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RAL Summer School for Young Experimental High Energy Physicists 

Coseners House, 5- 17 September 1994 

PREFACE 

Forty-six young experimental particle physicists students attended the 1994 Summer School, 
held as usual in Coseners House in Abingdon in early September. This year, the weather was 
mild and sunny for the most part, choosing to rain only for the Barbecue on the Friday evening. 

The lectures reproduced here were given by Ian Halliday (Relativistic Quantum Field Theory), 
Jonathan Flynn (Relativistic Quantum Mechanics), Graham Shore (The Standard Model) and 
Dick Roberts (Phenomenology). The lectures were delivered with enthusiasm and good humour, 
and provided a solid foundation for deeper discussions in small groups over dinner or in the 
pub. We were very pleased that Dr Peter Williams, who is Chairman of both PP ARC & Oxford 
Instruments, made time in his busy schedule to give us a very interesting and informative evening 
seminar. Bill David from DRAL gave a comprehensive and comprehensible overview of the 
range of physics performed at ISIS in another evening seminar, and Paul Harrison from QMW 
and Mike Whalley from the Durham HEP group gave afternoon seminars on permutation 
symmetry of the CKM matrix and information retrieval systems respectively. 

All students gave a twelve minute seminar in one of the evening sessions; these were of an 
exceptionally high standard, delivered clearly and concisely and transmitting excitement and 
enthusiasm. 

Chandy Nath and Lawrence Angrave provided an impromptu cabaret of gentle jazz for the 
formal dinner, followed by a witty and elegant after dinner speech by Sandy Donnachie, who 
has chaired every important committee in particle physics. 

The work of the school was helped enormously by the hard work of the tutors -
Susan Cartwright (Sheffield), Paul Dauncey (DRAL), Paul Harrison (QMW) and Bill Scott 
(DRAL). 

Videos were shown on four or five evenings - the first organized by the director, the remainder by 
the students. The usual sports and other activities filled in those few gaps in the timetable. By 
the end of the two weeks of total immersion in particle physics, exhaustion tempered the sense 
of achievement at having survived the course. 

The school benefited from the welcoming and calm atmosphere of Coseners House, and the 
efforts of all of the staff there were very much appreciated. 

None of it would happen, of course, if it were not for the tireless enthusiasm and organizational 
skill of Ann Roberts (DRAL), whose gentle prodding ensures that everything that should happen 
does happen (and that those things which shouldn't happen don't). 

This was undoubtedly one of the very best of the many summer schools with which I have been 
involved. To all who helped make it so -lecturers, tutors, staff at both Coseners and DRAL and 
above all the students - I extend my thanks and my good wishes. 

Ken Peach (Director) 
Department of Physics & Astronomy, 

University of Edinburgh 
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Introduction. 

This short lecture course is aimed at connecting the later courses to your undergrad­
uate knowledge o£ Quantum Mechanics, Maxwell's equations, etc. I also have to provide 
a language and a series of results for the later lectures - a tall order. So, I would like to 
show you how to quantise an arbitrary theory; in particular show you why gauge theories 
are hard. On the other hand I would like to demonstrate Salam's remark that he has been 
surprised at how little he has had to change his ideas in over thirty years! So the highlight 
of the course will be a "proof" of Feynman rules for the perturbative evaluation of field 
theories such as scalar fields, and Yang-Mills. I will make a point of starting far enough 
back to be comprehensible to everybody - I expect riots otherwise. A constant theme will 
be the way that different views make different aspects transparent. The prime example 
being the way Hamiltonian methods make Quantum Mechanics easy but hide symmetries. 
Lagrangian methods make symmetries easy but lose direct physical contact with your old 
view of Quantum Mechanics as a theory of operators, states, eigenvectors, etc .. 

Synopsis. 

0) The examples done before coming to Coseners 
(1) Harmonic Oscillator 
(2) Gaussian Integrals 
(3) Pictures in Quantum Mechanics 
( 4) Newton implies Lagrange 
( 5) Dirac h function 

1) Classical Mechanics- Lagrange vs Hamilton 

2) Quantum Mechanics 

3) Free Boson 

(1) Schrodinger vs Heisenberg vs Dirac pictures 
(2) Hamilton vs Lagrange, Dirac and Feynman 
(3) Heisenberg Harmonic Oscillator 

( 1) Classical 
(2) Quantum 

4) Interacting Boson 
(1) Feynman diagrams by operators 
(2) Feynman diagrams by Functional integrals 

5) Groups and Algebras 
(1) Definitions and Examples 

6) Gauge Theories 
(1) Classical Maxwell Theory - Lorentz invariance 
(2) Lagrangian formalism 
(3) U(1) Covariant derivative 
(4) Non-Abelian Gauge Theories 
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( 5) Feynman Rules 
(6) Gauge Fixing 

7) Fermionic Integrals 

8) Experimentally Virgin Territory 

Acknowledgements 

It is a great pleasure to thank Ken Peach for organising and running the school so 
well. His rumbustious humour contributed greatly to the atmosphere. The students, of 
course, made the school. This year I was impressed by their professional approach. The 
talks by the students were easily the best of the three years. Finally, I would thank Ann 
Roberts for her unobtrusive organisation in coping with lecturers changing schedules at 
very little notice. 
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Chapter 0 

The prerequisites for the course 

The purpose of this section of the notes is to provide you with a summary of what I 
expect you to know before we start in September. Everything here will be used in one form 
or another in the course. You must do all the examples before you arrive at Coseners. I 
stress that these examples and exercises are at the heart of quantum field theory either in 
operator form or the more trendy Functional or Path integral method. You must do all of 
these problems and two finger exercises. H not, you will end up having to understand both 
the mathematics and the field theory ideas simultaneously. With the exercises behind you 
the maths should be second nature. The mathematics at the heart of quantum field theory 
is constructed out of many oscillators. So the first aim is to be absolutely sure that you 
understand one oscillator by itself. Hence the way your undergraduate courses pounded 
away at this problem, probably without explaining why. To jump the gun slightly, the basic 
reason is that if we have a photon, pion, Higgs of energy E(k) = nw(k) for momentum k 
then n such particles have energy n1iw(l£). The energy levels of a Harmonic Oscillator of 
frequency w are nw( n + ~ ). Apart from the constant ~ 1iw these agree ! 

In the lectures I will use the Path integral formalism extensively to construct Feynman 
diagrams, fix gauges,... This trickery leans totally on a knowledge of Gaussian integrals. 
So again I include a revision section on these integrals and the two standard tricks of 
completing the square and introducing new parameters. 

Many of you will have already have studied the concept of pictures in Quantum 
Mechanics; in particular the Schrodinger and Heisenberg pictures. We will use a new 
picture due to Dirac to construct perturbation theory. So here I revise the standard 
material. 

Finally I will use extensively the ideas of Lagrangian and Hamiltonian mechanics. For 
completeness I give the standard derivation of Lagrange's equations from Newton's. In 
Quantum Field Theory Lagrangians play a major role because of the way they make the 
symmetries of the problem manifest. In Quantum Mechanics we usually start from the 
Hamiltonian which often hides the symmetries. We will thus develop a new formalism, 
the path integral formalism, which is the Lagrangian variant of Quantum Mechanics. This 
will make many calculations much easier and slicker. Here I remind you of the classical 
connection between Lagrangians and Hamiltonians. 

We will use many properties of Dirac b'-functions. I remind you of the definitions, 
proofs and the results we will use. 

0.1} Harmonic Oscillator 

So let us redo the Harmonic Oscillator in Quantum Mechanics using an operator 
formalism. We use the most common picture in undergraduate texts - the Schrodinger 
picture - where operators are independent of time. 

A ."a p=-'tn-
8q 

A 

q=q 
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The notation may look unusual, but here and in the lectures, I will try to avoid a standard 
confusion. The above equations are usually written 

~ ·t:. a p= -zn-
8x 

x=x (0.1.1) 

where x is the dynamical variable corresponding to the position of a point particle. Later 
in Field theory we will have dynamical variables ~(.f., t) where .f. is not a dynamical variable 
but merely a label. i.e. ~(.f., t) is an operator at some fixed point .f. of space. The label 
~ undergoes no dynamics, although ~(~, t) certainly does. To avoid this confusion the 
dynamical variables for point particles are usually rewritten as momentum p, position q. 
The only property of (0.1.1) I will use is the commutation relation 

[§,fi] =in (0.1.2) 

and from now on we choose units such that n = 1. In Quantum Mechanics the starting 
point is usually the Hamiltonian or energy operator 

(0.1.3) 

written as a function of the position and momentum. We will solve for the energy eigen­
states and normalised wave functions of (0.1.3) only using {0.1.2) and not {0.1.1) . 
This will be important later. Define 

~t 1 ( ~ c:;-: . p ) a=-qymw-z--
y'2 .jffiw 

A 1 (~ c:;-: o p ) a= m qymw + z c:::-: 
v2 ymw 

(0.1.4) 

Since qt = q and pt = p it is clear that a, at are, in fact, Hermitian conjugates of one 
another so the notation makes sense. Now compute 

by (0.1.2). Moreover 

[ ~ ~ t] 1 [ ~ . ~] 1 [ . ~ ~] 1 a,a = 2 q,-zp + 2 zp,q = 

1 ~2 

at a=-( L. + q2mw + i[q,p]) 
2 mw 

1 ( p2 1 2 ~2 1 ) 
= ~ 2m + 2mw q - 2w 

(0.1.5) 

(0.1.6) 

where the n can be Aresurrected by dimensional analysis if required. Now let us compute 
the eigen values of H. Suppose we have an eigenstate la) such that 

at O.la) = ala) 
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Then clearly 
A 1 

Hla) = 1iw(a + 2)1a) 

so an eigenstate of at a is an eigenstate of Hand vice versa. Now I claim that at la) is also 
an eigenstate of H: 

ata{atla)} =at {aat}la) 

=at{ata+1}1a) 

= at {a + 1} la) 

=(a+ l){atla)} 

because (a+ 1) is a number. Similarly 

at a{ ala)} =(a- 1){ ala)} 

(0.1.7) 

(0.1.8) 

Thus, given any eigenstate with eigenvalue a, we can easily construct eigenstates with 
eigenvalues a, a+ 1, a+ 2, ···,a -1, a- 2, ···,by multiple applications of at and a. Do 
these sequences ever stop? To fix the limits, consider 

(alat ala)= j dqw~(q)(at a)wo(q) 

= j dq(awo(q))*(awo(q)) 

= J dq.P*(q).P(q) ~ 0 

(0.1.9) 

where we have used the fact that the Hamiltonian conjugate of at is a and have written 
«<>(q) = aw o(q). Note that in (0.1.9) we get zero if and only if .P(q) = 0. On the other 

hand, if 1 a> is an eigenstate of at a, the left hand side is 

(0.1.10) 

Now above we constructed eigenstates la), la -1), la- 2) · · · and the above can be applied 
to any of them. So in (0.1.9) we have, using (0.1.10) that 

(a- n){a- nla- n) > 0 ;n > 0 (0.1.11) 

Since {a- nla- n) > 0 we have (a-n)> 0 for all n. Clearly an absurdity for sufficiently 
larger n. So somewhere above there is a mistake. Can you see it? Don't turn the page 
and cheat. The mistake is a standard mistake that lies at the heart of angular momentum 
theory, the theory of Lie algebras, Kac-Moody! 
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The way out is that we proved 

which seems to prove at la) is an eigenstate of at a. But remember for any operator 6 the 
eigenvalue equation 

O<I>(q) = a<I>(q) 

always has the trivial solution <I>(q) = 0. So we must check that at la) =f:. 0. Since we are 
getting a contradiction, in fact for some n we must always get, for the first time, 

for some positive integer n. Then consider the state I.B) = (a)n-lla:) =f:. 0 such that ai.B) = 0 
and hence at ai,B) = OI,B). Notice that the cat)nla) eigenstates give us no problem; the 
analogue of (0.1.11) is 

(a+n)(a+nla+n) ~ 0 n ~ 0 

which gives no sign problems. So we now construct everything on the basis of the lowest 
state 1.8) which must satisfy ai,B) = 0. Then 

.Hcatti.B) =w(ata+ ~)(at)n)I.B) 

= w(n + ~)(atti.B)) 

So, as promised, the eigenstates of H are w( n + ~). If you want to construct the wave 
functions, the 1.8) equation 

ai,B) = o * (vmwq+ ~8
8 

)w(q) = o 
ymw q 

or 
-mw 2 'll(q) = e-2-q 

Higher eigenstates can be computed by applying 

to 'll(q). 

at= (vmwq--1-~) 
Vffiw8q 

An interesting exercise is to check the normalisation of the states. If we call the lowest 
states IO), 11), 12), of energy e-value ~1iw, ~1iw, ~1iw then the normalised state is 

In)= ~cattlo) 
vn! 
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The proof of this is straightforward using the commutation relatives and induction. Take 
the normalised JO) state {0]0) = 1. Then 

(1]1) = (o]aat]o) 

= {O](at a+ 1)]0) 

= {0]0) = 1 

because a]O) = 0. Then assume (n]n) = 1 and compute 

(n + 1ln + 1} = ( 
1 

) (njaat]n) 
n+1 

_ ( 
1 

) (n](at a+ 1)ln) 
n+1 

1 
- (n + 1) {n](n + l)]n} 

= (n]n) = 1 

This innocent looking Jn1 is at the heart of all of laser physics. In that context at, a 
correspond to operators creating and annihilating a single photon of energy w. Thus any 
atomic physics process where atoms decay and give off a photon must have an interac-
tion proportional to at; a process where photons are absorbed must have an interaction 
proportional to a. So consider two matrix elements 

(n + 11at]n) = Vn+!{n + 1]n + 1) 

=Vn+l 
{n -- lja]n) = v'n{n]n) = Vn 

The first, when squared to give the probability of the transition, gives a factor of (n+1) i.e. 
the atom decays even if n = 0, increasing the number of photons from 0 to 1. But, if there 
already exist 1015 photons in that mode, the probability increases by 1015 i.e. stimulated 
emission and possibly lasing. So later we will see that a free scalar field corresponds to 

i.e. the Hamiltonian is a sum of Harmonic Oscillators, one for each momentum Js... The 
odd normalisation is due to us making relativistic invariance explicit. 

0.2) Gaussian Integrals 

This is the mathematical trickery necessary to establish Feynman diagram expansions 
in field theory without driving yourself crazy commuting operators past each other. The 
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method was one of Feynman's favourite ways of doing integrals. We build up slowly, from 
simple 1 dimensional integrals, to integrals over infinite numbers of variables. 

a) Compute: 

Trick 

l
+oo 2 l+oo 2 l+oo 2 2 12 = dxe-ax . dye-ay = dxdye-a(x +Y ) 

-oo -oo -oo 

Now change to polar coordinates r, 6. 

so that 

1(a) = ~ 
b) Compute: 

Change variables to y = x - fa, then 

c) Compute: 

since differentiating with respect to {3 inside the integral just brings down extra factors 
of x. 

11 = ~ fie (!.. I = 0 
8f3 V ~ P=o 

This is trivially correct as the integrand is odd. 

12= {)22 fie(!..l 
8(3 V~ P=O 

fi a { f3 £!..}1 
= V ~ 8(3 2a e 4a P=O 

= F{_!_e~ + f322e~}l 
V~ 2a 4a P=O 

(0.2.1) 

=2~~ 
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This example deserves close scrutiny. What we are doing is swapping powers of x in the 
integrand for derivitives with respect to a paramater in the exponent. This is absolutely 
characteristic of Functional Integrals. Moreover in equation (0.2.1) above, we very char­
acteristically get two terms. The first comes from differentiating the term brought down 
from the derivative of the exponent leaving no f3 term in the product. The second comes 
from differentiating the exponent twice. This leaves f3 factors which vanish. This trivial 
remark is at the heart of the construction of the Feynman diagram expansion. 

d) The Most Important Integral in the World: 

L = j ft df/Jie- E;,; tf>; K;j t/>j + E~: J,. t/>~o 
a= I 

(0.2.2) 

We have switched to integration variables called f/Ji. Later these will be the values of scalar 
fields and i will be a label picking space-time points. If you were a lattice person the i's 
would label sites in the lattice. The Kij form an n x n symmetric matrix and the h a 
column vector with n entries. Amazingly the above integral can be done for all Kij. The 
answer 1s 

L 
1rY +!"" . . J;(K-t);;J; = e , LJ,,, 

.jdet(K) 

This result is the simplest and most elegant way of developing Feynman diagrams. The 
(K-1 )ij will be the Feynman propagator from space point i to space point j. To prove this 
formula we reduce it to n copies of I( a, {3). Since Kij is a real symmetric matrix we can 
diagonalise it by an orthogonal matrix U such that 

u-1KU=K' 

where 

I<'= 

Here UT= u-1 , detU = 1 Now define 

Then 

4>i = L Ui;4>'; 
j 

or 4> = U4>' 

L = j IT d4>'ie- Ej tl>'j~jt/>';+<E~:.; J~:U~cj)t/>'; 

since the J acobian from 4> to 4>' is det U = 1. 
Thus we have n copies of I( a, fJ). These give factors of ,fi n-times and VJ;i. Now 

detK = detK' = TI Ai so we get the correct detK factor. Finally in the exponent we get 

JT.U.K'-l.UT.J = JT.K-l.J 
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as is easily checked. The announced answer. 

0.3) Pictures in Quantum Mechanics 

Normally in elementary Quantum Mechanics we are given the operators p and q as 
-in ::r. and x operating on wave functions ~( x ). The first hint that this may not be the 
most general way of thinking about things is the realisation that we could equally well talk 
about wave functions w(p ). This led Dirac to introduce the idea of pictures. 

Schrodinger Picture 

Normal Quantum Mechanics has operators that are independent of time, such asp 
and q as above. Wave functions however depend on time through the Schrodinger equation 

in! w(x, t) = H(fi, q)'ll(x, t) 

The formal solution of this is easily written out setting 1i = 1 

\ll(x, t) = e-ilit\ll(x, 0) 

(0.3.1) 

(0.3.2) 

If this wave function happens to be an eigenstate of fi then the exponent becomes a 
simple numerical phase e-iEt. So usually the easiest way to compute the time dependence 
of any state is to expand in energy eigenstates and then give each term in the expansion 
its appropriate phase. 

Heisenberg Picture 

Here we switch all the time dependence to the operators leaving time independent 
wave functions. Remember Heisenberg's version of Quantum Mechanics was called matrix 
mechanics i.e. all the dynamics was in the time dependence of matrices ( = operators) not 
wave functions. 

Define, for any Schrodinger operator Os, the equivalent Heisenberg operator OH by 

(0.3.3) 

and the Heisenberg wave function 

(0.3.4) 

where I have suppressed the coordinate dependence of the wave functions and only explic­
itly shown the all important time dependence. 

The crucial result is that all physical quantities such as probabilities, matrix elements 
etc. are unchanged by the switch of pictures. For example let us calculate the average 
value of an operator 0 in a state W in each picture 

Average= J wifOH(t)wHdq 

= j (eiiltwsr(eiiltose-iilt)(eiiltws)dq 

= J Ws(t)Os\ll s(t)dq 
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The Heisenberg wave functions are now time independent. The factor in eqn (0.3.4) 
was clearly chosen to cancel the explicit time dependence coming from the solution (0.3.2) 
of the Schrodinger equation. 

The dynamics is now all hiding in the time dependence of the operators. So we need 
the equation of motion of the Heisenberg operators. Since the Schrodinger operators are 
time independent this is just a matter of differentiating the definition of the Heisenberg 
operators. 

. fJ 0A (t) . fJ { iiltoA -iilt} 
~ &t H = z &t e se 

= -HQH + OHH 
=(OH, H) 

It is also easy to check that the commutation relations of any two operators are usually 
unchanged in the two pictures. Thus 

[q,p] = i 

is true whether in Heisenberg or Schrodinger pictures. In particular in later lectures we will 
use the fact that the at and a commutation relations are unchanged in the two pictures. 

0.4) Classical Mechanics: Newton implies Lagrange 

In order to gain an understanding of what the theoretical physicists are up to, we 
need to go back and quickly understand the developments of Newton's equations due 
to Lagrange. More particularly to see what the point was! Newton insists on inertial 
coordinates. Lagrange says any will do! 

Suppose we have a system of masses with coordinates !f.i i = 1, · ··N. We parametrise 
these by coordinates q1, q2, · · ·, qn, so that 

Now Newton's equations say 
m,·x · =F. -1 -1 

where the Fi is the force on the i'th mass. Dot each side with :~r and sum over i. 

For ease we use the Einstein convention that repeated indices are summed Er qrqr = qrqr. 
But 
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So 

Now 

d aT a of . 
-d (-a· )--8 T=La- a·Fi 

t Qr Qr . qr 
I 

is the work done in a 8qr shift for the other q's fixed, since 

Several remarks are now in order 

a) Many forces never do any work e.g. the tension in the string of a pendulum, 
reactions at fixed points. They never show in Lagrange's equations, thus usually simplifying 
the problem greatly. 

b) If the forces are conservative then the work done can be written directly for 
V(qi · · · qn) 

So define L =T-V and Newton reduces to 

Lagrange: 

.!!_ [ 8L] _ oL = O. 
dt 8qr Oqr 

These equations are true for any coordinates you like, such that fixing q1 • • • qn fixes the 
xi. These coordinates can be accelerating, rotating, whatever. Lagrange takes care of it 
all. 
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Consider a simple pendulum for small oscillations. For 8 the angle away from the 
vertical, l = length, 

Lagrange: 

L=T-V 
1 . = 2ml2 82 

- mg(l- cos 8)1 

1 . l 
~ -ml282

- mg82
- for 

2 2 

a . 
lJt [ml28] + mgl8 = 0 

jj + 7(} = 0 

Simple harmonic motion- solutions 

8 = Acos(wt + 6); w=fz 
Notice, unlike the Newtonian analysis, we don't need to introduce the tension in the string, 
but we also learn nothing about it. 

Summary 

Lagrange is superior to Newton in that any coordinates can be used. The Lagrangian 
L = T- V is a function L(qi, qi) of the coordinates and their derivatives. 

0.5) Dirac 6-function 

We need later many simple properties of the famous Dirac 6-function. Here I rehearse 
and make explicit the results we will use. 

I remind you that the 6-function is defined by 

J
+oo 

-oo f(x).6(x)dx = /(0) 

for all functions f. More complicated integrals are always performed by using standard 
variable changes to rewrite them in this form. 

For example, in 

we set y = ax and 

and 

I= J f(x).6(ax)dx 

J+oo y dy 1 
I= f(- )6(y)- = - f(O) 

-oo a laJ Jal 

1 
6(ax) = ~6(x) 
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The more complicated case of 

J f(x)6(g(x))dx 

where g(x) is zero, once only, at x = xo is solved by setting y = g(x), Yo = g(xo) = 0. 

and 
1 

6(g(x)) = -d- .6(x- xo) 
l*lg=O 

and g(xo) = 0. 
Multi-dimensional integrals are done the same way. 

H = J j(x1, x2, · · ·, Xn) IT 6(AijXj- Bi) IT dxi 
i=l i 

- ldet~iii.J((A -I )jkBk) 

If f 1 notice this integral is independent of B ! This will be an important remark when we 
come to Faddeev-Popov. 
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Chapter 1 

Classical Mechanics 

In this brief chapter I would like to run through, without detailed proof, the status 
of Newton's equations versus Lagrange's methods and finally Hamilton's approach. These 
different methods already show effects that are of importance in Quantum Mechanics but 
there are important differences between the Classical and Quantum cases. 

Since the Harmonic oscillator will play so large a role in our life for the next few days 
let me take it as the pedagogical example. 

In Newton's method we need to take inertial coordinates i.e. coordinates where New­
ton's equations are correct. This excludes rotating coordinates which change the form of 
the equations from 

mx =Force 

Thus we are forced into coordinates such as (x, y) in the diagram. So the equations 
are, where t is the string tension, 

mx = -tsin6 

my= -mg + tcos6 

For small angle 6 these reduce to 

mlB = -t6 
a:- 62 

ml dt2 (1 - 2 + ... ) = 0 = -mg + t . . 
j'tgnormg 62

, etc. 

Thus we get 0 = -16, the standard equation for simple harmonic motion. 
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In Lagrangian form we can use any old coordinates and Lagrange's equations will sort 
out the mess. So for small oscillations in terms of the coordinate 9 we have 

T = ~m(l0)2 
1 1 

V = +2mgl(1 - cos 9) ~ 2mgl92 

So Lagrange's equation, and notice we only have one at this stage, unlike Newton 
where we had two, becomes 

The same as Newton ! 

!:{.!L}- !_L = 0 
dt 89 89 

~ { ml20}- { -mgl9} = 0 

ml20 + mgl9 = 0 

This is a second order equation in time t. Hamilton was interested in obtaining two 
first order equations instead. Let me show you how this works in the simple case . I will 
then give a general proof. 

The general idea is to define a new variable p = ~ = ml20. Then recognising this 

as the argument in the first term of Lagrange's equation we get, for free, that ftp = 
dd8 L = -mgl9. This then gives, as before, that ml20 = mgl9. If we define H = T +V = 

2 k + ~mgl92 , then the equations of motion are, correctly, 

. 8H 
p=--

89 

This trick holds in general. 

· 8H 
9 = -

8p 

There is now a classic calculation which the thermodynamic whizzes among you should 
recognise. It is the equivalent of changing variables from V,S to V,T in going from the 
energy dE= TdS- PdV to the free energy equation dF = -SdT- PdV. Here we go 
from q, q to q,p. So calculate, for r-coordinates qr, and momenta Pr = ~!-, vq,. 

r r 

So that, shuffiing terms, 
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This gives, as in thermodynamics, 
. 8H 
qr=-

8pr 
. 8H 
Pr=--

8qr 

where H = Er Prcir - L. In many cases H = T + V but this needs to be checked. In other 
words His usually the total energy but not always. 

These are the two first order equations which we promised. Notice H contains no p 
or q dependence. In particular the Hamiltonian H(pr, qr) is now to be thought of as a 
function of Pr and qr. The Lagrangian Lis a function of qr, cir· This is the classical reason 
for H appearing when we introduce p's and q's. 

Now the big advantage of the Lagrangian method was it's ability to make use of any 
old coordinates. What is the equivalent statement for Hamiltonian systems ? Define for 
any two functions of the p's and q's, say u(p, q) and v(p, q), the Poisson brackets 

With this definition it is easy to see that 

{ qi,qj} = 0 

{ qi,Pi} = 8i,j 

{Pi,Pi} = 0 

These should set bells off in your head as they look awfully like the q, p commutation 
relations. The statement of invariance of Hamilton's equations can now be simply stated. 
Given a change of variables from (q,p) to Q(q,p), P(p, q) then Hamilton's equations remain 
invariant in form if and only if the Q, P have the same Poisson brackets as q, p. Such a 
transformation is called canonical. In his book Dirac claims that to Quantise any theory 
you just replace the Poisson brackets by t [,]. This is an enormously influential statement; 
which is unfortunately wrong. Using the above, any classical theory can be written using 
any canonically equivalent coordinates. But in general, if you use the Dirac prescription 
in one coordinate system, you do not get the result the Dirac prescription would predict 
for the other set of coordinates. In other words, although Classical Mechanics is invariant 
under Canonical Transformations, the equivalent quantised theories are not invariant under 
canonical changes due to operator ordering. This is a problem which has driven theorists 
mad for 70 years. 
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Chapter 2 

Quantum Mechanics 

The idea behind this section is to set up the two classic ways of computing perturbative 
expansions in Field Theory. Now Field Theory is just an example of Quantum Mechanics. 
So I will give the two formalisms in general Quantum Mechanics. 

The physics behind these mathematical manipulations is actually rather complex and 
not well understood. As you gradually understand Quantum Field Theory you will slowly 
realise that it is an astonishingly complex mathematical structure. So either your under­
standing will go round and round in a convergent spiral or your head will spin. 

The naivest idea is that to first approximation, say in Quantum Electrodynamics, 
the electrons and photons can move about with little or no interaction. Thus it makes 
sense to split the Hamiltonian into two pieces. The first, soluble piece corresponds to free 
electrons and photons. We will see how to solve such a Hamiltonian in the next chapter. 
The interactions between them may then be treated as a small perturbation. 

In the prerequisites I asked you to revise ( or learn for the first time ) the concept of 
a picture. In this chapter, in general Quantum Mechanics, I will introduce you to a third 
picture, the Dirac picture, which is explicitly defined to make perturbative calculations 
simple; well almost ! In the second section I will introduce you to the ideas of Feynman 
Path Integrals or Functional integrals; these, after you have tunnelled through a conceptual 
barrier, are the easy way of doing perturbative calculations. They are also the route which 
enables the Lattice people to simulate Quantum Field Theories on computers. 

2.1) The Dirac Picture 

We are in a Quantum Mechanical system where the Hamiltonian fi is a sum of two 
parts; one soluble , one small. 

~ ~ ~ 

H=Ho+HI 

Here fi1 is usually called the interaction term. The Dirac picture is often called the 
interaction picture. The idea, starting from the Schrodinger picture, is to switch to the 
Heisenberg picture but only using the Ho term. Thus define 

OI(t) = eiHot6se-iflot 

= eiflote-ifltoH(t)eiilte-iflot 

= U(t)OH(t)U-1 (t) 

I stress here that 6 H is defined from the Schrodinger operator using the full Hamiltonian. 
The operator 

U(t) = eiflote-iflt 

is crucial in what follows. Similarly we define for states 
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So we get the interaction picture from the Schrodinger operator by the free fi o. Thus it 
satisfies 

Since Ho is soluble we can calculate this easily. 
To calculate the Dirac picture operators we clearly need U(t) so let us calculate its 

equation. 

In the last equ tion we easily see that H J - HI ( 6 I) i.e. the interaction Hamiltonian 
in the interaction picture is obtained by writing the interaction Hamiltonian in terms of 
interaction picture operators. 

The crucial point is that this equation can easily be solved perturbatively. So we write 

where these terms are of order 0,1,2,3 ... in powers of the small HI. Substitute in the 
equation for U and compare equal powers of fh on the two sides. The first term is clearly 
1 since if fh is 0 then U = 1. 

Hence 

Hence 

U2(t) = ( -i)21t dt21t
2 

dt1HI(t2)HI(tl) 

You can guess the rest ? 
Now let us massage this result into the standard form. Define the time ordered product 

of any two operators by 

T(A(tt), B(t2)) = A(tt)B(t2)i tl > t2 

= B(t2)A(tt); t2 > t1 

In general for many operators you move the earliest to the right, then the next earliest 
and so on. This has a beautiful effect, inside a time ordered expression we can permute 
operators in an arbitary way. The result is unchanged under such permutations. Notice 
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in our expression for U that t 1 < t2 . So the integrand looks asymmetric. A much more 
symmetric way to write it is as follows 

(2.1.1) 

These terms sum into an exponential 

U = T{ exp( -i lot ff[(t)dt)} (2.1.2) 

To define this exponential we expand into the U n terms. These are polynomials in fh and 
we can apply the definition of the time-ordering T. 

In the above we chose the Schrodinger and Heisenberg pictures to be equal at t = 0. 
This fixes the lower limit of the above integral (2.1.2) to be 0. It is often useful to be more 
general and fix them equal at t = ti the initial time and compute the U(tf, ti) at the final 
time tf. In (2.1.2) this merely changes the integral limits from O,t to ti,tf. 

