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ABSTRACT 

In view of the recent and future electroweak precision data accumulated at LEP and SLC, 

we systematically analyze possible new physics effects that may occur in the leptonic sector 

within the context of SU(2)R X SU(2)L X U(1)B-L theories. It is shown that nonobser­

vation of flavour-violating Z-boson decays, lepton universality in the decays Z -t ll, and 

universality of lepton asymmetries at the Z peak form a. set of complementary observa.bles, 

yielding severe constraints on the parameter space of these theories. Contributions of new­

physics effects to Rb = r( Z -t bb) /f( Z -t hadrons) are found to give interesting mass 

relations for the flavour-changing Higgs scalars present in these models. 
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1 Introduction 

The Large Electron Positron collider (LEP) at CERN and the Stanford Linear Col­

lider (SLC) are powerful e+ e- machines operating at the Z peak, which can confront 

theoretical predictions of the minimal Standard Model (SM) with experimental results to 

a high accuracy. A full analysis of all the electroweak precision data including those of the 

year 1995 will either establish the SM up to one-loop electroweak level or signal the onset 

of new physics. In this context, analyzing electroweak oblique parameters [1] has become 

a common strategy to test the viability of models beyond the SM. The electroweak oblique 

parameters are sensitive physical quantities, when the new-physics interactions couple pre­

dominantly toW and Z bosons. However, it is imperative to explore additional observables 

that could be particularly sensitive to other sectors of the SM. 

In this paper, we will study a new set of complementary leptonic observables and 

explicitly demonstrate the severe limitations that can impose on model building of three­

generation extensions of the SM. The set of observables comprises flavour-changing leptonic 

decays of the z boson [2,3], universality-breaking parameters ubr for the diagonal decays 

Z ---+ ll [4], and universality-violating parameters .dAhl2 based on lepton asymmetries 

measured at LEP and/or SLC [5]. For the sake of illustration, we will consider a minimal 

left-right symmetric model (LRSM) (6] described in Section 2. Such a model can naturally 

generate vector-axial (V-A) as well as V +A flavour-dependent Zll couplings leading to 

new physics effects that can be probed via the leptonic observables mentioned above. This 

set of observables will be discussed in some detail in Section 3. In Section 4, we will give 

numerical estimates of these leptonic observables within the framework of a minimal LRSM 

and investigate their potential of effectively constraining this model. Furthermore, attention 

will be paid to possible LRSM contributions to Rb. Section 5 contains our conclusions. 

2 The LRSM 

Left-right symmetric theories based on the gauge group SU(2)R X SU(2)L X 

U(1)B-L [7,6] were motivated from the fact that the spontaneous breakdown of gauge and 

discrete symmetries can be accomplished on the same footing. Such models can naturally 
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arise from S0(10) grand unified theories via the breaking pattern [7,8) 

S0(10) --+ SU( 4)ps X SU(2)R X SU(2)L --+ SU(3)c X SU(2)R X SU(2)L X U(1)B-L--+ SM. 

We will, however, focus our analysis on the LRSM described in [6). 

In the LRSM, right-handed neutrinos together with the right-handed charged leptons 

form 3 additional weak isodoublets in a three generation model. The classification of the 

quark sector proceeds in an analogous way. To be specific, the assignment of quantum 

numbers to fermions under the gauge group SUR(2) x SU(2)L x U(1)B-L is arranged as 

follows: 

LL = ( ::) L (0,1/2,-1) Lj, = ( :: t (1/2,0,-1), (2.1) 

QL' = ( u' ) : (0, 1/2, 1/3) 
d' L 

QR1 = ( u' ) ; (1/2, 0, 1/3), 
dt R 

(2.2) 

where the prime superscript of the fermionic fields simply denotes weak eigenstates. In 

order to break the left-right gauge symmetry down to U(1)em [6), we have to introduce one 

Higgs bidoublet, 

~=(:;:n . (2.3) 

that transforms as (1/2*, 1/2, 0) and two complex Higgs triplets, 

and (2.4) 

with quantum numbers (0, 1, 2) and (1, 0, 2), respectively. For simplicity, we will consider 

that only (</>~) = Kt/v'2 and (6Jt) = vR/v"i acquire vacuum expectation values (vev's). In 

practice, this can be accomplished by imposing invariance of the general Higgs potential 

under judicious discrete symmetries of the bidoublet ~ and the Higgs triplets ~L,R [9). In 

fact, we will concentrate on case (d) of Ref. [10), to which the reader is referred for more 

details. In case (d), it is (6~) = (</>g) = 0, implying that the charged gauge bosons WL 

and WR represent also physical states with masses ML = Mw and MR, respectively. The 

massive neutral gauge bosons ZL and ZR mix one another with a small mixing angle of 

order KUvh "' 10-2
• To a good approximation, we will therefore neglect ZL - ZR mixing 

effects in our calculations. 
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Such a minimal LRSM allows the presence of baryon-lepton ( B - L) violating oper­

ators in the Yukawa sector. In fact, the B- £-violating interactions are introduced by the 

triplet fields ~L,R and give rise to Majorana mass terms mM,; in the following way: 

