessing function which is only executed once regardless of the number of
runs being processed. The MSGReducer, which is the superclass of both the IndirectReducer and the
MSGDiffractionReducer, uses this to execute the loading step to get the sample run(s) to be reduced into
memory before continuing with the rest of the reduction on a per run basis.

Load Data Handle Monitor Background Operations Correct By Monitor Detailed Balance

A ralee]
_—lelse]

Convert Run Units to
Wavelength

Load Runs o s

(inc. Logs If Required)

[background operations] [detailed balance temperature]

Rebin Workspace To - -
- i Convert To Distribution) [€1S€] i Exponential Correction
[hg\i)i][eme],._ [unwrap monitor] _ Maonitor 11.606 /(2 *temp) -
chop data)

FFTSmooth

Convert Monitor Units
to Wavelength

Scaling

Calculate Flat Background Divide By Monitor
Convert From Distribution

Apply Calibration Convert To Energy

Chop Data
Crop Detector Range

P 1

Tels
< —lelse]

[sum runs]

[else]

>
< >—[e|se]—-_

[scale factor]

——— Scale By Factor

Convert Units to
DeltaE

< ——else]

OneMinusExponential
-Correction

[apply calibration] Grouping

Divide By Calibration

Perform Ki / Kf

Work: -
Scale By 1/n Oricspace Multiplication Group Detectors
By Scheme
(Fixed, File, etc.)
| Fold Data Convert To Cm#-1 Saving Naming
/L\ s lalzal - laleal s Teleal -
< o—lelse]l— —lelse] - T o—Jelse]l— . [else]— .l
N -
[multiple frames] [convert to cm-1] ‘ [save output] [rename output]

;) Save To Output)
A A
Convert Units To Cm*-1 Formats (nxs, acsil, etc.) Rename Workspace

Weight Contributions
From IndividualFrames

Figure 5.2: Activity diagram showing the flow of execution for energy transfer reduction in release 3.2.

The steps involved in energy transfer reduction are shown in activity diagram along with the major
operations performed within each step and the flow of execution for the reduction. The responsibility of
each of the steps are as follows:

e Load Data - The load data step loads each individual sample run from file using the correct loader
for the currently selected instrument. If the option is selected it will also attempt to load the logs
for the runs as well. If the current instrument has the parameter Workflow.ChopDatalfGreaterThan
defined in its instrument parameter file (IPF), the reduction step splits the data into multiple
frames using the ChopData algorithm. The routine will then extract the monitor from the loaded
workspace and crop the workspace to the desired detector range. If the sum option is checked the
runs will be merged into a single workspace and averaged, otherwise subsequent steps are executed
on each run individually.

e Handle Monitor - Next the reducer prepares the monitors for correction in a later step. This
involves rebinning the monitor according to the step size defined in the IPF. Next it will unwrap
the monitor, if required, using the UnwrapMonitors algorithm to convert the workspace to have
common bins within the maximum wavelength range given a reference flightpath between source,
sample and the first detector. It then tidies up the monitor by removing the bin at the joining
wavelength and smooths it Using FFTSmooth. Finally it converts the units of the workspace to

wavelength, performs an exponential correction for the thickness, attenuation, and area of the
monitor and scales it if a scaling factor is defined in the IPF.

e Background Operations - This step simply calculates a flat background for the detector data if
parameters are defined for the background range by calculating the mean of the bins in this range
before dividing by the width of the x range.

e Apply Calibration - If a calibration file was supplied as a parameter to the reduction, the reducer
will divide the workspace by the calibration run at this point. This just uses the standard Mantid
Divide algorithm.

e Correct By Monitor - The reducer then corrects the workspace by the preprocessed monitor by
converting the units to wavelength then rebinning it to and dividing it by the monitor.

e Convert To Energy - The conversion of the workspace to units of energy is then performed and
multiplied by k;/k; to transform the differential scattering cross section into a dynamic structure
factor. The workspace is then rebinned according to the user defined rebin string if one was supplied.

e Detailed Balance - The detailed balance step performs an exponential correction on the data if a
temperature parameter was defined by the user. This uses the ExponentialCorrection algorithm.

e Scaling - This step will scale the workspace by an arbitrary factor supplied by the user.

e Fold Data - If the data was split into multiple frames during the loading step the fold data step is
performed. The individual frames are merged back into a single workspace (using the MergeRuns
algorithm) and the workspace is scaled by averaging the contributions of each individual frame
across the x range.

e Convert To Cm ™" - If the option was selected, the workspace is converted to units of wavenumber.

e Saving - If any save options were selected, the reduced workspace is saved in the desired formats
to the default save directory.

e Naming - Finally, the reduced workspace is renamed according to the instrument-analyser-refection
convention used in the Mantid indirect framework.

Note that the instrument parameters used in energy transfer reduction are defined in files called <i
nstrument_name>_Parameters.xml and <instrument_name>_<analyser>_<reflection>_Parameters.x
ml where the instrument name, analyser, and reflection are replaced by the actual values used (e.g.
IRIS_graphite_002_Parameters.xml) and are kept in the instrument folder within the Mantid installation
directory.

5.1.2 Calibration

The calibration section of the convert to energy interface can be used to create calibration and resolution
files using vanadium sample runs which are used as part of data reduction and analysis. Calibration
workspaces are generated by creating and executing a single reduction step object (without creating a
reducer object) called CreateCalibrationWorkspace. The procedure for generating a single calibration file
is to load the runs and if there is more then one of them merge them and scale the output workspace by
a factor of 1/ number of runs. A flat background is then calculated using the background range supplied
by the user. The routine then integrates over the peak range (again supplied by the user) and scales
the resulting workspace by an arbitrary factor. An activity diagram for the routine is shown in figure

B3l

15

CreateCalibrationWorkspace Resolution

Convert To Energy

Load Runs Reduction

PN
. PN
—{else]—, < o lesel—
- ~

AN
— <

[no. runs = 1] [scale factor]

Scale By

MergeRuns User Factar

Calculate Flat
Background

Scale By
1/ne. runs

Calculate Flat
Background

Integrate <.: \,\)’-[Clscl— \
~

[save]

Scale —></’.\'I -
-/ Save Nexus = H\.u

ey
Iy

Figure 5.3: Activity diagram showing the major steps of execution performed when creating a calibration and
resolution workspace.

As mentioned, the calibration interface can also create resolution files for later use in data analysis. This
routine, like many within the indirect code base, is separate from the reducer-reduction step framework
and is just a python function which is executed with parameters supplied from the interface. To create the
resolution file, the routine first takes the vanadium run supplied on the calibration interface and converts
it to energy using the energy transfer reducer described in section but sets the detector mapping
to use all detectors and will sum multiple runs if more than one run is used. It then, like calibration,
calculates a flat background from a range supplied by the user, rebins it according to the parameters
specified for the instrument, and optionally saves the workspace to file in the default save directory.

5.1.3 Diagnostics

The diagnostics routine (called Slice in IndirectEnergyConversion.py, named after the older routine from
MODES [3]) provides an integration over a specified time-of-flight range. The slice routine begins by
loading input files and a calibration file if supplied. If a calibration workspace is supplied, it is cropped to
remove the monitors and match the range of the input raw file. Each sample workspace is cropped to the
desired number of spectra and divided by the calibration workspace if it exists. The workspace is then
integrated across the supplied time range. If two ranges are given the second range is used to remove a
flat background prior to the integration using CalculateFlatBackground. Finally, the resulting workspace
is transposed using the algorithm of the same name.

16

Diagnostics

Load Sample Crop Calibration
Waorkspace
c< —[elsel—.
T
[calibration file] < ——else]—,
— [two ranges]

Load Calibration
File

Calculate Flat
Background

Integrate

Transpose

CropWorkspace
Crop Calibration
Waorkspace

&
S

—[elsa]

[calibration file]

Divide Sample by
Calibration Workspace

Figure 5.4: Activity diagram showing an activity diagram for the diagnostics routine.

5.1.4 Transmission

The transmission routine is a simple program used to calculate the measured transmission of a sample
using the incident and transmission monitors. Using a run of both the sample and the can, monitors
from each raw file are extracted and converted to units of wavelength. The transmission monitor for each
run is then normalised by the incident monitor over the common wavelength range. Finally, the sample is
divided by the can to give the sample transmission as a function of wavelength.

The procedure for doing this using the Mantid API is shown in the activity diagram The routine
assumes that the first two spectra in a raw file are the monitors (as is generally the case for ISIS indirect
instruments) where the first is the incident monitor and the second is the transmission monitor. It also
loads the third spectrum in the raw file (which should be actual detector data) to use as a reference time
range.

If the first value on the detector’s x-axis matches the corresponding value on the incident monitor it
simply converts the monitor workspace to units of wavelength. If it does not match the monitor must
first be unwrapped using the UnwrapMonitor algorithm with a hard coded parameter for the flight path
of 38.76. Then it corrects the join wavelength for the UnwrapMonitor algorithm by removing the bins at
the join with a linear interpolation method that uses the FFTSmooth algorithm for smoothing. It then
crops the incident monitor to the shortest wavelength of the two monitors and rebins the second monitor
to match. Finally the transmission monitor is divided by the incident monitor.

17

Transmission

Load First 3 Spectra

<< ———]else]

FFTSmooth

onvert Units of Second
Manitor to Wavelength

[mianitors time-of-flight
range match]

Convert Units of First
Maonitor to Wavelength

Crop Workspace

Rebin Second Monitor
to First

Divide Sample Monitors
By Can Monitors)

Divide Second Maonitor
by First

Repeat For Can

Group Waorkspaces

Repeat
]

-
()
‘\. /4

Figure 5.5: Activity diagram showing the flow of execution for the Transmission routine.

This procedure is repeated for both the sample and the can file provided by the user. After the monitors
for both the sample and can have been converted the sample transmission monitor is divided by the
can transmission monitor. Finally, a group workspace containing the sample transmission monitor, can
transmission monitor, and sample transmission monitor with can removed is created.

5.1.5 S(Q,w)

In this interface, reduced files created as part of an energy transfer reduction can be converted to an
S(Q,w) workspace. The Mantid framework has a collection of three algorithms that are used to convert
a workspace from energy transfer to S(Q,w) depending on the choice of rebinning to use. The mapping
between S(Q, w) algorithms and the rebin types are given in table The code for running an S(Q, w)
conversion is entirely contained within the Indirect interface where it dynamically builds a string of
python code that is then executed. Optionally, the user many rebin the workspace in energy before hand.
If this is case the routine simply calls the rebin algorithm with supplied parameters.

