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Chapter 1

Introduction

USER MANUAL VERSION : 0.6
ZEPHYROS VERSION : 1.0 series
DATE = October 23, 2014

AUTHOR = A.P.L.Robinson

1.1 Overview

The ZEPHYROS code is a 3D macroparticle based hybrid code for studying fast
electron transport in dense plasmas. The code was developed by Dr.A.P.L.Robinson
at the Central Laser Facility from 2009 onwards. The code is heavily based on
the classic hybrid model for laser generated fast electron transport in dense
plasmas that was originally worked on by J.R.Davies.

Version 1.0 of ZEPHYROS is a single processor version of the code written
in FORTRAN 90. In this manual we will primarily describe the use of the code
via the input deck (readin.in). The following chapters of this manual thus detail
the parameters in the input deck and their function.

1.2 How to Use this Manual

In order to set up a ZEPHYROS simulation, it is absolutely necessary to prepare
an input deck in the form of a file called readin.in. This manual concentrates on
the preparation of this inupt deck. In terms of the ‘code utility’ aspect (i.e. how
to run or compile the code on certain systems) we only provide instructions for
running on a generic linux system in the following chapter. We do not include
any details on the internal physical models or algorithms of the code in this
manual.

One can copy the input deck from Chapter 3, and use the quick references
tables there too. Chapters 4–6 provide more detailed information on what the
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Introduction

different parameters do.

1.3 Output

ZEPHYROS writes output in text format to a set of .dat files. These files can
be viewed by a variety of applications. MATLAB has been found to be a good
platform for looking at ZEPHYROS output, however VisIt is also a recom-
mended visualization tool, particularly for producing fully 3D visualizations.
The increasing popularity of Python has lead to the CLF PPG producing the
PyBUS library of scripts, one division of which are devoted to visualization of
ZEPHYROS output. More information on this is given in Chapter 7.

1.4 History

Zephyrus, or just Zephyr, in Latin Favonius, is the Greek god of the west wind. The
gentlest of the winds, Zephyrus is known as the fructifying wind, the messenger of
spring. It was thought that Zephyrus lived in a cave in Thrace.

from the Wikipedia Entry on Anemoi

2009: Development of ZEPHYROS was started when APLR was asked by
Satya Kar and Matt Zepf (both of Queen’s University Belfast) to help model
fast electron flow through Al-Sn-Al ‘structured collimator’ targets.

2010: ZEPHYROS capabilities are expanded when Bhuvan Ramakrishna
and Matt Zepf ask APLR to help model a further experiment with Fe wires
immersed in Al.

2011: APLR expands ZEPHYROS even further in order to model fast elec-
tron transport in carbon allotropes and Li in order to support experiments lead
by Paul McKenna (University of Strathclyde). APLR also starts using ZEPHY-
ROS for studying the ‘magnetic switchyard’ concept for Fast Igntion ICF.

2012-2014: ZEPHYROS gradually develops in collaboration with Strath-
clyde, York, and Oxford.

2014 : 1st major documentation revision (manual version 0.5).
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Chapter 2

Building ZEPHYROS

2.1 Overview

In this chapter we provide information on how to build and run ZEPHYROS
on a generic linux system. We have been able to build ZEPHYROS on a number
of different linux platforms including STFC’s SCARF cluster which is based on
Red Hat Enterprise Linux, and workstations using Linux Mint. We have also
built ZEPHYROS on Windows XP based systems using Silverfrost’s Fortran
compiler.

2.2 Source

The source code for ZEPHYROS consists of 21 .f90 files, including a makefile.
The source is maintained by the CLF PPG on the CLF Software Repository
(SVN server). The files are:

zeph_angular.f90
zeph_bkgd.f90
zeph_currents.f90
zeph_diff.f90
zeph_drag.f90
zeph_em.f90
zeph_init.f90
zeph_inject.f90
zeph_kalpha.f90
zeph_main.f90
zeph_move.f90
zeph_psolve.f90
zeph_readin.f90
zeph_rlm.f90
zeph_save.f90
zeph_scatter.f90
zeph_tf.f90
zeph_vars.f90
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zeph_weightparts.f90
zeph_xchang.f90

This source is not dependent on any third party libraries.