"B-L v'2mM,; (h -,c ' L-'c A L' ) 
.z...int =-

2 
ijLL· Cij~LLL. + R · cijL.l.R R · VR I 1 I 1 

+ H.c . (2.5) 

Here, cij stands for the usual Levi-Civita tensor and the parameters hii = 1 if left-right 

symmetry is forced explicitly. However, a phenomenological analysis of muon and T decays 

shows that hij ~ 1 [10]. As a result, St and st+ loop effects have been found to be 

negligible [11]. 

In case (d), the neutrino mass matrix takes the general seesaw-type form 

(2.6) 

where M'"' is 6 X 6-dimensional matrix. In Eq. (2.6), mv is a Dirac mass term connecting the 

left-handed neutrinos with the right-handed ones. Relevant theoretical and phenomenolog­

ical aspects related to such neutrino mass models may be found in Ref. [12]. The matrix 

M'"' can always be diagonalized by a unitary 6 X 6 matrix U'"' according to the common pre­

scription U'"'T M'"'U'"' = M'"'. After diagonalization, one gets 6 physical Majorana neutrinos 

ni through the transformations 

and (2.7) 

The first na = 3 neutral states, Vi ( ni fori = 1, ... , na ), are identified with the known na 

light neutrinos, while the remaining na mass eigenstates, Ni (= ni+na for j = 1, ... ,na), 

are heavy Majorana neutrinos predicted by the model. In addition to the leptonic sector, 

the quark sector, of such an extension contains non-SM couplings of the fermionic fields to 

the gauge and Higgs bosons. Part of the LRSM couplings has been listed in Ref. [9,10,13]. 

Relevant Feynman rules and additional discussion is given in Appendix A. 

Adopting the conventions of Ref. [12], the interactions of the Majorana neutrinos, ni, 

and charged leptons, li, with the gauge bosons wt (= w±) and ZL are correspondingly 

mediated by the mixing matrices 

no 
Bb = L: Vzt u;:; 

k=l 

and c!-. 
'3 

4 

U'"'U'"'* ki kj, (2.8) 



with l = 1, ... , na and i, j = 1, ... , 2na. By analogy, there exist mixing matrices B{f and 

CfJ given by 
2DG 

B R ""' v,Ruv• lj = L...J lie lej 
le=DG+l 

and c~ = ,, Uvuv• 
lei lej' (2.9) 

which are responsible for the couplings of w: and ZR to charged leptons and Majorana 

neutrinos. In Eqs. (2.8) and (2.9), the unitary na x na-matrices VL and VR are responsible 

for the diagonalization of the charged lepton mass matrix via biunitary transformations. 

Due to the specific structure of M"' in Eq. (2.6), the flavour-mixing matrices BL and 

CL satisfy a number of identities that may be found in [14] These identities, which result 

from the requirement of unitarity and renormalizability of the theory, turn out to be very 

useful in deriving model-independent relations between the mixings Bt, Ob and heavy 

neutrino masses. In a two generation mixing model, we have [15,16] 

(2.10) 

where p = m~2 /m~1 (~ 1) is a mass ratio of the two heavy Majorana neutrinos N1 and N2 

present in such a model, and si is L-violating mixings defined as [17] 

(2.11) 

Furthermore, the mixings Cff,N; are determined by 

pl/2 DG 1 DG 
cL L:(s'£)2, c~2N2 L:(s'£)2' N1N1 1 + pl/2 1 + pl/2 i=l i=l 

ipl/4 DG 
cL -C~2N1 L:(s'£)2. (2.12) N1N2 - - 1 + pl/2 i=l 

At this stage, it should be noted that M"' of Eq. (2.6) takes the known seesaw form [18] 

in case mM ~ mn. Nevertheless, this mass-scale hierarchy can dramatically be relaxed 

in a two-family seesaw-type model, which can radiatively induce light-neutrino masses in 

agreement with experimental upper bounds [12]. The light-heavy neutrino mixings si 
of such scenarios can, in principle, scale as si "' mn/mM rather than the known seesaw 

relation si "' Jm..,,/mN. This implies that high Dirac components are allowed to be present 

in M"' and only the ratio mn /mM ("' si) gets limited by a global analysis of low-energy 

data. Recently, such an analysis has been performed in Ref. [19], in which the combined 
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effect of all possible effective operators of the charged- and neutral-current interactions 

is considered. Although a careful analysis can provide some model-dependent caveats, we 

will, however, consider the following conservative upper bounds for the L-violating mixings: 

and 

For example, the last constraint in Eq. (2.13) comes from the nonobservation of decays of 

the type p, --+ e1, eee, or the absence of p, - e conversion events in nuclei. 