Rebin Type Algorithm Used
Centre SofQW
Parallelepiped SofQW?2
Parallelepiped / Fractional Area SofQW3

Table 5.1: Table showing the relationship of rebin types to SofQW algorithms

The approach to rebinning taken by each of the algorithms listed in table is as follows:

e SofQW - The simplest version of the algorithm iterates over each individual detector in a workspace
with units of energy transfer and calculates the value of QQ using parameters from the instrument
and detector and rebins by using the centre point of the bin between two points in the workspace.

18

e SofQW?2 - This version calculates the width of theta over all detectors and uses the maximum and
minimum as the offset for the value of theta in combination with two points in energy transfer to
define a quadrilateral for rebinning. This algorithm inherits from the Rebin2D algorithm and uses
its methods to rebin both axes without the use of the fractional area option.

e SofQW3 - The third version of the algorithm is an extension of the second. Again, this algorithm
inherits from Rebin2D but uses the fractional area option to rebin. This algorithm also takes into
account the angular width based on each individual detector and in the case of PSDs also accounts
for the value of phi.

5.1.6 S(Q,w) Moments

SofQWMoments

onvert Moment
Workspace to
Histogram

Integrate Moment
Woaorkspace

Transpose Moment
Workspace

Crop Workspace to
Energy Range

< > [elze]

[Scale sample]

Scale Warkspace

Repeat for each
maomant

Convert To Point Data

Create X Workspace
ultiply Sample by
‘Workspace

Multiply Each
Successive
Workspace by X
‘Workspace

Convert Units to
Momentum Transfer

Group Workspaces

-
@
-

Figure 5.6: Activity diagram showing the flow of execution for the SofQWMoments algorithm.

This is a new addition in Mantid 3.2 and provides a simple routine for calculating the first four statistical
moments of an S(Q,w). This is implemented as a standard Mantid algorithm (SofQWMoments) which is
created and called from the interface though the algorithm manager and produces a group workspace
with one workspace for each moment for every detector and which has been transposed in order to make
visualisation of the workspace easier.

This algorithm proceeds by first cropping the sample to the desired energy range and optionally scaling it
by an arbitrary factor. The sample is then converted from histogram data to point data. A workspace
containing the x values of the sample workspace on both axes is then created using the CreateWorkspace
algorithm. The sample workspace is then multiplied by this workspace using the Multiply algorithm. The
result of this operation is then multiplied by the X workspace. This process repeats on each successive
resulting workspace for every moment. These resulting workspaces are then converted back to histogram
data, integrated, transposed, and converted to units of momentum transfer. Finally each of the moment
workspaces is placed in a single group workspace.

5.1.7 Support for the ILL

The convert to energy reduction currently supports instrument at ISIS and the SNS. In release 3.2 a
lot of work has been done in order to increase the level of support for ILL instruments. Prior releases

19

of Mantid added a loader for ASCII data files from the ILL to the Indirect Load ASCII interface and
are stored in the file IndirectNeutron.py. In 3.2 loaders for various ILL instruments (including the very
useful LoadILLIndirect) have been added. Additionally, a new reduction algorithm for IN16B, called
IndirectILLReduction, has been created to give support for energy transfer reduction within Mantid.
Future releases aim to integrate this algorithm into the current reduction chain and therefore completely
remove Indirect Load ASCII from the system.

5.2 Diffraction Reduction

Another key part of data reduction is the ability to reduce diffraction data. The process of preparing
diffraction runs for analysis is much simpler than an energy transfer reduction. Indirect diffraction
reduction uses the same reducer system described in section but uses the MSGDiffractionReducer
object (see figure and a different selection of reduction steps.

The instrument parameters used in the reduction are defined in files called <instrument_name>_diffr
action_diff spec_Parameters.xml and <instrument_name>_diffraction_diff_only Parameters.xml (if the
instrument supports diff only mode).

Load Data Handle Monitor

Load Runs Rebin Monitor
{inc. Logs If Required)
N
>

e

Correct By Monitor

Convert Run Units to
d-spacing
< >—1rebin string]—>| Rebin
L

Rebin to First Spectrum |

Convert Run Units to
Wavelength

~

Rebin Workspace To

>>—[e\se]—-_ [unwrap monitor] Manitor

<
[chop data]

Unwrap Monitor

Chop Data
Crop Detector Range

[else]

FFTSmooth

Convert Monitor Units
to Wavelength

Divide By Monitor

Rebin To Workspace
(matches first spectrum)

Grouping |

& _Jaleal v Group Detectors
Sy By Scheme
[sum runs] OneMinusExponential (Al
“Carrecton imultole rames] :
Saving |
<>

[save outpuf]

Weight Confributions y,
From IndividualFrames

Figure 5.7: Activity diagram showing the flow of the Diffraction Reduction in release 3.2. Steps outside of boxes
are individual algorithms that are not part of a reduction step.

Save To Output

7\
Formats (nxs, acsii, efc.) "

e Load Data - The first step in diffraction reduction is to load all of the data files to be reduced.
This reduction step is exactly the same as the one described in section [5.1.1

e Handle Monitor - Next the reducer prepares the monitors for correction. Again the procedure
for this step is exactly the same as the one described in section

e Correct By Monitor - Again this is the same as described in section but when running the
convert units algorithm to convert the workspace to wavelength the reduction step uses the elastic
energy mode option instead of Indirect energy mode option.

e Fold Data - If the data was split into multiple frames during the loading step, the fold data step is
performed. This is identical to the step described in section [5.1.1

e Convert Units To d-spacing - This is not a reduction step, but just a call to the Mantid
ConvertUnits algorithm to covert the workspace to units of d-spacing with the energy mode used
being elastic.

20

e Rebin - If the a rebin string was supplied to the reducer, the workspace is rebinned according
to the supplied parameters. Again this is not a reduction step but just a plain call to the Rebin
algorithm. If no rebin string was supplied, the workspace is rebinned to the first spectrum using
the reduction step of the same name. This step just calls the RebinToWorkspace algorithm with all
arguments set to the same workspace.

e Grouping - Next the grouping reduction step is performed, which is the same as in section [5.1.1
but with the grouping type hard coded to simply show all spectra.

e Saveltem - Finally, the reduced workspace is past through the Saveltem reduction step where the
output options past to the reducer are processed. This step is identical to the one described in

section B.1.11

The OSIRIS instrument can double as a diffractometer with a much larger diffraction detector range
compared to the other indirect instruments at ISIS. It therefore uses a specialised algorithm called
OSIRISDiffractionReduction for use in diff only mode and does not use the reducer chain. OSIRISDiffrac-
tionReduction is based off of the ARIEL program [26].

This algorithm takes a list of samples and a list of vanadium runs and an old style calibration file (these
are not the ones generated by the routine in section but the type supplied to the AlignDetectors
and DiffractionFocussing algorithms). Each of the sample/vanadium run pairs can cover a different
d-range which the algorithm then merges using the MergeRuns algorithm. This algorithm proceeds as
follows:

0OSIRIS Diffraction Reduction

~=| Rebin to Smallest Run
CropWorkspace

Load Sample and

Vanadium Runs

Sort Files by
Time Regime
e

Divide Samples by
< ——{else] —, Vanadium
[
Replace Special
Values

[multiple files in time window]

Average Runs
in Time Regime

Normalise By Current =
Align Detectors
Diffraction Focussing

Merge Sample Runs
Weight Intersection of
Ranges

Figure 5.8: Activity diagram showing the flow of the OSIRISDiffractionReduction algorithm in release 3.2.

e The algorithm begins by loading all of the samples and vanadium runs into workspaces. This just
uses the standard Load algorithm.

e The algorithm then maps each of the supplied samples to the corresponding d-range and averages
any workspaces that are in the same d-range. The same procedure is repeated for the vanadium
runs.

e At this point the algorithm has a processed list of all workspaces and their background for each
d-range and can begin the reduction. The algorithm now normalises by the beam current, aligns
detectors, and performs diffraction focussing using the calibration file provided. It then crops the
workspace to match the corresponding d-range. These operations are performed for each sample
and vanadium run.

21

e The background for each sample is then processed by rebinning each sample/vanadium pair to
match the smallest of the pair (using the RebinToWorkspace algorithm) and then divides the sample
by the vanadium. Any NaN or infinity values after this operation are replaced with zeros using the
ReplaceSpecialValues algorithm.

e Finally all of the samples are merged into a single workspace using the MergeRuns algorithm and
the workspace is weighted at intersection where the ranges overlap by scaling by the number of
overlapping contributions at a given point.

5.3 Data Reduction GUI
5.3.1 Energy Transfer GUI Overview

Figure [5.9 shows the class structure of the indirect convert to energy GUI. Note that for clarity only a
selection of the more fundamental methods and attributes are shown as part of the class diagram. The
Convert to Energy window (for both direct and indirect instruments) inherits from Mantid’s generic
UserSubWindow class which provides the basic functionality required to render a sub window within
the application and also provides some useful helper methods such as the ability to execute a string as a
python script.

The ConvertToEnergy class contains the code which is shared between both direct and indirect versions
of the interface. It is responsible for loading the appropriate instrument definition files as the user selects
an instrument, swapping between the indirect and direct interfaces depending on the geometry of the
selected instrument, and handling the major user actions such as clicking the run energy transfer and
help buttons.

UserSubWindow is the
superclass of all
Mantid custom interface

windows
“Homer" is the name
APl:zUserSubWindow Q of the GUI far Direct
1 instruments

Homer

ConvertToEnergy

- m_uiForm : UizConvertToEnergy

- m_curlnterfaceSetup : Q5tring Indirect
- m_curEmodeType : DeltaEMode ree
- m_uiForm : Uiz:ConverToEner
- helpClicked() : void - oy
- unGlickedy) : void + helpGlicked() : void
-inittayout)) :void + runGlicked() : void
- initLocalPython] : void) + runConvertToEnergy() : void
- setDefaultinstrument{name : QSiring): DeltaEMode - sOfQwClicked() : void
- instrumentSelectChanged(deiFile : Q5tring) : void - calibCreate) void
- changelnterface(desired : DeltaEMode) : void - sliceRun() 'vc;id
- userSelectinstrumentname(name : QString) : void _ createRESfiIe (file : QString) : void
+ categorylnfo() : QString - createMapFile (groupType : QString) : QStrin
+name() : std:string i {aroupTyp 9) 9

<<gnumeration== - m_uiFarm : Uiz:ConvertToEnergy
DeltaEMode
+runTab() : void

Direct IndirectMoments Transmission + setupTaby() : void
Indirept +validateTab() : void
Undefined +setup() void + setup() void

+run{) : void +run() : void

+ validate() : void + validate() : void

Figure 5.9: Class diagram showing the structure of the Indirect Convert To Energy GUI in release 3.2.