In the next chapter we will use this formula extensively in the context of relativistic 
quantum field theory. I reiterate that in this case the physical model is of free physical 
particles which interact weakly. These interactions can then be treated as small perturba­
tions. The theory itself will, of course, tell us whether this is internally consistent. Indeed 
many of the later lectures in QCD and the Salam Weinberg model will revolve around this 
problem. 

2.2) Lagrangian Quantum Mechanics 

In the preliminary reading for the course and the beginning of my lectures I stressed the 
importance of different views of dynamics. Above we have been very much concerned with 
the view of Quantum mechanics you were taught as undergraduates. Thus the equations 
are full of Hamiltonians and time dependence comes via Schrodinger equations. Unfortu­
nately this is intrinsically non-relativistic in appearance. In special relativity space and 
time are supposed to be treated on an equal footing. This is impossible in a Hamilto­
nian approach. We need to switch back to Lagrangians. This means we need to address 
the problem of Lagrangian quantum mechanics. The pay-off will be a manifestly Lorentz 
symmetric formalism. In fact this is the chosen method for all problems with symmetries 
of any kind. Since Gauge symmetries dominate modern particle physics this is another 
reason for learning this method. The whole Faddeev Popov method comes from manipu­
lation of Feynman integrals. I hasten to add that the Hamiltonian method, Schrodinger 
equation and all, is perfectly Lorentz symmetric but it is not manifestly symmetric. The 
Lagrangian methods solve the same equations and get the same answers. But the manifest 
imposition of symmetries often makes things easier to see. 

I will develop the method first for a single dynamical degree of freedom q and its asso­
ciated momentum p. Thus you should first understand these notes in this case. However 
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if you now visualise q, p as column vectors for a finite number of degrees of freedom the 
proofs will be seen to be valid in this case also. Finally to reach field theory we need to 
make an intellectual leap and use the results for the infinite degrees of freedom implicit in 
Field theory. I will lead you up the garden path quite gently! 

So, for the moment, consider a Quantum system with Hamiltonian 

A2 

H(p,q) =:m+ V(q) 

We would like to compute the amplitude for the particle to start at qi at t = ti and 
move to qf at time t = t1. In the Schrodinger picture this is given by the amplitude 

A = (qJle-dltlqi} where lq) is the time independent eigenstate of position . Thus, in 
words, we start in the position eigenstate at t = 0, propagate in time for a time t = t 1- ti 
through the exponent and finally compute the overlap with the time independent final 
eigenstate qf. The tricky bit is calculating the exponent. The Feynman trick is to split it 
into a lot of little steps. To each such step we can then apply perturbation theory. Thus 
write 

-iflt -iilt:. -iilt:. -iilt:. e = e .e . · · · .e 

with n terms in the product and D.= (t,;ti). Then fi D. is small if we taken large enough; 
and we will eventually let n -+ oo. We write 

Now insert, many times, the Quantum Mechanical representations of 1 

f. dqlq){ql = 1 

f. dplp) {pi = 1 

where lq), lP) are the complete sets of position and momentum eigenstates. 

Here qi,Pi should be thought of as the position and momentum after time i x ~- Now 
{qniPn) = eiqnPn (c.f. (xltP) = 'll(x) ). Thus we can rewrite 

{pnle-iil~lqn-1) = {pn\{1- iH{p,q)~)lqn-1) 
= (Pn\(1- iH(pn,qn-1)~)\qn-1) 
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Thus, substituting this in the expression for A, we get 

(2.2.1) 

The last line comes from the approximation that qn-ln-l becomes q in the limit 6.. --+ 0. 
The exponent is now the time integral of the Lagrangian. This is the Action. Thus the 
Lagrangian appears in Quantum Mechanics. The integrals correspond to integrating over 
all the paths connecting qi with qf. 

Those of you wide awake should be saying "Hey, you said the Lagrangian was a 
function of q, q not q, p !". So we need one last trick. Rather than give you a general proof, 

2 
let me consider a simple case. Assume H =fin+ V(q) i.e. a simple problem of a particle 
moving in a potential V. Then the p-integrals above are Gaussian. 

by(0.2b) 

The Pi integral is trivially performed by replacing Pi by (qi-q~t).m = qi.m in the La­
grangian. This is the Classical prescription in this simple case. Thus finally we get the 
Lagrangian expression for our amplitude 

A = j (dq]ei J dtL(q,q) (2.2.2) 
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We will use this formula extensively in Quantum Field Theory. It is the basic Quantum 
Mechanical input into the Functional method. In terms of Quantum Mechanics QED or 
QCD are just special choices of L. The lattice people spend all their lives trying to do these 
functional integrals numerically. Next we will show how this is a brilliant formalism for 
discussing Lorentz and Gauge symmetries. So this is the crucial modern starting point for 
all the discussions of Gauge fixing; the Faddeev Popov trickery. We will return to this. 
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2.3) Heisenberg Harmonic Oscillator's 

In the pre-school exercises I asked you to make sure that you could solve the Harmonic 
Oscillator in what we now know as the Schrodinger representation. Here for pedagogical 
purposes and to ease your way into Field theory I solve it in the Heisenberg picture. So 
we have a Hamiltonian fi = £n + m;'

2 
q2 • In the Heisenberg picture we have two time­

dependent operators q( t) and .P( t ). These must satisfy the Heisenberg equations of motion 

i! q_(t) = [9.(t), fi] 

i ! .PC t) = [.P( t), ii] 
(2.3.1) 

Given the commutation relation [q,p] = i, which is unaffected by the switch to the Heisen­
berg picture, we easily see 

Differentiate one of these and use the other gives 

Although these are operator equations our true and tried methods work. 

q(t) = _1_(eiwtjt + e-iwtA) 
2mw 

1 ( . ~t . ~) p(t) = -- imwe1"'t A - imwe-uwt A 
2mw 

are solutions for A, At independent of time. Solving for At, A we get 

A~ /1 ( r.:::::-: ~ . p ) 
= V 2 V mwq + z vmw 

.At= fi(.;mwq- i_j__) V2 .vmw 
It is easy to check that these have the same commutation relations as the a, at of the 
prerequisites. Hence they have the same eigenvalues and eigenstates. 
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Chapter 3 

Free Boson or Scalar Field Theory 

The time has come to raise the stakes. We have been studying general Quantum 
Mechanics so far. Now we pick the special Lagrangians and Hamiltonians designed to give 
relativistically invariant field Theories. We will see that these provide exactly the language 
to describe particle production as you see at LEP. They will also have manifest symmetry 
properties. Altogether they provide the standard theoretical language to understand our 
world. I stress these results all come from standard Quantum Mechanics. 

As always the first thing to get clear, even before writing down the Hamiltonian, 
is the set of independent degrees of freedom. In other words for which variables will 
we have to solve Heisenberg's equations ? In field theory the variables are the values 
of the fields at the different space points ~· You are used to this idea from Maxwell's 
equations where the values of the electric and magnetic field form the dynamical variables. 
In Quantum Mechanics we have to decide which variables turn into operators which then 
satisfy Heisenberg's equations of motion. Thus we have variables, for a single scalar field, 
4>(~, t). 

3.1) Classical treatment 

First let us treat the problem classically. Then 4> is a single real variable at each 
space-time point. Thus 4> at any given point is the direct analogue of q for a single point 
particle. We expect a Kinetic energy of 

The potential energy will have two terms 

•2 q c.f.-
2m 

with constants p., c so far undefined physically. The gradient terms are necessary to enforce 
Lorentz invariance. Thus we have the Lagrangian 

J 3 [1 (84>) 2 
c2 (84>) 2 

p.2 2 ] 
L = d X 2 8t - ~ 2 8xi - 24> (~,t) 

I 

Then the action S can be written 

S = J dtL = j d3xdt.C(~,t) 
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where the Lagrangian density C can easily be written down from above. Now classically 
we have a Lafrangian density that is a function of the dynamical variables </>, their time 
derivatives ~t but also, unexpectedly, their spatial derivatives ~ for each i = 1, 2, 3. 
Thus we must redo, say the Stationary action derivation of Lagrange, to obtain 

~ [ac] ~ [ ac ]- ac _ 0 at a~ + oxi ac*!o) o<f> -

Which in the case of our Lagrangian density gives 

Several comments are in order at this point. We use the Einstein summation conven­
tion so that the repeated i indices are summed. The above equation is Lorentz invariant if 
r/J is a Lorentz scalar. Indeed if Jl = 0 this is the wave equation for light with c the velocity 
of light. 

The general solution is not hard to write down. The expected result is that any 
solution will be a sum of plane waves. Notice the equation is linear in </> so that, given any 
two solutions, any linear combination is also a solution. Think of light. 

So try a plane wave solution for </>. 

</>(~, t) = Aei(!_ . .!_-w{!.)t) 

Substituting in the equation of motion gives 

In order for the solution to be non trivial we must have w(k) = ±J 112 + c21£2
• From now 

on w will stand for the positive root of this equation. Then the general solution will be 
given, by superposition, as 

"-(x t) = J d3 k [a(k)ei(!_ . .!_-wt) + a*(k)e-i(!_ . .!_-wt)] 
'~-' _, (27r )3 .2w(.!£) - -

The factors of 27r and ware conventional, but make Lorentz invariance manifest later. For 
the moment just think of them as factors extracted from a, a*. The fact that 4> is a real 
valued variable is guaranteed by a* being the complex conjugate of a. 

To switch to Hamiltonian methods we need to compute the momentum conjugate to 
</>(~, t). 

ac . 
IT(~, t) = . = 4>(~, t) 

o<f>(~, t) 

Writing this in terms of the a's we get 

IT(x t) = J d
3 
k [-iwa(k)ei(!_ . .!_-wt) + iwa•e-i(!_ . .!_-wt)l 

_, 211"3 .2w(k) -
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Then we can easily write 

~ 2 ~ 2 

~ _ J 3 [II (y, t) ~ (84> ) p.
2 ~ 2] 

H- dy 2 +2 8y +2</> (3.1.1) 

Now you can quantise in your sleep. We have the Hamiltonian in standard form 
written in terms of coordinates </>(!f., t) and their conjugate momenta II(!f., t). 

3.2) Quantum Mechanics 

Now we switch to Quantum Mechanics. As always the classical variables turn into 
operators. So corresponding to the classical single particle q we have an operator at each 
point of space time ~(!f.). In the Schrodinger representation these will be time independent; 
in the Heisenberg representation they will be time dependent. Corresponding to the single 
particle p we will have a momentum corresponding to each </>(!f.). I stress again that the 
dynamical variables here are the values at the points !f. not the variables !f.. Thus we have 
the momenta fi(!f., t). Then directly copying your Undergraduate Quantum course we have 
the commutation relations. 

[~(:f.,t),~(][,t)] =0 

[fi(!f., t), ~(][, t)] = -i63 (!f. -1[) 

[fi(!f., t), fi(lL, t)] = o 
(3.2.1) 

In other words the variables at different space points all commute, the only non-zero 
commutator is between a variable and its momentum at the same point. The normalisation 
is not obvious at this point, but we will see how natural it is later. Clearly the numerical 
factors can be changed by scaling </>. Here, because of the manifest time dependence, we 
have used Heisenberg operators. We showed before that commutation relations at equal 
times are unaffected by the switch of pictures. 

Now we solve the Heisenberg equations of motion for the time dependence of these 
variables. 

i~(!f., t) = [~(!f., t), .H] 

-J d3 [1( t) fi2(!b t)] 
- y 'P ~~ ' 2 

= J d3 y[~,fi]fi{][,t) 
= j d3 yi63 (~ -1l)fi(1l, t) 

=ill(~, t) 
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ill = [ft(~, t), .H] 

f 3 [A 8~(y,t)]a~ 2 ! 3 [A A ]A = d y IT(~, t), {)y oy + iJ d y IT(~, t), 4>(]£, t) 4>(]£, t) 

= j d'y{ -i ~ o' (z. -JLl· ~: - ip
2 ~(;;., t)} 

.82~ . 21( ) 
= t Oy2 - ZiJ 'f' ~' t 

So if we put these together we get the equations for~ and ft separately. 

and 
fi(~, t) = ~(~, t) 

You often hear nonsense, particularly in elementary field theory books, about the 
simple Schrodinger equation being changed into a relativistic wave equation. I stress here 
that this relativistic equation has been derived directly from the Heisenberg equation, in 
the Heisenberg picture. It is completely equivalent to the usual Schrodinger equation. 
What has changed is the Hamiltonian. Quantum mechanics is unchanged. 

We can solve these operator equations exactly as in the classical case. Firstly, they 
are linear equations, so superpositions of solutions are solutions. We get, again with a 
funny choice of normalisation of the coefficients, 

(3.2.2) 

Given the commutation relations for the 4> and IT we can compute those for the a and at. 
Then we obtain 

[a(k), a(k')] = o 

[at (k), at (k')] = o (3.2.3) 

[a(k),atck')] = (27r?.2w.h3(k- k') 
This is the result we are after. We have an infinite set of Harmonic Oscillators. For 

different k they commute. The next move is to compute the Hamiltonian. This is easily 
(well actually lengthily and tediously) proved, by substituting for~ and ft, to be given by 

ii = J 2~:)3 at (k)a(k) + constant (3.2.4) 

The Hamiltonian is a sum of independent commuting Harmonic Oscillators. The 
vacuum state is the state where all the oscillators are in their ground states. The excited 
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states are obtained by applying the raising operators one or more at a time. For example 
at (k) creates a particle of momentum k and energy nw(,k). We can easily check that 

Hat (e) IO} = w(e)a t (e) IO} 

The Hilbert space of the theory is given by the states IO)' the vacuum; at (k) IO)' the 
one particle states; af(k)af(p)IO), the two particle states; and so on. The commutation 
relations incidentally guarantee the two particle states are even under exchange i.e. the 
particles are guaranteed to be Bosons. 

In the above Lorentz invariance was a bit hidden. We ended up with a nice covariant 
equation for 4> but this felt rather accidental. The Heisenberg equations clearly treat .f. 
and t differently. The resolution for this lies in the Lagrangian method. So let us compute 
the Lagrangian or, in fact, the Action 

This is manifestly Lorentz invariant. The measure d4 x is and so is the Lagrangian den­
sity. Thus the Functional method will start with a big advantage. Already, before doing 
anything, the formalism looks invariant. Contrast this with normal Quantum Mechanics 
where both the Schrodinger and Heisenberg equations treat time very differently to space 
coordinates. This would lead you to think they could not be invariant. They are invariant 
but not manifestly. This can lead to tedious, apparently non Lorentz invariant calcula­
tions, which mysteriously come right at the end. An example is the Heisenberg quation 
for 4> which came out as the wave equation, eventually. 

Before leaving scalars let me generalise slightly and introduce a pair of scalars. These 
will be necessary in the Salam-Weinberg theory. So we write down 

which involves two independent scalr fields 4>1 and 4>2• For the purposes of gauge invariance 
it is convenient to also have a formalism where we instead have two complex valued fields 
defined by 

An easy exercise is to check that 

X= ~( rP1 - i4>2) 

xt = ~(r/>1 + i4>2) 

Then we can write down Heisenberg's equations as before and solve them. We find 
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Since x is not real, we have two independent operators b and J. The Hermitian conjugate 
field is obtained by Hermitian conjugation. 

The commutation relations can also be computed. The only non-zero terms come 
from 

[b(k),bt(~)] =2w(27r)3 63(k-~) 

[J(.&),di(~)] = 2w(27r?63(k- g) 

and, most importantly, the Hamiltonian is given by 

ii = J (~:~3 (bt (k)b(k) + dt (k)d(k)) 

So again we have an independent set of oscillators. An interesting problem, is to 
determine the electric charge carried by each particle. 
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Chapter 4 

Interacting Bosons 

In the previous chapter we discussed the Quantum Mechanics of the Free Scalar Boson. 
This was a theory that was Lorentz invariant and corresponded to a set of free non­
interacting particles. This means that it is a very boring theory. Particles never interact. 
No particles are created. In this chapter we introduce the interactions. We will do this 
first in the mathematically simplest theory of interacting scalar particles. You can think 
of this as a theory of Higgs particles, if you like. Later we will consider more realistic 
theories. 

We will consider, for pedagogical reasons, a theory with a single scalar</> and a complex 

pair x, x t. So the Lagrangian density will be given by 

where the interaction term is given by Lint = -gxt ~X· This is Lorentz invariant since 
each field is a scalar. It is not hard to check that the Heisenberg equations of motion are 

((8)2 + JJ.2 )~ + gxt x = o 
(C8? + JJ.

2 )x + g~x = o 

These are horrible non-linear operator equations. A Nobel prize for any solution. Only 
two ways to get information from this are known to man or woman. One is to assume 
the interaction term is small. The other is to put this on a lattice and do the functional 
integrals by brute force computing. My mission here is to explain perturbation theory. 
By being ingenious theorists have shown this is a correct move in a surprising number of 
cases. In fact it works much better than we have any right to expect. 

So I will prove first, that the interaction term will lead to scattering, production and 
absorption of new particles. All the time the formalism will keep energy and momentum 
conservation correct. 

I will first do a simple case using operators and an obvious Quantum Mechanical 
formalism. Then I will redo the calculation in the much slicker Functional formalism. 

4.1) Feynman Diagrams from Operators 

So2 in Quantum Mechanics, in the Heisenberg picture, the crucial object to calculate 
is the U operator of Chapter 2. In lowest order of perturbation theory it is given by 
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This, remember, is the operator which will propagate a ti state to a t1 state. We apply it 

to the decay of a </> into a XX t pair. For this to be kinematically possible, we must have 
the 4> mass at least twice the X mass. Then we take ti = -oo and t f = +oo. 

The states are therefore given by 

lt = -oo) = at (k)IO) 

lt = +oo) = bt (e)di (~)ID} 
(t = ool = (Oid(~)b(e) 

Being Heisenberg physical states they have no time dependence. So we need to calculate 
the matrix element 

substituting from above. 

= -ig(Oid(q)b(e) j d4 x j jlp' j Jlk' j Jlq' { J(e')e-ip' x + bt (e')e-ip' .x} 

{ a(k')e-ik' .x +at (k')eik'.x} { b(l)e-iq' . X + Jt Cl)eiq' .x }at (k)IO) 

Now remember that an annihilation operator acting on jO) gives zero as does a creation 

operator acting on (Oj. Thus we can throw away the at, b and d terms. We have also 

introduced the Imperial notation /13 k for (2 ;)
3

3~2w to save writing. 

Now we have a creation and an annihilation operator for a,b,d. The only non-zero con­
tribution comes from the right hand side of each commutator. Finally commuting all the 
terms past until they annihilate the vacuum we get 

= -ig64(p- k- q){OI0).(27r)4 

The 64 contains 4-momentum conservation. This is our first real perturbative calculation. 
The method is general. Write down the initial and final states in terms of creation and 
annihilation operators. Write down the relevant term in fJ. Start commuting all anni­
hilation operators to the right. When they reach IO} they give zero. When a creation 
operator reaches the left and hits (OI it too gives zero. This is a finite procedure. It clearly 
needs systematic organisation. In operator formalism this goes under the name of Wick's 
theorem. We will duck this and use a much slicker Functional proof. 

However, before we leave operators, I would like to present the operator formulation 
of the propagator. In the Interaction picture we saw how we obtained expressions of the 
form 
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Using the above trick we see that a crucial object will be the difference between two time 
ordered operators as appear in U and the so-called normal ordered form where we carry 
out the above procedure and commute all annihilation operators to the right of all creation 
operators. 

Let us investigate this for two scalar fields. The time ordered form 

T( tP( X )tP(Y)) 

is quadratic in creation and annihilation operators. Moving all the annihilation operators 
to the right gives a normal ordered form plus non-operator terms which depend on x and 
y. Let us compute the non-operator term. Since it does not depend on any operator it is 
most easily extracted by taking the vacuum expectation value. 

{O!T(<P(x)<P(y)) IO) 

The normal ordered terms all give zero leaving the constant term. 

(OIT( tP( X )<P(y)) IO) = ib.F( x, y) 

by definition of the Feynman propagator. Let us calculate it. 

The missing terms in the expansions of tP all give zero either on the initial or final vacuum. 
The two times are called t and T. We assume t ;:::: T. Now commute the two terms past 
each other. 

ib.p(x, y) = J jlk jlq(2·1li2w.c3(k _ g).ei!.(.~-!)-i(t-r)w 

The delta function lets us do one of the momentum integrals. Notice that the above 
calculation assumed t 2: T to put the operators in the above order. Thus we can write in 
general for any times 

I now claim that . -J d4ke-ik.(:r-y) 
zbop(x, y) - k2 2 + . 

- p. ze 

where we now use relativistic four vector notation and a.b = a0 b0 - Q.Q. The proof of this 
statement is most easily given from Cauchy's theorem on complex integrals. In the above 
formula the ie term fixes which side of the real k0 contour integral contains the poles. The 
poles occur at solutions for k0 of the equation 
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These occur at k 0 = ±/J£2 + p,2 - ie or k0 = ±w(l£) =fie. So the k0 plane looks like 

k~ 

c 

The contour can now be lifted to oo up or down depending on the sign of t - r. If 
t- r > 0 then we close in the lower plane, if t- r < 0 then we close in the upper half 
plane. We pick up one pole in either case. To give the result 

Again we see that an apparently non Lorentz invariant formalism gives invariant answers. 
The Feynman propagator is Lorentz invariant. Notice also the curious effect that suddenly 
we integrate not over d3 k but d4 k. In other words the Feynman propagator corresponds 
to particles off their mass-shell. Their energy, momentum does not satisfy E 2 - P.2 = m 2 • 

Before leaving the operator methods let us very roughly outline how a more compli­
cated process might go. This calculation also carries a health warning. We are going to 
calculate the fourth order contribution to the vacuum to vacuum transition matrix element. 
The operator expression for this is proportional to the integrals over the times x 0 , y0 , z0 

and u0 • 

And each such Hamiltonian is an integral over the space components of the energy density 
-gxt<Px- Thus we get the term 

This is to be sandwiched between vacuum states. So when we turn the time ordering into 
the normal ordering no operators must be left. So as we commute terms past we must 
always pick up the Feynman terms, not the normal ordered terms. Crudely then we get 
the Feynman pairings of the points x, y, z, u in all possible ways. For example one possible 
term in the answer is 
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There is a systematic procedure for writing down all possible Feynman diagrams. 
First draw all possible diagrams with vertices where</>, x, X f meet at each vertex. For each 
vertex a factor -ig, for each propagator a factor p2_;2+if" At each vertex four momentum 
is conserved. This gives the overall conservation of four momentum. 

4.2) The Functional Method of Deriving Feynman Diagrams 

Now we turn to the standard modern approach to this problem of constructing Feyn­
man diagrams. I assume you revised the Gaussian integrals section of the prerequisites. 
I claim that any free field theory reduces to doing Gaussian integrals. We can do any 
Gaussian integral using the moJt important integral in the world. I then would like to use 
the Gaussian trickery to calculate Feynman diagrams. 

First let us write down the path integral for N particles of positions qi. The canonical 
object to study is the function 

W(Ji) = j fJ_[dqi]ei .(' L(q;,qi)dt+ L: J,q, 

I 

( 4.2.1) 

where (dqi] is the path integral over the i'th coordinate. The Ji are fake parameters put 
in to let us play Gaussian tricks. Thus 

where S is the action. Thus Ji derivatives let us pull down factors of qi in a systematic 
way. Note that we need to put Ji = 0 to get back to the original action S. 

The generalisation to field theory is instantaneous if we remember what the dynamical 
degrees of freedom actually are. The analogues of the qi are the field values </>(I1_). Just as 
i counts the individual degrees of freedom for Quantum Mechanics so I2 counts the degrees 
of freedom in field theory. 

Thus the Functional integral in field theory is 

W(J(x)) = j IT[d</>]e- J d 4
x.C+ J d4

xJ(x)tf>(x) 

X 

In other words, given a function J(x), we compute a number W. Thus we map from a 
function to a number ... the old fashioned definition of a functional. As before we can take 
derivatives with respect to J(x) to pull down factors of <f>(x). We have pulled a dirty 
theorists trick here. We continued t to it so the i in the exponent disappears. This makes 
the integral converge exponentially. We need to continue back at the end of the calculation. 
This is a big topic which I will duck. 

Some care has to be taken with these derivatives. We need the concept of a Functional 
derivative rather than a normal derivative. Let us study a simple case. A functional is a 
map from a function to a number. The simplest example, with which you are familiar, is 
a normal integral. Given a function J(x) the integral returns a number 

W[J(x)] = j <f>(x).J(x)dx 
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for an arbitrary function J(x) and any fixed function </>(x). The Functional derivative is 
defined to be the limit as e--+ 0 of 

8W z· W[J(x) + e8(x- y)]- W[J(x)] 
8J(y) = zm f 

(4.2.2) 

In our integral case this gives 

8W J SJ(y) = 8(x- y)</>(x)dx 

= </>(y) 

The Dirac delta is necessary to give a non zero answer under the integral sign. The result 
of taking a Functional derivative of a constant Functional is a function of y, the point 
where the Functional derivative was evaluated. 

So now let us turn to our free scalar first. Then we will show how to derive perturbation 
theory. The Lagrangian density is given by 

.c = ~ (84>) 2 

~(8"')2 ~ 2),.2 ~.,1,.4 
2 8t + 2 '~-' + 21-L '~-' + 4! '~-' 

The first three terms correspond to our free Boson, which we quantised previously by 
operators. The </>4 term corresponds to the interaction term. In terms of Feynman diagrams 
we expect it to correspond to vertices where four particles meet. 

First we solve the free part, then we add the perturbations. From the Gaussian 
prerequisites we know how to compute Gaussian integrals so we first rewrite the exponent 
in the form 

</>.Operator.</> 

copying the Gaussian form 

Since we now have an infinite number of degrees of freedom, labelled by !f. rather than 
i, we expect the 2: to be replaced by J dx. Thus 

Playing this game throughout and dropping surface terms we get, for the free theory, 

Wo(J) = J [d</>]exp[ -~ J atxatylj>(x).K(x, y).</>(y) + j atzJ(z)</>(z)] 

with 

(4.2.3) 
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The answer to the standard Gaussian is given in terms of the inverse matrix. So here we 
need the inverse operator to K(x, y). In other words the solution to 

the analogue of 

in the discrete case. 

J d4yl{(x, y).6.(y, z) = 8(x- z) 

L Kij Kji.
1 

= 8i,l: 
j 

(4.2.4) 

It should come as no great surprise that the solution to this is our old friend the 
Feynman propagator. 

= J ~ { eik.(z-y) } 
.6.F (27r ) 4 k2 + JL2 ( 4.2.5) 

The only subtlety is that we take k = (iko,k) i.e. Euclidean four vectors to guarantee 
exponential convergence of the integrals. To get physical answers we must continue back. 
So we see that the inverse operator is just the Fourier transform of the Feynman propagator. 
This is the basic result of the functional method. Later when we do gauge theories and 
when you add Dirac particles there will be additional indices for the gauge degrees of 
freedom, the spin indices, charge, etc., . .. The propagator is the inverse, summing over all 
these degrees of freedom, as we will see. 

So the exponent in the answer will be 

J dxdyJ(x).6.F(x,y)J(y) 

Now let us turn to interacting theory. Then we must calculate our perturbation series 
for U. To compute objects like 

J dt1dt2 {OIT( <P(x )<P(z)HI(ti)HI(t2))lO} 

we take Functional derivatives 

8 8 84 84 

8J(x). 8J(z). 8J(u)4. 8J(w)4 ( 4.2.6) 

to bring down all the operators, and then integrate d4u.d4w to recover the two Hamiltonians 
integrated over time. 

At the end of the calculation we must set all the J = 0. Thus, after all the derivatives 
have been performed, no factors of J must remain in the numerator, such terms go away 
as J -+ 0. Since the exponent is quadratic, this means that each term in the exponent 
must be differentiated twice. This must be done in all possible ways. Thus we get a sum 
of terms. In each term the derivatives are paired in that they both operate on the same 
term from the exponent. Such a paired derivative gives a factor 

0 _8_ ! J d4 xd4 yJ(x).6.p(x,y)J(y) _ A( ) ( ) 
5J(uf8J(vfe -uu,v 4.2.7 

So each such pairing brings down a Feynman propagator, and the different pairings give 
all Feynman diagrams. 
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Chapter 5 

Groups and Algebras 

The big revolution in my lifetime has been the dominance of gauge theories. When I 
was a graduate student the philosophy was that the lightest, and therefore longest range 
hadron, was the pion. So the dynamics of this scalar particle was seen to be the most 
important. So everybody rushed around writing papers on the dynamics of scalar fields. 
Gauge theories were seen as bad. Seminars at CERN predicting that large pr, which occurs 
automatically in gauge theories, might be interesting were treated with barely disguised 
derision. 

Similarly a band of nutters went around writing down non-renormalisable, apparently 
non-predictive, gauge theories of the weak interactions. They were called Salam and Wein­
berg. This is all changed. The norm is gauge theories in all directions, as far as the eye can 
see. The nutters now do string theory. However being a nutter is not a sufficient reason 
to expect success. 

The basic property of gauge theories is a vast symmetry called the Gauge Group. 
Except in a very few cases little is known about this vast symmetry group. The usual 
trickery of group theory is at a loss. Only the fearless theoretical physicists plunge into 
the unknown. The basic building blocks are the usual Lie groups. Since some of you are 
unfamiliar with these let me survey a couple of simple cases. These give a generic feel for 
the general case. 

The language of symmetry in Quantum Mechanics is Group theory. So let us start 
with the definition of a group. 

5.1) Definitions and Examples 

A Group is a set of objects with a multiplication defined such that if a,b,c are arbitrary 
objects in the set then a.b is also in the set (closure), a-1 is also in the set (inverse), a 
unite is in the set and we have the properties 

a.(b.c) = (a.b).c 

always, 

e.a = a.e =a 

e is often written 1. 

Example& 

a) The numbers {1, -1} under multiplication. 
b) The integers under addition. 
c) More interesting. The set of 2 x 2 unitary matrices of determinant 1. Unitary 

means af = a-1 • This is SU(2). 
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d) The set of 3 x 3 orthogonal matrices of determinant 1. Orthogonal means aT = a-1• 

This is S0(3). Since any rotation of three vectors can be written as a 3 x 3 orthogonal 
matrix this group is isomorphic to the rotation group. 

The last two examples are known as Lie groups since the matrices depend smoothly on 
a finite number of parameters. Thus any rotation can be written as a product of rotations 
around the x,y, or z axes. 

The rotation Group and Algebra 

Such rotations can be parametrised 

sin 83 0 ) ( cos 82 
cos (}3 0 0 

0 1 sin 82 

0 - sin 82 ) ( 1 
1 0 0 
0 cos (}2 0 

Now an interesting object appears if we consider the limit as the angles get small. 
This object is called the Lie algebra. This is important since it is the world inhabited by 
Gauge fields. Expanding the above we get 1 + 83 :E3, 1 + 82 :E2, 1 + 81 :E1 where 

( 
0 1 0) (0 0 -1 ) (0 :E3 = -1 0 0 :E2 = 0 0 0 :El = 0 
0 00 10 0 0 

The interesting structure is not the product, but the commutator, 

0 
0 

- 1 

0 
0 
-1 

Similarly [:E2, :E3) = -:E1 and [:E3, :E1] = -:E2. Thus these elements are closed under 
commutation. If we redefine :E -+ i:E then we retain the commutation relations of the 
angular momentum operators. 