In LRSMs, the mixing matrices BL' CL' BR and eR obey the useful relations 

(2.14) 

In a two-generation mixing model, Eq. (2.14) together with Eq. (2.9) can be used to obtain 

the mixings 

Consequently, the leptonic sector of this two generation scenario depends only on five free 

parameters; the masses of the two heavy Majorana neutrinos, mN1 and mN2 [or equivalently 

mN1 and p], the mixing angles (si)2
, which are, however, constrained by low-energy data, 

and an unconstrained Cabbibo-type angle ()R· 

3 SLC and LEP observables 

In this section, we will define more precisely the framework of our calculations. In the 

limit of vanishing charged lepton masses, the amplitude responsible for the decay Z--+ 11[ 2 

can generally be parametrized as 

(3.1) 
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where 9w is the usual electroweak coupling constant, c~ is the Z-boson polarization vector, 

u (v) is the Dirac spinor of the charged lepton h (12), PL(PR) = (1- (+)"Y6 )/2, and 

c! = 1- s! = MlvfMj. In Eq. (3.1), we have defined 

(3.2) 

where p1, sw, 6gi,R (= 6g~,R) are obtained beyond the Born approximation and are renor­

malization scheme dependent. It should be noted that pz, Sw introduce universal oblique 

corrections [1], whereas 6gi,'A are flavour dependent. Obviously, an analogous expression 

will be valid for the decay Z ---+ bb, as soon as b-quark mass effects can be neglected. 

It is convenient to reexpress the flavour-dependent electroweak corrections in terms 

of the loop functions rt,l and r~,2 as follows: 

The nonoblique loop functions rt12 and f~12 depend on whether the underlying theory is 

of V-A or V+A nature. In Appendix B, we have analytically derived the loop functions 

rt 12 and f~12 in the context of LRSMs. It is then straightforward to obtain the branching 

ratio for the possible decay of the Z boson into two different charged leptons 

- - a! Mz [ L 2 R 2] B(Z---+ lt12 + hl2) = 
48 2 -r ifhz2 1 + lfhz2l , 

1rCw Z 
(3.3) 

with aw = g!/47r. Such an observable is constrained by LEP results to be, e.g., B(Z ---+ 

er);S 10-5 [20]. 

Another observable that has been introduced in [4] is the universality-breaking pa­

rameter U~112 ). To leading order of perturbation theory, U~112 ) is given by 

r(z---+ 11Tt) - r(z---+ z2T2) _ u~1 z2)(PS) 
r(z---+ 1111) + r(z---+ 1212) 
gi(6gi- 6g~n + gk(6g~- 6g~) 

g'£ + g~ 
- U~1l2)(LH) + U~lzl)(RH), (3.4) 

where U~112)(PS) characterizes known phase-space corrections coming from the nonzero 

masses of the charged leptons h and 12 that can always be subtracted, and 

l (6 h 6 l2) l 
U~~1l2)(LH) 9L 9L - 9L aw 9L ~ (fL fL ) (3 5) 

'" - (g'£ + g~) 21r g'£ + 9~ e hh - l2l2 • 

l (6 h 6 l2) l 
U~~1l2)(RH) _ 9R 9R - 9R aw 9R ~e(fR _ rR ) (3.6) 

'" g'£ + g~ - 27r g'£ + g~ llh l2l2 
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To make contact with the corresponding observable given in [20], one can easily derive the 

relation 
r( z -t ll) - 2u,<ll') 1 
r( z -t l'l') - ,. + · 

The results of a combined analysis at LEP /SLC regarding lepton universality at the 

Z resonance can be summarized [21,22] as follows: 

IU~l')l < 5. 10-3 (SM: 0), 

Ar(P-r) - 0.143 ± 0.010 (SM : 0.143), 

Ae(P-r) - 0.135 ± 0.011, 

A(O,l) 
FB 0.0170 ± 0.0016 (SM : 0.0153), 

ALR(SLC) 0.1637 ± 0.0075. (3.7) 

In parentheses, we quote the theoretical predictions obtained in the SM. From (3. 7), we 

find that the experimental sensitivity to ~Are is about 7%, (4%) for LEP (SLC). Note 

that A should equal the left-right asymmetry, ALR, measured at SLC. Furthermore, it is 

worth mentioning that ongoing SLC experiments are measuring the observable 

AFB(f) _ ~u(er;e+ -t ff)FB- ~u(eJie+ -t ff)FB _ ~-n A 
LR - - - re J, 

~u(er;e+ -t fi)FB + ~u(eJie+ -t ff)FB 4 
(3.8) 

The forward-backward left-right asymmetry for individual flavours will be an interesting 

alternative of establishing possible deviations from SM universality in lepton asymmetries. 