ConvertToEnergy is composed with two classes called Homer and Indirect that handle the functionality
of direct and indirect geometry instruments respectively. In previous releases of Mantid the Indirect

22

class contained all of the GUI code for every tab on the Indirect Convert To Energy interface. This is
no longer the case in more recent versions of Mantid which have moved towards a more modular class
structure.

As of release 3.2, the Indirect class contains the GUI code for the Energy Transfer, Calibration, Diagnostics,
S(Q,w), and Moments tabs. For each of these tabs there are corresponding methods (which are
inconsistently named) to validate the user’s input for that tab and run the appropriate routine. The
specifics of each of these routines is outlined in the previous sections. In order the execute the required
routine the GUI code for a particular tab builds a string which represents an executable python script
complete with the options collected from the interface that can be executed using the runPythonCode()
method inherited from UserSubWindow.

The actual design of the GUI is stored in a separate XML file that was created using Qt Designer and is
used to produce a dynamically generated class for the interface at compile time which includes all the
interface widgets for ConvertToEnergy. The ConvertToEnergy, Homer, and Indirect classes each have a
reference to a copy of this interface object which they can query at runtime. The ConvertToEnergy class
is responsible for adding and removing the appropriate tabs as the user switches between instrument
geometries. The Indirect class uses this reference to query user input and update the interface appropriately
in response to user actions.

In the past year there have been two additional tabs added to the Convert To Energy interface which do
not follow the monolithic class structure currently used by the majority of tabs in the indirect energy
conversion interface. Instead of adding the code for the additional tabs IndirectMoments and Transmission
directly into the Indirect class, a new class was created called C2ETab which is composed with the
Indirect class (see diagram . The specific implementations of the two new tabs are then handled by in
a separate class derived from the abstract C2ETab.

This approach is similar to the one already place in the Indirect Data Analysis interface (see and
provides a number of benefits over the initial design. Structuring the code in this way allows for greater
modularity because each subclass of C2ETab is only concerned with the functionality relating to a single
tab on the interface.

Furthermore, this design still allows code that is common between multiple tabs (such as code for plotting
a histogram in a mini-plot) to be written once and shared across all classes through inheritance. Note
that C2ETab also has a reference to the Ul object so that it can interact with the widget objects defined
on the interface, however this could easily be changed to use tab orientated interface objects (like the
approach used by IndirectBayes, see and further discussion in instead of having unrestricted
access to the whole interface.

5.3.2 Indirect Diffraction GUI Overview

The corresponding interface for diffraction reduction is called Indirect Diffraction. Unlike the other
interfaces in the Indirect collection the structure of this interface is just a single class with a single Ul
file defining the layout. Each instrument has either the option of running in diff spec or diff only mode
(TOSCA and VESUVIO only have diff spec mode) and, as described in the previous section, OSIRIS has
a different reduction routine in the case of diff only mode. This is reflected in the interface when the user
selects the appropriate option. The GUI changes the way the interface looks by checking the instrument
parameter files for the currently selected instrument and reflection.

5.4 An Example Reduction

In this final subsection, we illustrate an example reduction of some data from the IRIS instrument using
the Indirect Convert To Energy GUI in Mantid. The screen shot in figure shows the Indirect Convert
to Energy interface in release 3.2. The example shows the instrument selected as being IRIS and using
the graphite analyser with reflection 002. One or more runs can be selected using the file browser in the
input files section of the interface.

23

Figure 5.10: Indirect Convert to Energy interface reducing some data from the IRIS instrument in release 3.2

There are lots of additional options that can be configured depending on the user’s requirements for the
output of the reduction. This includes the rebinning, spectrum mapping, and detector ranges to be used,
whether to sum the files and what formats to save the resulting workspace as (in the user’s default save
directory). All of these options are set to a sensible default for each instrument as it is selected, so in the
simplest case all the user needs to do is select the instrument and the appropriate run file(s) and click

run energy transfer.

)
o

Convert To Energy Transfer.

Energy Transfer | Calibration | Diagnostics | Transmission | S(Q,w) | Moments

Instrument | IRIS *| Analyser graphite * | Reflection |002 =
Input Files
Run Files :hngit/systemtests/DataﬂRSS3664.raw| | Browse | L jsumihles
] Load Logs
Calibration File Browse | — jce calib File
Mapping |Default =
| Background Removal (OFf) | Plot Time

Analysis Options
[T Detailed Balance 300 Kelvin [Scale: Multiplyby 1.0

Conversion to Energy Transfer

Efixed value: | 1.845 Spectra Min: _3 | Spectra Max |_53

Energy Transfer Range (meV)

Rebin Steps: |Single 2| Low width High

[Do Not Rebin

Output Options
["] Verbose Output Plot Output: None s

& Rename Workspace [Fold Multiple Frames [| Outputin em-1

Select Save Formats: [| SPE [NeXus [| NXSPE [| ASCIl [Aclimax

12 Run Energy Transfer

x|

Manage Directories

¥ irs53664-graphite002-red-1 Graphi
[£)]
irs53664_graphite002_red irs53664_graphite002_red
L e e e e e o S PRLINE B L B L B B B
B E E 50
E 3 C
E 3 40
92.5 E = E [
> E 7 2 C
v 2r 3 | BF
E F B i C
15 | 3 wor
E B 20 —
1E 3 E
0.5 f— J L —f 10 F
0 L — ! e ————— 0:|\||\ll\llll\ll\\l\ll\l\\ll
-0.6 0.4 -0.2 0.2 0.4 0.6 0.8 -0.6 0. 0.6
Energy transFer (meV) Energy transfer (mev)

)

35

3

0

Figure 5.11: Reduced IRIS data plotted as both a contour and spectrum plot

Doing this with the settings shown in figure [5.10| produces a single workspace for run 553664 on the
IRIS instrument with units of energy transfer. This workspace can then be used with the Indirect Data
Analysis and Indirect Bayes interfaces. We can also run this through the SofQW algorithm to calculate
the S(Q,w) and convert the workspace to units of momentum transfer using the SofQW tab on same

interface.

24

x|

¥ Convert To Energy Transfer E]@E]
Energy Transfer Calibration Diagnostics Transmission | S(Q, w) | Moments
Input
File ;J Epaceﬁrsssﬁﬁ{graphite()ozired.nxs] [Browse | [Plot Input
Options
Rebin Type: [Parallelepiped (sofQwz) ;J [} Rebinin Energy
QLow: [os | ELow:
Qwidth: [0.1 | Ewidth:
QHigh: [1.8 | EHigh:
Output Options
"] verbose Plot Output: | Contour & ["] save Result
[EJ Run S{Q, w) Manage Directories

Figure 5.12: Indirect Convert to Energy interface converting some reduced data output from the previous screen
shot using the SofQW algorithm in release 3.2

This interface allows us to specify the binning we use in QQ and in energy and also the type of rebinning
to be used in the conversion (see section [5.1.5)). Plotting the resulting _sqw workspace as a contour plot
shows energy transfer vs. Q.

¥ irs53664-graphite002-sqw-1 BEE
]

irs53664_graphite002_sqw

AR S S S N By s By
1.8
15

1.6

1.4
T 10
1.2

o

1

0.8 5
0.6

paloe v Lo e Lo b v g o
-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
Energy transfer (meV)

Figure 5.13: Contour plot of a _sqw workspace in release 3.2

25

6 Data Analysis with Mantid

After data has been reduced using the convert to energy or diffraction reduction routines described in the
previous section the reduced data needs to be analysed. In the indirect section of Mantid there are two
major collections of data analysis scripts that are currently in place. The first and most important are
those included in the Indirect Data Analysis interface which provide a variety of different fit functions
and transforms that can be performed on reduced data. The second collection of routines are accessible
via the Indirect Bayes interface. This provides a collection of routines that can be used to infer fitting
parameters using Bayesian model selection techniques which are complementary to the routines in Indirect
Data Analysis.

The majority of the code for data analysis scripts can be found in the file IndirectDataAnalysis.py with
the Inelastic script folder of the Mantid installation, with the exception of Calculate Corrections which
is in a file called IndirectAbsCor.py. For the Bayesian fitting programs, the code is stored in the file
IndirectBayes.py, with the exception of JumpFit which is stored in IndirectJumpFit.py both of which are
in the Inelastic scripts folder.

6.1 Basic Analysis
6.1.1 ElWin

The ElWin (elastic window) program is used to perform elastic window scans by integrating over the
energy range of a reduced file and is based on the routine of the same name that was originally provided
as part of the MODES package [3]. As with almost all routines in the Indirect Data Analysis interface
EIWin is implemented as a collection of free standing functions in IndirectDataAnalysis.py. Internally this
routine uses Mantid’s ElasticWindow algorithm. This is a small C4++ side algorithm that integrates over
the input workspace. The script provided in IndirectInelastic.py pre and post processes the data.

The elastic window algorithm converts the spectrum axis of the input workspace to two output workspaces
with units of Q and Q?. Both of these workspaces are then transposed so they are easier to visualise.
Optionally, this routine can also remove a background using a second range. The Q? output for EIWin is
used as the input to the MSDFit routine described in the following section.

EIWin

Sort File Names Convert Q"2
Workspace

to Logarithm

Create Temperature
Workspace

s .
< />—[clsc]

Load Samples

Calculate
Elastic Window

p.y [Temperature Logs
A P in Sampla]

[else]

[Mormalise
Temperature Workspace]

Use FileFinder
to Find Log File

p [Temperature Log
< >— File Found] Load Log File
T

[else]

Mormalise by Lowest
Temperature

@
-

Use Run Numbers -

Figure 6.1: Activity diagram for the EIWin routine.

The EIWin routine proceeds by first sorting the list of workspace names supplied as input. As there is an
unofficial naming convention in the indirect inelastic section of Mantid where the names include the run
number this should produce a list with the smallest run number first.

26

The program then iterates over each workspace and attempts to extract temperature information from
the sample logs. The logs will only be present if the load logs option was checked during the energy
transfer reduction. Otherwise, the routine searches the users managed directories for a log file matching
the log number and name of the instrument for the current run and loads it using the LoadLog algorithm.
If no logs are found then the run numbers for each file are used instead of temperature.

The ElasticWindow algorithm is then executed on the sample. Optionally two ranges can be supplied
which will remove a flat background from the workspace first. The algorithm produces the two workspaces
in units of @ and Q2. The Q? workspace is then converted to be the Logarithm of the data.

Finally, a third workspace is created from the two output from the ElasticWindow algorithm with units
of Kelvin on the x axis vs. momentum transfer on the y axis. This uses the value for temperature loaded
from the sample logs at the start of the routine. If the option is selected the temperature workspace is
normalised by the lowest temperature in the workspace.