Thus the Lie algebra of the rotation group is the angular momentum algebra you have 
studied in great detail in your Quantum Mechanics courses. There is another way to see 
that angular momentum and rotations are closely linked. Consider a rotation of axes in 
the x,y plane such that 

x' = xcosB + ysinB ~ x + B.y 

y' = -x sinB + ycosB ~ -x.B + y 

Then a wave function transforms as 

'll(x',y') = 'll(x,y) + B(y!- x :y)'ll(x,y) + 0(82
) 
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for small 8. The operator carrying out this transform is 

In other words the infinitesimal rotations are generated by our old friend the angular 
momentum operator. This is the real reason that it appears everywhere in Quantum 
Mechanics. If a Quantum system is rotationally invariant then the Hamiltonian commutes 
with the Rotation operators i.e. the angular momentum operators. They can therefore 
be simultaneously measured. Hence eigenstates of energy can also be labelled by the total 
angular momentum. 

SU{2) and su(2) 

The most general SU(2) matrix can be written 

( 
a+ib c+id) 

g = -c + id a - ib (5.1.1) 

where a,b,c,d are real numbers satisfying a 2 +b2 +c2 +d2 = 1. The unit matrix corresponds 
to a ~ 1 so, to get the algebra, we expand around b, c, d ~ 0. Thus we get 

( 1 0) "b ( 1 0 ) "d ( 0 1) . ( 0 -i ) g ~ 0 1 + z 0 -1 + z 1 0 + zc i 0 

Thus the elements of the algebra are the Pauli matrices. These also satisfy the angular 
momentum algebra. Thus the Lie Algebra of SU(2) is the same as the Lie Algebra of 
80(3). 

SU{9) 

The group behind QCD is of course SU(3). So we need a quick survey of the group 
and its algebra. The group is the set of 3 x 3 unitary, determinant 1 matrices. The first 
obvious question is to compute the number of independent parameters or angles. Assume 
there are n (}ii i = 1, · · ·, n. Then expand an arbitrary SU(3) matrix in terms of the (}i, 

assuming (}i = 0 corresponds to the unit matrix. Then g = 1 + E (}iLi · · ·• Now it is easily 
seen that the condition that det g = 1 is equivalent to trace Li = 0 ( the trace of a matrix 
is the sum of the diagonal terms ) while the condition that g is unitary implies that Li 

are Hermitian i.e Lj = Li. There are only 8 independent traceless, Hermitian matrices. 
Gell-Mann wrote down a convenient set, which physicists have used ever since. 

A,= 0 1 0) (0 -i 0) c 0 0) c 0 1) 
0 0 ,\2 = i 0 0 ,\3 = 0 -1 0 ,\4 = 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 

c 0 -i) c 0 0) c 0 0) c 0 1J As= 0 0 0 ..\6 = 0 0 1 ..\7 = 0 0 -i .\8 = 0 1 (5.1.2) 
i 0 0 0 1 0 0 ' 0 0 0 
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These are closed under commutation! The elements of the Lie algebra su(3) are linear 
combinations of these terms. This is the linear space in which the Gauge fields of SU(3) 
live. So be warned. 

Lie's theorems 

The heart of the theory is the realisation that, although the algebra can be computed 
in terms of infinitesimal group elements, from the algebra we can recover the Group. Let 
us see how this works for rotations. The matrix corresponding to a rotation by .,P about 
the unit vector n is given by 

R( .,p, n) = [ R( ~ , n)] N 

= (1 + iL ~~i)N (5.1.3) 

= ei L: B;I;; 

where we have used the formula 

( ~)N _ . N ~ N(N -1) ~ N(N- 1)(N- 2) a3 

1 + N - z + . N + 2 . N 2 + 3! . n3 

a2 a3 

~ 1 + a + 2 + + 3! + ... 

The basic idea is that a big rotation can be constructed from a lot of small ones. The 
small ones are fixed by the algebra. In the case of su(2) this gives, because (Q: . .ft)2 = 1 , 
that 

i!l!..D'.n t/J . • 1/J A e 2-- =cos-+ z stn -a.n 2 2-- (5.1.4) 

This is Hamilton's representation of finite rotations by quaternions. 

Representations 

In the above we defined a group as an abstract set with abstract properties. The Lie 
algebras were defined by expansions of explicit matrices about the identity. We could give 
a definition of the Lie Algebra as a linear vector space closed under commutation. Such 
things have been classified. The actual examples we had, in terms of matrices, are what 
mathematicians call representations. So in terms of ~ and the Pauli matrices we had two 
representations of su(2) in terms of 3 x 3 and 2 x 2 matrices. Lie lets us turn these into 
representations of SU(2). They correspond to the spin 1 and spin ! representations of 
SU(2). 

Below we will see that, to define a gauge theory, we put the Gauge fields into the 
algebra and must prescribe which representations contain the other particles. 

-45-



Chapter 6 

Gauge theories 

The particle physics interest is by now manifest. QCD is an SU(3) gauge theory. 
The Salam-Weinberg model is a gauge theory with gauge group SU(2) x U(l). Such 
theories are renormalisable, just like QED. They have remarkable properties which will 
be explored in the other lectures. Quark confinement, running coupling constants, chiral 
symmetry breaking, the Higgs effect are all properties of gauge theories. So we start at the 
beginning and follow our scalar route. First classical equations, then Lagrangians, then 
functional integrals, then compute perturbation theory. 

6.1) Classical Maxwell Theory 

Let us revise the Grand-daddy of all the gauge theories, due to Mr Maxwell. We will 
check that it is Lorentz invariant. Secondly we show how to derive it from a Lagrangian. 
Thirdly we discuss the U(l) gauge symmetry of this theory. Then we are all set to stick 
this classical Lagrangian into our Functional integral and derive the Feynman rules for the 
Maxwell U(l) Gauge theory. 

The first thing to do is rewrite Maxwell in manifestly Lorentz invariant form. I choose 
units in which Maxwell's equations are 

V.B = 0 

aB 
V/\ E = --== - at 

V.E = P 

n B . aE 
V "-=l... +at 

Comprising eight equations two scalar, two vector for six unknowns E, B. Two of these 
equations can be solved by writing B = V 1\ A and E = - Vrf> - ~1· I remind you of the 
four vectors x#J = (t,~), x~J = (t, -~), j#J = (p,j) and j/J = (p, -j). Write A~J = ( rj>, A) 
and A~J = ( r/>, -A). Then we define the objects F~" = a~JA"- a"A;:. These naturally give 
the combinations Fo1 = aoA1- a1Ao = -Ax- :xA0 =-Ex and F12 = a1A2- a2A1 = 
-(V/\ A)z = -B z so filling in all the terms we get 

The covariant looking equation you might guess, would be a#JF~J" = j". We get for V= 1 

a~JF~Jl = ~po1 + ~Fn + ~F21 + ~p31 = -E + ~Bz + ~( -B ) at 8X 8y 8z -X 8y 8z y 

= (-E+ VI\B)x =ix =P 
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So this is one of Maxwell's equations. Now check the v = 0 term. 

Thus two ofMaxwell's equations are subsumed in 8,.Fil" = j" The other two are subsumed 
in ell"Pa 811Fpu = 0 

We thus have our goal of a manifestly Lorentz invariant formalism . Note however 
that the equations have a funny little symmetry: AI' --+ Ap. + 8p.</> leaves Fp. 11 unchanged. 
This was the first sign of a Gauge invariance. In classical physics it is a curiosity, since all 
of classical physics can be written safely in terms of the unaffected E, B fields. In Quantum 
Mechanics it is a different matter as the A field is directly measurable. 

The classic experiment to demonstrate this is due to Bohm and Aharanov. 

An electron two-slit experiment is carried out with the addition of a long solenoid 
between the slits. The solenoid carries current and so there is a magnetic field B inside 
the coil. Outside the coil there is no magnetic field but A is not zero. The integral of A 
around a loop encircling the coil is given by Stokes 

j A.dl = j dS.(\7 A A)= j dS.B = Bflux 

So the A field is non zero outside the coil. 
The interference pattern changes when the field is switched on. Hence, in Quantum 

physics, the dynamical variables are not merely the E, B fields. 
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6.2) The Lagrangian Formalism 

Now we return to rewrite the classical Maxwell theory in Lagrangian formalism. From 
the adverts above, we expect a Lorentz invariant Lagrangian density. 

for the simple case of no fields except the Maxwell fields. The independent degrees of 
freedom are, at first sight, the four Ap fields. So we get only four equations from Lagrange 
but remember that the Ap already solve two of Maxwell's equations. 

Thus the Ao equation gives 

As promised, one of Maxwell's equations. There is however a problem, ITAo = 0 
since the Lagrangian has no dependence on 8;it . So what on earth can the commutation 
relations be ? 

Now turn to the Ax equation. 

~ [!.£] + ~ [ ac J + ~ [ ac J + ~ [ a.c ]-~ - o 
at aA.x 8x 8(8xAx) 8y 8(8yAx) 8z 8(8zAx) 8Ax -

:t [ -Fol] + 0 + ~ [-F12] + :z [F31] = 0 

a [ J a a 8t -Ex + ayBz- 8zBY = 0 

!E=\1/\B 

The other Maxwell equation. Thus this Lagrangian gives the expected answers. So 
we have connected Maxwell's equations to our world of Lagrangians and, if necessary, 
Hamiltonians. The only fly in the ointment is the bizarre non-existence of the momentum 
conjugate to the scalar electric potential A 0 • If we treated Gauge theories in Hamiltonian 
formulation this would cause us serious aggravation. The jargon, again due to Dirac, is 
the language of constrained systems and Dirac Brackets as opposed to Poisson brackets. 
We will avoid this problem by sticking to our Lagrangian, functional treatment. These 
problems will not go away but will reappear in a different disguise. The no free lunch 
theorem. 
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6.3) The U{l) Covariant Derivative 

fu a short while we will launch into the complexities of Non-Abelian gauge theories. 
Before we do this I introduce a crucial construction, the covariant derivative, in the simple 
U(l) case. We saw above that Maxwell's equations were invariant under the transformation 

Now consider some field ,P(x) which transforms as 

,P(x)--+ tb'(x) = e-igx(x).,p(x) 

for an arbitrary real function x(x). Notice that unlike in the case of Lorentz transforma­
tions or rotations no changes happen to ~· 

We would like to construct Lagrangians, with interaction terms involving both A,... 
and .,P. So first turn to the transformation of the a,....,P(x) term. 

So the derivative does not transform in the same way as the original function. But try 

(a"+ igA"' ).,p--+ (a"'+ ig(A" + a"x(x)) ).e-igx(x> . .,p 

= e-igx(x) [ a".,P- iga"'x . .,P + iga" . .,P + iga"x . .,P] 

= e-igx [a"+ igA" j.,p 

We see that the combination D",P(x) = (a"+ igA"),P(x) transforms in exactly the same 
way as ,P. This makes it easy to construct gauge invariant Lagrangian densities. This is 
the covariant derivative. Those of you who have studied general relativity will recognise 
the name, the style, but not the details. 

For example, the standard kinetic term for a free spin ~ Dirac particle is ifi'Y"a~-',P. 
Now ,P transforms as e-igx,p(x) and the kinetic term is not gauge invariant. However the 

combination 1b'Y" [a"+ ig A~-']1/J is gauge invariant. The imposition of gauge invariance then 

ties the free quadratic term to the interacting term containing three fields. In this sense 
gauge invariance fixes the interactions, given the free terms. 
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6.4) Non-abelian Gauge Theories 

We take the case of SU(2). More general theories are easy once you understand this 
case. The trick, as above, is to construct the covariant derivative. Suppose we have a field 
.,P transforming as 

.,P(x)--+ .,P'(x) = U(x).,P(x) (6.4.1) 

where U(x) is an element of SU(2). This element can be different at every point of space 
time. In other words this gauge symmetry will turn out to be a vast group. The elements 
of the group are fields with group values. In other words at every point in space time we 
attach an SU(2) matrix, possibly different at every point. Group multiplication is defined 
by multiplying the elements at each space time point 

U(x).V(x) = U.V(x) 

giving another set of SU(2) matrices at each space time point. We can choose independent 
SU(2) rotations at every point in space and have them depend arbitrarily on time. Compare 
this with the angular momentum /rotation operator which rotates all points of space by 
the same amount. This is why the gauge symmetry is often called a local symmetry. We 
can choose to have a gauge transformation which is 1 ( i.e. no transformation ) everywhere 
except a finite local region. We can carry out symmetry transformations independently on 
the moon and on earth. 

So we introduce the non-abelian gauge field for SU(2). As promised it lives in the 
su(2) algebra. Thus the Gauge field can be thought of as 

W"'- TI W"' T2W."' T3W:"'- ~ W"' - 2 1 + 2 2 + 2 3 - 21:•_ (6.4.2) 

Here the three r's are the three Pauli matrices of the su(2) algebra. They are given a 
different name just to avoid confusion with any angular momentum Pauli matrices that 
might be around. There are 12 W fields. One for each Pauli matrix and each such term 
is a four vector, hence the Lorentz indices p.. You will therefore often see the gauge field 
given as 2 x 2 matrix W"' which can be rewritten as a linear combination of Pauli matrices 
with coefficients the actual fields wr. 

Now put these together to construct the covariant derivative. 

(6.4.3) 

Unlike Maxwell we do not know how the gauge field must transform under gauge trans­
formations. We let the covariant derivative tell us. Thus we assume that after the gauge 
transformation 

D"'.,P--+ D'"'.,P' = U(x).D"'.,P 

From this we see that 
D' = unu-1 
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Rewriting this in terms of the fields W~' and W'", we arrive at 

8" + i~.w'" = u. (all+ i~.w~-~) u-1 
2- 2-

or in terms of the 2 x 2 matrices W~' 

{6.4.4) 

This somewhat strange formula is defined entirely to make the covariant derivative of 
a gauge field transform in the same way as the field. 

Now we construct the analogue of the F"" = 8~-'A"- {),AI' field. This is defined to be 

{6.4.5) 

This is done with only one aim in mind; to construct gauge invariant Lagrangians. So 
how does F~'" transform ? The result is 

Notice that all these terms are 2 x 2 matrices which do not necessarily commute. In the 
Abelian, commuting case the U's would cancel. This happens in the Maxwell case where 
the U's are just phases. 

To check this by brutal calculation we just substitute the transformation properties 
of theW's into the definition of the covariant derivative and grind. 

F'"" = {)llW'" - 8"W'Il + i [W'Il, W'"] 

= {)ll ( U.W".U-1 
- iu.a~~u- 1 ) 

- 811 
( U. Wll.U- 1 - iU.8P.U-1) 

+ i [ u.wll.u-1
- iUollu-1

, u.w~~.u- 1 - iU.a"u-1] 

= U [ {)llW" - 811Wil + i [Wil, W"] l u-1 

+ ollU.W".U-1 + u.w~~.allu- 1 - i81lU.8 11 U1 - iU.olla~~u- 1 

- 811 U.Wil.U-1 - U.W".ovu-1 + i8"U.81lU 1 + iU.81l8vu-1 

+i[u.w~-~.u-1 ,-iu.a"u-1 ] + [u.8~-~u-1 ,U.W".u-1]-i[u.8"U-1 ,U.8"u-1 ] 

The first line is the expected answer. We have to show the rest cancels. The trick here 
is to take the derivative of the identity relation 8~-'(U(x).U-1 (x)) = 8"1 = 0. Which 
gives 8~'U.U-1 + U.ollU-1 = 0 so that 8~-'U-1 = -U.8~'U.U- 1 • This lets us get rid of all 
derivatives of u-1 in the above, to give for the right hand side 

= u.F"".u-1 + 8"U. W".u- 1 
- u. W" .u-1.8"u.u-1 + i8"u.u-1 .a"u.u-1 
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-iU.8P8vu-t- 811 .WP.U-1 + U.WP .U-1 .811U.U-1 - i811 U.U-1 .8PU.U-1 

+iU.81l8"u-1 - U.W".U-1 .811 u.u-1 +8"u.u-1 .U.WP.u-1
- U.U 1 .8"u.u-1 .u.wvu-1 

+U.w~~.u-1 8"u.u-1 - i8"u.u-1 .a~~u.u-1 + i811 u.u-18"u.u-1 

= U.F"" .u-1 

It is now an easy exercise to check that the following is a gauge invariant, Lorentz 
invariant Lagrangian density. 

(6.4. 7) 

This is the Yang-Mills Lagrangian density. 
Here trace is the sum of the diagonal terms in the matrices. It is easy to prove the 

crucial property that tr(A.B.C)=tr(C.A.B). This term is also Lorentz invariant due to the 
way we contracted the Lorentz p.v indices. So we are in good shape with both symmetries 
manifest. 

If we wanted to do QCD with its SU(3) symmetry we would have taken W" to be a lin­
ear superposition of the 8 Gell-Mann matrices. There would have been 4(Lorentz) x8(su(3) 
generators) gauge fields. Similar arguments apply to any Gauge group. 

6.5) Feynman Rules 

We are now ready to compute the Feynman rules for the gauge field. Before plunging 
into details let us look crudely at the Lagrangian. We see there are terms quadratic in 
the fields W" of the form (8PWII- 811 WP)2 plus terms cubic and quartic in theW's. The 
quadratic terms will describe free fields. The others, the unavoidable self-interaction terms 
of a non-abelian Yang-Mills theory. They are the reason why QCD, even without fermions, 
is a highly non-trivial field theory. 

We follow our Gaussian tricks to the end. So we need again to write the quadratic part 
of the action as Field.Operator.Field. Consider the Abelian U(l) case. The problem 
here lies in the Lorentz indices not the gauge group indices. 

J (8pAv- 8.,Ap)(8pAv- 8.,A")d4
x 

= J {A.,( -8p8pA11 + Av8p8vAp11 + Ap8v8pA11 - Ap8v8vAp }d4x 

So in terms of operators we need the inverse of the operator 

Remember we solved the free spin zero particle by Fourier transforms. Here we have 
the added complication of the Lorentz indices. The operator is a two index tensor in 
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Lorentz indices. So we need the inverse of this matrix/tensor in momentum space. After 
Fourier we get, in the numerator, 

This has an unfortunate property. Compute the product of two of them 

Pp.,Pvp = (kp.k,- k2gp., )(k,kp- k3g,p) 

= kp.kp.k2
- k2.kp.kp- k2 kp.kp + k4 .gp.p 

= -k2 (kp.kp- k2gp.p) 

Now any matrix whose square is proportional to itself does not have an inverse. Try 
multiplying the equation by the inverse. So the propagator does not exist ! 

What's up? There are several views on this. 

1 ). Canonical quantisation is in trouble. Remember we got ITAo = 0. Which is 
inconsistent with the standard commutation relations. We need to start again using Dirac's 
theory of constraints. 

2). Another way of saying the same thing is the fact that there are only actually two 
photon states c.f. right and left polarised; whereas we have a vector A"' describing the 
photon i.e. four degrees of freedom. 

3) In path integral formalism we should not integrate over the gauge equivalent field 
configurations. Thus if W~-' is gauge equivalent to W'~'- then to count both in the path 
integral is a bit strange. The Faddeev Popov trick is a systematic way of removing this 
double counting. 

6.6) Gauge Fixing or Faddeev Popov 

Let me start with a trivial, rotationally invariant, integral and use a large sledgeham­
mer to crack it. The sledgehammer will however also crack the gauge problem. 

So consider the integral 

I= J f(x, y)dxdy 

where f is invariant under rotations. In terms of polar coordinates f(x, y) = F(r, 6) = F(r). 
Trivially 

I= J F(r)rdrd9 = 21r J F(r)rdr 

Here we think of 21r as the volume of the rotation group. 
I would like to rewrite this familiar calculation in the language of invariance and group 

transformations. In this case trivial rotations, in the general case these will be full gauge 
transformations. The rotational invariance of the function f will be replaced by the gauge 
invariance of the Yang-Mills Action. 
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First I redo the trivial calculation. Then I will use a general coordinate change. 
These will correspond to different choices of gauges in the Yang-Mills case. Given a point 
r. = ( r, 8) we define a rotated point !.q, = ( r, 8 + </>) = R( </> )!.. Thus R corresponds to an 
operator which rotates the coordinates. The function f is clearly invariant under such an 
operation; in fact this is what rotational invariance means. We only want to count one 
point from each circle. All other points on a given circle have the same value of f. The 
jargon is that the circles form the orbits of the rotation group. 

So define 

Wq, = J d2rf(x,y)6(8- </>) = J rdrd8F(r,8)6(8- </>) = J rdrF(r,</>) 

It is clear immediately that 

W = J d2rf(x,y) = J d</>Wq, 

Wq, corresponds, obviously, to integrating straight out along a radial path at angle </>. 
Because of the invariance ofF it is immediate that Wq, = Wq,• for all </>, </>'. Thus the 
integral 

W = j d</>Wq, = 21r.Wq, 

since Wq, is independent of </>. This trick, of using the invariance to extract the group 
volume, is what we need to use in general. 

Consider the same example but integrated along a arbitrary curve which cuts each 
orbit once and once only. Suppose the equation of this curve is g(r.) = 0. For example the 
x-axis is g(x, y) = y = 0. 

First consider the integral 

~;1 (r.) = J d</>6(g(r_q,)) 

The reason for the name will become clear. At each radius there exists a </> which rotates 
an arbitrary!. onto our curve. Thus this 6 function has a zero in </>. The answer is 

1 

-54-



Hence the name, it is the inverse J acobian. 
But now we prove that ~ is invariant i.e. unchanged by rotations of r_. 

where we changed integration variable to t/J = 4> + 4>'. Thus, inserting a factor of 1, 

where 

The proof of this latter statement goes as follows. First calculate the rotation R that 
takes !.cp--+ !.cp•· Then change variables from r. to R.r_ = r.'. The three terms Jlr,J(r.) and 
b. are all invariant while the b term changes as required. In the general case we will need 
to prove the invariance of the measure, the function and the ~ term. Thus finally we have 

The 27r is, once again, the group volume and Wcp integrates once over each orbit as 
required. 

Now turn to the gauge case. We want to integrate over the W". But we only want to 
count the gauge equivalent fields once. Thus we need the equivalent of g above. Equations 
such that they only have one solution under gauge transformations. 

Before plunging into the details let me give two examples. 

a). Axial Gauge: For each WJ' field we set ga = w: = 0. In other words if we 
call the field WJ', transformed by the gauge transformation U, WJ'u we substitute this 
in g and solve for U. At each space-time point we can rotate the W field so that it's 
third space component is zero for each su(2) index. At this point we will lose manifest 
Lorentz invariance. This is possible because the gauge transformations of ( 6.4.4) are x 
dependent and so show up differently in the different Lorentz components even although 
they originally operate on the SU(2) labels. 

b). Covariant Gauge: This is defined by taking ga = 8"A~. 

Now with a wild generalisation we write 

1l;1(W") = J [11 dU(x)] 11 b(ga(WJ'u)) = !l;1 (W"v) 
X X 

for all gauge transformations V. Moreover we can show, as above, that 
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independent of V and B. This follows from standard properties of the o-function as sum­
marised in the prerequisites. The TI over all space time points makes the notation cumber­
some so we drop it, but keep in mind that we now have a functional integral over separate 
degrees of freedom at each space time point. An essential part of our simple rotation 
model was that d(} = d( (} + ~) or in other words that the measure is invariant under rota­
tions. Similarly above we integrate dU over the gauge group. It is a known result that all 
Lie groups like SU(2), SU(3) have invariant integration measures. These are called Haar 
measures. So into our gauge field functional integral we insert the factors of 

giving 

J [dWt] [dU]e-Action.D.g(Wt) II o(ga(Wtu)- Ba)· J [dB]e_2t( I d•xB2(x) 

= J [dWt] [dU] e-Actionb.g(Wt)o(ga(Wt)- Ba)· J [dB] e- 2t( d4xB2(x) 

= J [dWt] [dU]e-ActionD.g(Wt)e_2t( I d4x(ga)2 

= {Volume of gauge Group} x J [dWt]e-Action.6.9(Wt)e--h I d•xo! 

The $64,000 question at this point is whether we have solved the propagator problem? 
In other words, throwing away the gauge group measure above, does the quadratic term 
operator now have an inverse? The real change is the additional term g;. In covariant 
gauge this alters the Fourier transformed operator numerator into 

This now has an inverse and the propagator in momentum space is 

[ 
1w _ (1-e)k~'k"] 

g kl 

The other term in our new integral .6. gives rise to ghosts although in some gauges 
there is no such contribution. I do not have time for this. There is clearly a large scale 
industry in trying funny gauges. Some people develop this to an art. Occasionally you can 
eliminate almost all Feynman graphs by clever choices. 
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Chapter 1 

Fermionic Integrals 

The previous two years I gave this course it was decided that I finish with the Higg's 
model. This year rather than rushing it at the end it was put rightfully at the start of the 
Standard Model course. I was given the task of explaining how the above functional trickery 
could be expanded to include fermions. This was more in the lines of whetting the appetite 
rather than a full meal. 

A crucial ingredient in the functional technique is the ability to do Gaussian integrals. 
Here I would like to show simply how this works for integrals over anti-commuting variables. 

Consider a standard real integral 

j +oo joo 
-oo f(x)dx = -oo f(x + c)dx 

for any real constant c. In other words the integration is translation invariant. 
We take this as a necessary condition for a fermionic integral. So first consider a general 

function of one anti-commuting variable a. In other words {a, a} = a2 + a2 = 0. Thus on 
Taylor expanding any such function 

df J2 f 2 
f(a) = f(O) + da (O)a + 

2
da2 (O)a + ... 

we see only the first two terms survive. The coefficients f(O), ~ are real or complex numbers 
independent of any anti-commuting variable. The remainder are zero. Thus the most general 
function of one anti-commuting variable is a linear function ! Analysis is easy. 

Looking at the most general, one dimensional integral we get 

j f(a)da = j[f(O) + da (O)a]da = j f(a + c)da = j[f(O) + ~~ (O)(a + c)]da 

This must be true for all c. Thus we easily see that I da = 0. By definition I daa = 1. 

Then I f(a)da = fa(O). So, for fermions, integration equals differentiation not it's 
1nverse. 

Now turn to multi-dimensional anti-commuting integrals. 

j f( a, b )dadb 

Here {a, b} = ab + ba = 0. So we need to agree an ordering. 

where the fi are real or complex numbers, is the most general function of two anti-commuting 
variables. 
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So define 

j db.daf(a, b) =lab 

Notice we get a sign change on interchanging da and db. The formula also agrees with the 
answer we get by first doing da then db. 

This methodology obviously extends to functions of more variables. 
Now we turn to the fermionic analogue of Gaussian integrals. Consider a quadratic 

function of 4 variables a1, az and b1, bz 

Think of this an action with inependent a and b fields. So consider 

We expand the exponential. Clearly only terms with four factors of a orb will give a non­
zero contribution. Thus only the third term in the exponential expansion counts. We must 
also have no squares. 

[ a1 Au b1.azAzzbz + azAzzbz .a1A11 b1 + a1A1zbz.azA21 b1 + azA21 b1.a1A1zbz] 

2 

This should be compared with the equivalent real Gaussian integral. There we get 
1 

detA- 2 factors. 
Thus in functional integral language we need to generalise the above to the Dirac action. 

Then we a~ve an anti-commuting quadratic .ffi(x)(h-%x- m)t/l(x) 
Here t/1 and t/1 anti-commute being momentum and coordinate respectively. 
Apart from signs all the machinery of our Gaussian trickery can be developed to give 

fermion propagators. An easy exercise. 
Another unexpected place these integrals turn up is in our gauge fixed Yang-Mills. 

The Faddeev Popov trick leaves factors of a determinant ~g{WJ') in the numerator. These 
determinants can be written as integrals over some new fields. These are the Ghosts. 
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Chapter 8 

Virgin Experimental Territory 

In 1994 we had a request for a very fast overview of things theoretical that had not led 
to positive experimental results. All in half an hour. 

In the diagram I show a plan of Theorist territory, unconquered by experimentalists. 
Such territory may be empty or not exist of course. 

In our lectures we have stressed the role of symmetry. As you may have noticed our 
symmetries never mix fields of different spin. Thus the Gauge transformations mix gauge 
bosons with gauge bosons, fermions with fermions. Theorists have however found a symme­
try whivh mixes particles of different spins. This is super-symmetry. Here a representation 
of a super-symmetry typically joins scalars and fermions or scalars, fermions and spin 1 
particles. Complicated versions join gravity with gauge bosons. 

These theories have many beautiful properties. Often the divergences of Feynman dia­
grams cancel. Discovery of such super partners to standard particles would be an impressive 
breakthrough. This was a motivation for HERA. 

Another way to pull together lots of particles in one structure is string theory. Here 
instead of the fields 4>( x) dependent on one space time point x, which we have grown used to, 
we introduce variable XP.(u, r). Here u, T parametrise the points on the surface XP. swept 
out in space time as u, T vary. The individual modes of this object correspond to an infinite 
number of particles of different spins and masses. 

Again such theories have beautiful properties but nobody has seen a clear way to 
reconstruct our actual world. 
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Many Gauge Theories have Soliton like solutions. These can for example be magnetic 
monopoles or strings or other defects. An area of great current interest is to study whether 
such objects can seed galaxy formation. This connects us up to the world of Astronomy 
and COBE. 

A surprising development over the past 15 years or so has been the influence of Quan­
tum Field Theory on Pure Mathematics. In the 19'th century Riemann showed how two­
dimensional comlex surfaces could be exhaustively studied by considering electric fields or 
fluid flow on the surface. To take a trivial example the Riemann sphere, effectively the 
complex plane with one point at infinity, is different from the torus. This is most easily seen 
by seeing that the sphere cannot have fluid flow without a singulaity whereas on the torus 
flow is possible without singularity. 

Since the early 80's Atiyah, Donaldson and Witten have shown how detailed Geomet­
rical information can be extracted from considering Quantum Field Theories on surfaces. 
Thus our Gauge theory work has profound geometrical consequences. 

More recently claims have even been made that these geometrical approaches may lead 
to a soluble 4 dimensional field theory. That would set the world alight. 
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Questions and Exercises 
0.1.1) Prove (0.1.2). 
0.1.2) Compute the normalised wave functions \l!1 (q), \l!2 (q) for the first and second 

excited states of the Harmonic Oscillator. 
0.1.3) Check explicitly that (a)2 '11 1(q) = 0. 
0.1.4) Prove that the Hermitian conjugate of a is at. 
0.2.1) Compute 

0.3.1) Consider a free quantum mechanical particle, of mass m, moving along a 1 
2 

dimensional line. Given a wave function W = e-2: at t = 0, calculate, in both Heisenberg 
and Schrodinger pictures, the probability density of finding it at x = 0 at timet. 

0.3.2) Check [q,p] = i in both Schrodinger and Heisenberg pictures. 
0.3.3) Check that the a, at commutation relations are the same in the two pictures. 
0.4.1) Derive the Lagrangian for a particle falling, under gravity, near the surface of the 

earth. Derive the equations of motion, and solutions, in both Lagrangian and Hamiltonian 
form. 

0.5.1) Compute 

l+oo 
-oo dxe-%

2 

c5(2x- 1) 

0.5.2) Prove that 

0.5.3) Compute 
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1.1.1) Using Lagrange's equation, solve for the motion of a double pendulum undergoing 
small oscillations. 

1.2.1) What are the momenta conjugate to 8, 4>? 
1.3) Compute the Poisson brackets 

{ q2' p}' { q, p2} 

How do they compare with 
[q2,p], [q,p2] 

1.4) Prove that Hamilton's Classical equations can be rewritten 

qi = { qi, H} 

Pi= {Pi,H} 
Does this satisfy Dirac's Classical to Quantum prescription? 