Lepton asymmetries [or equivalently forward-backward asymmetries] can also play 

a crucial role to constrain new physics. Here, we will be interested in experiments at 

LEP /SLC that measure the observable 

f(Z -t hZ) f(Z -t lRZ) 
r(z -t ll) 

9'i - 9~ + 2(9iD9i - 9RD9k) 

92 + 9~ + 2(9ih'9i + 9k89k). 

9~2 9~2 

9~2 + 9~2 
(3.9) 

In view of the recent discrepancy of more than 2u between the experimental results of ALR 

at SLC and Ae at LEP, we are motivated to use the nonuniversality parameter of lepton 

asymmetries [5] 

(3.10) 
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where Az may be given by the mean value of the two lepton asymmetries A 1 and A 2 • 

At this point, it should be stressed that requiring Ut1
'
2

) = 0 does not necessarily imply 

~Ahz2 = 0. As we will later see, in LRSMs one can naturally encounter the possibility, 

in which U&r(LH) ~ -U&r(RH) while ~Ahz2 becomes sizeable. Moreover, the physical 

quantities Ut1
l
2

) and ~Az1 z2 do not depend explicitly on universal electroweak oblique 

parameters, especially when the latter ones may poorly constrain such three-generation 

scenarios [ 4]. 

Another observable which will still be of interest is 

Rb = 0.2202 ± 0.0020 (SM : 0.2158). (3.11) 

If the measurement at LEP is correct, Rb turns out to be about 2u off from the theoret­

ical prediction of the minimal SM. New physics contributions to Rb can be conveniently 

calculated through [23] 

(3.12) 

where V'~SM)(mt) and ~p(SM)(mt) contains the mt-dependent parts of the vertex and 

oblique corrections, respectively. Practically, only V'~SM)( mt) gives significant negative 

contributions to Rb, which behave, in the large top-mass limit, as [24] 

yr(SM)( ) rv _ 20aws!. m~ 
b mt - 1311' M~. (3.13) 

If there are new physics effects contributing to V'~SM)( mt), these can be estimated by 

(3.14) 

where gi = 1- 2s!/3 and g~ = -2s!/3. In the next section, we will analyze numerically 

the size of new physics effects expected in LRSM. 

4 Numerical results and discussion 

Since there is a large number of free parameters that could vary independently in the 

LRSM, we have fixed to typical values all of them except of one each time and investigated 
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the behaviour of our observables as a function of the remaining kinematic variable. More ex­

plicitly, we have found that 8Ji+ quantum corrections to the effective ZlR[R coupling shown 

in Fig. 1 are very small, since M5++ > 5 TeV for phenomenological reasons [10). The very 
R 

same lower mass bound should obey the flavour-changing scalars </>gr (= ~e(</>g)j.J2) and 

4>gi (= r;sm(</>g)jy'2) [10). However, the mass difference between the two flavour-changing 

scalars should not be too large because the latter would lead to large negative contributions 

to Rb (we will discuss the consequences from a large mass-difference realization between 

the flavour-changing scalars at the end of this section). In our estimates, we have assumed 

that </>gr and <J>gi are nearly degenerate and heavier than 5 Te V. In such a case, loop effects 

involving flavour-changing scalars are found to be vanishingly small. 

In order to increase the predictability of our LRSM but still keep our analysis on a 

general basis, we shall consider a two-generation mixing scenario. Then, the free param­

eters of our minimal model are: the lepton-violating mixings (8£)2 [which are, however, 

constrained to some extend by a global analysis of low-energy data), the two heavy neu­

trino masses mN1 and mN2 [which have been taken to be at the same mass scale mN], 

the masses of the charged gauge boson MR and its orthogonal associate scalar Mh, and a 

Cabbibo-type angle ()R that rotates the right-handed charged leptons to the corresponding 

mass eigenstates. 

In Figs. 2(a)-(d), we present plots of B(Z---+ e-r++ e+r-) as a function of mN, MR, 

Mh, and ()R while keeping fixed the remaining kinematic parameters. In Fig. 2(a), we see 

the characteristic quadric, m'k/Miv, dependence on the branching ratio [3,14]. The dashed, 

dotted and dash-dotted lines represent results coming purely from the SU(2)R sector for 

( 8£"Y = 0.040, 0.030, and 0.020, respectively. The solid lines i, ii, and iii correspond to 

a complete computation for the three different lepton-violating mixings mentioned above. 

If we assume some typical values for the rest of the parameters, i.e. MR = 0.4 TeV, 

Mh = 30 TeV, and ()R = 0, we find that B(Z ---+ e-r+ + e+r-);S 2. 10-6 for mN = 3 TeV. 