2.3 Compiling

A makefile is included with the code in the repository. Therefore anyone who
obtains the code should also obtain the makefile. The makefile only needs to
be altered so that it invokes the fortran compiler that you wish to use. On most
linux systems you should be able to install the gfortran compiler. Some users
may have acquired a commerically available compiler such as the Intel Fortran
compiler.

The correct compiler can be invoked by changing the value of FC in the
makefile. Once this is done doing make zeph should result in the code being
compiled and built.

2.4 Running

Running ZEPHYROS is straightforward. One needs an executable (which we
will call zeph), an input deck (readin.in), and possibly a few additional input
files depending on the problem (resinp.dat,ninp.dat,zinp.dat). Once these
files are placed in the run directory the code can be run simply. This will be :
>./zeph
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Chapter 3

Input Deck Overview

3.1 The Input Deck

ZEPHYROS takes a single list of numerical and logical parameters as its input
via the FORTRAN NAMELIST facility. Here is an empty input deck:

&inpvars

nfasts =

nx =

ny =

nz =

dx =

dy =

dz =

iconfig =

idiagnostic =

tstop =

dtsave =

timefrac =

temp in =

loglambda =

loglambdascat =

loglambdadrag =

rspot =

rspotmax =

rspotmin =

Ilaser =

absfrac =

tlaser =

iinject mode =

ilaser spot =
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Input Deck

iinject func =

lambda laser =

div angle =

control1 =

control2 =

control3 =

control4 =

control5 =

control6 =

control7 =

control8 =

control9 =

control10 =

control11 =

control12 =

icontrol1 =

icontrol2 =

icontrol3 =

ilaser1 =

ilaser2 =

ylaser =

zlaser =

las control1 =

las control2 =

las control3 =

las control4 =

las control5 =

Lbrems =

Lxchang =

Lmdiff =

LBevolve =

Lcheck params =

Lthomasfermi =

LRedLeeMore =

Linjcontrols =

Lkalpha =

LSpecifyLMParam =

LFixedResistivity =

nresinp =

iconfig2 =

iconfig3 =

icontrol4 =

ibcs=

ifields=

lm mfp factor =

lm multiplier =
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Lsave currents=

Lsave diags =

Lsave resist=

Lsave eden =

pxx x1 =

pxx x2 =

ipxxmode =

Lsecondspot =

Ilaser 2 =

absfrac2 =

lambda laser2=

tlaser2=

rspot2=

rspotmax2=

rspotmin2=

ylaser2=

zlaser2=

div angle2=0/

&end

Certain straightforward simulations will not require all these parameters to
be used. It is helpful to break the input deck down into the parameters that
govern different aspects of the simulation initialization and control. There are
really four categories of parameter : GENERAL , CONTROL , FAST ELECTRON ,
and TARGET :

• GENERAL : These parameters control the over-arching aspects of the
simulation, including number of macroparticles, domain size, simulation
time, simulation outputs and so on. The functions of these parameters are
described in Chapter 4 of this manual.

• CONTROL : These are general inputs that interact with the other input
parameters to finely tune an initialization. These parameters only func-
tion in conjunction with other parameters, i.e. by modifying their effect,
and are thus referred to throughout the manual.

• FAST ELECTRON : The parameters control the injection of fast electrons
in the simulation. The functions of these parameters are described in
Chapter 6.

• TARGET : These parameters control the background or target initializa-
tion. The functions of these parameters are described in Chapter 5.

If we apply this to the input deck then it looks like:

&inpvars

nfasts =
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nx =

ny =

nz =

dx =

dy =

dz =

iconfig =

idiagnostic =

tstop =

dtsave =

timefrac =

temp in =

loglambda =

loglambdascat =

loglambdadrag =

rspot =

rspotmax =

rspotmin =

Ilaser =

absfrac =

tlaser =

iinject mode =

ilaser spot =

iinject func =

lambda laser =

div angle =

control1 =

control2 =

control3 =

control4 =

control5 =

control6 =

control7 =

control8 =

control9 =

control10 =

control11 =

control12 =

icontrol1 =
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icontrol2 =

icontrol3 =

ilaser1 =

ilaser2 =

ylaser =

zlaser =

las control1 =

las control2 =

las control3 =

las control4 =

las control5 =

Lbrems =

Lxchang =

Lmdiff =

LBevolve =

Lcheck params =

Lthomasfermi =

LRedLeeMore =

Linjcontrols =

Lkalpha =

LSpecifyLMParam =

LFixedResistivity =

nresinp =

iconfig2 =

iconfig3 =

icontrol4 =

ibcs =

ifields =

Lsave currents =

Lsave diags =

Lsave resist =

Lsave eden =

pxx x1 =

pxx x2 =

ipxxmode =

Lsecondspot =

Ilaser 2 =

absfrac2 =

lambda laser2 =
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tlaser2 =

rspot2 =

rspotmax2 =

rspotmin2 =

ylaser2 =

zlaser2 =

div angle2 =0/

&end

Details of what each parameters controls and its relation to the physics
embodied by the ZEPHYROS algorithms is given in the subsequent chapters.
Here we will provide tables giving brief descriptions of each parameter which
are useful for quick reference.

3.2 Units

ZEPHYROS is an SI based code. Internally the code works on an SI basis. A
number of important parameters are not, however, generally expressed in SI
in laser-plasma physics. This includes intensity (Wcm−2), laser wavelength
(µm), and temperatures (eV). The tables and detailed chapters will indicate
where parameters are to be inputted in non-SI units. Otherwise a user should
assume SI units.
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3.3 Quick Reference Tables

GENERAL
Parameter Type Function
nfasts INTEGER Number of macroparticles used by simulation.
nx,ny,nz INTEGER Number of spatial cells in each dimension.
dx,dy,dz REAL Spatial cell size in each dimension.
idiagnostic INTEGER Selects special diagnostic mode.
tstop REAL Time at which simulation runs up to.
dtsave REAL Time between simulation outputs.
timefrac REAL (0–1) dt/min(∆x,y,z/c)
Lbrems LOGICAL Turns bremsstahlung cooling of background on and off.
Lxchang LOGICAL Turns electron-ion energy exchange in background on and off.
Lmdiff LOGICAL Turns magnetic diffusion term on and off.
LBevolve LOGICAL Turns evolution of magnetic fields on and off.
ibcs INTEGER Sets spatial boundary condition for fast electrons.
Lsave currents LOGICAL Turns outputting of current densities on and off.
Lsave diags LOGICAL Turns outputting of auxillary diagnostics on and off.
Lsave resist LOGICAL Turns outputting of resistivity on and off
Lsave eden LOGICAL Turns outputting of electron density on and off
pxx x1 REAL Parameter for phase space auxillary diagnostic.
pxx x2 REAL Parameter for phase space auxillary diagnostic.
ipxxmode INTEGER Selects different options for the kinetic diagnostic
Lcheck params LOGICAL Checks for certain errors at start.
ifields INTEGER Selects set-ups with externally imposed EM fields.
Lkalpha LOGICAL Turns on internal calculation of Kα photon emission rate.

Table 3.1: Summary of General Simulation Parameters
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TARGET
Parameter Type Function
iconfig INTEGER Selects from a set of target materials and set-ups.
temp in REAL Initial target temperature in eV.
loglambda REAL (INACTIVE).
loglambda scat REAL Coulomb Logarithm for fast electron angular scattering.
loglambda drag REAL (INACTIVE).
nresinp INTEGER The number of records in resinp.dat.
Lthomasfermi LOGICAL Thomas-Fermi ionization model and E.O.S.
LRedLeeMore LOGICAL Reduced Lee-More model for material resistivity.
lm mfp factor REAL Multiplied by rs is min. electron m.f.p.
lm multiplier REAL Gross multiplier to LM resistivity. Should set to 1.0 normally.
LSpecifyLMParam LOGICAL Switch to input of LM mfp factor via external file
LFixedResistivity LOGICAL Specify a constant resistivity for target.