2.1.1) Derive an expression for U3 (t). Prove it is given by the time ordered prescription. 
2.1.2) Prove that 

2.2.2) For a free particle with Hamiltonian 

~2 
~ p 

H = -
2m 

write down the 6.- time slice approximation explicitly for (2.2.1) and (2.2.2) 
2.2.3) Prove that if A( ti, t f, qi, qf) is the amplitude to get from position qi at ti to 

position qf at t 1 then this function satisfies 

forti < t' < t1. 

-62-



2.3.1) Check that equations (2.3.1) are obtained by applying Dirac's quantisation pre-
scription to Hamilton's Classical equations. 

3.1.1) Derive equation 3.1.1. 
3.2.2) Derive equation 3.2.1 from 3.2.3. 
3.2.3) Derive (3.2.4) 
3.2.4) Check the </>field describes a boson. 
4.1.1) Using the free Lagrangian for</> but a new interaction >.4>4 compute, by commu­

tation, the amplitude for 2 </>' s of momenta q~, q2 to scatter into two </>'s of momenta p1 , p2 
in lowest order. 

6 62 

4.2.1) Compute 6J(y) and 6J(y) 6J(z) of 

a) J </>(x)J(x)dx 

b)[! ~(x)J(x)dx]' 
c) J 4> 2(x)J(x)dx 

4.2.2) Prove (4.2.7) 
5.1.1) Check the product of 2 matrices of the form 5.1.1 gives another matrix of the 

same form. 
5.1.2) Check that the commutators of the Gell-Mann >.i matrices give linear combina­

tions of the >.i. 
5.1.3) Prove 5.1.4. 
5.1.4) Prove that the operators ( Fi = -¥) 

satisfy (T3 = F3, Y = 7JFs) 

[T3, T±] = ±T± 

1 
[T3, U±] = =t=2U± 

1 
[T3, V±] = ±2 V± 

[Y,T±]=O 

(Y,U±] = ±U± 

{Y, V±]= ±V± 

Hence show that they operate as raising and lowering operators on eigenstates of T3 , Y. 
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Hence show how the states in the 3 dim., 8 dim. representations of SU(f3) are related 
by T±,U±, V±. 

'I 

--~3 
s "-

• -

y 
'( 1-~ I 

6.1.1) You are used to the electric field due to a static charge q being given by a scalar 
potential 

Prove it is equally well described by 

1 q 
</>(r., t) = -.-

41T'€o r 

A(r_, t) = 0 

4>(~, t) = 0 

tqr. 
A(r_,t)=4 3 

1T'€o .r 

So a voltmeter had better not measure</>! What does it measure? 
6.4.1) Another way of defining FP" = [Dp, Dv]· Prove that this is equivalent to 6.4.5. 

Use this to prove 6.4.6. 
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1 Introduction 

The aim of this course is to teach you how to calculate amplitudes, cross-sections and 
decay rates, particularly for quantum electrodynamics, QED, but in principle also for 
quantum chromodynamics, QCD. By the end of the course you should be able to go from 
a Feynman diagram such as the one for e+ e- ---7 JL+ JL- in Figure 1.1 (a), to a number for 
the cross-section, for example. 

We will restrict ourselves to calculations at tree level but will also look qualitatively 
at higher order loop effects which amongst other things are responsible for the running of 
the QCD coupling constant. This running underlies the useful application of perturbative 
QCD calculations to high-energy processes. As you can guess, the sort of diagrams which 
are important here have closed loops of particle lines in them: in Figure 1.1(b) is one 
example contributing to the running of the strong coupling (the curly lines denote gluons). 

In order to do our calculations we will need a certain amount of technology. In 
particular, we will need to describe particles with spin, especially the spin-1/2 leptons 
and quarks. \iVe will therefore spend some time looking at the Dirac equation and its free 
particle solutions. After this will come revision of Fermi's golden rule to find probability 
amplitudes for transitions, follmved by some general results on normalisation, flux factors 
and phase space, which will allow us to obtain formulas for cross sections and decay rates. 

\Yith these tools in hand, we will look at some examples of tree level QED processes. 
Here you \\'ill get hands-on experience of calculating transition amplitudes and getting 
from them to cross sections. \Ve then move on to QCD. This will entail a brief introduction 
to rcnonualisation in both QED and QCD. \Ve will introduce the idea of the running 
coupling constant and look at asymptotic freedom in QCD. 

In reference [1] you will find a list of textbooks which may be useful. 

1.1 Units and Conventions 

I will use natural units, c = 1, n = 1, so mass, energy, inverse length and inverse time all 
haw the same dimensions. 

4-vector a1' J-l = 0, 1, 2, 3 a= (a0 , a) 
scalar product a·b = a0b0 - a·b = gl'va~'bv 

From the scalar product you see that the metric is: 

g = diag(l, -1, -1, -1), 

For c = 1, g~'v and 9p.v are numerically the same. 

if Jl =V 

if JL # V 

(b) 

(1.1) 

(1.2) 

Figure 1.1 Examples of Feynman diagrams contributing to (a) e+e- --+ J.l+J.l- and (b) the 
running of the strong coupling constant. 
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From the above, you would think it natural to write the space components of a 4-vector as 
ai for i = 1, 2, 3. However, for 3-vectors I will normally write the components as ai. This 
is confusing only when you convert between ordinary vector equations and their covariant 
forms, when you have to remember the sign difference between ai and ai . 

Note that a~-' is a covector, 

so Vi = -8i and 8~-' = (8°,- V) 
My convention for the totally antisymmetric Levi-Civita tensor is: 

{ 

+1 if Vt,v,>.,a} an even permutation of {0, 1,2,3} 
Ep.v>.u = -1 if an odd permutation 

0 otherwise 

(1.3) 

(1.4) 

Note that t 1w>.u = -EJJv>.u, and EJJv>.upp.qvT>.Su -t (det A) tp.v>.u]Jp.qvT>.Su for A in the Lorentz 
group. 

1.2 Relativistic Wave Equations? 

Imagine you are working in the 1920's. You already know quantum mechanics based on 
Schrodinger's equation and you know relativity. You might ask if you can come up with 
some relativistic \'Crsion of a quantum mechanical wave equation. If you do this, you 
encounter difficulties arising from the one-particle viewpoint, thinking of the equations 
describing a ml\'e function. These difficulties arc solved by ditching the wave function in 
fanmr of a qum1.fwn field, the subject of your quantum field theory course. 

What is the problem with the one particle interpretation? Trouble arises from com­
hiniug the uncertainty principle with the relativistic equivalence of mass and energy­
mmncntum. If you try to localise a particle in a region with dimensions of order L, the 
particle's momentum and (in the relativistic regime) energy are uncertain by "" 1/ L. As 
the dimension L becomes smaller than the particle's inverse mass, 1/m., states with more 
than one particle become energetically accessible. The more you try to localise a particle, 
the more you become uncertain whether you have one or any number of particles. Rel­
ati,·istic causality is inconsistent with a single particle theory and the real world evades 
the conflict through pair creation. 

'Vhat happens in quantum field theory is that field operators, which can create 
or destroy multiparticle states, satisfy Heisenberg equations of motion. If there are no 
interactions, then the relevant equations are the Klein-Gordon equation for scalar fields 
or the Dirac equation for spin-half fields (such as the electron). The free quantum fields 
are expanded as linear combinations of plane wave solutions of these equations, but with 
operator valued coefficients which can create and destroy single particles. Thus we need 
to know the properties of the plane wave solutions. This is trivial for the scalar field, but 
is more interesting for the Dirac field. All the problems with "negative energy solutions" 
in the wave function approach are non-problems in quantum field theory: the negative 
energy parts multiply operators which destroy particles. 

In fairness I should mention that you can get quite far with the one particle inter­
pretation if you consider external forces which vary slowly on scales of order 1/m, and 
thereby don't have enough energy to create new particle pairs. Notably, you can use 
the Dirac equation, which we'll meet below, in the presence of an electromagnetic field, 
to calculate fine structure in the spectra of hydrogen-like atoms (see textbooks such as 
ltzykson and Zuber [1] section 2.3 for example). 
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1.3 The Klein-Gordon Equation 

In your quantum field theory course, you will show that the Heisenberg equations of 
motion for a free scalar field and its canonical conjugate give the Klein-Gordon equation 

where 
o = a"a~~ = a2 ;at2

- v2 

and xis the 4-vector (t, x). Using the substitutions, 

p-+ -iV, 

(1.5) 

(1.6) 

(1.7) 

you can see that the objects created or destroyed by ~ satisfy the relativistic energy­
momentum relation 

(1.8) 

The operator 0 is Lorentz invariant, so the Klein-Gordon equation is relativistically 
covariant (that is, transforms into an equation of the same form) if~ is a scalar function. 
That is to say, under a Lorentz transformation (t, x) -t (t', x'), 

~(t,x) -t 4J'(t',x') = ~(t,x) 
f-;0 9 is inn1.riant. In particular ~ is then invariant under spatial rotations so it represents 
a spin-zero particle (more on spin when we come to the Dirac equation), there being no 
preferred direction which could carry information on a spin orientation. 

The 1\]cin-Gorclon equation has plane wave solutions 

~(x) = Ne-i(Et-p·x) (1.9) 

when• X is a normalisation constant and E = ±Jp2 + m2 . Thus, there are both positive 
ami uegat.i\·e energy solutions. In the quantum field ~~ these are just associated with 
operators which create or destroy particles. However, they arc a severe problem if you 
t.ry to interpret ~as a wavefunction. The spectrum is no longer bounded below, and you 
can extract arbitrarily large amounts of energy from the system by driving it into ever 
more negative energy states. Any external perturbation capable of pushing a particle 
across the energy gap of 2m between the positive and negative energy continuum of 
states can uncover this difficulty. 

A second problem with the wavefunction interpretation arises when you try to find 
a probability density. Since ~is Lorentz invariant, 1~1 2 doesn't transform like a density. 
To search for a candidate we derive a continuity equation, rather as you did for the 
Schrodinger equation in the pre-school problems. Defining p and J by 

P i (~.a~_</> a~·) 
at at 

J _ -i (</>*V~- </>V~*) 

you obtain (see problem) a covariant conservation equation 

a,.,.J" = o 

(1.10) 

(1.11) 

where J is the 4-vector (p, J). It is natural to interpret pas a probability density and J 
as a probability current. However, for a plane wave solution (1.9), p = 2INI2 E, so pis 
not positive definite since we've already found E can be negative. 
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I> Exercise 1.1 
Derive the continuity equation (1.11). Start with the Klein-Gordon equation multiplied 
by c/J* and subtract the complex conjugate of the K-G equation multiplied by cjJ. 

Thus, p may well be considered as the density of a conserved quantity (such as 
electric charge), but we cannot use it for a probability density. To Dirac, this and the 
existence of negative energy solutions seemed so overwhelming that he was led to intro­
duce another equation, first order in time derivatives but still Lorentz covariant, hoping 
that the similarity to Schrodinger's equation would allow a probability interpretation. In 
fact, with the interpretation of cjJ as a quantum field, these problems are not problems at 
all: the negative energy solutions will find an explanation in terms of antiparticles and p 
will indeed be a charge density as hinted above. Moreover, Dirac's hopes were unfounded 
because his new equation also turns out to admit negative energy solutions. Fortunately 
it is just what we need to describe particles with half a unit of spin angular momentum, 
so we will now turn to it. 

-72-



2 The Dirac Equation 

Dirac wanted an equation first order in time derivatives and Lorentz covariant, so it had 
to be first order in spatial derivatives too. His starting point was 

i Bl/l = -i a·Vl/J + {3m1/J at (2.1) 

Remember that in field theory, the Dirac equation is the equation of motion for the field 
operator describing spin-1/2 fermions. In order for this equation to be Lorentz covariant, 
it will turn out that '1/J cannot be a scalar under Lorentz transformations. In fact this will 
be precisely how the equation turns out to describe spin-1/2 particles. We will return to 
this below. 

If '1/J is to describe a free particle it is natural that it should satisfy the Klein­
Gordon equation so that it has the correct energy-momentum relation. This requirement 
imposes relationships among the a and {3. To see these, apply the operator on each side 
of equation (2.1) twice, 

- ~2t~; = -a; aiviV'i - i (f3ai + ai {3)m, V'i'I/J + {32m2'l/; 

Th(• 1\:h•in-Gordon equation will be satisfied if 

O';O:j + O:jO:i 

(3o:i + a;{3 
(32 

(2.2) 

fori, j = 1, 2, 3. It is clear that the o:; and {3 cannot be ordinary numbers, but it is natural 
to gin• them a realisation as matrices. In this case, 1/J must be a multi-component spinor 
ou which these matrices act. 

t>Exercise 2.1 
Prow that any matrices a and (3 satisfying equation (2.2) arc traceless with cigenvalues 
±I. Hence argue that they must be even dimensional. 

In two dimensions a natural set of matrices for the a would be the Pauli matrices 

(2.3) 

However, there is no other independent 2 x 2 matrix with the right properties for {3, so 
the smallest dimension for which the Dirac matrices can be realised is four. One choice 
is the Dirac representation 

(2.4) 

Note that each entry above denotes a two-by-two block and that the 1 denotes the 2 x 2 
identity matrix. 

There is a theorem due to Pauli which states that all sets of matrices obeying the 
relations in (2.2) are equivalent. Since the Hermitian conjugates at and {3t clearly obey 
the relations, you can, by a change of basis if necessary, assume that a and {3 are 
Hermitian. All the common choices of basis have this property. Furthermore, we would 
like a, and {3 to be Hermitian so that the Dirac Hamiltonian (2.14) is Hermitian. 
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r> Exercise 2.2 
Derive the continuity equation f)f-LJf-l = 0 for the Dirac equation with 

J = '1/}(x)a'l/J(x). (2.5) 

\i\Te will see in section 2.6 that (p, J) does indeed transform as a four-vector . 

2.1 Free Particle Solutions I: Interpretation 

\Ve look for plane wave solutions of the form 

'1/J = ( ~) e-i(Et-p·x) 

where qy and x are two-component spinors, independent of x. Using the Dirac represen­
tation, the Dirac equation gives 

so that 

E (4Y) = ( 1n 
X u·p 

O"·p ' 
\ = --(J), 

E+m 
For E =J. --111 there are solutions, 

O"•p) (4Y) 
--111 X ' 

O"·p 
dJ= -E X· --m 

·'·( ) ( c/J ) -i(Et-p·x) 
'f/ :r = ~A- e , 

E+m 'f/ 

while for E =J. m there are solutions, 

-i(EI-p·x) e , 

(2.6) 

(2.7) 

for arbitrary constant 9 and\· Now, since E 2 = p 2 +m.2 by construction, we find, just as 
we did for the Klein-Gorclon equation (1.5), that there exist positive and negative energy 
solutions given by equations (2.6) and (2.7) respectively. Once again, the existence of 
negative energy solutions vitiates the interpretation of 'lj1 as a wavefunction. 

Dirac interpreted the negative energy solutions by postulating the existence of a 
"sea" of negative energy states. The vacuum or ground state has all the negative energy 
states full. An additional electron must now occupy a positive energy state since the 
Pauli exclusion principle forbids it from falling into one of the filled negative energy 
states. By promoting one of these negative energy states to a positive energy one, by 
supplying energy, you create a pair: a positive energy electron and a hole in the negative 
energy sea corresponding to a positive energy positron. This was a radical new idea, and 
brought pair creation and antiparticles into physics. Positrons were discovered in cosmic 
rays by Carl Anderson in 1932. 

The problem with Dirac's hole theory is that it doesn't work for bosons, such as 
particles governed by the Klein Gordon equation, for example. Such particles have no 
exclusion principle to stop them falling into the negative energy states, releasing their 
energy. We need a new interpretation and turn to Feynman for our answer. 

According to Feynman and quantum field theory, we should interpret the emission 
(absorption) of a negative energy particle with momentum pP as the absorption (emission) 
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time 

Figure 2.1 Feynman interpretation of a process in which a negative energy electron is absorbed. 
Time increases moving upwards. 

of a positive energy antiparticle with momentum -p". So, in Figure 2.1, for example, an 
electron-positron pair is created at point A. The positron propagates to point B where 
it is annihilated by another electron. 

Thus Feynman tells us to keep both types of free particle solution. One is to be used 
for particles and the other for the accompanying antiparticles. Let's return to our spinor 
solutions and write them in a conventional form. Take the positive energy solution of 
equation (2.6) and write, 

~ ( Xr ) -ip·x _ r -i]>·X v n+m ~ , e = uPe . 
E+mXr 

(2.8) 

For the former negative energy solution of equation (2. 7), change the sign of the energy, 
E ~ -E. and the three-momentum, p ~ -p, to obtain, 

(2.9) 

In the~<' t\\"o solutions E is now (and for the rest of the course) always positive and given 
by E = (p2 + m2

) 
112 . The subscript 1· takes the values 1, 2, with 

Xt=(~), 
At this point I would like to introduce another notation, and define 

Wv = Jp2 + m,2. 

(2.10) 

(2.11) 

so that, wP is the energy (positive) of a particle or anti-particle with three-momentum 
p (I write the subscript p instead of p, but you should remember it really means the 
three-momentum). I will tend to use E or wp interchangeably. 

The u-spinor solutions will correspond to particles and the v-spinor solutions to 
antiparticles. The role of the two x's will become clear in the following section, where it 
will be shown that the two choices of r are spin labels. Note that each spinor solution 
depends on the three-momentum p, so it is implicit that p0 = wp. In the expansion of 
the Dirac quantum field operator in terms of plane waves, 

(2.12) 

the operator b annihilates a fermion of momentum (wp, p) and spin ,. , whilst dt creates 
an antifermion of momentum (wp, p) and spin r. The Hermitian conjugate Dirac field 
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contains operators which do the opposite. This discussion should be clearer after your 
quantum field theory lectures. 

The vacuum state IO) is defined by, 

b(p, T) IO) = d(p, r) IO) = 0, (2.13) 

for every momentum ]J = (wp, p) and spin label r. This ensures the interpretation above: 
particles are created by the "daggered" operators and destroyed by the undaggered ones. 

2.2 Free Particle Solutions 11: Spin 

Now it's time to justify the statements we have been making that the Dirac equation 
describes spin-1/2 particles. The Dirac Hamiltonian in momentum space is 

H= a·p+(Jm (2.14) 

and the orbital angular momentum operator is 

L = r x p. 

:\onnally you have to \VOlTY about operator ordering ambiguities when going from classical 
objects to quantum mechanical ones. For L the problem does not arise - why not? 

Evaluating the commutator of L with H, 

[L,H) [r x p, a·p) 
[r, a·p) x p 
ia x p, 

(2.15) 

we see that the orbital angular momentum is not conserved. \Ve'd like to find a total 
angular momentum J which is conserved, by adding an additional operator S to L, 

J = L+S. 

To this end, consider the three matrices, 

(2.16) 

The 'E/2 have the correct commutation relations to represent angular momentum, since 
the Pauli matrices do, and their commutators with a and f3 are, 

['E, (3] = 0, (2.17) 

1> Exercise 2.3 
Verify the commutation relations in equation (2.17). 

From the relations in (2.17) we find that 

['E, H] = -2ia x p. 

Comparing this with the commutator of L with H in equation (2.15), you readily see 
that 
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and we can set 
s =~:E. 

2 

\Ve interpret S as an angular momentum intrinsic to the particle. Now 

82 = ~ ( 0'·0' 0 ) = ~ ( 1 0) 
4 0 0'·0" 4 0 1 ' 

and recalling that the eigenvalue of J2 for spin j is j(j + 1), we conclude that S represents 
spin-1/2 and the solutions of the Dirac equation have spin-1/2 as promised. 

\Ve worked in the Dirac representation for convenience, but the result is of course 
independent of the representation. 

Now consider the tt-spinor solutions u; of equation (2.8). Choose p = (0, 0, Pz) and 
write 

( 

0 ) JE+m 

-J1-1n . 
(2.18) 

It is easy to see that, 

So, these two spinors represent spin up and spin clown along the .:--axis respectively. For 
t.he c-spinors, with the same choice for p, write, 

(2.19) 

This apparently perverse choice of up and down for the v's is because, as you see in 
equation (2.12) for the quantum Dirac field, 1lt multiplies an annihilation operator which 
destroys a particle with momentum P= and spin up, whereas VJ. multiplies an operator 
which creates an antiparticle with momentum P:: and spin up. 

2.3 Normalisation, Gamma Matrices 

We have included a normalisation factor JE+m in our spinors. With this factor, 

(2.20) 

This corresponds to the standard relativistic normalisation of 2wv particles per unit 
volume. It also means that ufu transforms like the time component of a 4-vector under 
Lorentz transformations as we will see in section 2.6. 

t> Exercise 2.4 
Check the normalisation condition for the spinors in equation (2.20). 
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I will now introduce (yet) more standard notation. Define the gamma matrices, 

'Yo = /3, 'Y = f3cx. (2.21) 

In the Dirac representation, 

(2.22) 

In terms of these, the relations between the ex and f3 in equation (2.2) can be written 
compactly as, 

{ -yll, 'Yv} = 2gllV. (2.23) 

Combinations like a~tl'll occur frequently and are conventionally written as, 

pronounced "a slash." Note that -yll is not, despite appearances, a 4-vector - it just 
denotes a set of four matrices. However, the notation is deliberately suggestive, for when 
combined with Dirac fields you can construct quantities which transform like vectors and 
other Lorentz tensors (see the next section). 

Let's close this section by observing that using the gamma matrices the Dirac equa­
tion (2.1) becomes 

or in Inmm'ntum space, 

Th<' spinors 11 and v satisfy 

t> Exercise 2.5 

(if)- 1n)'ljJ = 0, 

(z&- m)'l/J = 0. 

(z&- m)u~ 
(z& + m)v; 

0 
0 

Derive the momentum space equations satisfied by u;, and v;. 

2.4 Lorentz Covariance 

(2.24) 

(2.25) 

(2.26) 

\Ve want the Dirac equation (2.24) to preserve its form under Lorentz transformations 
(LT's). Let A11 ,, represent an LT, 

(2.27) 

The requirement is, 

where a~t = Au ,.,.a~. We know that 4-vectors get their components mixed up by LT's, so 
we expect that the components of 'ljJ might get mixed up also, 

'1/J(x) -+ 1/J' (x') = S(A)l/;(A - 1x') (2.28) 

where S(A) is a 4 x 4 matrix acting on the spinor index of '1/J. Note that the argument 
A - 1.r' is just a fancy way of writing x. 
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To determine S we rewrite the Dirac equation in terms of the primed variables, 

(2.29) 

The matrices 1'u 
equation (2.23), 

'Y'L A u ~ satisfy the same anticommutation relations as the ,~ 's in 

(2.30) 

I> Exercise 2.6 
Check relation (2.30). 

Now we invoke the theorem (Pauli's theorem) which states that any two represen­
tations of the gamma matrices are equivalent. This means that there is a matrix S(A) 
such that 

1'~ = s-1 (1\.)'Y~S(A). (2.31) 

This allows us to rewrite equation (2.29) as 

so that the Dirac equation does indeed preserve its form. To construct S explicitly for 
an infinitesimal LT, let, 

(2.32) 

''"here f is an infinitesimal parameter and p and a arc fixed. Since this expression is 
autisymmetric in p and a there arc six choices for the pair (p, a) corresponding to three 
rotations and three boosts. \Vriting, 

S(A) = 1 + iEspu (2.33) 

\\'here sru is a matrix to be determined, we find that equation (2.31) for 1' is satisfied by, 

I> Exercise 2. 7 

i 1 
Spu = _ ["fP "fCT] = _ aPCT 4 , -2 . (2.34) 

Verify that equation (2.31) relating 1' and 'Y is satisfied by sPu defined through equa­
tions (2.33) and (2.34). 

"re have thus determined how V' transforms under LT's. To find quantities which 
are Lorentz invariant, or transform as vectors or tensors, we need to introduce the Pauli 
and Dirac adjoints. The Pauli adjoint '1/J of a spinor '1/J is defined by 

The Dirac adjoint is defined by 
(1/JAl/>)* = (fiAtJ;. 

For Hermitian 1° it is easy to show that 

A= 1o At 1o. 

Some properties of the Pauli and Dirac adjoints are: 

(AA+J.tB) - A•A+JL•B, 
AB - BA, 
A'l/J - 1/J A. 
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'Vith tl~cse definitions, 1/J transforms as follows under LT's: 

(2.38) 

!>Exercise 2.8 

(1) Verify that 1''t = 1°1~-'1°. This says that 'f~-' = ')'~-'. 

(2) Using (2.33) and (2.34) verify that /ost(A)I0 = s-1(A), i.e. S = s-1. So S is not 
unitary in general, although it is unitary for rotations (when p and a are spatial 
indices). This is because the rotations are in the unitary 0(3) subgroup of the 
nonunitary Lorentz group. Here you show the result for an infinitesimal LT, but it 
is true for finite LT's. 

(3) Show that 1/J satisfies the equation 
<(-

1/J(-if)- m)= 0 

where the arrow over f) implies the derivative acts on 1/J. 
(4) Hence prm·e that V' transforms as in equation (2.38). 

Note that result (2) of the problem above can be rewritten as S(A) = s- 1(A), and 
equation (2.31) for the similarity transformation of 1'' to 1''' takes the form, 

S-y''S = A1'v"Yv· (2.39) 

Combining the transformation properties of 1/J and 1/J from equations (2.28) and (2.38) 
we sec that the bilinear 1/J'Ij; is Lorentz invariant. In section 2.6 we'll consider the trans­
formation properties of general bilinears. 

Let me close this section by recasting the spinor normalisation equations (2.20) in 
terms of "Dirac inner products." The conditions become, 

u;;u:, 2mJrs 
-r s 
1./.JIVI' 0 -r· s 

VP'Lll' (2.40) 
=r s 
v 1,vl' -2m&rs 

t>Exercise 2.9 
Verify the normalisation properties in the above equations (2.40). 

2.5 Parity 

In the next section we are going to construct quantities bilinear in 1/J and 1/J, and classify 
them according to their transformation properties under LT's. We normally use LT's 
which are in the connected Lorentz Group, S0(3, 1), meaning they can be obtained by 
a continuous deformation of the identity transformation. Indeed in the last section we 
considered LT's very close to the identity in equation (2.32). The full Lorentz group has 
four components generated by combining the S0(3, 1) transformations with the discrete 
operations of parity or space inversion, P, and time reversal, T, 

-~ J ~), 
0 0 -1 

( -~ ~ ~ ~) 
0 0 1 0 . 
0 0 0 1 
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LT's satisfy AT gA = g (see the preschool problems), so taking determinants shows 
that det A = ±1. LT's in S0(3, 1) have determinant 1, since the identity does, but the 
P and T operations have determinant -1. 

Let's now find the action of parity on the Dirac wavefunction and determine the 
wavefunction '1/Jp in the parity-reversed system. According to the discussion of the previ­
ous section, and using the result of equation (2.39), we need to find a matrix S satisfying 

It's not hard to see that S = S = 'f'0 is an acceptable solution, from which it follows that 
the wavefunction '1/Jp is 

'1/Jp(t, x) = 1'0'1/J(t, -x). (2.41) 

In fact you could multiply 1° by a phase and still have an acceptable definition for the 
parity transformation. 

In the nonrelativistic limit, the wavefunction '1/J approaches an eigenstate of parity. 
Since 

1'0 = ( ~ ~ 1 ) , 

the u-spinors and v-spinors at rest have opposite eigcnvalues, corresponding to particle 
and antiparticle having opposite intrinsic parities. 

2.6 Bilinear Covariants 

l'\ow. as promised, we will construct and classify the bilinears. To begin, observe that by 
forming p.roduct.s of the gamma matrices it is possible to construct 16 linearly independent 
quantities. In <'quation (2.34) we have defined 

and uow it. is convenient to define 

with the properties, 
{ 1'5, 1'1'} = 0. 

Then the set of 16 matrices 
r : { 1, 1'5, 1'1'. '"Yp. 1'5 1 alt11 } 

form a basis for gamma matrix products. 

(2.42) 

Using the transformations of '1/J and '1/J from equations (2.28) and (2.38), together 
with the similarity transformation of 'YP. in equation (2.39), construct the 16 fermion 
bilinears and their transformation properties as follows: 

'1/J'l/J -+ '1/J'l/J S scalar 
'l/J'Y5'1/J -+ det(A) 'l/J'Y5'1/J P pseudoscalar 
'1/J'"YP.'l/J -+ AP. 11 'l/J'Y11 '1/J V vector (2.43) 

1/J'YP. 'Y5 '1/J -+ det(A) A'~ 11'1/J"(11 'Y5'1/J A axial vector 
'lj;aP.v'ljJ -+ AP.>.A11u'l/Ja>.u'l/J T tensor 

!>Exercise 2.10 
Verify the transformation properties of the bilinears in equation (2.43}. 
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Observe that 'ljJ-yJJ.'IjJ = (p, J) is just the current we found earlier in equation (2.5) . 
Classically p is positive definite, but for the quantum Dirac field you find that the space 
integral of p is the charge operator, which counts the number of electrons minus the 
number of positrons, 

Q""' j d3x '1/Jt'I/J""' j d3p [btb- dtd]. 

The continuity equation aJJ.JJJ. = 0 expresses conservation of electric charge. 

2. 7 Charge Conjugation 

There is one more discrete invariance of the Dirac equation in addition to parity. It is 
charge conjugation, which takes you from particle to antiparticle and vice versa. For 
scalar fields the symmetry is just complex conjugation, but in order for the charge conju­
gate Dirac field to remain a solution of the Dirac equation, you have to mix its components 
as well: 

-r 
'lj; -T V'c = C'I/J · 

Here 'lj) T = -y0T 'l/1* and C is a matrix satisfying the condition 

In the Dirac rcpresrntation, 

. 2 0 ( 0 C=q-y= ·2 
-za 

-ia
2

) 
0 . 

I refer you to text books such as [ 1] for details. 
\\~hen Dirac wrote clown his equation everybody thought parity and charge conju­

gation were exact symmetries of nature, so invariance under these transformations was 
<'sscntial. 1\m\' we know that neither of them, nor the combination CP, are respected by 
the standard electroweak model. 

2.8 Neutrinos 

In the particle data book [2] you will find only upper limits for the masses of the three 
neutrinos, and in the standard model they are massless. Let's look therefore at solu­
tions of the Dirac equation with m = 0. Specialising from equation (2.1), we have, in 
momentum space, 

IPI'I/J=a·p'I/J. 

For such a solution, 
a·p S·p 

'Ys'I/J = 'YslPf'I/J = 2lPf'ljJ, 

using the spin operatorS= ~:E = ~-y5 a, with :E defined in equation (2.16). But S·p/IPI 
is the projection of spin onto the direction of motion, known as the helicity, and is equal 
to ±1/2. Thus (1+-y5 )/2 projects out the neutrino with helicity 1/2 (right handed) 
and (1--y5)/2 projects out the neutrino with helicity -1/2 (left handed). To date, only 
left handed neutrinos have been observed, and only left handed neutrinos appear in the 
standard model. Since 

o1 1( o 'Y 2(1--ys)'I/J = 2 1+-ysh '1/J, 

any theory involving only left handed neutrinos necessarily violates parity. 
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The standard model contains only left handed massless neutrinos. It is really the elec­
troweak symmetry which prevents them having masses, not the fact that they are left 
handed only. It would be possible to doctor the standard model to contain so-called Ma­
jorana neutrinos which can be massive. However, this would entail relinquishing lepton 
number conservation and break the electroweak symmetry (or involve the introduction of 
new particles). 