Although the size of new physics effects may be probed at LEP, the reported value is 

B( Z ---+ er) < 10-6 and it does not yet impose rather severe constraints on the parameter 

space of the theory. This conclusion is also supported by Figs. 2(b)-(d). In Fig. 2(c), it 

is worth observing the logarithmic dependence of the mass ratio Mh/ MR on the branching 

ratio, which can also render the decay channel Z ---+ er measurable. In Fig. 2( d), one can 

further see the strong dependence of ()R on B(Z ---+ e-r+ + e+r-). However, a similar, 
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though complementary, behaviour will be found to be present in the observables U~n- and 

~A. 

We are now proceed by examining numerically the dependence of the universality­

breaking parameter U~n- as a function of various kinematic variables shown in Figs. 3(a)­

( d). Again, we observe the nondecoupling behaviour of the heavy neutrino mass in the 

observable U~n- [4]. The size of new physics becomes significant for mN ~ 3 TeV, i.e. 

U~n- "' 4. - 5. 10-3
. In Fig. 3(b ), we see that the value of U~n- decreases rapidly as MR 

increases. In Fig. 3(c), we remark again the logarithmic dependence MVM'it on U~n-. In 

our estimates, we have used a Cabbibo-type angle (}R = 45°, which turns out to be a 

rather moderate value as is displayed in Fig. 3( d). As has been mentioned above, the 

electroweak corrections originating genuinely from the SU(2)R sector depend on the angle 

(}R· Looking at Fig. 3( d), one can readily see that the choice OR = 45° gives smaller effects of 

nonuniversality in the leptonic partial widths of the Z boson. If we had chosen OR = -45°, 

we would have obtained much stronger combined bounds on the mass parameters and 

L-violating mixings of the LRSM. 

One may get the impression that new-physics effects can be minimized by selecting 

(}R to lie in a specific range. This is, however, not true, since the universality-breaking 

parameter ~Ahz2 will play a complementary role as is shown in Figs. 4(a)-(d). In Fig. 4, 

we list the results after adding both contributions coming from SU(2)L and SU(2)R gauge 

sectors. Thus, we may be sensitive up to mN~ 1.5 TeV for (s~"") 2 = 0.04 and (s~e) 2 = 0.01 

(see Fig. 4(a)). In Fig. 4(b), we display the decoupling effect of a very heavy WR. In 

Fig. 4( c), we find again the logarithmic enhancement caused by the nondegeneracy between 

W_,i and h±. In addition, it should be noted that interesting phenomenology can only arise 

for relatively light WR bosons, i.e. MR~ 1 TeV. The latter observation can also be verified 

from Fig. 4( d), in which ~A is drawn as a function of (}R for MR = 0.4, 0.6, and 0.8 

TeV. Furthermore, one can easily recognize the complementary role that B(Z----+ 1112), U~n-, 

and ~A play as far as OR is concerned, when comparing Figs. 2( d), 3( d), and 4( d). For 

example, the choice (}R = -45° would make LlA more difficult to observe, whereas U~n­

becomes larger for this value of OR. Of course, scenarios where MR is at the TeV scale may 

not be compatible with KL- Ks phenomenology if we assume an exact left-right symmetry 

in the Yukawa sector of the model. Nevertheless, in LRSMs that possess nonmanifest or 

pseudomanifest left-right symmetry, such a constraint is not valid any longer (25].' 
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In the following, we will try to address the question whether there exist possibilities 

of inducing positive contributions to Rb within our LRSM. As has already been noticed 

in Section 3, only positive contributions to Rb are of potential interest, which will help to 

achieve a better agreement between theoretical prediction and the experimental value of Rb. 

In LRSM, we first consider the Feynman graphs 1(m) and 1(n), where the external leptons 

are replaced by b-quarks and virtual down-type quarks are running in the place of charged 

leptons. The interaction Lagrangians of the flavour-changing scalars </>~r and </>~i with the 

d, s, b quarks can be obtained by Eq. (A.17) after making the obvious replacements. 

These couplings are enhanced, as they are proportional to the top-quark mass. In fact, the 

flavour-changing scalars generate effective Zbb couplings of both V-A and V +A nature. In 

the limit M.P8"' M.pg• ~ Mz, the effective Zbb couplings take the simple form 

( 4.1) 

( 4.2) 

where As and AJ are defined in Appendix B after Eq. (B.1). The analytic function in the 

parentheses of the r.h.s. of Eqs. ( 4.1) and ( 4.2) is always positive and equals zero when the 

two scalars</>':, </>~i are degenerate. Substituting Eqs. (4.1) and (4.2) into Eq. (3.14), one 

easily finds that the SM value of Rb is further decreased. This leads automatically to the 

restriction 

(4.3) 

The mass relation ( 4.3) has been used throughout our numerical estimates. 