6.1.2 MSDFit

MSDFit

Fit Spectra Using
PlotPeakByLogValue

Convert AD Parameter
To Workspace

Convert A1 Parameter
To Workspace

Group Parameter
Workspaces

Figure 6.2: Activity diagram for the MSDF'it routine.

The MSD fit routine is used to calculate the mean squared displacement from the Q% workspace output from
EIWin. In essence this routine performs a linear fit to every spectrum in the workspace using the algorithm
PlotPeakByLogValue. However the routine also performs some additional operations to transform the fit
parameters from a table workspace to a matrix workspace using the ConvertTableToMatrix Workspace
algorithm. The final parameter workspaces are then grouped.

This routine produces a group workspace containing the linear fits to each spectrum and a workspace for
each of the parameters of the fit to each spectrum transposed into a matrix workspace.

6.1.3 Fury

The Fury program is used to perform a fast Fourier transform on a reduced workspace in order to calculate
the intermediate scattering function I(@,t). The routine can handle converting multiple workspaces at
once, but is currently only set-up on the interface to convert one reduced sample at a time.

27

Fury

Rebin Resolution

Integrate Resolution
Convert Ta Point Data

Rebin Sample

Integrate Sample

Convert To Point Data

Extract FFT Spectrum

Extract FFT Spectrum

Divide Integrated
Resolution
by Fourier Transfrom

Divide Integrated
Sample
by Fourier Transfrom

Divide Sample by
Resolution

Figure 6.3: Activity diagram for the Fury routine.

The routine first Fourier transforms the resolution workspace then transforms each of the samples using the
exact same method, then divides each of them by the resolution. In order to convert to the intermediate
scattering function all of the workspaces must have the same x range and the same regular binning in
order for the conversion to work. Therefore the rebin parameters provided by the user must satisfy these
conditions. The workspace is then integrated to a separate workspace. The original workspace is then
converted to point data in preparation for running the fast Fourier transform algorithm.

The algorithm used is called ExtractF'TTSpectrum which runs Mantid’s FFT algorithm on each spectrum
in the workspace to output the modulus positive frequencies of the transform in the corresponding
spectrum. The transformed sample workspaces are then divided by the transformed resolution workspace.
The upper half of the transformed workspace is then cropped to get rid of excess noise from the transform
and then optionally saved to a nexus file.

6.1.4 FuryFit

FuryFit

Crop Workspace to
Energy Range

Flot Peak By Log Value|

Convert Parameters to
Matrix Workspace

[Constrain Beta)]

rap with Multi Domai
Function

Figure 6.4: Activity diagram for the Fury Fit routine.

FuryFit provides a fit routine for the output of Fury offering a variety of decaying exponential functions.
Similar to MSDFit, the routine uses the Fit and PlotPeakByLogValue algorithms to sequentially fit each
spectrum with the parameters.

The FuryFit code actually consists of two routines which are very similar and which could be merged
in future release of Mantid called FuryFitSeq and FuryFitMult which perform a sequential fit and a

28

multi domain fit respectively. Both routines works by executing a function string which is dynamically
created in the GUI code for FuryFit, but FuryFitMult first wraps the input function with a MultiDomain
composite function. FuryFitMult is only executed when the user has chosen to constrain the 8 parameter
for a stretched exponential fit across all Q.

Both of these routines convert the table of fitting parameters created from Fit (or PlotPeakByLogValue)
into a matrix workspace using the same code as used by MSDFit.

6.1.5 ConvFit

ConvFit

Convert To Elastic Q

Plot Peal By Log Value

e \37._

R
[delta function]

Calculate EISF

Convert Parameters to
Matrix Workspace

[else]

T
| .'I
g
4

Figure 6.5: Activity diagram for the Conv Fit routine.

The ConvFit routine is used to perform a convolution fit to a workspace. Again, this routine follows a
similar procedure to both the MSDFit and FuryFit routines. A fit function with the options the user has
selected are gathered from the user interface and a string representing the function to be fitted is passed
to the PlotPeakByLogValue algorithm to perform a sequential fit.

The functions fitted are a d-function, one or two Lorentzians or a combination of both which are then
convolved with the user supplied resolution workspace. The type of background can also be selected from
a choice of Fixed Flat (flat background without the intercept tied to the user supplied value), Fit Flat
(flat background with the intercept unconstrained), and Fit Linear (unconstrained linear background).
Optionally a temperature correction can be applied to the Lorentzians. The temperature correction is
defined as:

x - 11.606 x - 11.606
fla) = (PR [eap(—) (61)
Where t is the user supplied value for the temperature in kelvin, x is the value in energy transfer at a
given point in the workspace and 11.606 is the conversion factor from units of meV to K. Each Lorentzian

is multiplied by this factor then convolved with the resolution.

The final composite function is represented as a string that the Mantid fit algorithm can interpret. This
function string is generated within the GUI code for ConvFit and then passed to the underlying python
routine.

As with FuryFit, ConvFit will convert the input workspace to elastic @ first before performing the fit and
converts the output table of fit parameters to a matrix workspace. If a d-function was used the elastic
incoherent structure factor (EISF) is calculated from the resulting table of parameters.

29

6.1.6 Calculate Corrections

Calculate Corrections is used to create a group workspace of absorption corrections from known parameters
of the sample and can used in an experiment which can be applied to a reduced workspace using the
Apply Corrections routine (see section [6.1.7). This routine supports both flat plate and cylindrical
geometries.

The code for calculating corrections for a cylindrical geometry is has been ported into Mantid using
the F2Py package from it’s previous incarnation as the Acorn routine in the MODES package. F2Py
allows a python script run the Fortran code without it being converted to python code. Unfortunately
the downside to this is that F2Py cannot be packaged into the Mantid installer for any platform outside
of Windows. The code for flat plate corrections was ported use Mantid’s python API as part of release
3.1.

In depth discussion on the exact methods of calculating the absorption factors for flat plate and cylindrical
geometries can be found in Carlile [23] and the ATLAS manual [24] respectively.

The python code underlying the interface of calculate corrections and responsible for liaising between the
Fortran and C++ GUI code is (unlike the other routines described in this section) stored in a separate
file called Indirect AbsCor.py. This is to keep F2Py import call separate from the rest of the data analysis
code so that the other analysis routines can be used on platforms other than Windows.

Regardless of the geometry used the Python/Fortran code calculates four arrays for each spectrum in
the sample workspace each of which are collected into four resulting output workspaces with the suffixes
ass, assc, acsc, and acc which loosely correspond to the formalism described in Paalman and Pings [25].
These stand for:

e Ass - Attenuation factor for scattering in the sample and attenuation in the sample.
e Assc - Attenuation factor for scattering in the sample and attenuation in the sample plus container.

e Acsc - Attenuation factor for scattering in the container and attenuation in the sample plus
container.

e Acc - Attenuation factor for scattering in the container and attenuation in the container.

If a workspace representing the container is not supplied by the user then all workspaces except the *_ass
workspace will just contain zeros.

6.1.7 Apply Corrections

Apply Corrections provides a complementary routine to the calculate corrections routine described in the
preceding section. Apply corrections has two modes of applying corrections to a sample. The first and
simplest method is to just take a run of the container for the sample and subtract it from the run of
sample plus container. The second method uses the corrections workspace generated by the calculate
corrections routine and applies them to the sample & can workspaces (if a can is supplied). A detailed
activity diagram of the two modes of execution are shown in diagram

30

Apply Corrections Apply Corrections with Corrections Workspace and Can

</«\>—[ese]—. ™

9P " < />—[ese] e

Fit Quadratic Function
to As.s workspace

[ecale can] [use can and scale can]

Convert Units

Fit Quadratic Function
to Ac.c workspace

Divide Sample by

FPolynomial Correction

Divide Can by
Polynomial Correction

o

STy of Sample to (etse] Ay)
— ke —¢ —|UsSe can
Tretin can to match] Wavelength ' 7 Fit Quadratic Function
- to As.5C workspace
Rehin Can to Match N o]
Workspace \T/)
N Multiply Can by

[rebin can to match] Polynomial Correction

Convert Units

Subtract Can ¥,
From Sample

of Can to

Wavelength Rebin Can to Match

[use can] < \>7._
Workspace

Fit Quadratic Function

ConvertSpectrumaAxis to As.sc workspace

to ElasticQ

Extract Single
Spectrum
(sample and can)

Subtract Can J
From Sample

Divide Sample by
Polynomial Correction

Conjoin Workspaces

ConvertSpectrumAxis
to ElasticQ

Convert Units
to Delta E

Figure 6.6: Activity diagram showing the flow of the apply corrections routine in release 3.2.

In the former mode of operation (left activity diagram) the scale is first optionally scaled by an arbitrary
factor. If the energy ranges of the sample and container do not match the can is rebinned if the user has
specified the rebin can option, otherwise an error is thrown. If rebinning the can to match the sample is
requested the routine uses the RebinToWorkspace algorithm. After the sample has been corrected, it
will use the ConvertSpectrumAxis algorithm to convert the resulting corrected sample to units elastic

Q.

In the latter mode of operation, the routine first converts both the sample and container to units of
wavelength. Then for each spectrum in the sample and can (if supplied) performs a quadratic fit (using
the standard Mantid Fit algorithm) to the corresponding spectrum in each of the members of the group
workspace of absorption corrections. The coefficients from this fit are then supplied as parameters to the
PolynomialCorrection algorithm. The resulting single spectrum workspace for the can is subtracted from
the corresponding single spectrum sample workspace and the result is stitched back together into a single
workspace using the ConjoinWorkspaces algorithm. The resulting workspace is output both in units of
energy transfer and elastic Q.

6.2 Advanced Analysis

The Indirect Bayes interface provides a collection of routines for performing model and parameter
selection using Bayesian methods. These routines are, like those in proceeding sections, based on previous
implementations in the MODES package. The ResNorm, Quasi, and Stretch routines described in the
following sections are all imported into Mantid using the F2Py package directly from the original Fortran
code.

In future releases of Mantid it is hoped that these routines will be converted into proper C++ or Python
algorithms as is the case with the rest of Mantid. The routines defined here are included in Mantid in
the file IndirectBayes.py and the accompanying Fortran modules are included in the same folder. The
majority of the code in this file does not currently use standard Mantid algorithms, largely because the
the Fortran code obviously doesn’t work with workspaces and so we are reduced to working with numpy
arrays and manually building workspaces. Worse than this, in the Quasi fitting routine the fit parameters

31

get written to file, which is then immediately read back into the program which is both unnecessary and
hugely inefficient.