2.9 Dirac Lagrangian 

In the spirit of the field theory course, we could have started out by looking for objects, 
transforming in the right way under Lorentz transformations and rotations, to represent 
spin-1/2 particles. This would have led us to Dirac spinors, for which we would have 
shown that 

C = '1/J(i/fl- m)'I/J 

is a Lorentz invariant Lagrangian. 
Then Lagrange's equations immediately give the Dirac equation, as you can see 

simply from fJC/8'1/J = 0 (observing that C is independent of 81j;/8t). Now you could 
quantise by Hamiltonian or path integral methods. A new feature that appears is that, 
for consistency, you must impose canonical anticommutation relations in the Hamilto­
nian form, or use anticommuting (Grassman) variables in the path integral. Thus, the 
connection between spin and statistics appears. 
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3 Cross Sections and Decay Rates 

In section 4 we will learn how to calculate quantum mechanical amplitudes for elec­
tromagnetic scattering and decay processes. These amplitudes are obtained from the 
Lagrangian of QED, and contain information about the dynamics underlying the scat­
tering or decay process. This section is a brief review of how to get from the quantum 
mechanical amplitude to a cross section or decay rate which can be measured. We will 
commence by recalling Fermi's golden rule for transition probabilities. 

3.1 Fermi's Golden Rule 

Consider a system with Hamiltonian H which can be written 

H=H0 +V (3.1) 

\Ve assume that the eigenstates and eigenvalues of Ho are known and that V is a small, 
possibly time-dependent, perturbation. The equation of motion of the system is, 

a 
i at 11/l(t)) = (Ho+ F) 11/J(t)) . (3.2) 

If F nmishcd, we could calculate the time evolution of I1/J( t)) by expanding it as a linear 
cmubination of energy cigenstates. To develop a perturbation theory in V we will change 
our basis of states from the Schrodinger picture to the interaction or Dirac picture, where 
\\'0 hide the time evolution due to H0 and concentrate on that clue to V. Thus we define 
tl1e iuteraction picture states and operators by, 

(3.3) 

:--;o that the interaction picture and Schrodinger picture states agree at time t = 0, 
lv1(0)) = ~~~(o)), with a similar relation for the operators. In the new basis, the equation 
of motion becomes, 

i :t 11/JJ(t)) = VI(t) 11/JI(t)) 1 

which can be integrated formally as an infinite series in V, 

(3.4) 

(3.5) 

Here, we have chosen to start with some (known) state 11/!1 (-T/2)), at time -T/2, and 
have evolved it to l1/l1(t)) at timet. The evolution is done by the operator, U, that you've 
seen in the field theory course: 

11/JI(t)) = U(t, -T/2) 11/JI(-T/2)). 

Now consider the calculation of the probability of a transition to an eigenstate lb) 
at time t. The amplitude is, 

(bll/J(t)) - (biil/JI(t)) 

- (bl e-iHot 11/JI(t)) 

- e-iE&t(bi1/JI(t)), 
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so l{bl'!jJ(t))l
2 

= l{bl'~h(t))l
2

• We let V be time independent and consider the amplitude 
for a transition from an eigenstate !a) of H0 at t = -T/2 to an orthogonal eigenstate 
jb) at t = T /2. The idea is that at very early or very late times H0 describes some set 
of free particles. vVe allow some of these particles to approach each other and scatter 
under the influence of V, then look again a long time later when the outgoing particles 
are propagating freely under H 0 again. To first order in V, 

j T/2 ~T/2 
(b !'!jJI(T /2)) = -i (bl V1(t) la) dt = -i(b!VIa) eiw&,.tdt, 

-T/2 -T/2 

I> Exercise 3.1 
Show that for T --t oo the first order transition amplitude for general V can be written 
in the covariant form 

where </Ji(:r) = </Ji(x)e-Eit and cPi(x) is the usual Schrodinger wavefunction for a stationary 
state of H0 , with energy Ei· 

The transition rate for time independent V is, 

If E1, i= E,, this probability tends to zero as T --t oo. However, for Eb = Ea we use the 
result, 

_ 1_ sin
2
(wbaT /2) r~r <S(wba)· 

21rT (wba/2)2 
(3.6) 

For long times the transition rate becomes, 

(3.7) 

'\Ve need F small for the first order result to be useful and T large so that the delta­
function approximation is good. However, T cannot be too large since the transition 
probability grows with time and we don't want probabilities larger than one. 

If we allow for a number of final states lb), with density p(Eb) around energy Eb, the 
transition rate becomes, 

(3.8) 

This is Fermi's golden rule. 

I> Exercise 3.2 
Justify the result of equation (3.6) and hence verify Fermi's golden rule in equation (3.8). 

I'll stop at first order in V. The answer you get from the formal solution in equa­
tion (3.5) depends on the form of V and the initial conditions. Your field theory course 
gives you a systematic way to perform perturbative calculations of transition amplitudes 
in field theories by the use of Feynman diagrams. In particular, you've seen the operator 
method of generating these diagrams, which I've mirrored in deriving the Golden Rule. 
Let's now move on to see how to get from these amplitudes to cross-sections and decay 
rates. 
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(a) (b) 

Figure 3.1 Scattering (a) and decay (b) processes. 

3.2 Phase Space 

"Te saw in the previous section that (b l~1 (oo)) gives the probability amplitude to go 
from state la) in the far past to state lb) in the far future . In quantum field theory you 
calculate the amplitude to go from state li) to state If) to be, 

(3 .9) 

\Yherc i..~Vf fi is the result obtained from a Feynman diagram calculation, and the overall 
<'ncrgy-mmnentum delta function has been factored out (so when you draw your Feynman 
diagrams you couscr\"C' energy-momentum at every vertex). \Ve have in mind processes 
\Yhcre t\\"o particles scatter, or one particle decays, as shown in Figure 3.1. 

Attempting to take the squared modulus of this amplitude produces a meaningless 
square of a delta function. This is a technical problem because our amplitude is expressed 
hct.\\"('('n uon-nonnalisable plane wave states. These states extend throughout space-time 
so the scattering process occurs everywhere all the time. To deal with this properly you 
nm construct normalised wavepacket states which do become well separated in the far 
past and the far future. \Ve will be low-budget and put our system in a box of volume V. 
\Vc also imagine that the interaction is restricted to act only over a time of order T . 
The final answers come out independent of V and T, reproducing the luxury wavepacket 
ones. 

Relativistically normalised one particle states satisfy, 

(3.10) 

but the discrete nonrelativistically normalised box states satisfy, 

(klk') = 8kk'. (3.11) 

We want to know the transition probability from an initial state of one or two 
particles to a set of final states occupying some region of k-space, where the density of 
states in the box normalisation is, 

d3k 
box state density = (

2
rr)3 V, (3.12) 

recalling that the spacing of allowed momenta is 2rr / L. A particular final state is labelled, 
If) = lk1, ... , kn), and the initial state is, 

i = { lk) one particle 
I ) lk1, k2) JV two particles 

(3.13) 
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Note the factor of v'V in the two particle case. Without this, as V becomes large the 
probability that the two particles are anywhere near each other goes to zero. From the 
viewpoint of one particle hitting another, the one particle state is normalised to one 
(probability 1 of being somewhere in the box), and the two particle state is normalised 
as a density (think of one particle having probability 1 of being in any unit volume and 
the second having probability 1 of being somewhere in the box). 

The transition probability from i to f is given by (3.9). We want to convert this to the 
box normalisation. One ingredient of the conversion is the delta function of momentum 
conservation, arising from, 

r d4x ei(PrP;)·:r = (27lft5~r(PJ- Pi), 
lvr 

using the box normalisation. Now, 

so we \\'ill say, 
1(27r)4o~r(P)I2 ~liT (27r)4o4(p). 

The second ingredient is a factor of 1/(2EiV) 112 for every particle in the initial or final 
state (here I am using Ei synonymously with w1,J. This comes from converting between 
rC'lativistic and box nonnalisations for the states. 

To sec where this arises from we write here the expression for a free field expanded in terms 
of annihilation and creation operators using three different normalisations: nonrelativistic, 
(kJk') = J3(k- k'); relativistic, (kJk') = (21r) 32wk63(k- k'); box, {kJk') = dkk'· 

~(:r) = nonrelativistic 

relativistic 

box 

Since the discrete sum on kin the box case corresponds to J d 3k l'/(27r) 3 , we see that, 

The box states are normalised to one particle in volume V and the relativistic states have 
2wk particles per unit volume. 

So in the box normalisation, with one or two particles in the initial state and any number 
in the final state, 

box amp= iMJi(27r)4b4(PJ- Pi) IT[~] IT [ ~] ~ , 
out 2E J V in V 2Ei V V 

where the initial state energy product depends on the choice of normalisation in equa­
tion 3.13 above. The squared matrix element is thus: 
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and the differential transition probability into a region of phase space becomes, 

differential prob = S IM ·!2 IT [-1-] x (relativistic density) 
unit time /t . 2Ei of final states ' 

In 

where the relativistic density of final states, or rdfs, is, 

- 4 4( II d3k/ rdfs = D = (21r) 6 P1 - Pi) (2 )3 
2

E . 
out 7r I 

(3.14) 

(3.15) 

You also sometimes hear the name LIPS, standing for Lorentz invariant phase space. Ob­
serve that everything in the transition probability is Lorentz invariant save for the initial 
energy factor (using d 3k /2E = d 4k 64 (k2 - m2)0(k0

), which is manifestly Lorentz invari­
ant, where E = (k2 + m.2)112). I have smuggled in one extra factor, S, in equation (3.14) 
for the transition probability. If there are some identical particles in the final state, we 
will overcount them when integrating over all momentum configurations. The symmetry 
factor S takes care of this. If there ni identical particles of type i in the final state, then 

(3.16) 

t>Exercise 3.3 
Show that. the expression for two-body phase space in the centre of mass frame is given 
by 

(3.17) 

\\·here s = P 2 is the centre of mass energy squared, dO.* is the solid angle element for the 
auglc of one of the outgoing particles with respect to some fixed direction, and 

. ..\(a, b, c) = a.2 + b2 + c2
- 2ab- 2bc- 2ca. (3.18) 

3.3 Cross Sections 

The cross section for two particles to scatter is a sum of the differential cross sections for 
~cat.tering into distinct final states: 

da = transition prob 1 1 SjM !2 D 
unit time X unit flux - lv't - v21 4EtE2 Ji ' 

(3.19) 

where the Yelocities in the flux factor, 1/jiil - v21, are subtracted nonlelativistically. I 
denote them with arrows to remind you that they are ordinary velocities, not the spatial 
parts of 4-velocities. The amplitude-squared and phase space factors are manifestly 
Lorentz invariant. What about the initial velocity and energy factors? Observe that 

E1E2(iit - ii2) = E2P1 - E1P2· 

In a frame where p 1 and p2 are collinear, 

IE2P1 - E1P2!2 = (Pt'P2)2 - mim~, 

and the last expression is manifestly Lorentz invariant. Hence the differential cross section 
is Lorentz invariant, as is the total cross section, 

(3.20) 
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C 
Pc 

----+---: --\( ,_) ____....: -
Pd 

Pa 

Figure 3.2 2 -t 2 scattering. 

3.3.1 Two-body Scattering 

An important special case is 2 -t 2 scattering (see Figure 3.2), 

a(pa) + b(pb) -t c(pc) + d(pd)· 

1> Exercise 3.4 
Show that in the centre of mass frame the differential cross section is, 

d S \ 1/2( 2 2) 
a "' s, m,c, md 1Mrl2 (3.21) 

dD.* 647r2s A112 (s, m~, ml) ' · 

The result of equation (3.21) is valid for any IMJil2
, but if IMJil2 is a constant you 

can trivially get the total cross section. 
Inn1riant 2 -t 2 scattering amplitudes arc frequently expressed in terms of the 

A1andclstam vm·iablcs, defined by, 

S (Pa + ]Jb)
2 

t (Pa - Pc)2 

u - (Pa - Pdf 

(Pc+ Pd) 2 

(Pb- Pd) 2 

(Pb - Pc) 2 

(3.22) 

In fact there arc only two independent Lorentz invariant combinations of the available 
momenta in this case, so there must be some relation between s, t anclu. 

t> Exercise 3.5 
Show that. 

s + t + u = m~ + m~ + m~ + m~. 
1> Exercise 3.6 

Show that for two body scattering of particles of equal mass m, 

t:::; 0, u:::; 0. 

3.4 Decay Rates 

With one particle in the initial state, 

total decay prob = _..!__ s" r IM ·12 D 
unit time 2E LJ Jfinal states /& . 

Only the factor 1/2E is not manifestly Lorentz invariant. In the rest frame, for a particle 
of mass m, 

(3.23) 

This is the "decay rate." In an arbitrary frame we find, (tdp/ut) = (m/ E)r, which 
has the expected Lorentz dilatation factor. In the master formula (equation 3.14) this is 
what the product of 1/2Ei factors for the initial particles does. 
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3.5 Optical Theorem 

'\:Vhen discussing the Golden Rule, we encountered the evolution operator U(t', t), which 
you also met in the field theory course. This takes a state at time t and evolves it to 
time t'. The scattering amplitudes we calculate in field theory are between states in 
the far past and the far future: hence they are matrix elements of U(oo, -oo), which is 
known as the S-matrix, 

S = U(oo, -oo) = T exp -i j_: dt H1(t). 

Since the S-matrix is unitary, we can write, 

( s - I) ( st - I) = - ( ( s - I) + ( s - I) t). (3.24) 

Note that S-I is the quantity of interest, since we generally ignore cases where there is 
no interaction (the "I" piece of S). In terms of the invariant amplitude, 

Ul s-I li) 
Ul (S- I)t li) 

iM1i(27r) 4o4 (P1 - Pi) 

-iMi1 (27r) 4o4(P1 -Pi) 

Sandwiching the aboYe unitarity relation (equation 3.24) between states li) and If), and 
inserting a complete set of states between the factors on the left hand side, 

L Ul s-I I m) (ml st-Ili) 
Ill 

""" * ( 8 4( ) 4( ) rrr"' d
3
kj L...... MfmMim 21r) o Pt- Pm o Pi- Pm . (21r)3 2E· 

m J=l J 

L j MtmM~111 (27r) 4 64 (Pt- Pi)Dm 
1!l 

where D,, is the phase space factor for the state labelled by m, containing 7',11 particles, 
Dm D,.,., (Pi; k1, ... , kr,J · Hence, 

L J MtmM;mDm = i(M;f- M,i). 
n1 

If the intermediate state m contains ni identical particles of type i, there is an extra 
symmetry factor S, with, 

s-rr_!_ 
- . ni! 

' 
on the left hand side of the above equation to avoid overcounting. The same factor (see 
equation 3.16) appears in the cross section formula (equation 3.19) when some of the final 
state particles are identical. 

If li) and If) are the same two particle state, 

4ErPi u = 2 Im Mii· (3.25) 

this is the optical theorem, relating the forward part of the scattering amplitude to the 
total cross section. If particles of masses m1 and m2 scatter, then Er= s 112 and 4sp~ = 
>.(s, 1ni, m~), where). is the function defined in eqaution (3.18). Then the optical theorem 
reads, ImMii = >.i(s,mi,m~)u. 
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4 Quantum Electrodynamics 

In this section we are going to get some practice calculating cross sections and decay rates 
in QED. The starting point is the set of Feynman rules derived from the QED Lagrangian, 

.C = -~F~tvF~tv- ~(ollA~t? + 1/J(if/J- m)'ljJ. (4.1) 

Here, Dll =all +ieAil is the electromagnetic covariant derivative, FllV = allAV- OvAil and 
(o·A) 2 /2 is the gauge fixing term for Feynman gauge. This gives the rules in Table 4.1. 

The fermion propagator is (up to factors of i) the inverse of the operator, p-m, 
which appears in the quadratic term in the fermion fields, as you expect from your 
field theory course. The derivation of the gluon propagator, along with the need for 
gauge fixing, is also discussed in the field theory course. The external line factors are 
easily derived by considering simple matrix elements in the operator formalism, where 
they are left behind from the expansions of fields in terms of annihilation and creation 
operators, after the operators have all been (anti-)commuted until they annihilate the 
vacuum. In path integral language the natural objects to compute are Green functions, 
vacuum expectation values of time ordered products of fields: it takes a little more work 
to conYCrt. them to transition amplitudes and see the external line factors appear. 

The spinor indices in the Fcynman rules arc such that matrix multiplication is per­
formed in the opposite order to that defining the flow of fermion number. The arrow on 
the f<'rmion line itself denotes the fennion number flow, not the direction of the momen­
tum associated \\'ith the line: I will try always to indicate the momentum flow separately 

For every .. . 

Internal photon line 

Internal fcrmion line 

Vertex 

Outgoing electron 

Incoming electron 

Outgoing positron 

Incoming positron 

Outgoing photon 

Incoming photon 

draw ... 

{J 0 

{J 0 

write ... 

i(J) + m)o{J 
p 2 - m2 +it. 

• JL 
-1C'Yo{J 

• Attach a directed momentum to every internal line 

• Conserve momentum at every vertex 

Table 4.1 Feynman rules for QED. JL, v are Lorentz indices and a, {3 are spinor indices. 
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Figure 4.1 Lowest order Feynman diagram for electron-muon scattering. 

as in Table 4.1. This will become clear in the examples which follow. We have already 
met the Dirac spinors u and v. I will say more about the photon polarisation vector € 

when we need to use it. 

4.1 Electron-Muon Scattering 

To lowest order in the electromagnetic coupling, just one diagram contributes to this 
process. It is shown in Figure 4.1. The amplitude obtained from this diagram is 

(4.2) 

Not.t• that I haw changed my notation for the spinors: now I label their momentum as an 
argument instead of as a subscript, and I drop the spin label unless I need to use it. In 
constructing this amplitude \\'e have followed the fermion lines backwards with respect 
to f(•nnion flow when working out the order of matrix multiplication. 

The cross-section involves the squared modulus of the amplitude, which is 

4 

I 1
2 _ e 1w 

.!vtfi - 4 L(e)L(!l)llv' 
q 

where the subscripts c and Jl refer to the electron and muon respectively and, 

with a similar expression for L(~~). 

I> Exercise 4.1 
Verify the expression for IM fi 12 . 

Usually we have an unpolarised beam and target and do not measure the polarisation 
of the outgoing particles. Thus we calculate the squared amplitudes for each possible spin 
combination, then average over initial spin states and sum over final spin states. Note that 
we square and then sum since the different possibilities are in principle distinguishable. 
In contrast, if several Feynman diagrams contribute to the same process, you have to 
sum the amplitudes first. We will see examples of this below. 

The spin sums are made easy by the following results (I temporarily restore spin 
labels on spinors): 

2: t{(p) 1t(p) J) + 1n 
r 

L vr(p) 1t(p) J)- m, 
(4.3) 

r 

I> Exercise 4.2 
Derive the spin sum relations in equation (4.3). 

-92-



Using the spin sums we find, 

Since all calculations of cross sections or decay rates in QED require the evaluation of 
traces of products of gamma matrices, you will generally find a table of "trace theorems" 
in any quantum field theory textbook [1]. All these theorems can be derived from the 
fundamental anticommutation relations of the gamma matrices in equation (2.23) to­
gether with the invariance of the trace under a cyclic change of its arguments. For now 
it suffices to use, 

1> Exercise 4.3 

tr(</V) 
tr(</V~</) 

tr( ~~~ ... 'YI'n) 

4a·b 
4( a·b c·d - a·c b·d + a·d b·c) 
0 for n odd 

Derive the trace results in equation ( 4.4) 

(4.4) 

Using these results, and expressing the answer in terms of the Manclelstam variables 
of equation (3.22), \\'e find, 

~ ~ l.:vt,;! 2 = 
2t~

4 

(s2 + u 2
- 4(m; + m~)(s + tt) + 6(m; + m~)2 ). 

SJ'IIIS 

This eau now be used in the 2 --t 2 cross section formula (3.21) to give, in the high energy 
limit. s , 11 >>m~, m~, 

da e4 s2 + u2 

dD."' = 327f2 s t2 
(4.5) 

for tlw differential cross section in the centre of mass frame. 

L> Exercise 4.4 
DeriYc the result for the electron-muon scattering cross section in equation (4.5) . 

Other calculations of cross sections or decay rates will follow the same steps we have 
used above. You draw the diagrams, write clown the amplitude, square it and evaluate 
the traces (if you are using spin sum/averages). There are one or two more wrinkles to 
be aware of, which we will meet below. 

4.2 Electron-Electron Scattering 

Since the two scattered particles are now identical, you can't just replace m'"' by me in 
the calculation we did above. If you look at the diagram of Figure 4.1 (with the muons 
replaced by electrons) you will see that the outgoing legs can be labelled in two ways. 
Hence we get the two diagrams of Figure 4.2. 

The two diagrams give the amplitudes, 
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e 

Figure 4.2 Lmvest order Feynman diagrams for electron-electron scattering. 

Figure 4.3 Lowest order Feynman diagrams for electron-positron scattering in QED. 

Notice the additional minus sign in the second amplitude, which comes from the anti­
commuting nature of fcnnion fields. You should accept as part of the Fcynman rules for 
QED that when diagrams differ by an interchange of two fcrmion lines, a relative minus 
sign must lH' included. This is important because 

so t hr interference term will have the wrong sign if you don't include the extra sign 
diff<'rrnce bC'tweC'n thC' two diagrams. 

4.3 Electron-Positron Annihilation 

For this process the two diagrams arc shown in Figure 4.3, with the one on the right 
kno\\'n as t.he annihilation diagram. They arc just what you get from the diagrams for 
electron -electron scattering in Figure 4.2 if you twist round the fcnnion lines. The fact 
that the diagrams arc related this way implies a relation between the amplitudes. The 
interchange of incoming particles/antiparticles with outgoing antiparticles/particles is 
called cmssing. This is a case where the general results of crossing symmetry can be 
applied, and our diagrammatic calculations give an explicit realisation. Theorists spent 
a great deal of time studying such general properties of amplitudes in the 1960's when 
quantum field theory was unfashionable. 

4.3.2 e+e- -+ J.L+ J.L- and e+e- -+ hadrons 

If electrons and positrons collide and produce muon-antimuon or quark-antiquark pairs, 
then the annihilation diagram is the only one which contributes. At sufficiently high 
energies that the quark masses can be neglected, this immediately gives the lowest order 
QED prediction for the ratio of the annihilation cross section into hadrons to that into 
p,+ Jl-' 

R = a(e+e- -+ hadrons) = 3 ""Q2 

- a(e+e--+ J.l.+J.l.-) 7 I• 
(4.6) 

where the sum is over quark flavours f and Q1 is the quark's charge in units of e. The 
3 comes from the existence of three colours for each flavour of quark. Historically this 
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Figure 4.4 Feynman diagrams for Compton scattering. 

was important: you could look for a step in the value of R as your e+e- collider's CM 

energy rose through a threshold for producing a new quark flavour. If you didn't know 
about colour, the height of the step would seem too large. Incidentally, another place 
the number of colours enters is in the decay of a rr0 to two photons. There is a factor of 
3 in the amplitude from summing over colours, without which the predicted decay rate 
would be one ninth of its real size. 

At the energies used today at LEP, of course, you have to remember the diagram 
with a Z replacing the photon. We will say some more about this later. 

1> Exercise 4.5 
Show that the cross-section for e+e- --t IL+J-L- is equal to 4rra2/(3s), neglecting the lepton 
masses. 

4.4 Co1npton Scattering 

The diagrams whit:h need to be evaluated to compute the Compton cross section for 
/C --t ,-c arc shown in Figure 4.4. For unpolarised initial and/or final states, the cross 
section calculation involves terms of the form 

2::: c::~''(p) c::~(vL (4.7) 
A 

wher<' /\ represents the polarisation of the photon of momentum p. Since the photon 
is masslcss, the sum is over the two transverse polarisation states, and must vanish 
when contracted with p1, or Pv· In addition, however, since the photon is coupled to 
the electromagnetic current Jl' = 1/JI'''lj; of equation (2.5), any term in the polarisation 
sum (4.7) proportional to p1' or p11 does not contribute to the cross section. This is 
because the current is conserved, 81,]

1' = 0, so in momentum space p"J" = 0. The 
upshot is that in calculations you can use, 

L E~"(p) E~(p) = -g"ll' (4.8) 
A 

since the remaining terms on the right hand side do not contribute. 

4.5 Form Factors 

So far we have considered processes where the strong interactions were absent, or ignored. 
There are many electroweak processes where a complete computation would require a 
better understanding of QCD, especially its non-perturbative aspects, than we currently 
have. However, by using Lorentz and gauge invariance, and any other known symmetries 
of a process, we can parcel up the strong interaction effects in a small number of invariant 
functions. Let's see how this goes in an example, the electromagnetic form factors of pions 
and nucleons. 
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+· ·· 

Figure 4.5 Electron-pion scattering {top diagram) and some contributions to the pion electro­
magnetic form factor {lower diagrams). Wavy lines denote photons and curly lines are gluons. 
Ordinary lines between the shaded ellipses denote quarks. 

4.5.1 Pion Form Factor 

Consider electron-pion scattering as depicted in the top diagram in Figure 4.5. The 
shaded blob represents all the strong interaction effects in the pion electromagnetic form 
factor. In the lower part of the figure are represented some contributions to the shaded 
blob. Note that the blob itself contains more blobs (the shaded ellipses) indicating the 
unknown \\'a,·efunction of the pion in terms of quarks. The electron's coupling to the 
photon is understood in QED and has been discussed above. Let's see how much we can 
say about the pion's coupling to photons. This coupling is given by the matrix element 
(rr(p')l Jll(O) l11(p)), where J 1L(O) is the electromagnetic current at the origin (we put in all 
strong interaction corrections, but work to first order in the electromagnetic interaction) . 
Using Lorentz cm·ariance we can write, 

where q = p - p'. Electromagnetic gauge invariance implies that q11 J~'- = 0 so that 
G((/") = 0. Hence all the strong interaction effects arc contained in F(q2 ) and 

(4.9) 

1> Exercise 4.6 
Starting from the kinetic term in the Lagrangian for a free charged scalar field, 811 4J*81L4J, 
and introducing the electromagnetic field by minimal substitution, 811 -t a~'-- ieA11 , show 
that, to lowest order in perturbation theory F(q2 ) = 1 for all q2 . Note that the change 
of sign in the coupling compared to QED is because QED involves the negatively charged 
electron, whilst here 4J is taken as the field which destroys positively charged objects and 
creates negatively charged ones. You may need to normal order the current. 

An additional general piece of information is that F(O) = 1 since at q2 = 0 the photon 
cannot resolve the structure of the pion. This result is a consequence of the conservation 
of the electromagnetic current, since the space integral of J0 gives the charge operator. 
For q2 =/= 0 we expect F(q2 ) to fall with q2 owing to the pion's composite nature. 

t> Exercise 4. 7 
Given that the electric charge operator is defined by 
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show that current conservation implies Q is time independent, and that F(O) = 1 for a 
positively charged pion. 

4.5.2 Nucleon Form Factor 

For nucleons there are two form factors consistent with Lorentz covariance, current con­
servation and parity conservation (which holds for electromagnetic and strong interac­
tions). They are defined as follows (again we are working to first order in electromag­
netism): 

(4.10) 

where u and u are the nucleon spinors, and M the nucleon mass. At zero momentum 
transfer only the first term contributes and F 1 (0) = 1[0] for the proton[ neutron]. The 
factor n, is chosen so that F2 (0) = 1: n, is 1.79 for the proton and -1.91 for the neutron. 
In writing the expression ( 4.10), use is made of the Cordon identity, 

Tt(p')1·11 11.(p) = -
1
-u(p') [(P + p't + ia'w(p'- P)v]u(p), 

2m 

to replace a term in (p + p') 11 with terms of the form given. Given the form factor 
expression you can compute the angular distribution of electrons in electron-nucleon 
scattering in terms of F1 and F2 . 

t> Exercise 4.8 
Use Lorentz covariance, current conservation and parity invariance to show that there 
arc t\\"O electromagnetic form factors for the nucleon in (4.10). 
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5 Quantum Chromodynamics 

In the 1960's most theorists lost interest in quantum field theory. They were discouraged 
by the apparent non renormalisability of massive vector boson theories which precluded 
a field theory description of weak interactions. For the strong interactions, their strength 
and the menagerie of hadrons seemed also to preclude a field theory description. The 
renaissance of field theory came with the realisation that spontaneous symmetry breaking, 
the Higgs mechanism and the property of asymptotic freedom made renormalisable gauge 
theories viable candidates to describe the electroweak and strong interactions. 

Our discussion in this section will lead to the property of asymptotic freedom which 
enables ·us to make phenomenological predictions using perturbation theory for QCD. 

Since perturbative calculations beyond tree level are not in the scope of this course, the 
discussion will necessarily be somewhat qualitative. We'll proceed by going back to QED 

to introduce the idea of renormalisation then work up to the running coupling in QCD 

and thence to asymptotic freedom. 
QcD is a theory of interactions between spin-1/2 quarks and spin-1 gluons. It is a 

nonabclian gauge theory based on the group SU(3), with Lagrangian, 

r - 1 en cnJIV + L ·' ( "ljJ )1/J +gauge fixing and 
"-' - - - r r 'IJJ 1. - 11lJ J 4 ,,v ghost terms 

f 
(5.1) 

Here, a is a colour 1<\bl'i , taking values from 1 to 8 for SU(3), and f runs over the quark 
Hen-ours. The co\·ariant derivative and field strength tensor are given by, 

(5.2) 
G~v 

wher<' the f''lic arc the structure constants of SU(3) and the ya arc a set of eight in­
d<.'pendent Hennitian traceless 3 x 3 matrix generators in the fundamental or defining 
representation (sec the prc school problems and the quantum field theory course). 

As in QED gauge fixing terms arc needed to define the propagator and ensure that 
only phy:3ical degrees of freedom propagate. The gauge fixing procedure is more compli­
cated in the nonabelian case and necessitates, for certain gauge choices, the appearance 
of Fadcleev-Popov ghosts to cancel the contributions from unphysical polarisation states 
in gluon propagators. However, the ghosts first appear in loop diagrams, which we will 
not compute in this course. 

There are no Higgs bosons in pure QCD. The only relic of them is in the masses for 
the fermions which are generated via the Higgs mechanism, but in the electroweak sector 
of the standard model. 

A fundamental difference between QCD and QED is the appearance in the nonabelian 
case of interaction terms (vertices) containing gluons alone. These arise from the nonva­
nishing commutator term in the field strength of the nonabelian theory in equation (5.2). 
The photon is electrically neutral, but the gluons carry the colour charge of QCD (specif­
ically, they transform in the adjoint representation). Since the force carriers couple to 
the corresponding charge, there are no multi photon vertices in QED but there are multi 
gluon couplings in QCD. This difference is crucial: it is what underlies the decreasing 
strength of the strong coupling with increasing energy scale. 

In QCD, hadrons are made from quarks. Colour interactions bind the quarks, produc­
ing states with no net colour: three quarks combine to make baryons and quark-antiquark 

-98-



Figure 5.1 Schematic depiction of deep inelastic scattering. An incident lepton radiates a 
photon which knocks a quark out of a proton. The struck quark is detected indirectly only 
after hadronisation into observable particles. 

pairs give mesons. It is generally believed that the binding energy of a quark in a hadron 
is infinite. This property, called confinement, means that there is no such thing as a free 
quark. Because of asymptotic freedom, however, if you hit a quark with a high energy 
projectile it will behave in many ways as a free (almost) particle. For example, in deep 
inelastic scattering, or DIS, a photon strikes a quark in a proton, say, imparting a large 
momentum to it. Some strong interaction corrections to this part of the process can be 
calcnlatcd pcrturbati,·ely. As the quark heads off out of the proton, however, the brown 
muck of myriad low energy strong interactions cuts in again and "hadronises" the quark 
into th<' particles you actually detect. This is illustrated schematically in Figure 5.1. 