Another place that may lead to positive contributions to Rb are due to diagrams 

similar to Figs. 1(h) and 1( d). Indeed, an analogous calculation gives 

(4.4) 

However, the l.h.s. of Eq. (4.4) is proportional to s~ = Mfv/Mit yielding a rather small 

effect. If we insist in cancelling the negative SM vertex correction veM(mt) through the 

contribution ( 4.4), we find the highly unnatural mass ratio 
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The latter also demonstrates the difficulty of obtaining radiatively positive contributions 

to Rb within the LRSM. In Ref. [26], it has been shown that ZL- ZR mixing effects could 

help in producing contributions of either sign to Rb. We will not pursue this topic here. 

5 Conclusions 

We have shown that lepton-flavour violating Z-boson decays, lepton universality in 

the decays Z --+ ll, and universality of lepton asymmetries at LEP /SLC represent a set 

of complementary observables and can hence impose severe limitations on model-building 

in the leptonic sector. For our illustrative purposes, we have considered a LRSM with 

two-generation mixing. We have found that the observables B(Z--+ l1 l2 ), U~12 , and .dAt1t2 

are sensitive to different parameter-space regions of this minimal scenario. For instance, 

if (s~.,.) 2 = 0.03, (s~e) 2 = 0.01, MR = 0.4 TeV, and Mh = 30 TeV, then heavy neutrinos 

are found to have masses that do not exceed 2 TeV for any value of the Cabbibo-type 

angle ()R· On the other hand, constraints on new physics from Rb prefer scenarios, in which 

flavour-changing scalars are degenerate in mass. 

It may be worth remarking again the fact that LRSMs can naturally predict Ubr- ::: 0, 

for some choice of parameters, which could naively be interpreted that lepton universality 

is preserved in nature. As has been shown in this paper, universality violation can manifest 

itself in lepton asymmetries .dA~t 12 as well. This is, however, not an accidental feature of 

the LRSM but may have a general applicability to unified models, such as supersymmetric 

extensions of the SM [5]. In general, such theories can naturally generate both nonuniversal 

V-A and V+A Zff-couplings yielding effects that may be detected by current experiments 

at LEP and SLC. 

Acknowledgements. I wish to thank Richardo Barbieri, Jose Bernabeu, Roger Phillips, 

and John Thompson for discussions and comments. 
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A Feynman rules in the LRSM 

Although some of the Feynman rules required in our problem were given in Ref. [9,10], 

we list all the relevant Feynman rules and Lagrangians governing the interactions of the 

gauge and Higgs bosons with leptons and neutrinos, as well as the trilinear couplings of 

the bosons. The covariant derivative acts on the Higgs multiplets as follows: 

D ;r,. 8 ;r,. .9L .... W.... ;r,. .9R;r,.__,W.... (A.1) 
1-''j! 1-''j! + 'tTO" LJJ'j!- 1,2'j!O" RJJ, 

D A 8 A • 9R,L [ .... w.... A ] • 'B A (A 2) 1.1.UR,L - !JUR,L + t-
2
- 0" R,L!J, UR,L + tg 1.1.UR,L, · 

where O"i are the known 2 x 2 Pauli matrices, and 9L (gR) are the SU(2)L (SU(2)R) weak 

coupling constants which will be set equal to 9w = 9L = 9R (gw is the usual SU(2)L weak 

coupling constant in the SM). To facilitate our computational task, we will further assume 

that the corresponding neutral gauge boson ZL is the Z of the SM to a good approximation. 

Also, we will list the novel LRSM interactions together with the SM couplings in order to 

avoid possible ambiguities between relative signs. 

The trilinear couplings of gauge, Higgs, and would-be Goldstone bosons may therefore 

be obtained by (all momenta flow into the vertex) 

ZLv(r)WiA(p)W£1-'(q) -igwewf!JvA(r, q,p), (A.3) 
2 

ZLv(r)WlA(p)WR!J(q) igw Sw f!JvA(r, q,p), (A.4) 
Cw 

2 

ZLv(r)li!(p)Wi!J(q) . M SW !JV (A.5) -tgw w-g ' 
Cw 

ZLv(r)lik(p)WRJJ(q) 
s2- s2 

ig M /3 w g~-'v (A.6) w w ' Sf3Cw 

ZLv(r)h+(p)WR!J(q) -igwMw Cf3 g~-'v, (A.7) 
Cw 

ZL~-'( r )lit (p )li£ ( q) -i;: (1- 2s!)(p- q)~-', (A.8) 

ZLJl(r )lik(p)li}l( q) • 9w ( 2 2 )( ) -t 
2

Cw s13 - 2sw p- q ~-'' (A.9) 

ZLJJ(r )h+(p)h -( q) · 9w ( 2 2 )( ) -t
2

Cw c13 - 2sw p- q ~-'' (A.10) 

ZLJl(r )li~(p )h=F( q) · 9w ( ) 
=ft 2Cw Sf3Cf3 p- q ~-'' (A.ll) 