6.2.1 ResNorm

ResNorm is used to create a group normalisation workspace which can be input to the Quasi routine
(described in the next section). It normalises the input data using the instrument resolution by fitting. A
group normalisation may also be done by grouping Q values where the resolution is stretched using a stretch
factor. The routine produces two group workspaces with the suffixes * ResNorm and *_ResNorm_Fit
respectively. The ResNorm group workspace contains two workspaces with the suffixes intensity and
stretch. The intensity workspace contains the intensity normalisation factor and stretch contains a stretch
factor for the width of the supplied resolution file. The ResNorm_Fit group workspace contains the fits to
each spectrum in the workspace.

6.2.2 Quasi

The Quasi routine provides a model selection algorithm using Bayesian methods to choose the number
of lorentzian components present in the input data [16] and was originally known as Quasi Lines in
the old MODES package [3]. This routine takes a sample to fit to and a resolution file created in the
convert to energy interface and optionally a resolution normalisation file created in ResNorm (see the
previous section). This program can run either by fitting a d-function plus a sum of Lorentzians or a
single stretched exponential.

There are three Fortran modules used depending on the input. The QLres module fits a sum of Lorentzians.
If the resolution file contains more than one spectrum the QLdata module is used and any ResNorm file
supplied is ignored. Finally if the choice of fitting a stretched exponential is used the QLse module is
used. Each of these modules share very similar code which is duplicated and modified slightly to suit the
specifics of the implementation.

Inside the fitting routine it first refines the parameters for the J-function, linear background, energy range
offset and thereby estimates the probability of the absence of quasielastic components in data. It then
refines the parameters for one, two and three Lorentzian components successively [16].

Internally the program loads both the ResNorm and width files into 1D arrays. It then extracts from
the sample and resolution workspaces the x, y, and e arrays for each spectrum in the workspace and
passes this data to the Fortran routine with any accompanying fit parameters used. The corresponding
fits to the data are returned in the form of x, y, and e arrays for the spectrum and its log probability for
each Lorentzian (from 0 to 3). Additionally, the program also reads the program parameters from the
generated file (saved in the user’s default save directory) and creates a workspace of fit parameters similar
to the one output by ConvFit. Likewise, it will also calculate the EISF from the fit parameters.

6.2.3 Stretch

Stretch is a variation on the stretched exponential option provided by the Quasi program described in
the previous section and was originally called Quest in the old MODES package [3]. The Fortran module
used is called Que. The operation of the two programs are essentially the same, except that a grid of g
and o parameters are fitted to each spectrum instead.

This fit routine produces one group workspace containing the fit to the data for each spectrum and two
additional workspaces containing the parameters 5 and o parameters of the fit.

32

6.2.4 JumpFit

JumpFit provides very simple routine for fitting the width parameters for each spectrum fitted using
either the Quasi or ConvFit routines. It offers a collection of diffusion fit functions (defined as Mantid fit
functions). The desired component width and function type is selected by the user and a fit function
string is built and passed to Mantid’s Fit function. The fit functions used in JumpFit are currently hard
coded to use the default values shown in table 6.1

Function Function Definition Default Parameter Values
Chudley-Elliot I'(Q) = (1 — sin(Q1)/Ql)/T T=10/QMax,L =1.5
Hall-Ross 0(Q) = (1 —exp(—1Q?))/T 7=10/QMax,L =1.5

: I(Q) = DQ? 2
Fick D = Ay/A

lc where D =< [?> > /67 y/Az

— 02 2

Teixeira Water [(Q) = DQ*/(1 + DQ"r) T7=10/QMax,L =1.5

where D =< [> > /67

Table 6.1: JumpFit function names, definitions, and default parameter values.

6.3 TOSCA Data Analysis

All of the data analysis routines mentioned in the previous section are orientated towards the analysis of
quasi-elastic neutron scattering (QENS) data. The TOSCA spectrometer is used to perform inelastic
neutron scattering and does not make use of the QENS routines outlined in previous sections. Their data
analysis procedures are far simpler. The general process for analysing TOSCA data is to perform an energy
transfer reduction as described in section and then directly compare the resulting workspace with
one produced from theory using the visualisation tools available through the Mantid framework.

Currently the simulated data used in comparison is generated using tools such as Gaussian 03 and
a-CLIMAX and then loaded into Mantid. In the future we aim to add more support in Mantid for
comparing experimental results with theory (see section . As an example, the plot in figure shows a
comparison of the experimental result from a sample of toluene with the spectrum generated from theory
by simulation programs.

toluene

il I\ Ao i ol ~

A
I i\ Iay f A
0 " i A AR AW A AN SN e

0 500 1,000 1,500
Energy Transfer (meV)

Figure 6.7: Plot of a toluene sample (run 18930) cooled to 10K in black with theoretical simulation of the spectrum
in red.

6.4 VESUVIO Data Analysis

The VESUVIO spectrometer is currently not officially supported by the Mantid framework. Analysis
with the spectrometer is primarily centred on the determination of atomic momentum distributions in
condensed matter systems [14]. Development work has already been undertaken to add support for the
spectrometer to Mantid. A collection of data analysis routines are available, but are currently under

33

heavy testing and may be unstable. Information on using these routines, how to obtain them, and the
progress of development are outlined in Ref. [27].

Fit_Workspace

0.5 S S—————————

—T—T—
— fit_Workspace-Data
fit_Workspace-Calc
fit_Workspace-GaussianComptonProfile

14
'S

— fit_Workspace-GaussianComptonProfile

o
W

Counts per microsecond
o
o

o
o

EM!\[\N\/\\A' g ! B |
e e

360
Time-of-Flight (ps)

Figure 6.8: Plot of some VESUVIO data for a sample of ZrHy using the routines described in Ref. [27] and based
on the methods described in Ref. [T])]. The black line shows the original data, the red line shows
the fit to the data is in red, and the individual contributing peaks are in green (aluminium) and blue
(zirconium)

6.5 Data Analysis GUI
6.5.1 Indirect Data Analysis GUI Overview

The Indirect Data Analysis user interface follows a similar design structure to the Convert To Energy
interface but is more modular. The interface is composed of a single parent class for the window which
sets up and manages all tabs on the interface and is simply called IndirectDataAnalysis. A collection of
classes for each tab on the interface which inherit from a common base class, similar to the C2ETab class
in the convert to energy GUI, are composed with the window class to handle the specific implementation
details of each the corresponding tabs.

API:UserSubWindaw UsarSubWindow is ths QWwidget
superclass of all
Mantid custom interface
ZL windows j

IndirectDataAnalysis IDATab ‘
- m_uiForm : UizindirectDataAnalysis -m_uiForm : UizindirectDataAnalysis ‘
-help() : void _ + runTab() : void
- _ru_n(} *void _ al + setupTab() : void
- initLayout() : void + validateTah() : void
- initLocalPython() : void # setup() : void
+ categorylnfo() : QString # run() : void
+namel) : std:string # validate() : void

L
S S N

ElWin MSDFit Fury etc...

Figure 6.9: Class diagram for the Indirect Data Analysis GUL

As with the convert to energy interface, the layout of the entire GUI is defined in a single XML file
that each of the tab objects in the GUI system have a reference to. As of release 3.2 the indirect data
analysis interface consists of seven tabs; namely: EIWin, MSDFit, Fury, FuryFit, ConvFit, Calculate
Corrections, and Apply Corrections. Each of these have a single class which inherits from a base class

34

called IDATab where the common logic shared between tabs for setting up the tabs, drawing to the mini
plot, and loading a nexus file, among other things, is stored.

This approach is much better compared to the one used in the convert to energy interface. The class
structure used in the IDA GUI avoids the monolithic class design in convert to energy and separates the
implementation logic specific to each routine from the rest of the system while still allowing common
code to be shared. However, this structure could still be improved further to remove the reliance on a
single GUI file for the defining the interface.

6.5.2 Indirect Bayes GUI Overview

The GUI structure for the Bayes interface again follows a similar structure to the convert to energy and
indirect data analysis interfaces, but takes the abstraction a step further. Like the others, this interface
has a single parent class called IndirectBayes which defines the window and a collection of concrete classes
paired with each of the tabs which inherit from an abstract base class called IndirectBayesTab which
implements the common functionality for each tab.

superclass of all
Mantid custom interface
windows

API:UserSubWindow LiserSubWindow is the ﬁ Qwidget

IndirectBayes

- helpClicked() : void IndirectBayesTab
- runClicked() : void .
- initLayout() : void # help() : void

+ categorylnfo() : QString z [;rl]igeit\;c(};d' void

(]

+ name() : std::string

[[[]

ResNorm Quasi Stretch JumpFit

- m_uiForm : UizResMorm - m_uiForm : Ui::Quasi - m_uiForm : Ui:Stretch - m_uiForm : UizJumpFit

Figure 6.10: Class diagram for the Indirect Bayes GUI

The key difference between the two is that instead of the interface being defined in a single Ul file, the
main window and each of the tabs are defined in separate Ul files. This is a subtle difference, but one
which provides an enormous benefit to the development process. Splitting the Ul into multiple files makes
the interface more maintainable as a single tab may be worked on individually without affecting the
others. If, for example, a tab needs to be removed or moved to a different part of the system it can be
easily moved by removing its inclusion in the main window (defined by IndirectBayes).

6.6 An Example of Basic Data Analysis

Once a file has been reduced using the convert to energy interface as described in section it can be
used as input to the various data analysis routines. This section shows a couple of examples of using the
Indirect Data Analysis interface with a reduced workspace. Figure shows an example of running
EIWin to examine the elastic window of an IRIS reduced workspace created from the convert to energy
reduction routine. This interface includes a miniplot which shows the first spectrum of the workspace to
help pick sensible values for the ranges.

35

Indirect Data Analysis BEE
Elwin | MSDFit Fury FuryFit ConvFit | Calculate Corrections = Apply Corrections
Input File IeOOZJed.nxs, fhome,’chs1BzBS,fworkspacejirSSOOSI7graph\'te0027red.nxs| I Browse J I Plot Inpuk]
Property Value g2] i
¥ Range One g
Skart -0.017500 w0 1
End 0.017500 }
Use Two Ranges False -
¥ Range Two 1
Start -0.175000 3 }
End -0.157500 B
6 -
4 |
24
0 ,_ uJ :&4—— "
SRR R R R Rl
04 02 0 02 04 06 08 1 12 14
SE log name: \'sample |] Normalise to Lowest Temperature
[Vverbose [Plot Result [save Result
7] Run Manage Directories

Figure 6.11: Using a reduced workspace with ElWin in release 3.2.

iF=50077°graphite002 to 50081 eq 1=1 EIEIEEN ¥ irs50077-graphite002-to-50081-eq2-1 S EE
al]
irs50077_graphite002_to_50081_eq1 irs50077_graphite002_to_50081_eq2
0-35 _I T 1T 1T LI T T T LI | 1T T T I_ 71 _I L LI L L L | L L I_
0.3 :_ _: 12]
- . 14 []
0.25 N - C]
C] 16 [1
02 |] C]
C] 18 — —
0.15 |] L, E 7
0.1 Lo b b by b by b Loy 232 Lo v v b b b b1
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2] 0.5 1.5 2 2.5 3 3.5
q(A-1 Qz(A)

Figure 6.12: Plots of the output workspaces from ElWin.