5.1 Renormalisation: An Introduction 

5.1.1 Renormalisation in Quantum Electrodynamics 

Let's start by going back to QED and considering how the electric charge is defined and 
measured. This will bring up the question of what happens when you try to compute 
higher loop corrections. In fact, the expansion in the number of loops is an expansion in 
Planck's <;:onstant fi, as you can show if you put back the factors of n for once. 

The electric charge e is usually defined as the coupling between an on-shell electron 
and an on-shell photon: that is, as the vertex on the left hand side of Figure 5.2 with 
JJi = p~ = m 2 , where m is the electron mass, and q2 = 0. It is e and not the Lagrangian 
parameter e which we measure. That is, 

411" 137 

We call e the renormalised coupling constant of QED. We can calculate e in terms of e 
in perturbation theory. To one loop, the relevant diagrams are shown on the right hand 
side of Figure 5.2, and the result takes the form, 

e = e + e3 
[ a1 In ~: + bt) + · · · (5.3) 

where a 1 and b1 are constants obtained from the calculation. The e3 term is divergent, 
so we have introduced a cutoff M to regulate it. This is called an ultraviolet divergence 
since it arises from the propagation of high momentum modes in the loops. The cutoff 
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Figure 5.2 Diagrams for vertex renormalisation in QED up to one loop. 

Figure 5.3 Some diagrams for electron-electron scattering in QED up to one loop. 

amounts to selecting only those modes where each component of momentum is less than 
.:.\1 in magnitude. Despite the diYergence in (5.3), it still relates the measurable quantity e 
to the coupling e we introduced in our theory. This implies that e itself must be divergent. 
The property of rcnonnalisability ensures that in any relation between physical quantities 
the nltrc1Yiolet divergences cancel: the relation is actually independent of the method used 
to regulate cliwrgences. 

As an example, consider the amplitude for electron-electron scattering, which we 
nmsidercd at tree level in section 4.2. Some of the contributing diagrams are shown in 
Figure 5.3, where the crossed diagrams are understood (we showed the crossed tree level 
diagram explicitly in Figure 4.2). Ultraviolet divergences arc again encountered when 
the diagrams are evaluated, and the result is of the form, 

. 2 4 [ M2 ] zM fi = coe + e Ct ln - 2 + d1 + · · · 
m. 

(5.4) 

where c0 , c1 and d1 arc constants, determined by the calculation. In order to evalu­
ate M fi numerically, however, we must express it in terms of the known parameter e. 
Combining (5.3) and (5.4) yields, 

iMfi = coiP + e4 [(cl- 2alco) ln ~: + d1- 2blco] + · · · (5.5) 

where the ellipsis denotes terms of order e6 and above. Since IM 1d2 1s measurable, 
consistency (renormalisability) requires, 

This result is indeed borne out by the actual calculations, and the relation between M fi 
and e contains no divergences: 

(5.6) 
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Figure 5.4 Primitive divergences of QED. 

To understand how this cancellation of divergences happened we can study the con­
vergence properties of loop diagrams (although we shall not evaluate them). Consider 
the third diagram on the right hand side in Figure 5.2 and the middle diagram in Fig­
ure 5.3. These both contain a loop with one photon propagator, behaving like 1/k2 at 
large momentum k, and two electron propagators, each behaving like 1/k. To evaluate 
the diagram we have to integrate over all momenta, leading to an integral, 

(5.7) 

which diverges logarithmically, leading to the ln .!112 terms in (5.3) and (5.4). Notice, 
however, that the divergent terms in these two diagrams must be the same, since the 
divergence is by its nature independent of the finite cxtcrnalmomenta (the factor of two 
in equation (5.5) arises because there is a divergence associated with the coupling of each 
electron in the scattering process). In this way we can understand that at least some of 
thr din'rgences arc common in both (5.3) and (5.4). \Vhat about diagrams such as the 
third box-like one in Figure 5.3? Now we have t\vo photon and two electron propagators, 
leading to, 

This time the integral is convergent. 
Detailed study like this reveals that ultraviolet divergences always disappear in re­

lations between physically measurable quantities. \Ve discussed above the definition of 
the physical electric charge e. A similar argument applies for the electron mass: the 
Lagrangian bare mass parameter m, is divergent, but we can define a finite physical mass 
1J1.. 

In fact you find that all ultraviolet divergences in QED stem from graphs of the 
type shown in Figure 5.4 and known as the primitive divergences. Any divergent graph 
will be found on inspection to contain a divergent subgraph of one of these basic types. 
For example, Figure 5.5 shows a graph where the divergence comes from the primitive 
divergent subgraph inside the dashed box. Furthermore, the primitive divergences are 
always of a type that would be generated by a term in the initial Lagrangian with a 
divergent coefficient. Hence by rescaling the fields, masses and couplings in the original 
Lagrangian we can make all physical quantities finite (and independent of the exact 
details of the adjustment such as how we regulate the divergent integrals). This is what 
we mean by renormalisability. 

This should be made clearer by an example. Consider calculating the vertex correc-
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Figure 5.5 Diagram containing a primitive divergence. 

tion in QED to one loop, 

The calculation shows that A is divergent. However, we can absorb this by adding a 
cancelling divergent coefficient to the 1/J$1/J term in the QED Lagrangian (4.1). The B 
and C terms are finite and unambiguous. This is just as well, since an infinite part of B, 
for example, would need to be cancelled by an infinite coefficient of a term of the form, 

'l/Ja1w F1w'I/J, 

which is not available in ( 4.1). 
In fact, the fl term gives the QED correction to the magnetic dipole moment, g, of 

tlw electron or muon (see page 1GO of the textbook by Itzykson and Zuber [1]). These 
are pn•dict('d to be 2 at tree level. You can do the one-loop calculation (it was first done 
by Schwingcr bet\\'ccn September and November 1947) with a few pages of algebra to 
fiud, 

g=2(1+2:). 

This giYes g/2 = 1.001161, which is already impressive compared to the experimental 
values [2]: 

(g/2)electron = 1.001159652193(10), 
(g/2)muon = 1.001165923(8). 

Higher order calculations show that the electron and muon magnetic moments differ at 
two loops and above. Kinoshita and collaborators have devoted their careers to these 
calculations and are currently at the four loop level. Theory and experiment agree for 
the electron up to the 11th decimal place. 

The C term gives the splitting between the 2s 1; 2 and 2p1; 2 levels of the hydrogen 
atom, known as the Lamb shift. Bethe's calculation of the Lamb shift was an early 
triumph for quantum field theory. Here too, the current agreement between theory and 
experiment is impressive. 

5.1.2 Bare Versus Renormalised 

In discussing the vertex correction in QED, we said that the divergent part of the A term 
could be absorbed by adding a cancelling divergent coefficient to the 7/J$7/J term in the 
QED Lagrangian (4.1). When a theory is renormalisable, all divergences can be removed 
in this way. Thus, for QED, if the original Lagrangian is (ignoring the gauge-fixing term), 

1 - - -
C = -4F11vF'w + i'lj;~'I/J- e'ljJj'lj;- rn'ljJ'lj;, 
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then redefine everything by: 

where the subscript R stands for "renormalised." In terms of the renormalised fields, 

Writing each Z as Z = 1 + oZ, reexpress the Lagrangian one more time as, 

Now it looks like the oldlagrangian, but written in terms of the renonnalised fields, with 
the addition of the 6Z counterterms. Now when you calculate, the counterterms give you 
new vertices to include in your diagrams. The divergences contained in the counterterms 
cancel the infinities produced by the loop integrations, leaving a finite answer. 

The old .4. and 1/, arc called the bare fields, and e and m arc the bare coupling and 
mass. 

!\ote that to maintain the original form of C, you want Z 1 = Z2 , so that the f) and 
(?.t!- tl'l'lllS combine into a covariant derivative term. This relation does hold, and is a 
eousequcucc of the electromagnetic gauge symmetry: it is known ac; the Ward identity. 

5.2 Renormalisation in Quantum Chromodynamics 

\V(• 11ow t.ry to repeat the procedure we used for the coupling in QED, but this time in 
QCD. \\"hich is also a renonnalisable theory. If we define the renormaliscd coupling g as the 
strength of the quark-gluon coupling, then in addition to the diagrams of Figure 5.2, with 
the phot.ons replaced by gluons, there are more diagrams at one loop, shown in Figure 5.6. 
Looking at the second of these new diagrams, it is ultraviolet divergent (containing a 
ln A/2 term), but also infrared divergent, since there is no mass to regulate the low 
momentum modes. In QED all the loop diagrams contain at least one electron propagator 
and the electron mass provides an infrared cutoff (you still have to worry when the 
electron is on-shell, but this is not our concern here). In the second diagram of Figure 5.6 
there is no quark in the loop. Now suppose we choose to define the renormalised coupling 
off-shell at some non-zero q2• The finite value of q2 provides the infrared regulator and 
the diagram has a term proportional to ln(M2jq2). 

Thus in QCD we can't define a physical coupling constant from an on-shell vertex. 
This is not really a serious restriction since the QCD coupling is not directly measurable 
anyway. Now the renormalised coupling depends on how we define it and therefore on 
at least one momentum scale (in almost all practical cases, only one momentum scale). 
The renormalised strong coupling is thus written, 

\Vhen physical quantities are expressed in terms of g(q2 ) the coefficients of the pertur­
bation series are finite. 
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Figure 5.6 Additional diagrams for vertex renormalisation in QCD up to one loop. The dashed 
line denotes a ghost. For some gauge choices and some regularisation methods not all of these 
are required. 

It would of course be possible to define the renormalised QED coupling to depend on 
some momentum scale. However, the on-shell definition used above is a natural one to 
pick. 

You can define counterterms for QCD in the same way as was demonstrated for 
QED. Now the gauge coupling g enters in many terms where it could get renormalised 
in different ways. In fact, the gauge symmetry imposes a set of relations between the 
renormalisation constants, known as the Slavnov-Taylor identities, which generalise the 
\Varcl identity of QED. 

5.3 Asyn1ptotic Freedom 

\Vc hrwc just seen that the renormalised coupling in QCD, 9(q2 ), depends on the mo­
mcutnm at which it. is defined. \Ve say it depends on the renormalisation scale, and 
commonly refer to fJ as the "running coupling constant." \Ve would clearly like to know 
just how .& depends on q2

, so we calculate the diagrams in Figures 5.2 and 5.6, to get the 
first terms in a perturbation theory expansion: 

(5.8) 

where a 1 and b1 arc constants and g is the "bare" coupling from the Lagrangian (5.1). 
I have switched to using {t2 in place of q2 , and have written 9 as a function of {l for 
convenience. From this equation it follows that, 

89 (3(~) 2 ~3 JL- = g = - a1 g + · · · 
8tt 

(5.9) 

The discovery by Politzer and by Gross and Wilczek, in 1973, that a1 > 0 led to the 
possibility of using perturbation theory for strong interaction processes, since it implies 
that the strong interactions get weaker at high momentum scales - 9( oo) = 0 is a stable 
solution of the differential equation (5.9). Keeping just the 93 term, we can solve (5.9) 
to find, 

(5.10) 

where A is a constant of integration and (30 = 327!'2a 1. Thus as({l) decreases logarith­
mically with the scale at which it is renormalised, as shown in Figure 5.7. If for some 
process the natural renormalisation scale is large, there is a chance that perturbation 
theory will be applicable. The value of /30 is, 

2 
f3o = 11- 3n1, (5.11) 
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Figure 5. 7 Running of the strong coupling constant with renormalisation scale. 

where n 1 is the number of quark flavours. The crucial discovery when this was first 
calculated was the appearance of the "11" coming from the self-interactions of the gluons 
via the extra diagrams of Figure 5.6. Quarks, and other non-gauge particles, always con­
tribute negatively to {30 . Nonabelian gauge theories are the only ones we know where you 
can have asymptotic freedom (providing you don't have too much "matter" -providing 
the number of flavours is less than or equal to 16 for QCD). 

'Vhat is the significance of the integration constant A? The original QCD La­
grangian (5.1) contained only a dimensionless bare coupling g (the quark masses don't 
matter here, since the phenomenon occurs for a pure glue theory), but now we have a 
dimensionful parameter. The real answer is that the radiative corrections (in all field 
theories except finite ones) break the scale invariance of the original Lagrangian. In 
QED there was an implicit choice of scale in the on-shell definition of e. Lacking such a 
canonical choice for QCD, you have to say "measure 0'5 at f..L = Mz" or "find the scale 
where os = 0.2," so that a scale is necessarily involved. The phenomenon was called 
dimensional transmutation by Coleman. A is given by, 

( 19(!-L) dg ) 
A = JL exp - {3 (g) , (5.12) 

and is /I.-independent. The explicit JL dependence is cancelled by the implicit JL depen­
dence of the coupling constant. Today it has become popular to specify the coupling by 
giving the value of A itself. 

'Ve've seen that the coupling depends on the scale at which it is renormalised. 
:Moreover, there are many ways of defining the renormalised coupling at a given scale, 
depending on just how you have regulated the infinities in your calculations and which 
momentum scales you set equal to Jt. The value of {;(f..L) thus depends on the renormal­
isation scheme you pick, and with it, A. In practice, the most popular scheme today 
is called modified minimal subtraction, MS, in which integrals are evaluated in 4 - € 

dimensions and divergences show up as poles of the form en for positive integer n. In 
the particle data book [2] you will find values quoted for AMs around 260 MeV (it also 
depends on the number of quark flavours). Don't buy a value of A unless you know which 
renormalisation scheme was used to define it. 

In Figure 5. 7 you see that the coupling blows up at f..L = A. This is an artifact of 
using perturbation theory. We can't trust our calculations if a 5 (f..L) > 1. In practice, 
you can perhaps use scales for JL down to about 1 GeV, but not much lower, and 2 GeV 
is probably safer. This region is a murky area where people try to match perturbative 
calculations onto results obtained from a variety of more or less kosher techniques. 
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Figure 5.8 QED radiative corrections in e+ e- annihilation. 

!>Exercise 5.1 
Extending the expansion of 9 in terms of g in (5.8) to two loops gives 

M2 M2 M2 
9(1-t) =g+g3 [a1ln-2 +b1] +l[a2ln2- 2 +b2ln-2 +c2], 

1-l 1-l 1-l 

with a similar equation for 9(1-to) in terms of g. Renormalisability implies that 9(1-l) can 
be expanded in terms of 9(p0 ), 

00 

9(1-t) = L 92n+l(lto)Xn, 
n=O 

where the Xn arc finite coefficients. Show that this implies that a2 is determined once 
the one loop coefficient a1 is known. In fact a 1 determines all the terms (Cl:'5 lnl-t)n, called 
the leading logarithms: from a one loop calculation, you can sum up all the leading 
logarithms. 

For QED there is no positive contribution to the beta function, so the electromagnetic 
coupling has a logarithmic increase with renormalisation scale. However the effect is small 
<.'W11 going up to LEP energies: o: goes from 1/137 to about 1/128. The so called Landau 
pole, \\'here a blows up, is safely hidden at an enormous energy scale. 

5.4 Applications 

In this section we will briefly consider some places where perturbative QCD can be applied. 

5.4.1 e+e---+ hadrons 

In section 4.3.2 we considered the ratio R of the annihilation cross section for e+e- into 
hadrons to that into tt+ 1-L-. The result we found from the lowest order annihilation 
diagram proceeding via an intermediate virtual photon was, 

(5.13) 

where I remind you that sum is over quarks f with Q1 the quark's charge in units of e. 
Now I would like to extend the discussion in two ways: QED and QCD corrections, and 
contributions of intermediate Z bosons. 

Turning first to QED corrections, consider the two diagrams in Figure 5.8 illustrating 
two possibilities. The graph on the left contributes to the order Cl:' correction to the 
amplitude. It is ultraviolet divergent, but we have discussed above how to deal with this. 
However, it is also infrared divergent when the momentum of the photon in the loop goes 
to zero. The treatment of this problem involves a cancellation of divergences between 
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Figure 5.9 QCD radiative corrections in e+e- annihilation. 

~q~------·~ 

Figure 5.10 QCD bremsstahlung producing a three jet event. 

this graph and the bremsstrahlung diagram on the right of Figure 5.8. Physically, limited 
detector resolution means :you can't tell if the final state you detect is accompanied by one 
(or infinitely many) very soft photons. So, the rate you calculate should also include these 
undetected photons, and in summing all the terms, the infrared divergences disappear. 
Since quarks ha\'C electric charge, we can also, of course, have QED corrections where the 
photon lines connect to the quark legs of the annihilation diagram 

For the strong interactions, if 0:5 is not too large and we aren't near a hadronic 
resonance, then we expect that calculating the diagrams in Figure 5.9 will give the leading 
QCD corrections. The gluon is exchanged only between the quarks since the incoming 
c+ e- don't feel the strong force . The result of the computation is 

R = 3 L:Q}(l + O:s(lt) + • .. ). 
I 7r 

\Vhat value should \VC choose for p. in this expression? To answer this you need to know 
that higher order terms in the perturbation series contain powers of ln(s/lt2 ), where s is 
the square of the centre of mass energy. So, to avoid large coefficients in the higher order 
terms, the preferred choice is tt2 

"' s. Observe that the leading order graph predicts a 
back-to-back qq pair. Owing to hadronisation, what we actually see is a pair of back­
to-back jets. Experimentally, the jets follow the angular distribution predicted for the 
underlying qq process, that is, a (1 + cos2 B) distribution, where 0 is the scattering angle 
in the centre of mass frame. Three jet events can arise from QCD bremsstrahlung where 
a "hard" (high momentum) gluon radiates from one of the quark legs (see Figure 5.10). 
The observation of such three jet events at DESY in the 1980's was hailed as the "discovery 
of the gluon." 

At present day e+e- colliders, the most important contributions to e+e- annihilation 
come from other diagrams in the standard model. In Figure 5.11 we show two diagrams 
where the e+e- can annihilate into a neutral Z boson or a neutral Higgs scalar, H 0 • The 
Z and Higgs propagators contain factors 1/(q2 - m2) where q2 = s and m refers to the 
Z or Higgs mass respectively. For the Z graph, the ratio of its amplitude to the QED 

amplitude is, 
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Figure 5.11 Z bosons and Higgs particles in e+ e- annihilation. 

lepton 

gluon 

Figure 5.12 DIS process and a QCD correction. 

In the Higgs case t.he ratio is, 

M llo "" q2 me 1nq 
.MqEo q2 - m~ 1niv 

The cxtra factors of the electron and quark masses for the Higgs contribution arise 
IH'cansc of the standard model mass generation mechanism (see your standard model 
lectures), and the factor of me means that the Z contribution is most important. These 
amplitude ratios make it clear that as the centre of mass energy approaches m.z, the Z 
process will dominate the pure QED one. This, of course, is exactly the situation at LEP. 

I ''"ill not go further with this subject, but in closing I note that the agreement 
between the LEP results and the standard model depends on the inclusion of radiative 
corrections . .This agreement provides compelling evidence for the quantum field theoretic 
aspects of the standard model. 

5.4.2 Deep Inelastic Lepton Hadron Scattering 

The process of interest is 

lepton+ hadron -t lepton+ X, 

where X denotes "anything" and the momentum transfer q between the initial and final 
leptons is large. The initial state lepton may be an electron, muon or neutrino, and 
the interaction can proceed via the exchange of a photon, W or Z. In Figure 5.12 we 
illustrate this for electron-proton deep inelastic scattering (ms), mediated by a photon. 
The photon couples to one of the qurks in the proton, and since the interaction of the 
photon and lepton is understood, the strong interaction physics resides in the virtual­
photon-proton scattering amplitude. 

Choose a Lorentz frame in which the proton is highly relativistic and let the struck 
quark carry a fraction € of the proton's momentum p. Neglecting the struck quark's 
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transverse momentum, since the transverse momentum of secondary particles in hadronic 
experiments is generally small, we have, 

where we assume the struck quark is nearly on shell and has negligible mass. This leads 
to, 

-q2 
~=-=x. 

2p·q 
(5.14) 

The fraction of the proton's momentum carried by the struck quark is given by the 
kinematic variable x (known as Bjorken's x variable). Measurements of the differential 
DIS cross section thus provide information about the momentum distribution of quarks 
inside hadrons. 

What can we say about this process in perturbation theory? In calculating higher 
order contributions such as that from gluon radiation in the right hand diagram in Fig­
ure 5.12, there is an important difference from the calculation of the R ratio for e+e­
annihilation in (5.13). The region of phase space where the struck quark is nearly on 
shell is important, as was anticipated above in the identification of~ with x in (5.14). 
This manifests itself in the appearance of terms of the form a~ lnn(q2/ >.2 ), where ). is 
some lower cutoff on the quark's momentum. The choice of>. depends on details of the 
protou ''"m·efunct.ion and hence these terms can't be calculated in perturbation theory. 
In other words, the releYant momcnta arc small, and DIS cross sections are not calculable 
iu perturbation theory. However, for large q2

, it is possible to to compute the evolution 
of these cross sections with q2

, since these effects depend on the region of phase space 
where the quark is far off shell (q2 » i\2

). So, in summary, although DIS cross sections are 
not themselves calculable, their dependence on q2 is. This is sufficient for a considerable 
amount of phenomenology - sec your course on the Physics of Structure. 

D1s cross sections, and hence the momentum distribution of quarks in a proton, 
depeud on q2

• As q2 increases, theory predicts that there should be fewer quarks at 
large :r and more at small x. This result has a physical interpretation. Imagine probing 
a proton with a virtual photon and seeing a quark carrying fraction y of the proton's 
momentum. If you increase the photon energy, you may sec that what you thought was a 
quark with momentum yp is actually a quark with momentum ~rp together with a gluon 
of momentum (y - x )p. Thus the total momentum of the quark and gluon is yp and the 
quantum numbers of the pair are those of a single quark. In the first case, the pair was 
not resolved, but in the second case we see that since x < y the quark's momentum is 
less now than when we looked with a lower energy photon. 

There is currently great interest in DIS processes at HERA, which is allowing us to 
explore smaller values of x, giving a new testing ground for theoretical ideas. 

5.4.3 Drell-Yan and Related Processes 

Now consider a process with two initial state hadrons. For illustration, consider the 
Drell-Yan process, 

hadron + hadron ~ e+(Jl+) + e-(J.L-) +X, 

where the centre of mass energy of the hadrons and the invariant mass of the lepton 
pair are large and comparable. A parton model for this process, proposed by Drell and 

-109-



I 

Figure 5.13 Drell-Yan process and a QCD correction. 

Yan is illustrated in Figure 5.13. A quark from one of the initial hadrons, labelled with 
subscript 1 in the figure, annihilates an antiquark from the other hadron, producing a 
virtual photon which in turn decays into a lepton-antilepton pair. 

The momentum distribution of the quarks in the initial state hadrons can be deter-
mined from DIS experiments, so the process is calculable in terms of those distributions: 

dCJ 47ro:
2 !o' 

IQ '2 = gQ·I LQJ d.T 1 dx2 
( .. . J 0 

x (5(.1' 1:r2 - Q2 / s );r J·T2 [q,J(:z:t)q21 (:r2) + lJ2J (x2)lJ11 (xi)], (5.15) 

wh<'rr .r; = (p 1 + p2 f and q;1(:r) is the probability density for finding a quark of flavour f 
iu hadron i carrying a fraction :z: of its momentum (similarly for qif ). Now consider some 
higher order correction such as the gluon radiation graph on the right of Figure 5.13 . 
.Just as for DIS there are important contributions from the "long-distance" region of 
phase space, where the quark and antiquark are almost on-shell. However, close study 
r<'n'c-lls that these long-distance contributions are precisely the same as in DIS, so can 
be absorbed into the quark distribution functions. Thus the Drell-Yan and DIS cross 
sections can be related in perturbation theory. The relation is just equation (5.15) with 
the q;1 (.'1';) replaced by rliJ(.ri, Af2

), which is the probability density determined from DIS 

experiments with q2 = Af2
. There are further perturbative corrections to (5.15), but 

the large logarithms coming from long-distance physics can always be absorbed into the 
distribution functions. 

The factorisation of long distance effects into the distribution functions is a common 
feature of hard inclusive processes, including, besides Drell-Yan production, the produc­
tion of particles or jets with large transverse momenta. In each case the cross section is 
a convolution of the partonic distribution functions with the cross section for the quark 
or gluon hard scattering process. Thus hadrons can be viewed as broad band beams of 
quarks and gluons, with a known (experimentally determined) momentum distribution. 
These beams arc what we use to search for the Higgs scalar, or signals of new physics 
such as technicolour or supersymmetry - but that is all material for another course. 
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1 Introduction 

The standard model is a beautifully crafted and brilliantly predictive theory of 
all known phenomena in elementary particle physics. It was conceived in the 
decade from the mid 1960s to the mid 1970s when quantum field theory made a 
spectacular revival and non-abelian gauge theories were shown to provide a quan­
titative understanding of particle physics. Those were (I am told) heady times 
for theorists. Writing in 1984, Sidney Coleman remembers them nostalgically: 

"This was a great time to be a high-energy theorist, the period of the famous 
triumph of quantum field theory. And what a triumph it was, in the old sense of 
the word: a glorious victory parade, full of wonderful things brought back from 
far places to make the spectator gasp with awe and laugh with joy." 

Since then, the SU(3)c x SU(2)L x U(1)y standard model, the fusion of 
quantum chromodynamics with the electroweak theory of Glashow, Salam and 
\Veinberg, has successfully described (or at least not contradicted) all experimen­
tal data. 

These lectures describe the construction of the standard model, with particu­
lar reference to the symmetry structure and tree-level dynamics of the electroweak 
interactions. They are complementary to the other lecture courses in this volume, 
which describe in more depth the quantum dynamics of gauge theorieso 

There are many excellent books on gauge theories and the standard model. 
The description given in these lectures follows quite closely the presentation in 
the book by Halzen and Martin, 'Quarks and Leptons' . This would provide a 
good source of supplementary reading and further examples. 

-118-



2 Elementary particles, QED and QCD 

We begin by listing the elementary particles which are currently known to exist 
in nature. These are the leptons C, quarks q and the gauge bosons which mediate 
the fundamental forces. 

Leptons I!= e 1-L T Ve vll v,. 
mass(MeV) 0.51 105.6 1784 ~46eV ~0.25 ~70 

Quarks q= u d s c b t 
mass 7MeV 15MeV 200MeV 1.3GeV 4.8GeV ?175 GeV 

charge 2 -1 -1 2 -1 2 
~ ::a 3 _3. ""3 3 

The quarks do not exist as free particles, but are permanently bound into hadrons. 
This is confinement. If we consider just the three quarks u, d, s, we form the 
baryon and meson octets and decuplets of 'flavour' SU(3): 

s s 
JP=}+ 

2 X 0 X 

n p 

l:" l:o l:+ 

A -I 13 
l:"" l:"O t"+ --A----_,..._,, ---+--13 

X -2 
~0 -

p s p - s 
1=0 - J =I 

X X 'k·n I X 
Kn K+ K"+ 

x· 0 1tll n• IT 0 pll p+ 

'1 13 
(I)~ 13 

X -I X X ·I X 
K. Ro K"" j(•O 

With the discovery of charm, bottom, ... the picture can be extended. New 
hadrons exist and fit into multiplets of higher flavour symmetries SU( 4), ... For 
example, there are the charmed mesons such as n+ = cd with m = 1.86Ge V 
which decays by n+ --+ J(-7r+7r+. Of course, because of the mass differences 
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between the quarks, these flavour symmetries are only approximate. All this 
phenomenology establishes the quarks as the elementary particles; mesons and 
baryons are bound states. 

The next category of elementary particles are the gauge bosons: 

g 

The photon 1 mediates the electromagnetic interaction, described by quantum 
electrodynamics (QED). It is massless. The strong (inter-quark, not inter-nuclear) 
force is mediated by a 'colour' octet of massless gluons and described by another 
gauge theory, quantum chromodynamics (QCD). Finally, the gauge bosons cor­
responding to the weak interactions are the charged w± and neutral Z, with 
masses of 80 and 91GeV respectively. These were discovered in 1983 by the UAl 
and UA2 collaborations at CERN. 

Finally, as we shall see, a further ingredient is required to make the picture 
work. The minimal standard model also predicts the existence of a scalar particle 
H 0

, the famous Higgs boson. 

In the standard quantum field theory model, all these elementary particles 
are considered to be the quanta of elementary fields . 

The simplest example of a gauge theory of this type is QED, describing the 
interaction of electrons and photons. The action is 

(1) 

where 1/J is the electron field and AIL is the photon field . Green functions (and 
hence S-matrix elements, etc.) are constructed from the path integral, 

z = eW[J,K,l~-1 = J 1)1j;1)~1JA eif dx C+J~"A,.+II:.P+~K 

usually using perturbation theory, Feynman diagrams, etc. 

(2) 

In the early 1970s, it was realised that the strong interaction could be de­
scribed by a non-abelian gauge theory, quantum chromodynamics. Each quark is 
assigned a colour quantum number, corresponding to the gauge group SU(3)c. 
QCD is 'flavour blind', i.e. independent of the type of quark.The action is 

where 1/J is the colour triplet quark-field, A~ is the colour octet gluon field and Ta 
is the matrix specifying the quark representation (for quarks, the fundamental 
representation of SU(3)c ). 
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The physics of non-abelian gauge theories is very different from QED. In 
particular QCD exhibits asymptotic freedom- the effective coupling-+ 0 at small 
distances. This implies simple (quasi-free) behaviour of quarks in deep inelastic 
scattering experiments probing the structure of the proton. The inverse effect 
(infrared slavery), viz. the increase in the effective coupling at long distances, is 
related to confinement. 

At this point, with QED and QCD, we have a theory of the strong and the 
electromagnetic interactions: 

Gauge group 

Elementary fields 

SU(3)c x U(l)em 

g 
e 
u 

I 
ll 
d 

T 

s c 

SU(3)c acts only on the colour degree of freedom of the quarks. U(l )em acts on 
all charged particles. The theory is parametrised by two coupling constants e and 
g, the latter being traded for AQcD according to dimensional transmutation, plus 
masses. There are no constraints on the masses, mass terms in £ being gauge 
invariant. 

This leaves the weak interactions to be incorporated. These are much more 
complicated- they act on the flavour degrees of freedom of the quarks and be­
tween v, e, etc. The following are examples of weak interaction processes: 

n -+ pe - iie 

(d -+ u e- iie) 

1f -+ ll - iill 

ll -+ e - iieVIJ. 
- -vile -+ ll Ve 

vllN -+ p,- X 

If the weak interactions were really distinct from the other two, we would simply 
have to enlarge the gauge group to include a new 'quantum flavourdynamics' 
group Gw acting on the quark flavours and lepton types. However, the picture 
which will emerge from the following discussion is more subtle. The weak in­
teractions mix with electromagnetism and weave together the intricate tapestry 
that is the standard model. 
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3 Weak Interactions 

3.1 Effective current-current interaction 

The weak interactions were originally described by a phenomenological current­
current interaction. From a modern viewpoint, we understand this interaction in 
terms of the effective low-energy Lagrangian implied by a gauge theory of massive 
vector bosons. 

To motivate this, consider integrating out the gauge field in the QED La-
grang1an 

(4) 

where D11-v = 8 2g11-v - (1- 0'.)8JJ-8v, where 0'. is the gauge-fixing parameter. Com­
pleting the square, we find 

with 

J VAei I t(A-eJfD)D(A-eJfD)-e2 J 2 f2D 

ei I Cell 

£ = _ _:e2 Jem~JJ-v Jem 
ef f 2 11- v 

where ~ is the photon propagator, D~ = i8. 