Z LJS ( r )4>~" (p )4>~i ( q) :~ (p- q)!J, (A.12) 

ZLJJ( r )8k+ (p )8}l- ( q) 2 .9w 2 ( ) 1,-Sw p-q W 
Cw 

(A.13) 
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Here, we have defined Sf3 = )1- c~ - Mw/MR and the Lorentz tensor f 1JII>.(r,q,p) 

(r- q)>.giJv + (q- P)vg>.IJ + (p- r)IJgv>.· 

The corresponding couplings of the gauge, Higgs, and would-be Goldstone bosons to 

the charged leptons and neutrinos can be read off from the Lagrangians 

£WR int 9w w-jJ BR l p - y'2 R li "'f 1J Rni + H.c., (A.14) 

G- 9w R -[ ] H.c., (A.15) £in~ - y'2 Sf3 GR. Bli l m1PR- mniPL ni + 
2Mw 

h-
Lint A~w c~ h- r [Bf.'m,Px- B~ ( 6;;- C~') m.;PL l n; + H.c., (A.16) 

t/>g 
Lint - 2:w 4>~" Z1 [Btimn;B~jPR + B~imn;BtjPL]l2 

"'9w 4>oi l [BL BR*p BR BL*p ]z - 2Mw 2 1 ldmn; l3j R - ldmn; !3 j L 2, (A.17) 

6++ 9w Sf3 s++ [C BR*: m . BR*:p l H.c., (A.18) £i~ - 2.J2Mw Cf3 R 1 hJ n, 133 R 2 + 

where the mixing matrices BR and CR are defined in Section 2. The couplings of ZL (= Z) 

to Majorana neutrinos may be found in Ref. [12). 

B The nonoblique Zll vertex 

We analytically evaluate the loop amplitudes in the limit of vanishing external lepton 

masses. We adopt dimensional regularization in conjunction with the reduction algorithm 

of Ref. [27). Unlike the metric notation of Ref. [27), we use the Minskowskian metric, 

g1Jv = diag(1, 1, ... , -1). 

The nonoblique effective Zll' vertex function is similar to the one obtained in [3). Its 

analytic form is given by (summation over repeated indices implied) 

rfl, = Bt Bfrt { 8ii [ c!Az ( Cn(Ai, 1, 1) + C2a(Ai, 1, 1) - C22( Ai, 1, 1)) 

+6c!C24(Ai, 1, 1)- s!AiCo(Ai, 1, 1) + ~(1- 2s!) ( AiC24(Ai, 1, 1) 

+~AiB1 (0, Ai, 1) + B1(0, Ai, 1)) l 
+Cj[- C24(1,Ai,Aj)- ~Az(Co(1,Ai,Ai) + Cn(1,Ai,Ai) 
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+C2a(1, Ai, Ai)- C22(1, Ai, Ai))- ~AiAjCo(1, Ai, Ai)l 

+~Cj*~[Co(1,Ai,Ai) + ~Az(C2a(1,Ai,Ai)- C22(1,Ai,Ai)) + C24(1,Ai,Ai)l 

+~CC~[2C24(0,As,Ar)- C24(As,O,O)- C24(Ar,O,O) + ~ 

+s!(B1(0,0,As) + Bl(O,O,Ar))- ~Az(C2a(As,O,O)- C22(As,O,O) 

+C2a(Ar,O,O)- C22(Ar,O,O)) l}, (B.1) 

where Ai = mUMf.v, Az = M~/Mf.v, As = MJgr/Mf.v, and Ar = MJg;/Mf.v. Note that 

there is a contribution proportional to Cfl that originates solely from the Higgs sector of 

the LRSM. In the notation of [28], the first three of the six arguments of the C functions 

are always evaluated at (0, Az, 0). 

In the LRSM, virtual neutrinos and Higgs scalars induce a nonuniversal Z boson 

coupling to right-handed charged leptons, rR, as shown in Fig. 1. The contributions of the 

individual graphs to rR are listed below 

rff,(a) = BffB~*s![Az(C22(Ai,AR,AR)- C2a(Ai,AR,AR)- Cu(Ai,AR,AR)) 

rC,(b +c) 

rff,( d) 

rC,(e + n 
rff,(g) 

-6C24(Ai, AR, AR)l' 

Bff B/!i*( s! - s~)AiCo( Ai, AR, AR), 

~Bff B/!i*s~(s~- 2s!)AiC24(Ai, AR, AR), 

-~BffB{!j*(8iis~Ai- ~Cj)(Co(Ai,AR,Ah) + Co(Aj,AR,Ah)), 

(B.2) 

(B.3) 

(B.4) 

(B.5) 

1 R R* ~ ( 2s!) ( 2 L )( 2 L) ( ) ( ) -Bli B1,3 y A~eAn 1- - 2- s13 8~ei- Cki s138in- Gin C24 Ai, Ah, Ah , B.6 
2 c13 

-~BffB{!j*~s~(s~8ii- Cj)(C24(Ai,AR,Ah) + C24(Aj,AR,Ah)), (B.7) 