The _eq?2 file created by the routine can be passed to the MSDFit routine to perform a linear fit to the
data over all spectra. Again, the miniplot can be used to select the range used with the data. Clicking
the run button will fit to just the first spectrum, allowing the user to “get a feel” for the range to be
used with the data. Running a sequential fit will use the same range to perform a sequential fit across all
spectra in the workspace.

36

¥ Indirect Data Analysis [=)[a)(x]
Elwin | MSDFit | Fury FuryFit ConvFit Calculate Corrections | Apply Corrections
|Workspace ;| |irs50101_graphite002_to_50122_eq2 &
Property Value I
Startx 0.195082 4
EndX 3.436509
0.6 -
0.8
1]
1.2
-1.4
L e R B e
0 0.5 1 iS5 2 2.5 3 35
Plot Spectrum: |0 Spectra Range: |0 to |21
| Run Sequential |
& verbose & Plot Result ["] Save Result
@ | Run | | Manage Directories |

Figure 6.13: Using an _eq2 workspace output from ElWin as input to MSDFit.

<u2>

-0.02

-0.04

s
[=]
[=]

200
Temperature /K

300

Figure 6.14: Resulting parameter workspace from MSDF't.

The ConvFit interface (section can be used to separate the instrument resolution from the S(Q,w)
function by fitting a convolution of the resolution and the appropriate model to the data. A screen shot of
the ConvFit interface is shown in figure [6.15] This interface has lots of configurable options for the model
that is to be convolved with the resolution, but works on similar principle to the MSDFit interface.

The run button at the bottom of the screen is used to perform a single fit to the data which also updates
the parameters for the model in the properties browser. This is useful because it allows the user to choose
parameters close to the appropriate value, then tighten them up before fitting all spectra. Once the user
is happy with the fit parameters for a single spectrum (shown in the mini plot) the sequential fit button
can be used to fit all of the spectra.

37

Sample

Fit Type:
Background

[] Temp. Correction
[] Plot Guess

Property
EndX

~ Background
A0
Al

¥ Delta Function
Use

| File 2 | home/chs18285/git/systemtests/Data/irs26176_graphite002_red.nxs | | Browse |

Resolution |File 2 | lhome/chs18285/qgit/systemtests/Data/irs26173_graphite002_res.nxs | | Browse |

Indirect Data Analysis

Elwin | MSDFit Fury FuryFit | ConvFit | Calculate Corrections | Apply Corrections

| One Lorentzian & 27
| Fit Linear I

15

Value
0.543217

0.028177

0009365 0.5

False

5)

¥ Lorentzian 1

Amplitude 4126987 0- [t o

PeakCentre -0.000861 06 04 02 0 0.2 04 06
RN D-E-E5 spectrarange |0 to 9

Plot Output: |None B | Run Sequential Fit |

& Verbose [Plot Output (Single Run) [] Save Result

7
2

| Run | Manage Directories |

Figure 6.15: Screen shot of using the ConvFit interface to fit a single Lorentzian to the data.

6.7 An Example of Advanced Data Analysis

The Bayesian fitting routines also operate on the reduced data created from Indirect Convert to Energy
interface. Using an example reduced workspace from the IRIS instrument we can run the ResNorm
program to generate a normalisation group workspace as shown in screen shot As with other
interfaces, the mini plot shows the first spectrum in the workspace and can be used to select the range
used for binning. The resolution workspace is one that has been generated from the Calibration tab on
the Convert to Energy interface (see section .

Indirect Bayes P
ResNorm | Quas | stetch | Jumpit
vanadium: (Fie) C:Msersinsis285/ 175 _oraphite002_red. s
Resoluton: [Fie =] et _graphitedd2_res.me Bronse
Property Val 27
EMax 0.575789.
15
1
0.5
o e
L e S N B e
08 0.4 0.2 0 02 0.4 0
Output Options
[Verbose Plot Result: [save Result
Run [Manage Drrectories

Figure 6.16: Screen shot of using the ResNorm interface in release 3.2.

The Quasi routine offers a complementary alternative to the ConvFit routine. The workspace output
from ResNorm can be used as input to the Quasi routine. Like the ConvFit routine this takes both a
reduced sample and resolution file. The model to be fitted can be configured using the various options for

the background and type of peak before running. Figure shows an example of using the interface in
release 3.2.

38

Restom | Quas | stretch | Jumpit
put: [File ¥ cn 76 _graphite002_red.mes Browse Plot.
Resolution: [File v o |_graphite002_res.mxs Browse
program [Lorentaans. -
Fit Optons
sacaround: st pesk) sequental e
[rowith |] [Ceromse |
7] use Restiorm Workspace ~ | (is26176_graphit=002 Restvorm -]
Property value 27
15
1
0.5
o
L S e N B e
08 0.4 0.2 0 02 0.4 0
Output Options
Verbose Plot Result Save Result
[

Figure 6.17: Fitting a model to some reduced data from IRIS using the Quasi interface.

As a final example, shown in figure [6.18] the workspace of fit parameters output from Quasi can be
used as direct input to the JumpFit routine. This automatically finds the width parameters within the
workspace and allows the user to select which one to fit. The user can choose between any of the models
defined for diffusion. Future releases hope to add support for using a custom function string as the model

for fitting.

ir526176_graphite002__CEfit_ Workspace

002_CEfit Workspace Data
aphte002_CERt Workspace Calc
aphte002_CERt Workspace DI

Figure 6.18:

———— i
) 2
sample: [Workspace v | [rs26176_oraphite002_Qur Result -]
Fit Function: [ChudleyElott v] width: [fLf) | e
bt
Property Value 0% e
e
04] «
0.5 e
03 v
fie
fc
be
025 fic
fc
be
02 E
0.5 E
I
01
005
r T T T T T T 1
04 05 08 1 12 14 16 18 2
Output Optins
Verbose [Plot Resuit Save Resut

39

Using JumpFit on the output from the Quasi interface.

7 Materials Modelling

Another important part of experimental analysis involves the comparison of experimental results against
theoretical predictions. This is an area of development that has only just begun with only a very small
amount of support implemented so far.

7.1 Indirect Simulation

Indirect Simulation is a new interface for release 3.2 that splits the basic nMolDyn loader that is currently
in Mantid off from its original location in the Indirect Load ASCII interface. This interface is planned
to be a place to expose simulation routines to the GUI level, such as adding interface support for the
Sassena routines already in Mantid in future releases.

7.2 nMolDyn

The nMolDyn interface that currently exists is a very simple routine to load data from nMolDyn simulation
files into a Mantid workspace. In future releases of Mantid it is proposed to attempt to properly integrate
support for the nMolDyn python libraries into Mantid, providing a much richer selection of tools for the
user. The code for this can be found in the IndirectMolDyn.py file in the Inelastic scripts folder.

7.3 Density Of States

The DensityofStates algorithm was a new addition in the 3.1 release of Mantid and does not currently have
GUI support. It provides a loading algorithm for .castep and .phonon files generated by the CASTEP
simulation program and creates workspaces with both total and partial density of states data. Further
support for CASTEP is planned in future releases. The code for this algorithm can be found in the
DensityOfStates.py file under the python algorithm plugins section of the Mantid install.

40

8 Planning For the Future

This section outlines outstanding work required to fully support indirect geometry instruments within
Mantid. This section is not meant as a “set in stone” plan for further development but is meant as a
guide for future development work in the area and a loose record of user and project requirements all of
which are subject to change.

8.1 Conversion of Existing Routines to Algorithms and Work-Flow Algorithms

Now that a large proportion of the code base required for data reduction and analysis of data from
indirect geometry spectrometers has been incorporated into Mantid, it is time to move forward with
consolidating the existing code base we already have. As already mentioned in the earlier sections of this
document most of the code base is either using the old style reducer-reduction step framework or is in the
form of simple python scripts which are both not sufficiently documented and (largely) untested.

Ideally, the indirect geometry framework should take advantage of the core concept of the Mantid
framework: algorithms. An algorithm in Mantid is defined as being a set of code that performs some
operation on a workspace. Algorithms are well documented (both for the user and the development team)
and are the preferred common interface for performing actions in Mantid.

There are two types of algorithms in Mantid. Normal algorithms are simply ones which perform some
operation on a workspace, such as ConvertUnits or Fit or Load. The second type is called a work-flow
algorithm. This is an algorithm that performs no direct manipulation of a workspace itself, but executes
a collection of other algorithms in order to perform some larger task. An example of such an algorithm
would be DgsReduction or ReflectometryReductionAutoOne. The benefits of the latter are that:

e Large operations get broken do into smaller, more easily understood operations which already have
algorithms defined and are used by multiple research groups and facilities and have become tried
and tested.

e Algorithms and work-flow algorithms still support inheritance like the reducer objects

e They are easily unit testable, meaning that automated checking of the integrity of each part of the
reduction is handled automatically by the build servers, which helps prevent bugs.

e They are by default exposed through the Mantid simple python API like any other algorithm which
means they can easily be chained together with other algorithms and can be run even if the interface
is broken.

e As of release 3.2 the ability to track the history of a work-flow algorithm and its child algorithms has
been added, allowing scientists to see exactly what operations have been performed on a workspace
since it entered Mantid.

Energy transfer reduction and diffraction reduction are both prime candidates for work-flow algorithms.
Neither of these routines actually perform any real direct manipulation of the workspaces they reduce
themselves, but delegate all of the operations to existing Mantid algorithms within the reduction steps.
Converting this would be a delicate and large job, but not necessarily difficult. The basic outline of both
reductions is already documented in diagrams and respectively. This, along with the actual code
(which is reasonably well documented) should be enough for an easy transition to a work flow algorithm
for each type of reduction.

Some of the large reduction steps would also benefit from being converted to work-flow algorithms in
there own right, particularly the reduction steps which are larger and shared between both reducer classes.
Prime examples are the LoadData and HandleMonitor steps which are both complex enough that they
could be converted to work-flow algorithms.