(5) 

(6) 

(7) 

The QED interaction is therefore of current-current type, but mediated by a 
propagator ,....., -;\-. It is therefore a long-range interaction. The electromagnetic q 

current is 
J em - - + 11- = -e111-e- JliJJ-Jl .•. (8) 

where e, Jl, •. • are Dirac fields for the electron, muon, etc. 

At low energies (q ~ mw), the weak interactions can be well described by an 
effective theory comprising a current-current interaction. Since the weak inter­
actions are short range, a good approximation is to replace the propagator by a 
constant, which is equivalent to a point interaction, i.e. 

(9) 

Notice that G has dimensions of mass-2 which implies that this is a non­
renormalisable interaction. It violates unitarity (cross sections u "' s for large 
energy). This means that the current-current interaction cannot be fundamental. 
Nevertheless, it gives an excellent description of weak interaction processes for 
moment a below mw. 

Our aim is to build a renormalisable gauge theory of the weak interactions. 
The next step, therefore, is to extract the form of the weak currents 1: from the 
phenomenology of weak interactions. 
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3.2 Lorentz structure of currents 

The general Lorentz structure for a bilinear fermion current is 

J = ;jjr1fJ (10) 

where r = 1, /s, lJJ.l fp.f5l ap.ll (total=16) 
Now, if the current-current interaction is derived from a gauge theory with 

vector bosons, we will have either r = /p. or /p./s (the so-called V or A currents). 
Extensive studies of weak interaction phenomenology in the 1950s showed that 
this is indeed true - the other forms (S, P and T) are excluded by experiment. 

The original assumption was that r must be /p., based on the analogy with 
the electromagnetic current. This was the basis of the 1932 Fermi theory of j3 
decay. The /p./s, or A, interaction would violate parity. 

However, in 1956, Lee and Yang surveyed weak interaction data and concluded 
that parity may not be conserved (e.g. ](+ -+ 1r1r and 11"11"11" both occur). The 
experimental confirmation of parity violation by Wu (6°C -+ 60 Ni e- i/e, polarised 
beta decay), Ledermann (1r- -+ fl-Vp. followed by fl- -+ e-Ve vll) and others 
followed shortly after. 

The cumulative experimental evidence led to the identification (by Feynman 
and Gell-Mann and Marshak et al.) of the Lorentz structure of the charged weak 
current as V -A, i.e. r = (1 - lshw Also, only the left-handed (helicity -~, 
V£ = HI - ls)v) neutrino seems to occur in nature, together with the right­
handed antineutrino. There is no VR state. 

Because left and right handed states enter differently in weak interaction 
theory, it is convenient to use the left and right handed projections for all particles. 
So, e.g. 

1 
eL = 2(1 - ls)e 

1 
eR= 2(1 + ls)e 

are the helicity -t and +t components of the electron. 

Under parity (P- 1 /sP = -Is) 

Under charge conjugation (1/Jc = c,01jJ• = c;jjT) 
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The crossed diagrams for (3) and (4) do not occur. These would require gauge 
bosons carrying lepton number. 

Elastic Ve e- and iie e- scattering also have neutral current contributions. 
However, only the charged current contributes to (2). 
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All these interactions are of the current-current form: 

where the lepton charged current is 

and 

Ve IJ-L! (l-Is) e + VJ-L IJ-L! (1 -Is) Jl + Vr IJ-L! (1 -Is) T 

VeL IJ-L CL+ VJ-LL IJ-L JlL + VrL IJ-L TL 

(19) 

(20) 
(21) 

(22) 

Notice that cross terms linking, for example, electron and muon type currents 
are possible - the gauge bosons are independent of the generation. This is known 
as "universality" of the weak interactions. 

The coupling strength G (the Fermi constant) is the same for all these pro­
cesses. This indicates a single underlying explanation. If we postulate that the 
interaction is due to the exchange of a massive vector boson w± with propagator 

(23) 

then the effective Lagrangian becomes 

(24) 

So we can identify 

(25) 

The V -A structure can be verified from ve scattering. If we assume a Lorentz 
structure fjC = VfiJ-L(a + bls)f for the weak current, then process (2) gives 

da G2 
s ( ()) 

dD. (vJ-L e- -+ VeJl-) = 
32 

71'" 2 A++ A- cos4 2" (26) 

where A±= (a2 + b2
)

2 ± 4a2b2
• 

(See Halzen and Martin, sect. 12.7 for cross-sections for charged current v e and 
v e scattering.) 
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from a non-abelian gauge theory with interaction J: AA~', then the currents must 
form a representation of the gauge group. 

For one lepton generation, these currents are 

VL'YtLeL 

h'YILVL 

~ (vL ltLVL + c[/L ltLeL + cR_eRltLeR) (32) 

The charged currents 1; can form two of the three components of the adjoint 
representation of SU(2). In the fundamental (2-dimensional) representation of 
SU(2), the generators are TA.= !rA and satisfy the commutation relations 

For the charged components, 

A= 1,2,3 

T± = ~(r1 ± ir2
) 

2 

~ r+ = ( ~ ~ ) , T- = ( ~ ~ ) 

Now construct lepton doublets 

2-dim SU(2)L representation 

The currents 1; can then be written as 

J'/: = XL'YJLT±XL = J~ ± iJ; 

1.e. as components of the SU(2)L current 

J A - TA 
IL = XL'YJL XL 

The remaining component is 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

However, this has no right-handed part and so it obviously cannot be identified 
with the remaining current J{j0 . 

The solution is to introduce a new current, corresponding to a new U(l)y 
interaction. The proposal is to define 

(39) 
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so that U(1)y commutes with SU(2)L· 

Now try and express Jj;0 and J;m as linear combinations of J! and JJ : 

a- 2b 1 } 
=> a+ 2b = -CL 

4b - -en 
solution only if 1 + CL - en = 0 

(40) 

(41) 

Then, a = !(1- cL) and 
we can express 

b = -~en. So, provided we have 1 +CL- en = 0, 

where recall en = cv -CA 

(42) 

(43) 

The condition 1 +CL -en = 0 requires CA = -~. This is necessary for this 
mixing scheme to work. 

To incorporate this structure into a gauge theory, choose a gauge group 
SU(2)L x U(1)y, with gauge bosons 1v: and Bw The interaction term in the 
Lagrangian is , 

.C· t = -gJAWA"'- ¥_Jy B"' 
In ,.. 2"' 

In terms of J;, J;m and Jj;0 we have 

_!!_ (J+ w+,.. + J-w- "') V2 ,.. J.& 

J;m (g ~ cnW3
"' + g'(1- icn)B"') 

J:c (gW3,.. _ g'B,..) 

where w; = ~ (w; =F iw;). 

(44) 

(45) 

In the Weinberg-Salam model, the mixing between w; and B,.. to give A,. and 
z,.. is of the following form:-

Z,.. - W!cosOw- B,..sinOw 
A,. - W! sin Ow + B,.. cos Ow 
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Then the Lagrangian becomes 

£= _1_ e (J+ w+ IL + J; w- IL) 
v'2 sin Ow IL 

eJemA _ e JNCziL 
P. IL sin Ow cos Ow IL 

where we identify 
e = g sin Ow = g' cos Ow 

and 
1 . 2 (} 2CR =Sill W 

This last result implies that 

The resulting current-current effective interaction is 

(47) 

(48) 

(49) 

(50) 

(51) 

.C = (.!!_) 2 

Jcc_l_Jcc P.t + ( 9 )
2 

JNc _l_ JNc P. (52) 
v'2 1L m?v cos Ow 1L m~ 

Comparing with 

we identify 

and 

G g2 e2 

v'2 = 8 m~ = 8 m~v sin2 Ow 

2 mw p = ---=-..:..:_-
m~ cos2 Ow 

4.2 Weinberg-Sala1n Lagrangian (leptons) 

The SU(2)L x U(l)y Lagrangian is therefore 

£= 

where 

! FA FIL" A _ ! F" FIL" a 

+ J~>xi (a.~;;rAw: +i~ YB.) xi 

+ •=ET ;,j;J. (a. + ;~ Y B.) ,pJ. 

1 A 
-T 
2 

determines the SU(2)L representation of XL 

-128-

(53) 
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and y -1 for XL = ( v;: ) , ( ~: ) , ( v;t ) 
y - -2 for tPR = eR, J-lR 7 TR 

The parameters are 
' g, g' mw, mz 

or equivalently 
e, sinOw, mw, mz 

The interaction terms are 

C = -eJemA~- e JNcz~ 
~ sin Ow cos Ow ~ 

where 

Zjl. - lV! cos Ow- Ell sin Ow 
AIL - lV! sin Ow + B~ cos Ow 

and 

The effective interaction is 

C. = 4G (Jcc 1cc J.Lt + 2pJ,";c J Ne IL) 
mt V2 IL ... 

{57) 

{58) 

(59) 

(60) 

{61) 

{62) 

together with electromagnetism. This phenomenological description has the pa­
rameters e, G, p, cv, eA. 

The 'Veinberg-Salam model requires eA = -~. The other equivalences are 

G e2 

V2 = Smt, sin2 Ow 
(63) 

{64) 

Cy = -l + 2sin2 Bw {65) 

Universality implies that cv,A = cv,A = cv,A as well as a single G, p. 

In fact, the full Weinberg-Salam model including the Higgs mechanism also 
implies p = 1 because of an additional (custodial SU(2)) symmetry which is built 
into the model. (See section 9.) 
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5 Quarks in the Electroweak Model 

An analysis of weak interactions involving hadrons leads to a very similar struc­
ture for the quark sector of the electroweak model. 

5.1 Charged weak current (quarks) 

A selection of key processes includes the following: 

1. f3 decay 

u 

2. 1r decay 

ll+ 

(see Halzen and Martin, sect. 12.6 for a discussion of the "hadronisation" 
of ud into 7r+.) 

J.f 

u · 
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This is realised in deep inelastic scattering. It is the weak interaction ana­
logue of e-N-+ e-X 

e 

e 

All these processes can be described at low energies, q ~ mw, by an effective 
current-current interaction, also of Lorentz structure V - A : 

(66) 

with fjC ~ u-L 'Ytt dL. £int uses the same Gas before. This extends electron-muon 
universality to lepton-quark universality. 

In fact, this is too simple. Consider the next generation, with strange and 
charm quarks. These almost obey 

(67) 

This corresponds to a structure like the leptons, with families of SU(2)L doublets 

However, processes such as J(+-+ p+v also occur, involving a u-s transition: 
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To incorporate this flavour mixing, we add an ad-hoc quark mixing angle (the 
Cabibbo angle) and define 

d' d cos Be + s sin Be 
s' - -d sin Be+ s cos Be 

so that the SU(2)L eigenstates are 

Then 

f(J(+ -+ p+v,..t) . 2 B 
r( n+ -+ p+ vi-') ,...., sm e 

(up to kinematic factors) 

(68) 

The Cabibbo angle is small: Be = 13°, sin Be = 0.23 (see also the discussion of the 
CKM matrix in sect. 5.4). 

5.2 Neutral current (quarks) 

Processes such as v~-'N -+ v~-'X were observed at CERN (Gargamelle) in 1973 
with strength 

a(vN-+ vX) ,...., 
0 3 

a(vN-+ pX) 
0 (69) 

They can be described by 

(70) 

with 

(71) 

This is the same as for the leptons, except for the different cv, CA parameters 
(see sect. 5.6). 

5.3 Charm and flavour changing neutral currents 

Suppose there was no c quark. With any u ~ d' transitions, we would have 
the flavour changing neutral current (tl.S = 1) decay ](0 -+ J.L+ J.L- from the top 
diagram overleaf. 

The Cabibbo factors from the (du) (us) vertices give cosBcsinBc. However, 
experimentally, flavour changing neutral current (FCNC) decays are found to be 
strongly suppressed, e.g. 

r(K2 -+ J.L+ J.L-) ,...., 10-s 
f(Kf-+ anything) 

(72) 
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\Vith charm, there is another diagram, shown above. The Cabibbo factors 
have the opposite sign, giving a cancellation. So FCNCs are strongly suppressed. 
This is the famous GIM (Glashow, Iliopoulos, Maiani) mechanism. 

This was one of the main motivations for the proposal of charm by GIM in 
1970. Another was anomalies. 

Theoretical Interlude- Anomalies 

It can happen that a symmetry which holds in the classical theory is no 
longer a good symmetry in the corresponding quantum theory. This is known as 
an anomaly. This phenomenon is particularly associated with chiral symmetries 
(i.e. involving 'Ys) such as occur in the electroweak model. 

As the simplest example, consider massless QED with the action 

S = j dx£ = j dx [i~(81l- ieAp)'l/;- ~FpvFP"] 
This is invariant under the (global) chiral transformation, 

1/J -+ e i ory'i'> 1/J 

(73) 

(74) 

By Noether's theorem, there is a conserved current Jps = ~/p/s'I/J corresponding 
to this symmetry. It satisfies the equation of motion (conservation law) 

(75) 

Does this remain true in the quantum theory? The equivalent statement would 
be the chiral Ward identity for, e.g. the two-point Green function 

(76) 
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where (8<1>) is the vacuum expectation value of the chiral variation of some arbi­
trary (elementary or composite) field <P. 

To compute Green functions in the quantum theory, we need the generating 
functional, 

(77) 

Now consider the behaviour of W under a change of integration variable, .,P -+ 
ei01'Ys.,p, .(f -+ e-iOt'Ys.(fi. Since this is only a change of variable, W does not change. 
So (taking a= a(x) as a technical device), we get 

(78) 

since .s!fx) = -8JJ. JJJ-5 • Since the variation is a total derivative, the global trans­
formation is a symmetry. This gives the naive \Vard identity. 

However, the integration measure V!f;V{J, which is the key ingredient in tak­
ing us from the classical to the quantum theory, is not invariant under chiral 
transformations. In fact, 

(79) 

where F11v = tJJ.vOt{J F01f3. The derivation of this is subtle and difficult. However, 
the final result for the ·ward identity is simple: 

(80) 

that is, 
2 

< OIT*8~'- JJJ.s <PlO > - < OIT* l;1r
2 

FJJ.vp11-v <PlO >= (8<1>) (81) 

This result is exact and non-perturbative. In fact, with an appropriate choice of 
renormalisation for the composite operators JJJ-5 and FIJ.vfrJJ.v, it holds in the same 
form to all orders (Adler-Bardeen theorem). This is the anomalous chiral Ward 
identity. 

In perturbation theory, the anomaly is manifested in the 1-loop triangle dia­
gram shown overleaf. 

Naively, we expect this amplitude to satisfy q'"' M,.,.>.p ? 0 because of the classical 
current conservation. However a careful treatment of the divergent integrals 
involved in its calculation actually gives 

• 2 

q'"' M,.,.>.p = ~:2 f.p.v>.pki k~ #- 0 (82) 

in accordance with the anomalous Ward identity. 
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The result for non-abelian currents is similar. In this case, the currents at the 
vertices of the triangle diagram (or equivalently the external gauge fields) include 
group generators ra, Tb and Tc. The anomaly is then proportional to 

(83) 

\Ve have described the 'AVV' anomaly. In theories such as the electroweak 
model which also has axial gauge bosons there are also 'AAA' and higher-point 
anomalies. 

The physical significance of anomalies depends entirely on whether or not the 
axial current is or is not coupled to gauge fields. 

Global currents: 

This is the case where the current is not coupled to a gauge field. Here, 
there is no problem. The quantum theory (anomalous vVard identity) does not 
look like the classical theory (conserved current), but this does not damage the 
consistency of the theory. In fact, the existence of these anomalies is an essential 
and experimentally verified part of the standard model. 

For example, the anomaly is essential for the neutral pion decay 1r0 -+ 'Y'Y· 
The pion couples to the axial current J~5 according to< OIJ~sl7r >= ik~!1r where 
J1r is the pion decay constant, 931\.1 e V (see section 7). This allows us to calculate 
the 1r

0 
-+ 'Y'Y decay amplitude from the matrix element < OIJ~sh'Y >. The 

divergence of this would vanish if the naive \iVard identity was true, predicting 
1r

0 -f 'Y'Y· In fact, because of the anomaly, 

2 

< 018~ J~sh'Y > - l;1r2 ~ Q} < OIF~~~p~~~~~~ > 

"I 0 (84) 

and this permits a non-zero decay amplitude 1r0 -+ 'Y'Y in QED and QCD. 
The constant multiplying the anomaly, LJ Q}, measures the sum of the 

squares of the charges for all the fermions which make up ]~5 (i.e. which go 
round the loop in the triangle diagram). Initial calculations with quarks gave a 
result for the decay amplitude 3 times smaller than experiment. This is resolved 

-135-



if we take the number of colours into account. So, experiment and the anomaly 
explanation of 1r

0
--+ 'Y'Y implies that QCD must have Ne = 3. 

Gauged currents: 

The situation is quite different if we couple a dynamical gauge field to the 
anomalous current (i.e. promote the anomalous symmetry to a local transfor­
mation). Here, the anomaly completely destroys the consistency of the quantum 
theory. The gauge symmetry is broken (since the current is not conserved) and 
the quantum theory is non-unitary (the unphysical ghost degrees of freedom do 
not decouple). 

This second case is dangerous for a chiral gauge theory such as the electroweak 
model, since we have gauge fields coupled to the axial current. The theory will 
only be unitary if all the potential anomalies vanish. 

Rewriting in terms of left and right-handed fields, the anomaly coefficient is 
proportional to 

reps 

There are four possible anomalies to check in the electroweak sector: 

(1) a, b, call SU(2)L currents:­
All fermions are in doublets, so 

A = 

since the trace of an SU(2) matrix vanishes. 

{2) a= SU(2)L and b, c = U(l)v :­
In this case, 

for the same reasons. 

(3) a, b = SU(2)L and c = U(l)y :­
Here, 

A 
T 11 Tb 

L:Tr{2 ,2}YL 
fV 8"b L:TrYL fV L TrQ 

Lreps 

since for the left-handed representations lYL = -T1 + Q 
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(4) a,b,call U(1)y :­
Here, 

A 2{ L TrYl- L TrY~} 
Lreps Rreps 

"' L TrQ 
Lreps 

since for the right-handed representations ~YR = Q. 

(89) 

So, the anomalies of type (1) and (2) necessarily vanish. But the anomalies 
for type (3) and ( 4) vanish if and only if 

(90) 

i.e. anomaly cancellation requires the sum of the electric charges of the fermions 
to vanish. 

In the standard model, this is true individually for each generation:-

2 1 1 
- 0-1+Ne(

3
-

3
)=-1+3Ne 

f=ve,e,u,d 

- 0 for Ne= 3 (91) 

This theoretical analysis tells us several important things about the standard 
model 

1. The SU(Ne) x SU(2)L x U(1)y gauge theory (QCD plus electroweak) with 
the known quark and lepton spectrum must have Ne= 3 

2. Anomaly cancellation within each generation means that a model with two 
lepton generations and the quarks u, d, s does not exist. Anomaly freedom 
implies that charm exists! 

3. 3 lepton generations implies that top exists. 

4. The condition Lf Q f = 0 as described above looks contrived. This suggests 
that the quarks and leptons may have originally been in some single larger 
representation. This hints at some form of grand unification. 
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5.4 Third generation and the CKM 1natrix 

To keep the success of the GIM mechanism when we extend the standard model 

to three generations, we assign the quarks to SU(2)L eigenstates ( ~~~ ) , where 

UiL = UL, CL, iL and diL = dL, SL, bL, with 

(92) 

If V is unitary (Vt V= 1), then 

J~ d~ = J vt V d = Ji di (93) 

This property suppresses the FCNC diagrams discussed in sect. 5.3 and ensures 
the neutral current is flavour diagonal. V enters the vertices with the vV± but 
not with the Z. 

11 is the CKM (Cabibbo-Kobayashi-Maskawa) matrix. First, note the param­
eter counting for an arbitrary number N of generations: 

Unitary N x N matrix ---? 

Orthogonal N x N matrix ---? 

N 2 parameters. 
1 
"iN(N- 1) parameters. 

But (2N -1) relative phases for the quarks are irrelevant. So licK M has !N(N -1) 
real parameters and N 2

- (2N- 1)- ~N(N- 1) = HN- 1)(N- 2) phases. 

In the standard model, N = 3, so lfcJ{M has 3 angles and 1 phase (important 
for CP violation). The Kobayashi-Maskawa parametrisation is 

VcKM -

where we let c1 =cos fh etc. 
The current experimental values are 

These arise from:-

IKsl = 0.221 
IVcsl = 1.1 
ll/tsl ~ 0 
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Vus J(+ ~ 1l"0e+lle , /(0 ~ 7!"- e+lle 

semileptonic hyperon decays A ~ pe- iie 

Vub b ~ ue-iie , need B decays with no Kin final state 

'Vcd vp.d ~ JL- e , as in the diagram 

l~s vP.s -+ JL- c , needs estimate of s-content of nucleon 

n+ -+ K0e+lle 

l~b B -+ D* fiie , plus heavy quark effective theory 

8 The phase is determined by the t: parameter in /(0 
- K 0 

vtd B 0 
- B0 mixing, from diagrams like 

d, s u,c, t b d. s 

Bo tw wt Bo Bo u,c,t 

b u,c,1 a,s b w 

Clearly a great deal of experimental work (and theoretical analysis - much 
depending on models and approximations for heavy quark states) is being done 
to determine the quark mixing parameters and verify the assumption that VcKM 
is a unitary matrix. There is at present no accepted theory of these mixing angles 
- they are all free parameters in the standard model. 
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5.5 C P violation and the CKM matrix 

Much of the interest in VcKM is because it is the only source of GP violation in 
the standard model. We show here why the appearance of a phase in VcKM leads 
to C P violation. Let 

M - (ukl~'(1 - ls)V'kiui)(un~'(l- ls)lf;,u,)t 

vki lji(un~'(1- ls)ui)(uniL(1- ls)uj) (96) 

be the charged-current induced matrix element for qiqi ~ qkq,. u are the appro­
priate Dirac spinors. If we can show that the C P transformed matrix element 
satisfies Mcp = Mt, then the theory conserves CP. Otherwise, GP is violated. 

Under C, 

u ~ uc =CuT 
u ~ uc = -uTc-1 

where c-1 1~tC = -~r , c-1 1~tlsC = b~tlsf. 
Under P, p-ll~t(1 + ls)P = 1!(1 -Is) where 16 = lo, 1! = -li· 
So, 

and then, 

compared with 

Vve find that Mcp = Mt provided l~i are real. 

(97) 

(98) 

(99) 

(100) 

It follows that in the three generation model where l'cKM has a complex 
parameter, C P is violated. This will show up in /( 0 

- /(
0 or B 0 

- B0 mixing:-

d w 

u,c , t 

s w 

s 

u,c, t - 0 
K 

In the two generation model, /(0 and K0 are linear combinations of the C P = 
+1, -1 eigenstates, !(8 = -\-(K0 + /(0 ) and J(L = )2(1(0 - K0 ) , which decay by 
Ks ~ 21r and J(L ~ 37r. l?owever J(L ~ 21r does occur with a small branching 
ratio of "' w-3 • 
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5.6 Gauge boson-current interaction (quarks) 

The same construction as for the lepton sector now goes through essentially 
unchanged. In the electroweak Lagrangian, the interaction of the A, W and Z 
bosons with the quarks is 

where 

(102) 

smce 

( 
UiL ) 

XiL = d'iL (103) 

and 
(104) 

the CKM matrix V dropping out due to its assumed unitarity. The electromag­
netic and \veak neutral currents are 

f = u, c, t, d, s, b. (105) 

and 

(106) 

where t3 is the eigenvalue of Tl and Q is the charge. 
The eigenvalues t 3 , Q and parameters cv and eA in the neutral current J{j0 

are listed below (sin2 Ow ~ 0.234) 

11 t
3 

I Q I CA I cv 

u, c, t ! ~ ~ ~- ~sin:.!Ow = 0.19 
d, s, b -~ -~ -~ -~ + ~ sin2 Ow = -0.34 

Ve, VI-', VT ~ 0 ~ ~ 
e,JL,r -~ -1 -~ -~ + 2 sin2 Ow = -0.03 

The general formulae are 

(107) 
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This determines the Z f f vertex:-

f 

z 
f 

-ie 1 ( I I ) 
sin Ow cos Ow "Y I! 2 cv - c A "Ys 

along with the w± vertices for leptons 

Ve(J.l.,'t) 

i e 1 
-- . /1! _ (1- "Ys) 

,j2 smOw 2 

i e 1 
-- • "YI!_ (1- "Ys) 

,j2 smOw 2 

and for quarks, including the CKM matrix, 

U· I 

d. 
J 
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6 Electroweak Processes 

U· I 

d. 
J 

In this section, we consider some simple examples of electroweak processes using 
the structure of the currents described above. 

6.1 1- Z interference in e+ e- ~ JL+ Jl-

Consider the following diagrams, which mediate electron-positron annihilation 
into leptons: 

The amplitudes are 

(108) 

and 

J2 Gm~ ( "'_ ~ e - ~ ) 
- - 2 CRU"'R'Y U"'R + CLUeL'Y UeL s-mz 

X (cnUeRI.\UeR + c[_iieLI.\UeL) (109) 

where s = P and we neglect lepton masses. Recall CL(R) = cv ± CA 

To calculate the cross section, we first add these amplitudes then square, i.e. 
IM-r + Mzl2

• This is electroweak interference. 
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The unpolarised e+ e- -+ p+ p- cross section is found by averaging over the 
four allowed L, R helicity combinations for e and p. We find 

da a 2 

dfl = 
48 

[Ao (1 + cos2 o) +At cos o] (110) 

where 

Ao - 1+2?R(r)c~+lrl2 (c~+c~)
2 

At 4?R(r)c~ + 8lrl 2 c~c~ (111) 

with 
s J2Gm~ 

r = - (112) 
e2 s- m~+ imzfz 

r comes from the Z propagator, modified to include the finite resonance width 
fz which must be included when s ~m~. In pure QED, A0 = 1 and At = 0. 

This cross section is usually expressed as a forward-backward asymmetry. 
Define, 

F-B 
AFB = F+B' 

t da jo da 
F = Jo dn dn ' B = -t dn dn 

Then we have 

(s ~m~) 

and 

(s ~m~) 

6.2 Z partial widths 

From the Z f 1 vertex, 
. g 1(! I ) -z 11 l/1- -2 Cy - CA/5 
cosuw 

we can calculate the decay rate, 

r ( Z -+ f 1) = 487r ::s2 Ow ( c~ 2 + c~ 2) mz 

This enables ·us to compute the partial widths for the set of decays:-

f(Z-+ iie Ve) -
r (z-+ e+e-) -

2 

f 0z - 9 mz = 0.17GeV 
967r cos2 Ow 

r~ (1- 4sin2 Ow + 8sin4 Ow) = 0.09 GeV 

f(Z-+uu) - 3f~ (1- ~sin2 Ow + 3
9

2 
sin4 0w) = 0.30GeV 
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r (z -t dd) = 3f~ (1- ~sin2 0w + ~sin4 0w) = 0.39GeV (118) 

(The 3 in the last two expressions is the number of colours, Ne = 3) 
The more light generations, i.e. with mass less than mz/2, the bigger the Z 

width. LEP measurements can therefore determine the number of light genera­
tions. The experimental value 

r z (total) "' 2.6Ge V (119) 

confirms Nv = 3. 

Cosmological Interlude - Nv = 3 from Big Bang 
N ucleosynthesis 

As well as the LEP measurement of r z, there is good evidence for Nv = 3 from 
measurements of the 4 He abundance in the universe. This is based on primordial 
nucleosynthesis in the big bang model. Very roughly, the argument is as follows:-

1. Most ("' 90%) of the present day 4 He abundance is primordial. 4 He pro­
duction in stars contributes < 10%. 

2. At high temperatures (kT ~ 1.1\feV) just after the big bang, neutrons and 
protons were in equilibrium through the reversible processes 

n -t p e-iie 

n + e+ -t p + iie 

n + Ve -t p + e-

with a neutron to proton ratio (njp) of 

~,.... e-l::.m/kT 

p 

where ~m= mn- mp = 1.3MeV. 

(120) 
(121) 

(122) 

(123) 

3. When kT drops below 1MeV (after t = 10sec), the rate -for p -t n pro­
cesses becomes much smaller than n -t p. When this rate falls below the 
expansion rate of the universe, the p -t n transitions "freeze-out", fixing 
the njp ratio (apart from neutron decay.) 
Now, the expansion rate depends on the square root of the energy density 
of relativistic particles, so is greater for a larger number of light particles, 
viz. neutrinos with mv < lOOMeV. 

So, a bigger Nv =} faster expansion rate 
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=> earlier freeze-out of nfp at higher T 
=> bigger freeze-out nfp ratio. 

In fact, N11 = 3 <=? nfp "' 1/6 at freeze-out. 

4. Nucleosynthesis begins later, at around t = 2 mins, when the temperature 
is low enough for deuterons to be stable against photodisintegration. By 
this time, free neutron decay has reduced nfp to 1/7. 

5. Virtually all the neutrons in existence at the start of primordial nucleosyn­
thesis end up as 4He. 
So, the bigger the nfp ratio the greater the abundance of 4 He. 

The present value for 4 He abundance (:=:::: 24%) rules out N11 = 4 and is con­
sistent with N 11 = 3. Further evidence comes from a detailed investigation of 
abundances of 4He, D and 7Li. 

6.3 3 and 4 gauge boson vertices 

Recalling that 
FA= a WA- a WA- gtABCwBwc 

jjll 1-' 11 11 1-' 1-' 11 

we see from the field strength terms in the Lagrangian 

Lgauge = j dx [-~F:11 FAILII- ~FI-'11 F~-'11], 

(124) 

(125) 

where the first term corresponds to SU(2)L and the second to U(1)y, that there 
will be vertices with 3 and 4 gauge field propagators. 

In terms of the A, w± and Z fields, these are: 
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g cosOw[(k-q)>.gJlv + (q-p)v9>.Jl + (p-k)Jl9>.v] 

J(PQRS [2gJlvg,\p - 9Jt>.9VP - 9Jtpgv..\] 

where for the different possible vertices:-

I p I Q I R I s I 
~v+ ~V w+ w ig2 
A lV+ A w- -ie2 

z ~v+ z w -ig2 cos:.! Ow 
A w+ z w- -iegcosOw 

(recall e = g sin Ow) 

At LEP 200, with e+ e- collisions at 100 + lODGe V, it will soon be possible 
to pair produce lV+w- through the diagrams: 

- --e w -e w 

This will provide the first direct measurement of the 3 gauge boson coupling. 
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7 Spontaneous Symmetry Breaking I - Global 
Symmetries and Goldstone's Theorem 

7.1 A global U(l) model 

As a toy model, consider a complex scalar field with Lagrangian 

£ = 81L</>81L</>"- V(</>,</>") (126) 

with 
V(</>,</>")= _JL2</>"</> + >..(</>"</>)2 (127) 

We have chosen the opposite sign from usual for the quadratic term. 

V 

------ ----

Plot of V over the complex <!> plane. 

Rewriting </>in modulus-phase form, </> = ~p eix, the Lagrangian is 

1 1 
£ = 2(81Lp)2 + 2p2(81Lx?- V(p) (128) 

where 

(129) 

This theory has a global U(1) symmetry, i.e. invariance under</>--+ </>eia, a= 
constant, i.e. X --+ X + a. This is reflected in the potential, which depends only 
on p. 