-~Bff B~3*{ Cb* [ 1- 2C24(AR, Ai, A3)- Az ( Co(AR, Ai, Aj) + Cu(AR, Ai, Aj) 

+C2a(AR, Ai, A3)- C22(AR, Ai, Ai)) l + Cb~Co(AR, Ai, Aj) }, (B.8) 

1 R R* 2 ~{ L [ 1 ( -4_Bli Bl'i s13 y AiAi Cii 2C24(AR, Ai, Aj)- 2 + Az C2a(AR, Ai, A3) 

-C22(AR, Ai,Ai)) ]- Cb*~Co(AR, Ai, Aj) }, (B.9) 
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rff,( I) - ~ BaBf.',: ~ :~ ( sp5r.; - Of,)( sp5.; - Cf.) {at [ 20,.( A., A;, A;) - ~ 

+~z ( 02a(Ah, ~i, ~;)- 022(~h, ~i, ~;)) ]- Ob\f~-~~Oo(Ah, ~i, ~;)} (B.10) 

rN.(m + n) -~B{f Bf!-;*Ot~o24(o, ~s, ~r), (B.ll) 

rN.(o + p) - ~B{fB{!;*oi;(1- 2s!)~[2o24(~s, o, o) + 2024(~1, o, o)- 1 

+~z(02a(~s,O,O)- 022(~s,O,O) + 02a(~r,O,O)- 022(~r,O,O)) l, (B.12) 

-
2
1 

BffBt!;·on·s! s~ ~o24(o,~6,~6), 
cf3 

(B.13) 

1 R R• R• 2 
8~ ~[ 1 ( -BBliBl'iOii swc~V~i~i 2024(~6,0,0)-2+~z G2a(~6,0,0) 

-022(~6, 0, 0)) l' (B.14) 

where ~h = M~+ I Mfv and ~6 = Mff++ I Mfv. In addition to the irreducible three-point 
R 

functions, we should take wave-function renormalization constants into account (Figs. 1(A)-

(F)). These additional nonuniversal corrections generated by the selfenergies are calculated 

to give 

rN.(A) 

rN.(B) 

rN.(o) 

rN.(D +E) 

rN.(F) 

-~B{f Bf0*s! ( 1 + 2B1(0, ~i, ~R)), 

-~B{fB{0*s!s~~iB1(0, ~i, AR), 

--
2

1 
B{f B/0* 8~ V~~e~n(s~81ei- G~)(s~8in- G{;.)B1(0, ~i, ~h), 

cf3 

-~B{fB{0*Gbs!~ (B1(0, 0, ~s) + B1(0, 0, ~r)), 
1BR R•cR• 2 8~ ~ ( ) -8 li Bl'j ij SW 2V /\i/\jBl 0, 0, ~6 • 

cf3 

(B.15) 

(B.16) 

(B.l7) 

(B.18) 

(B.19) 

The sum of Eqs. (B.2)-(B.19) should be free from UV divergences, when l I l'. This can 

easily be verified by employing the identities that the mixing matrices BL,R and GL,R obey 

(see also discussion in Section 2). An ultimate check for the correctness of our analytic 

results is the vanishing of all terms involving s! in the limit ~z -+ 0, due to electromagnetic 

gauge mvanance. 
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Figure Captions 

Fig. 1: Feynman graphs contributing to the effective nonoblique Z1RlR coupling in 

the LRSM. 

Fig. 2: B(Z --+ ltl2 + l112 , 11 -j. 12 ) in a two-generation LRSM as a function of (a) 

the heavy neutrino mass mN(= mN1 = mNJ, (b) WR-boson mass MR, (c) 

charged Higgs boson Mh, [for the L-violating mixings (s~"") 2 = 0.04 (curve-i), 

0.03 (curve-ii), 0.020 (curve-iii) and setting (s~e) 2 = 0.01, (si')2 = 0], and 

(d) a Cabbibo-type angle BR [for MR = 0.4 TeV (curve-i), 0.6 TeV (curve-ii), 

and 0.8 TeV ( curve-iii)]. Numerical estimates coming solely from the SU(2)R 

sector are also shown. The results analogous to the curves-i, ii, and iii, are 

correspondingly given by the dashed, dotted, and dash-dotted lines. 

Fig. 3: Numerical estimates of U/;l2 for the same set of parameters as in Fig. 2. 

Fig. 4: Numerical estimates of .1.Ahz2 for the same set of parameters as in Fig. 2. 

Only the total LRSM contribution to .1.Az1z2 is shown, where the correspond­

ing curves-i, ii, and iii are now given by the solid, dashed, and dotted lines, 

respectively. 
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