To convert the existing reduction routines to work-flow algorithms, I would suggest first writing detailed
unit tests to cover all of the reduction steps. The full energy transfer reduction itself is already covered

41

by automated system testing to check the integrity of the results. The next step would be to covert the
reducer classes to be algorithms one at a time and hook them up with the relevant GUI. The final step
would be to convert the reduction steps to either be algorithms or work-flow algorithms in there own right
or to simply incorporate the code into the reduction work-flows themselves. Work-flow algorithms are
just a class and therefore support inheritance which means common code between both reducers should
end up being stored in a common base class.

Outside of the main reducers, the other scripts used throughout the Indirect framework should be
converted to be proper Mantid algorithms for the reasons listed above. However, many of these routines
are considerably simpler than the reducer work-flows and for many of them it may be best just to convert
them to plain algorithms. Many routines, such as the the data analysis fitting routines MSDFit, FuryFit
and ConvFit share very similar functionality with only a few slight differences between implementations.
In the case of these routines, they all essentially pass a function string to PlotPeakByLogValue or Fit
and convert the table workspace output from the algorithm to a matrix workspace of parameters. These
could probably be refactored to be a single algorithm which handles the fitting for all three routines.
Consolidating the code base in this way could also be done with the Bayesian fitting routines Quasi and
Stretch but should only be done after porting the Fortran modules (see section [8.5)).

8.2 Better Automated Test Coverage

One key development area in which the indirect framework is lacking is a good level of test coverage. At
the time of writing the Mantid development system carries out two types of automated testing: unit tests
and system tests. Unit tests are designed to be quick to execute and run frequently. System tests are
typically longer and check the the integrity of the system as a whole.

Currently the only automated testing that is carried out by the system is through the system tests. These
tests run one or more of the routines and compares the results against a reference file to check that the
results still match after changes have been made to the framework. This is essential for checking that
nothing gets broken in the core parts of the system, such as the energy transfer and diffraction reduction
but in no way covers every aspect of the system. There are currently no unit tests covering any of the
scripts mentioned in the previous sections, except for algorithms such as SofQW, SofQWMoments, and
DensityOfStates.

A small maintenance project needs to be undertaken to increase the automated test coverage across all
areas of the indirect framework. Ideally every function, routine, reducer, and reduction step should have
a unit test or suite of tests covering it. Improving the test coverage offers little direct benefit to the users
of the system, but will make it easier to identify and prevent bugs within the system ultimately leading
to more time spent on productive development and less time fixing bugs.

Additionally, more system tests need to be added to more extensively cover some of the common use
cases between different routines. For example, there is currently a test for running Fury and passing it to
FuryFit, but no such test for running Quasi and passing the result to JumpFit.

8.3 Improved GUI structure and design

All of the interfaces for indirect data reduction and analysis share common themes in GUI design (except
diffraction, largely due to its simplicity). They all share the same basic format: one tab for each routine,
input files at the top of the window, parameters in the middle and a mini plot if required, output options
at the bottom followed by the run button.

Having a consistent feel across all interfaces is extremely important in making it easy for users to learn
to use the software and there is plenty that could be done to improve this within the existing GUIs.
However, a more pertinent issue, and one that should be tackled first, is the repetition of common code
both between interfaces and between individual tabs. Notice that the class diagrams in the GUI overviews
in sections [5.3.1} [6.5.2] and [6.5.1] share a very similar class structure.

42

Future development should aim to unify this repeatable structure into a using a single common class
hierarchy with abstract base classes sharing functionality that is shared between all of the interfaces.
This would include, for example:

e Mini plot set-up, drawing, updating, and management routines.
e Common file loading and pre-processing calls.

e Algorithm instantiation, execution, and error handling code.

API=UserSubWindow UsersubWindpuisin QWidget
superclass of all

Mantid custom interface

/ E windows A
IndirectWindow

IndirectTab
- m_uiForm : UizindirectDataAnalysis
+runTab{) : void
- help() : void + setupTab() : void
- run) : void > + validateTab() : void
- initLayout{} : void # setup() : void
- initLocalPython() : void # run() : void
+ categarylnfo{) : QString # validate() : void
+name() : std:string %
[' (IndirectMiniplotTab IndirectPropertyManagerTab
C2E DA ete. +updateMiniplot() + addPraperty()

+ drawMiniplot(ws : MatrixWorkspace) + removeProperty()

+ clearPlat{} + praopertyChanged()

+addRange()

+remaveRange(}

+updaleRange(}

[M)
- - " Tab With Property
Tab With Miniplot Tab With Both Manager

Figure 8.1: Class diagram for what a refactored GUI hierarchy might look like.

A refactored GUI class hierarchy could look something like diagram This shows that all of the
interface classes share a common abstract base class. More specific abstract base classes then implement
functionality which is dependant upon what is contained within the interface (e.g. a mini plot) until
reaching the concrete class which contains the exact details of setting up, validating and running a specific
routine. This allows us to share common code that has already been written multiple times throughout
the various interfaces, but have it defined in only one place.

The GUI window itself is a single abstract base class with a single interface file. All of the indirect GUIs
follow the same pattern: tabs for each routine with run, help, and manage directories buttons at the
bottom of the window. The name and specific settings of the window can be then be implemented using
a concrete derived class for each individual interface.

Furthermore, to expand on the last bullet point above, the interface currently executes python routines
by creating a string of python code with the calls to each routine and all of the parameters it requires.
This approach is both fiddly and bug prone. It is easy to build a string which is not formatted correctly
in some subtle way which leads to broken options and code paths.

A much better approach would be to convert the existing routines to Mantid algorithms (as discussed in
the previous section) and then use Mantid’s algorithm runner class to execute the desired algorithm on
the separate thread. This approach makes it much harder to break because any errors in preparing the
algorithm are likely to be raised at compile time as opposed to run time (as with python scripts). It also
means that the errors occurring during runtime can be caught by the interface (which cannot be done
using the current method) and handled appropriately.

The code to handle setting up and executing algorithms would not be overly complicated, Mantid already
has an algorithm runner class, but it could be adapted further if required and could be written into the
base class of the GUI hierarchy. This would allow it to be written once and used everywhere.

43

One final thing to note is that this should wait until the energy conversion for direct geometry instruments
is split from the indirect geometry interface so that restructuring the interface does not effect development
in that area.

8.4 Simulation Support in Mantid

Support for simulation is an area in which there has been little development so far for indirect, but would
be a useful addition to our existing collection. As mentioned in section [7] there is a small amount of
existing support for some simulation programs within Mantid. There are currently loaders for the output
of CASTEP, Sassena, and nMOLDYN simulations. In the most recent release, a new interface was created
as a place to integrate simulation programs into Mantid’s GUI.

One current goal in the development of Mantid is to attempt to integrate the open source nMOLDYN
library into Mantid and package it with the distribution of the project. This would not only further
enrich the existing Python API available in Mantid, but would also provide us with an extensive, reliable
molecular dynamics simulation package with which to build on.

Approval has already been given to include the library in Mantid as the functionality it provides has
been deemed generic enough to be beneficial to a significant number of Mantid users. The first step
in this project would be to separate the the nMOLDYN library from its dependencies and examine
what libraries it requires that Mantid does not already have support for. Assuming that there are then
no dependencies that cannot be shipped directly with Mantid, further development could then focus
on building useful simulation routines for comparison with experimental data in conjunction with the
requirements of instrument scientists.

8.5 Conversion of Remaining Fortran Routines

As mentioned in several sections through out the documentation of existing development, are several
routines that still rely on Fortran routines that have been directly assimilated into Mantid using the
F2Py package. This has allowed quick integration of routines needed for analysis, but it is not a cross
platform solution, is not well documented, and the current code is incredibly difficult to decipher.

A long term goal would be to convert these existing, tried and tested routines into well documented,
thoroughly unit tested C++ or python code which utilises the some of the existing fitting routines that
are already present inside Mantid. As mentioned in the previous section, some of the functionality is
repeated inside the code for Quasi and Stretch and it may be the case that common code could be merged
during the conversion.

The biggest difficulty with this is that it will require a sizeable chunk of a developers time and a good
understanding of Fortran and what the underlying code is doing in order to convert the routines and
write thorough tests for the converted code to ensure the fitting is good enough to match the existing
Fortran, while still matching the process described in the references.

There are currently four routines that are still in Fortran code: the three Bayes programs (ResNorm,
Quasi, and Stretch) and the cylindrical absorption corrections program used in the calculate corrections
routine. There are additional Fortran based routines in the for multiple scattering (see section which
will also need to be ported to Mantid in future releases.

8.6 Support for VESUVIO

Due to the uniqueness of the instrument, VESUVIO is currently not officially supported by the Mantid
framework. Significant development work has already been undertaken add the data reduction and
analysis routines that VESUVIO requires into the Mantid framework. The majority of the modifications
to the framework have already been implemented, but some areas such as multiple scattering corrections
[28] and global fitting are still incomplete. Besides this there is currently no GUI support for VESUVIO

44

within Mantid. Once all parties involved are in happy with the state of the prototype reduction and
analysis routines in Mantid work can begin on developing a GUI. Broadly, this would require a separate
interface under the indirect section of Mantid, loosely separated in to the following sections:

e Loading: This would provide a user interface for using the LoadVesuvio algorithm to get raw data
into Mantid as well as providing plotting functions for examining the captured time-of-flight data.

e Corrections: The corrections interface would provide a user interface for calculating both multiple
scattering [28] and gamma background [29] corrections and applying them to data loaded in the
first tab.

e Fitting: The fitting interface is the most complex in the series. This will provide support for
setting up a fit using the same procedures used in the Ref. [I2], but in a more user friendly manner
than the current implementation achieves. This would provide support for both the Gaussian
and Gram-Charlier functions with the ability to easily set the intensity constraints and hermite
polynomial expansion coefficients.

Additional sections may also be required, such as interfaces for the global fitting and fitting data directly in
y-space, but a full design will wait until after the framework behind VESUVIO analysis is finalised.

8.7 Additional Support for TOSCA

TOSCA has had several previous incarnations before its current set up, and has been known as TFXA
in the past [30, 31], B2, [6]. Mantid currently only has the most recent set up for the instrument defined.
The older incarnations should be able to be supported fairly easily using tools already in the Mantid
framework. The geometry of each instrument is defined using a instrument definition XML file. This
XML file has a date valid from and to attribute that allows Mantid to figure out at load time what
instrument definition to use with a particular run. Each older incarnation can be defined using this
attribute by setting it to be valid within the appropriate date range, meaning the correct definition for
TOSCA will be loaded at runtime for each sample reduced based on the age of the sample run.

A prototype instrument definition file has already been tested for TFXA, but additional work will
be required to properly support the full range of TOSCA’s history. In particular a full description
of the geometry of the instrument in 3D space is required for each prior incarnation for an accurate
definition.