With the sign of JL2 chosen, the minimum of V(p) is not p = 0, but at the 
bottom of the rim. The minimum is not unique - there is a family of degenerate 
minima connected by U(1) transformations. 
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Select one of these equivalent minima, say X= 0, p = v, then write p = v+H. 
In the quantum theory v is the vacuum expectation value (VEV) of 4>, i.e. 

(01</>10) = V :j; 0. (130) 

Then, 

£ = ~(81lH)2 + ~v2 (81lx)2 + ( v H + !H2
) (81lx) 2

- V(H) (131) 

1 A 
V(H) = -4AV4 + Av2 H 2 + AvH3 + 4H4 

where 

(132) 

At the minimum, v2 = p2 /A. 
In perturbation theory about this minimum, the H field describes a massive 

scalar particle with m'i£ = 2Av2
• 

Rewriting in terms of A and mH, and rescaling X= vx so that, as usual for a 
scalar field, X has dimension 1, the Lagrangian is 

(133) 

\Ve can read off the spectrum of the quantum theory from£. The theory has 
one massive scalar H - this corresponds to fluctuations up the side of the walls 
in the potential. Crucially, it also has one massless scalar x, corresponding to 
fluctuations around the circle of degenerate minima. This is known as a Goldstone 
boson. 

There are also interaction terms, and a constant non-zero vacuum energy 
density. (This could be a problem if we think of including gravity in a theory 
with SSB.) 

7.2 Goldstone's theoren1 

This model illustrates a general theorem. We say that a symmetry is sponta­
neously broken if the vacuum is not invariant under the symmetry, i.e. if a field 
which varies under the symmetry acquires a VEV. This field is said to be an 
"order parameter" in the language of statistical mechanics. 

In the model above, £ is invariant under U(l), but the vacuum state has no 
residual invariance. U(1) is broken to the identity. 

In general, £ will have a symmetry G and the vacuum will have a residual 
invariance under a subgroup G0 • We say the symmetry is broken from G to G0 • 

In that case, the space of degenerate minima is the coset manifold G/G0 • 
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Goldstone's theorem: 

This states that corresponding to each broken generator of G (i.e. a generator 
in G which is not in Go) there is a massless scalar boson in the spectrum. 

The corresponding scalar field x(x) takes values in the coset manifold GfG0 • 

Proof: 

We give a general, non-perturbative proof in quantum theory. Corresponding 
to each symmetry generator in G there is a conserved current. The Ward Identity 
IS 

(134) 

where sa.p is the variation of .P under the generator Ta of the group G. 
The VEV is equal to zero for the unbroken generators, i.e. ra in G0 • But for 

the broken generators, i.e. ra in G but not in G0 , we have 

(135) 

writing the Green function in momentum space. This is true for all momenta, in 
particular kll = 0. 

The only way this can be true is if there exists a massless state lx) in the 
spectrum coupling to the broken current. Then 

kll(OIJ;Ix) ~xx (xi.PIO) - kllikiLFx : 2 (xi.PIO) 
#- 0. (136) 

where ~xx is the X propagator "" 12 and Fx is the decay constant. Clearly there 
is one massless X state for each broken current. 

7.3 Chiral syn1n1etry breaking in QCD 

An important example of global spontaneous symmetry breaking occurs in QCD. 
Consider QCD with just two flavours u and d and neglect their masses. Since 
QCD is independent of flavour, there is a rotation symmetry between u and 
d. Also, since parity is conserved for massless quarks, we can rotate the left 
and right handed fields separately. So, massless QCD has a global symmetry 
SU(2)L x SU(2)n. 

This is spontaneously broken to the SU(2)v subgroup (the axial generators are 
all broken) by the appearance of a VEV (Oiuu+ddiO), also called a "condensate". 

Since we have SSB with G = SU(2)L x SU(2)n and Go = SU(2)v, Goldstone's 
theorem says there are 3 massless pseudoscalar bosons (since 3 = dim G/G0 ). 

These are the pions, 7r+, 1r-, 1r0 , which would be exactly massless in QCD 
with mu= md = 0. 
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8 Spontaneous Symmetry Breaking 11- Gauged 
Symmetries and the Higgs Mechanism 

8.1 A local U(l) model 

Now go back to the toy model of section 7.1 and make the U(1) into a local 
(gauge) symmetry. The Lagrangian is 

£, = (Dil</>)*(Dil<J>)- V(</>,</>*)- ~Fil11 Filv (137) 

where Fllv = o,.,.Av - 8vAil and Dll</> = (all - ieAil)</>. The potential is the 
same, with a non-zero vacuum expectation value for </>. Making the substitution 
</> = h(v + H)eix we have 

1 1 1 
£ = 2callH? + 2(v + H) 2(81lx- eAil) 2

- V( H)- 4FilvFilv (138) 

with V(H) as before. Now write 

1 
TYil = All - - ollx (139) 

e 
Since this is a gauge transformation, FllV = all Wv- av wll, independent of X. This 
leaves 

£, = ~(8 H)2 + ~e2v2 Ttl' lVIl + e2(vH + ~H2)W Wll- V(H)- ~F Fllv (140) 21l 2 ll 2 ll 41lV 

In this form we can read off the particle content we expect the quantum theory 
to have: 

The x field has disappeared! So there are no massless scalar bosons. 

The TtVIl field is massive, with mw = e2v2
• It therefore has 3 degrees of freedom 

(two inherited from A and one from x). 

So, starting from a theory with a U(1) gauge symmetry, we find that the spectrum 
in the SSB phase has a massive gauge boson. This is the Higgs Mechanism. 

Going back to £, in its original form it had 3 parameters, e, >.., Jl· The fi­
nal theory has a massive W and a massive H, so we can write £, in terms of 
e,mn,mw. 

2 
(Check: v2 = If, then m1I = 2>..v2 and m~= e2v2). 

This gives 

(141) 
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8.2 Quantisation and renormalisation 

Notice that the above description of the Higgs Mechanism was entirely at the 
classical level. Strictly speaking, it is no more than a plausibility argument as to 
what we expect in the full quantum theory. 

Remember that to quantise a gauge theory, we have to start with the func­
tional integral, introduce a gauge-fixing term, and construct the Faddeev-Popov 
ghosts. To obtain the physical spectrum, we have to prove that these ghosts 
decouple along with the unphysical components of the gauge field. 

All this has to be re-done in a theory with SSB. It works and the spectrum is 
as described above. 

Gauge invariance is essential to the renormalisation of the theory. We have 
to prove ('t Hooft, 1971) that SSB does not spoil renormalisation, despite the 
appearance of gauge boson masses. 

The beauty of the Higgs Mechanism is that this is true - gauge theories with 
spontaneous symmetry breaking are renormalisable. 

9 The Higgs Mechanism and Mass Generation 
in the SU(2)L x U(l)y Model 

9.1 Mass generation 

In the form we have presented so far, the SU(2)L x U(1)y electroweak model has 
no mass for either the gauge bosons or fermions. 

Gauge bosons: 

Mass terms for w± or Z simply added to .C violate the gauge symmetry. 
(This is also true for any gauge theory.) But the gauge symmetry is necessary 
for the theory to be renormalisable, and therefore predictive. 

For example, consider e- e- scattering at 1-loop. The Feynman diagrams 
include 

e ----.:------.,....--- e 

e ______..,__1~ "~~ 1 

, 

e --~-----..-- e 

e --------"--2~ "~~z , 
The loop gives 

J d4 q-+oo J 4 11 1 1 J 4 1 q/):,e/):,e/):,-rf):,-r "' d q--22"' d q6 =convergent 
qqq q q 
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for the photon diagram, since the photon propagator (in Feynman gauge) is 
D.-y = - i2 9JJv• q . 

On the other hand, the Z propagator is D.z = ~( -gJJv + qe~") so the loop 
q mz mz 

g1ves 

The divergence has to be cancelled by a counterterm 

Lcounterterm = (div)~ j dx e e e e 
mz 

which is a four-Fermi interaction (dim= 6). But this introduces a new parame­
ter. The process continues and an infinite set of higher dimension operators are 
induced. The theory is non-renormalisable. 

Vve therefore need a dynamical mechanism to generate vector boson masses 
while keeping gauge invariance. This is achieved by the Higgs mechanism. 

Fermions: 

In general, we can add fermion mass terms to the Lagrangian in a gauge 
theory. For example, in QCD we can add quark masses, Lmass = I dx m( ifn qL + 
iJL qn). Lmass is gauge invariant. 

However, in SU(2)L x U(1)l', because SU(2)L is a chiral gauge theory (the 
group acts only on the left handed fields) fermion masses violate the gauge sym­
metry. For example Lmass = I dx m( en eL + hen) is not invariant under an 
SU(2)L transformation. 

Vve therefore need a mechanism to generate fermion masses dynamically in 
the standard model. Remarkably, the Higgs fields can also achieve this, through 
Yukawa couplings. 

9.2 Higgs n1echanism in SU(2)L x U(l)y. 

We need to repeat the analysis of the U(1) Higgs mechanism described earlier, 
generalised to a non-abelian theory. The aim is to find a Higgs sector which will 
break SU(2)L X U(1)y to U(1)em· 

The simplest choice (Weinberg and Salam, 1967) is to take 

ig' 
D1A> = (8/J + igTAw: + 2 Y BJJ)t/J (142) 

where t/J is a complex SU(2)L doublet with Y = 1. Then 

(143) 
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with the potential V(</>, 4>t) = -J-L2 </>t</> + >.(</>t</>) 2
• So, remembering the relation 

Q = Tl + ~ Y, the charge assignment is 

(144) 

If charge conservation is to remain unbroken, only the </>0 should get a vacuum 
expectation value. This motivates rewriting 

(145) 

wherexA, Harerealfields. ThepotentialisV(H) = -~J-L2 (v+H)2 +~(v+H)4 

and we have chosen v2 = ,.; to give the minimum at H = 0. 

Now substitute </> into LHiggs· We have 

4>--1 u( o ) - J2 v+H (146) 

where U is an SU(2)L gauge transformation. But since £ is gauge invariant, it 
will not depend on U, which can be absorbed into a trivial redefinition of the 
gauge fields, just as in section 8.1 for the U(1) transformation U = eix. 

In this so-called 'unitary gauge' the Lagrangian has the form 

(147) 

with 

(148) 

The Goldstone boson fields xA, which parametrise the space of fiat directions in 
the potential, disappear from the spectrum. The vacuum expectation value for 

the scalar fields is ( </>) = }2 ( ~ ) . 
This is not invariant under SU(2)L transformations or U(1)y, since we have 

assigned Y = 1 to</>. However it is invariant under U(1)em transformations, since 

Q (4>) - (T' + ~Y)(4>) = ~ G ( ~ ~1 ) + ~ ( ~ ~ ) ) ( ~ ) 
- ~ ( ~ ~ ) ( ~ ) = 0 (149) 

So G = SU(2)L x U(1)y is spontaneously broken to Go = U(1)em· There are 
dim G/Go = 3 broken generators, which implies 3 Goldstone boson XA· These 
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are absorbed by the vector bosons w±, Z, which acquire masses. The remaining 
vector boson, the photon, is still massless because U(1)em is unbroken. 

There is one massive neutral scalar left in the physical spectrum - the Higgs 
boson H. 

To find the masses and couplings, we expand out £Higgs· In the unitary gauge, 
where 

we have 

(150) 

in terms of lV+, lF-, Z. Notice that, as expected, the photon field A~' does not 
appear. 

Substituting into £Higgs, we find the vector boson masses 

2 1 
(151) mw -lv2 

4 

2 ~(l + g'2)v2 
1 g2 

2 (152) mz -
4 cos2 Ow 

mw 
4 

m2 
H - 2Av2 (153) 

We therefore predict the p parameter, originally introduced as the relative 
strength of the neutral and charged current interactions:-

m2 
p = w = 1 

m~ cos2 Ow 
(154) 

in the Weinberg-Salam-Higgs model. This is a special property of the particular 
representation of Higgs field we have chosen to induce the breaking of SU(2)L x 
U(1)y. Other choices are possible- not all give p = 1 however. 

The deeper reason is that p = 1 is a prediction of a global SU(2) ('custodial') 
symmetry implicit in £Higgs· Writing</> in terms of real components, 4>+ = </>1 +i</>2 

and </J0 = <jJ3 + i</>4 gives V( 4>t </>) = V(</>~ + </>~ + </>~ + «/>~). The potential has an 
0(4) symmetry, broken to 0(3) by the vacuum expectation value. In fact, the 
Higgs sector is a linear sigma model with coset manifold 0(4)/0(3) "' SU(2) x 
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SU(2)/ SU(2). The unbroken custodial global SU(2) ensures the mass relation 
between mw, mz that gives p = 1. 

Finally, rewriting .CHioos in terms of the parameters m~, m~, mh, g rather 
than the original set p,, ~' g', g we have 

r ~(8 H)2 - !m2 H2 + m2 w+w-,.,. + !m2 Z Z,.,. J..Higgs - 2 ll 2 H W ll 2 Z ll 

1 1 m2 
+ gmwHw+w-,.,. + -i H2w+w-,.,. + -9 -----LHz z,.,. ,.,. 4 ,.,. 4 mw ,.,. 

+ !g2 m~ H2 z z,.,.- !.JL mh H3- _.!_92 mh H4 + _1_m2 ~55) 
8 m~ ,.,. 4 .f2mw 32 m~ 2g2 H 

The corresponding Feynman rules for the vertices are shown in the figures. 

:~ >--------- H 

"':> ,.-···· H yy, _,• ' 

•, 

wv- ··· ... H 

z,>::::::::··· H 

Zv • •• H 

H • • ............. 
·. 

'":,..- · -- -·-- .. H 

H , ••• ----·· 

H •••••••• • •• ---···· H 

w·····)-=-------... " 

igm,... gi'V 

2 . 3 g2m H 
-• 4 ffilw 
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9.3 Fern1ion n1asses 

Yukawa interactions involving 2 fermion fields and the Higgs field can be con­
structed in such a way as to be SU(2)L x U(l)y invariant, and so preserve 
renormalisability. When the Higgs field gets a vacuum expectation value, the 
interaction terms give rise to mass terms for the fermions. 

Leptons: 

Choose the SU(2)L x U(1)y invariant Yukawa terms, 

(156) 
Setting 

(157) 

as above, we have 

- g me- H + t - -meee - -
2 
--ee Jl, r erms 
mw 

(158) 

The Yukawa coupling (another free parameter) is traded for the lepton mass. 
There is also a lepton-Higgs boson vertex, proportional to mtepton/mw. This is a 
general feature of the model- the Higgs boson couples to particles with a strength 
proportional to their mass. 

Quarks: 

This is slightly trickier because we have to arrange masses for the upper 
components of the SU(2)L doublets as well. 
Define 

(159) 

in the unitary gauge. 
Allowing for quark mixing, remembering that the SU(2)L eigenstates are 

( 
UiL ) • h d' uCKMd · diL w1t i = vij j, we can wnte 

-157-



- ~UiLGijuiR(v +H)- ~d~L VilG%idiR(v +H)+ h.c. 

(1 (ij 
(") gm' n- gmd--m' u· u·- __ u u· u·H- md' d· d·- --d· d·H (160) u'' 2 '' '' 2 ll mw mw 

where we have chosen Gij to be diagonal and Gii such that vt G is diagonal. 

10 The Standard Model Lagrangian 

This completes the construction of the standard model Lagrangian. The standard 
model is the SU(3)c x SU(2)L x U(1)v gauge theory with quarks, leptons and 
the Higgs field, with Lagrangian:-

Ls•f = _ !pA pA~tv _ !p p~tv _ !ea Ga~tv 
J> 4 /LV 4 /LV 4 /LV 

SU(2)L U(1)v SU(3)c 

A I 

+ iX.L(fJIL + ig T2 }V:+ i~ y B~t)XL 
SU(2)L and U(l )v fermion-gauge interaction on L fields 

I 

+ i{;R(fJIL + i~ y B~t)tPR 
U(l)y interaction on R fields 

+ iq(fJ~ + igqcv>.a G~)q 
SU(3)c interaction on quarks. 

>.a = SU(3)c triplet representation generators. 

G~ = gluon field. q = colour triplet quarks. 

A ' 
+ IC a" + ig T2 w: + i~ Y B11 )</>l 2 

- vc 4>t </>) 

Higgs sector => W, Z masses and H interactions. 

</> = SU(2)L doublet Higgs field (Y = 1) V is the Higgs potential 
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(Gd XL ~dR + Gu XL ~cuR + h.c.) 
Yukawa interactions ::::} fermion mass 

With the construction of this Lagrangian, our task in these lectures comes to 
a close. This is, however, more of a beginning than an end. 

Many questions immediately arise. Going beyond the tree level dynamics and 
symmetries we used to guide us to the Lagrangian, what does the standard model 
actually predict and is it true? Here, the evidence for the model is strong and 
compelling. Perturbative radiative corrections to the tree-level predictions are 
impressively verified in precision electroweak experiments at LEP, and perturba­
tive QCD, exploiting the power of the renormalisation group, is well established. 
Non-perturbative phenomena are much harder, but lattice gauge theories and 
other approaches are beginning to make serious inroads into the physics of QCD 
bound states. Beyond that, there are predictions, in general yet to be tested, 
concerning the role played by extended objects such as instantons, monopoles 
and strings which are implicit in the model. 

The least tested and most controversial aspect of the standard model is of 
course the symmetry breaking, Higgs sector. Here, even the confrontation of the 
model with precision electroweak data provides little more than circumstantial 
evidence in favour of the precise mechanism presented here. Experimental con­
firmation of the Higgs mechanism, or indeed an alternative dynamical symmetry 
breaking scheme, will probably have to await the LHC. 

Finally, we are led to the big questions. Assuming the standard model to be 
true, why is it the way it is? What determines the symmetries and the represen­
tations in which the elementary quark and lepton fields lie? What determines the 
parameters, nineteen in all? Aesthetic criteria, often so successful in fundamen­
tal physics, tempt us to the view that the standard model is just the low energy 
effective theory of a deeper, more unified theory of the fundamental interactions. 
But that would be another lecture course. 
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Problems 

1. Check that ~~ = 1 and {Is, fll} = 0. 
Show that PL = t(l- Is) and PR= t(l +Is) are projection operators, 

I.e. 
Pi = PL p~ = PR PLPR = PRPL = 0 PL + PR = 1 

Consider a massless fermion with pll = (E, 0, 0, E). Show that PLu(p) and 
PRu(p) are eigenstates of helicity h with eigenvalues -1/2 and 1/2 respectively. 

h = ~ !l.·l!. = -~ lolsi·P 
2 IEI 2 E 

2. Consider the current Jll = tu11l(1-15 )u. Show that under a combined GP 
transformation, 

1 
Jll --+ -2u1t(l- ls)u 

Hence verify that the product JllJtll is C P invariant. 
'What happens if we have different types of fermions Ui and a current Jll = 

!u . ...., (1- ""s)lf ·u · for some matrix V? 2 I 1/l I I) ) l • 

3. Suppose that the weak charged current had the Lorentz structure 

Calculate the cross section for vile- --+ ll- Ve and show that 

du _ G2 s ( + _ 4 () 

dfl - 321!'2 A +A cos 2) 

Tr1 .klll'Y·k' 1 11 

TT/5/ .kllll.k11 11 

1 llll>.p - 2f fllllet{J 

Neglect me and mll and assume 

4(kllk'11 + k'llkll- k.k'gll 11
) 

8ifllll>.p k>.k~ 

4. The decay rate for the 2-body decay Z-+ f J is 

r = -
1-jn IMI2 = 1 jdn IMI2 

2mz 647r2mz 

where D denotes the phase space measure. 
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The Zff vertex is -i~')'11 !(c~- c~15 ). 
First show that, summing over the fermion and averaging over the boson 

spms, 

IMI2 = 
1
2 

~
2

() {c~2 + c~2 )( -911v)Tr')'11')'.kll"'l·k2 
1 cos w 

where k1 , k2 are the fermi on momenta and the gauge boson polarisation sum is 

Then show that the decay rate is 

r - 1 9
2 

( f2 f2) - -
8 2 () Cy +CA mz 

4 7r cos w 

5. Using the explicit forms for cv and CA in the electroweak model, derive 
expressions for the decay rates Z --+ Veile, Z --+ e+e-, Z --+ uu and Z --+ dd in 
terms of sin2 Ow 

\Vhat is the total width of the Z in the standard model? 
{GF = 1.2 x 10-5 GeV2

, sin2 Ow = 0.23, mz = 91GeV] 

6. Consider a Higgs theory for a general gauge group G and Higgs field </>. 
Show that the vector boson mass matrix is 

where (</>) is the vacuum expectation value of</> and TA is the generator of Gin 
the representation to which </> belongs. 

Specialise the above result to G = SU(2)L x U(1 )y, with </> in an SU(2)L 
doublet representation with Y = 1 and assume the breaking conserves U(1)em· 
Show that in the charged sector, m~± = 92 v2

, where v is the magnitude of the 
VEV for </>, while in the neutral sector, the mass matrix for w; and B 11 is 

1 2 ( 92 -99') 
4v -99' 9'2 

Diagonalise this to find the mass eigenstates. Show that these are the photon A11 

and Z,.,. defined as 

z,.,. 
A,.,. 

w; cos Ow - B 11 sin Ow 

w; sin Ow + B,.,. cos Ow 
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Analogous definitions may be introduced for the electric and magnetic form factors 
(S&) and (61). 

It is customary to show the measured electric form factor G~ of the proton for low 
IDOIDCDium transfers, divided by the so-called dipole fit: 

1 

G0\q6)~ ( ' 2 with tj~=18.23fm-2 • 
1 + ql;qn 

(67) 

Us ...... l\~ ,~,..: (£: ; Gt! = r=; · ~ £ 
q.~~ 

F:.. 
; This dipole dependence of the form factors G~(q2 ) and Gtr(q2)/J1P -~n q2 is ~nly of 
L ·. . .historical. interest in so far as earty data seemed to be in good agreement with this 
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300 Jell 

T.lble 9 • .1. Squared matrix elemenb for 2 -+ 2 subprocuses 
in QCD (averaged over spin a11d colorJ: f and t/ denote dis­
tind Bavors of quark, g: = 4ll'a. is Clle coupliD~ squared. For 
identical 6Dal partons, inee,rate only half tbe solid angle. 

Subproc:est 

qt/- '"} 
qiJ'-qiJ' 

qq-+qq 

qiJ-t/11' 

qiJ-tl/ 

qiJ- ,, 

gg-qiJ 

IJI-IJI 

-4)g-gg 

I.MI2M 
4 _;2 +u2 
.9£2 
~ (.;2 + 11s .;s + ;s) _ .!_ :!:_ 
g i2 + u2 21 ui 
4 j2 +112 

9~ 
~ (.;s + 11s is+ u2) _.!. u2 
g i2 + J2 27 Ji 

32 u2 + i 2 a u2 + il 
i7 Gi- i ---:;r--
1 ,&I + p 3 ,&2 + i2 

6 --;ii - 8 ---:;r--
,;2 + 11s 4 ,;2 + 112 

~-9--;rr-

g (.is +,&I ,;2 + ;s u2 + i2 ) 
4 iJ+i=+-:;z---+3 

2.2 
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0.1 
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30.4 
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· 3: One of the highest E1 jet eventa seen at the CDF detector, with 
uiant mass o£ approximatdy 630 GeV. 

I; only above 15 GeV one begins to have some confidence in clusterin& 
eans o£ jet identification. Figure 4 ahbws a typical two jet event at the 
t transverse energies seen at CDF. The existence of clusters of ener~ 
"' - ~ plot is unmistakeable. Figure 4 shows a typical fou jet event. 
; figure the jet energies range !rom 40 to 60 GeV, and, although still 
· identifiable as isolated clusters, it is clear that they are substantially 
:r in extent than the jets in figure 4. 

e identification of jets is done using a clustering algorithm based on 
neter data in which one seeks to identify separated clusters of energy. 
Jgorithms have been evaluated for their ability to find clusters in dense 
• The two most commonly used algorithms will be termed the neare.Jt 
or and the fized c:one algorithms. The nearest neigh bO-T algorithm uses 

tower above a threshold (2 GeV), and finds all contiguous towers 
nding the seed tower with energies above a should~ threshold {0.2 

..o6o,......,. 

;6..$'~ 0 
"'o-o...._~ 

o.o .... o-.,6.,. 
..;;S 
~ 

. .§ 
~ 
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...... ,0 

Figure 4: A four jet event as seen in the CDF detector. All4 jets have E1's 
in excess of 40 GeV. 

fixed fraction, set to 2.0 by default. The merged towers are themsdves used 
u seeds for a search of contiguous towers. The parent-daughter test allows 
jets to be defined around local maxima in the transverse energy. If a tower 
is not merged~ it becomes the seed of another cluster. 

The cone algorithm starts !rom the clusters defined in the contiguous 
tower algorithm before the mergins step, and uses the E1 weighted centroid 
u the center of a circle (or cone) in ., - ~ space, with a radius liR = 
../ A17l + t:.(iil. All the towers above the shoulder threshold inside this circle 
are included in the cluster. The centroid is recomputed !rom these towers, 
a new circle is drawn and a new list of towers is generated. This process 
is iterated until the list of towers inside the cone is stable upon successive 
iterations. The fixed cone algorithm has the advantage that it is most closdy 
rdated to the algorithms used by theorists to regulate collinear ingularities 
in the calculation of gluon 6rr:rrutrahlung [5),[6). 

The two other algorithms which we have investigated are the E, depen· 
. ~· - .. .. • . . ~ -· ! ' .. -.. .: .. "·- • .. .. ~ '·-.. . 
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}'ijgure 4: Inclusive jet Ee spectrum from the ISR, 
SPPS, and the Tevatron. Also shown is the pre­
ditction o{ a leading order QCD calculation made 
rith the choice Q2 = El /2 for all values of .,fi. 
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im figure 4. The error ba.rs shown illustrate the 
t;ypical uncertainty a.ssociated with both the theo­
r.etical calculations at leadin~ order and the exoer-
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FIG. 2. Inclusive jet cross section du/dErdq vs the ratio 
p/Er for .Ji -1800 GeV, Er-100 GeV, q-0, and R-0.6. 
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fur each event, there arc . 2 ways of assigning 
~he tagged b-jct, 3 ways or choosing another 
Jet to l>e the other b, and 2 solutions for the 
neutrino longiludinal momentum: \I 

12· ·possible configurations per event. 

Select solution with smallest X 2. If M top > 
260 GeV/c2, select next hig·l~r x2 solution. 

Check procedure on Monte Carlo tT events. 

As n function of top mass; fit the data to a sum of 
top and background mass distributions. The 
largest likelihood Is for 

M 101, = 174 :1: 10 ~11{ OeV/c2 ( 7 events) 

where the systematic error includes the mass 
shift from removing two events at random. 

For comparison, the average mass of the 7 events 
is 166 GeV/c2, while the average of the 6 highest 
mass•evenrs is 172 GeV/c2. 

~ nt ~ith the w ... jets spectrum alone is !10 
tunes less I ikely. 

&I (l(l(j~ 
Top f.'tnss and Cross S~ct\!>.tl 

.. ·. 
····~ ··· .... 

'· 

· .. · .. 

Theory: Lnenen, Smith, and van Neerven 
N tJLo 

· .. · .. 

120 

·· .... .. 

1<40 160 

Top Ma~s {GeV/c1
) 

lOO 

rl 

~ 
> 
0 
0 

~ 
5 
& 

,,, 
~r__j1.~ou f;t -to 

• -~r..l:'c."' t..J .. • ~s.ts E.l/t"'1:_L 

) r------------.,----

. ' 

2 

.. r, .,t, 
170 180 190 

~op Mass (GcV/c
2
) 

. • t>o..t.. (l tllc.~-l~) 

I 
~o ... te. Co..rlo' 
t\ + (1.11 .. Jd\) 
S.l. • \.'\ c.v-ts 

14 .. Jt."t~ (1.'\ t.vt .... -b) 
\Je<.\.o~ KC. 

0 ~~._.__.l....l.7., s~o..._.__c:~:;2=!=oo::b.=-... 2.J.s'""o '--'--J:io 
Top Mass {GeVIc2

) 

MAS~ DETERMINATION 

In the b-tagged W + ~ 3 jet~ ~ample, 1equile 
fourth jet wilh Et > 8 GeV anti '1 < VI. 'l11is 
knves 7 events (oul of 10), with cxpectc1\ 

4 ~·2 0 
hackgtound ur 1. •• :. event5. 

Con·ecl observed jel energies back In pnllnn 
level (use Monte Carlo to riml corrrction). 

1:it each of the 7 eventli in I urn with SQUJ\ W: 

W 1 -> e + v (or ll + v) 

11•4 = 44 parameters, 20 equations and 26 
measured (or known) tluantilies = 2 constraint rit 
(think uf Mjj = Mw ami Mq = Mt2>· 
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S u.rrtrn.O.rj of e.VJ. 

'• 

a) LEP 

line-shape and 
lepton asymmetries:. 
Mz [GeV] 
rz [GeV] 
0'~ [nb] 
Rt 

~·i 
+ correlation matrix . 
r polarization: 
A.,. 
.A. 
b and c quark results: 
Rb = r bb/rhad 
~ = rc-c/rhad 
~Bb 
~·; 
+ correlation matrix 

qq charge asymmetry: 
• 2 otept fr ( Q ) sm cJJ om FB 

b) .PP and vN 

. . ~ 

pr-ec.C.sC.on.. me.o..s~ 

91.1888 ± 0.0044 
2.497 4 ± 0.0038 

41.49 ± 0.12 
20.795 ± 0.040 

0.0170 ± 0.0016 

0.143 ± 0.010 
0.135 ± 0.011 

. 

0.2202 ± 0.0020 
0.1583 ± 0.0098 
0.0967 ± 0.0038 
0.0760 ± 0.0091 

0~2320 ± 0.0016 

.· 

0.001-
0.001 
O.A 4-
o .. Ott.3 
0.00~9 

O.O~lf-

0.0~5 

o.oo~t 

O.OA'r 
0.0:06 
0.0-15 

Mw [GeV] (CDF, CDF prel., 80.23 ± 0.18 0.39 (CD!· 
DO prel., UA2) 

' 
1- Miv/Mi(vN) . 0.2256 ± 0.004 7 

c) SLC 

• 201ept fr A sm elf ~m e 0.2294 ± 0.0010 new I , 
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for a process mediated by the e~change of a single time-tuce pnoton vana u.t..t 
this represents a considerable variation in the magnitude of the cross-secti• 
dependence alone. Other properties of the reaction (e.g. multiplicity, event s 
vary with energy and these wiU be discussed in the following sections. 

3.1.1 Total cross-section 

A collection of total cross-section measurements made at many different a 
the last 15 years is shown in Figure 6. On this log-log plot, a 1/s depend 
a line with a slope of -1, and apart from the resonances this is at least r 
above s = 100 GeVl, the energy region we are concerned with here. The 1/ 
the basis of the exchange of a zero mass particle in the s-channel. This i 
exchange at all energies and for ZO exchange well above the ZO pole. 
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Figure 6. A summary of total cross-section measurements 
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• :f e 
(3.1) 

It is conventional to express the cross-section as the ratio R, defined thus: 

.R = 
measured yield e+e- -+ hadrons 

theoretical yield e+e- -+ "' -+ Jl+Jl-

These measurements are summarised in Figure 7, taken from the Review of PE 
Properties (Anguilar-Benitez et at 1986), where results from lower energy machim 
included for reference. 
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