Another requirement by the TOSCA team is to add support for the Renishaw Ramen spectroscopy
instrument which is used to perform Ramen spectroscopy and neutron spectroscopy simultaneously. The
data from the Renishaw instrument can currently be imported into Mantid through the ASCII loading
algorithms already in place, but this is an awkward process. A better approach would be to provide
a way to store the runs on the TOSCA data archive and then provide procedures for loading the run
directly from the archive as is currently done for regular neutron sample runs on TOSCA.

8.8 Improved Support for Other Facilities

Officially the framework we currently have supports both the SNS and ISIS. However, there has been a
lot of development during the last release to further support for the ILL within Mantid. One of the goals
of future development should be to integrate the existing loading and reduction routines with the existing
GUI. This would eventually lead to the removal of the Indirect Load ASCII interface which would no
longer be required.

8.9 Multiple Scattering Support

The multiple scattering routines from the MODES package are the last major parts that have not been
ported from the MODES application in one form or another. There are two different multiple scattering

45

routines called MuscatData and MuscatFunc which were originally part of the MODES package as the
program MINUS which in turn was adapted from the DISCUS program [3, [33]. Both routines work with
both flat and cylindrical geometries. The difference between the two is MuscatData uses takes S(Q, w)
workspace as input, while MuscatFunc just uses a set of specified parameters from the user.

Ideally these routines should be converted from Fortran to C++ code first before including them in
Mantid, but if demand is high they can be included in the GUI in the same way Bayes and cylindrical
corrections works using the F2Py package. There has already been some existing work to import them
into Mantid, but the current versions do not work. Recently, there has also been a goal outlined by the
scientific steering committee to provide a general framework for multiple scattering corrections within
Mantid. At the time of writing it is uncertain whether the planned implementation of this will be
compatible with the existing methods used by the MODES routines.

46

Acknowledgements

The author would like to thank S. Mukhopadhyay for her assistance in the writing of this report and in
particular for her guidance and support with the theory section of the document. Additional thanks W.S.
Howells for his enumerable contributions to the development of the indirect geometry section, particularly
in regards to QENS analysis, and F. Fernandez-Alonso for his constructive comments and criticisms.

47

References

1]

[12]

[13]
[14]

[18]

[19]

Mantid Project. Mantid: Manipulation and Analysis Toolkit for Instrument Data. 2013. doi:
10.5286/SOFTWARE/MANTID. URL http://dx.doi.org/10.5286/SOFTWARE/MANTID.

F. Fernandez-Alonso and D. L. Price. Neutron Scattering Fundermentals. Academic Press, 1st
edition, 2013.

W.S. Howells, V. Garcia-Sakai, F. Demmel, M.T.F. Telling, and F. Fernandez-Alonso. MODES User
Guide, Version 3. Technical Report RAL-TR-2010-006, Rutherford Appleton Laboratory, 2010.

W.S. Howells. IDA - IRIS Data Analysis. Technical Report RAL-TR~96-006, Rutherford Appleton
Laboratory, 1996.

S. Mukhopadhyay. How to use Mantid for low energy inelastic neutron scattering data analysis on
indirect geometry instruments. Technical Report RAL-TR-2014-005, Rutherford Appleton Laboratory,
2014.

D. Colognesi, M. Celli, F. Cilloco, R.J. Newport, S.F. Parker, V. Rossi-Albertini, F. Sacchetti,
J. Tomkinson, and M. Zoppi. TOSCA neutron spectrometer: the final configuration. Applied Physics
A, 74(1):s64-s66, 2002.

J. Mayers and M.A. Adams. Calibration of an electron volt neutron spectrometer. Nuclear Instruments
and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment, 625(1):47-56, 2011.

V. Garcia-Sakai, M.A. Adams, W.S. Howells, and M.T.F. Telling. The IRIS user guide. Technical
Report RAL-TR-2011-004, Rutherford Appleton Laboratory UK, 2011.

M.T.F. Telling and K.H. Andersen. The OSIRIS user guide. Technical Report RAL-TR-2003-016,
Rutherford Appleton Laboratory UK, 2003.

S.F. Parker, J. Tomkinson, A.J. Ramirez-Cuesta, and D. Colognesi. The TOSCA user manual.
Technical Report RAL-TR-~2003-015, Rutherford Appleton Laboratory UK, 2003.

E.M. Schooneveld, J. Mayers, N.J. Rhodes, A. Pietropaolo, C. Andreani, R. Senesi, G. Gorini,
E. Perelli-Cippo, and M. Tardocchi. Foil cycling technique for the VESUVIO spectrometer operating
in the resonance detector configuration. Review of scientific instruments, 77(9):095103, 2006.

J. Mayers. User guide to VESUVIO data analysis. Technical Report RAL-TR-2011-003, Rutherford
Appleton Laboratory UK, 2010.

D. S. Sivia. Elementary Scattering Theory. OUP Oxford, 2011.

J Mayers and G Reiter. The VESUVIO electron volt neutron spectrometer. Measurement Science
and Technology, 23(4):045902, 2012.

U.P. Wild, A.R. Holzwarth, and H.P. Good. Measurement and analysis of fluorescence decay curves.
Review of Scientific Instruments, 48(12):1621-1627, 1977.

D.S. Sivia, C.J. Carlile, W.S. Howells, and S. Konig. Bayesitan analysis of quasielastic neutron
scattering data. Physica B: Condensed Matter, 182(4):341-348, 1992.

J.S. Higgins, G. Allen, R.E. Ghosh, W.S. Howells, and B. Farnoux. Observation of quasi-elastic
broadening in neutron scattering from polymer solutions. Chemical Physics Letters, 49(2):197-202,
1977.

J.S. Higgins, R.E. Ghosh, W.S. Howells, and G. Allen. @ 4-dependent broadening in quasielastic
incoherent neutron scattering from a polymer melt. Journal of the Chemical Society, Faraday
Transactions 2: Molecular and Chemical Physics, 73(1):40-47, 1977.

C.T. Chudley and R.J. Elliott. Neutron scattering from a liquid on a jump diffusion model. Proceedings
of the Physical Society, 77(2):353, 1961.

48

http://dx.doi.org/10.5286/SOFTWARE/MANTID

[20]

[21]

[22]

[23]

[24]

[29]

[30]

[31]

32]

P.L. Hall and D.K. Ross. Incoherent neutron scattering functions for random jump diffusion in
bounded and infinite media. Molecular Physics, 42(3):673-682, 1981.

J. Teixeira, M.C. Bellissent-Funel, S. Chen, and A. Dianoux. Ezxperimental determination of the
nature of diffusive motions of water molecules at low temperatures. Physical Review A, 31(3):1913,
1985.

A. Fick. V. On liquid diffusion. The London, Edinburgh, and Dublin Philosophical Magazine and
Journal of Science, 10(63):30-39, 1855.

C. J. Carlile. Spectrum correction factors for sample holder and self-shielding effects for planar
samples in thermal neutron scattering studies. Technical Report RL-74-103, Rutherford Appleton
Laboratory, 1974.

A. K. Soper, W. S. Howells, and A. C. Hannon. Analysis Of Time-of-flight Diffraction Data from
Liquid And Amorphous Samples. Technical Report RAL-89-046, Rutherford Appleton Laboratory,
1989.

H. H. Paalman and C. J. Pings. Numerical Evaluation of XRay Absorption Factors for Cylindrical
Samples and Annular Sample Cells. Journal of Applied Physics, 1962.

P. G. Radaelli. ARIEL Manual, 2000.
S. Jackson. VESUVIO Data Reduction and Analysis in Mantid. Unpublished report., 2014.

J Mayers, AL Fielding, and R Senesi. Multiple scattering in deep inelastic neutron scattering:
Monte Carlo simulations and experiments at the ISIS eVS inverse geometry spectrometer. Nuclear
Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment, 481(1):454-463, 2002.

J Mayers. Calculation of background effects on the VESUVIO eV neutron spectrometer. Measurement
Science and Technology, 22(1):015903, 2011.

J Penfold and J Tomkinson. The ISIS time focussed crystal analyser spectrometer, TFXA. Technical
report, Rutherford Appleton Lab., Chilton (UK), 1986.

SF Parker, CJ Carlile, T Pike, J Tomkinson, RJ Newport, C Andreani, FP Ricci, F Sacchetti, and
M Zoppi. TOSCA: a world class inelastic neutron spectrometer. Physica B: Condensed Matter, 241:
154-156, 1997.

ZA Bowden, M Celli, F Cilloco, D Colognesi, Robert J Newport, SF Parker, FP Ricci, V Rossi-
Albertini, F Sacchetti, J Tomkinson, et al. The TOSCA incoherent inelastic neutron spectrometer:
progress and results. Physica B: Condensed Matter, 276:98-99, 2000.

M. W. Johnson. Discus: A computer program for the calculation of multiple scattering effects
in inelastic neutron scattering experiments. Technical Report R7682, Atomic Energy Research
Establishment, 1974.

49

	RAL-TR-2014-010 - cover
	RAL-TR-cover&inner-2013
	RAL-TR-cover-inner-2013
	RAL-TR-inner-cover-2013

	RAL-TR-inner-cover-2013

	RAL-TR-2014-010 - report
	Abstract
	Introduction
	Indirect Geometry Instruments
	Theory
	Data Reduction Theory
	Diffraction Reduction

	Data Analysis Theory
	Convolution Theory
	Bayesian Analysis
	Absorption Corrections

	Data Reduction with Mantid
	Convert To Energy
	Energy Transfer
	Calibration
	Diagnostics
	Transmission
	S(Q,w)
	S(Q,w) Moments
	Support for the ILL

	Diffraction Reduction
	Data Reduction GUI
	Energy Transfer GUI Overview
	Indirect Diffraction GUI Overview

	An Example Reduction

	Data Analysis with Mantid
	Basic Analysis
	ElWin
	MSDFit
	Fury
	FuryFit
	ConvFit
	Calculate Corrections
	Apply Corrections

	Advanced Analysis
	ResNorm
	Quasi
	Stretch
	JumpFit

	TOSCA Data Analysis
	VESUVIO Data Analysis
	Data Analysis GUI
	Indirect Data Analysis GUI Overview
	Indirect Bayes GUI Overview

	An Example of Basic Data Analysis
	An Example of Advanced Data Analysis

	Materials Modelling
	Indirect Simulation
	nMolDyn
	Density Of States

	Planning For the Future
	Conversion of Existing Routines to Algorithms and Work-Flow Algorithms
	Better Automated Test Coverage
	Improved GUI structure and design
	Simulation Support in Mantid
	Conversion of Remaining Fortran Routines
	Support for VESUVIO
	Additional Support for TOSCA
	Improved Support for Other Facilities
	Multiple Scattering Support