Table 3.2: Summary of Target Parameters
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FAST ELECTRON
Parameter Type Function
rspot REAL Characteristic laser spot size.
rspotmax REAL Maximum radius of fast electron injection region.
rspotmin REAL Minimum (inner) radius of fast electron injection region.
Ilaser REAL Peak laser intensity in Wcm−2.
absfrac REAL (range 0–1) fraction of laser energy absorbed as fast electrons.
tlaser REAL Laser pulse duration.
iinject mode INTEGER Selects angular distribution of fast electrons from presets.
ilaser spot INTEGER Selects transverse laser spot profile from presets.
iinject func INTEGER Selects energy distribution function of fast electrons.
lambda laser REAL Laser wavelength (in µm).
div angle REAL Characteristic fast electron divergence angle.
ilaser1 INTEGER Controls fast electron temperature model.
ilaser2 INTEGER Controls laser spot positioning (0:midpoint,1:user defined).
ylaser REAL User defined y-position of primary laser spot.
zlaser REAL User defined z-position of primary laser spot.
Lsecondspot LOGICAL Turns the secondary laser spot on and off.
Ilaser 2 REAL Peak laser intensity in Wcm−2 of secondary pulse.
absfrac2 REAL (range 0–1) absorption fraction for secondary pulse.
tlaser2 REAL Laser pulse duration of secondary pulse.
rspot2 REAL Characteristic laser spot size (secondary).
rspotmax2 REAL Maximum radius of secondary injection region.
rspotmin2 REAL Minimum (inner) radius of secondary injection region.
ylaser2 REAL User defined y-position of secondary laser spot.
zlaser2 REAL User defined z-position of secondary laser spot.
div angle2 REAL Divergence angle for secondary pulse.
Linjcontrols LOGICAL Turns on additional injection controls.

Table 3.3: Summary of Fast Electron Parameters
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Chapter 4

General Simulation
Parameters

The GENERAL parameters control the top-level computational aspects of the
code rather than the more physical aspects. These parameters control the do-
main gridding, simulation time, output times, and logical switches for various
solvers.

4.1 Spatial Parameters

ZEPHYROS uses a fully 3D Cartesian grid. The number of spatial cells for each
dimension are specified individually by nx, ny, nz. The size of each cell in each
dimension is specified individually by dx, dy, and dz. The fully 3D grids can
take up a considerable amount of memory (the code uses about 17 such arrays),
for example a 200×200×200 array probably requires 61MB. So a run based on
such a grid size will require at least 1GB in memory.

4.2 Temporal Parameters

The time that the simulation will run up to is specified by tstop. The time
between outputs is defined by dtsave. The time step in the code is determined
by αmin (dx/c, dy/c, dz/c) where α is equal to timefrac.

4.3 Modular Physics Switches

Various physics modules in the code can be turned on and off by the following
switches:

• Lbrems:The code has a simple module in which the background cools due
to bremsstrahlung under the assumption that the target is optically thin.
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• Lxchang:There is an electron-ion energy exchange module in the code
based on the classical rate of e-i equilibriation in a plasma.

• Lmdiff:There is a magnetic diffusion module in the code that effectively
solves for the resistive magnetic diffusion term in the induction equation.

• LBevolve:The evolution of the magnetic fields can be turned on and off
using this switch.

• Lthomasfermi : Turns on the general Thomas-Fermi model for determin-
ing ionization state. See Ch.5.

• LRedLeeMore : Switches resistivity model to a ‘reduced’ Lee-More model.
See Ch. 5.

• Lkalpha : Turns on internal calculation of Kα photon emission rate due to
fast-electron-induced K-shell excitation. Uses the algorithm developed
in A.G.R.Thomas et al., New J.Phys., 15, 015017 (2013).

4.4 Functional Switches

There are a number of switches that affect the general aspects of the code func-
tion. These include:

• Lcheck params:The code checks the input deck for a certain number of
hard-coded errors. This does not guarantee that every possible error has
been checked for. The code will abort with an error message if an error is
found.

• Lsave currents:Turns the saving of the current density outputs on and
off.

• Lsave diags: Turns the saving of any special diagnostics on and off.

• Lsave resist: Turns the saving of the target resistivity on and off.

• Lsave eden: Turns the saving of the background electron density on and
off.

4.5 Boundary Conditions

The boundary conditions for the fast electrons are controlled by ibcs. This
selects from the following options:

0 All boundaries are reflective.
1 x = 0 boundary reflective. x = xmax and side (y and z) are open.
2 x-boundaries are reflective. Side (y and z) boundaries are open.

Table 4.1: Spatial boundary conditions for fast electrons.
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4.6 External EM Fields

The ifields parameter can be used to select set-ups with externally imposed
EM fields. This will be of particular interest to those who are modelling sce-
narios in which a large scale magentic field has been imposed (e.g. by external
coils and a pulsed-power system). The current options are :

0 All fields are zero (default case).
1 Bx is uniform and set equal to control param5.

Table 4.2: EM initialization options.

4.7 Special Diagnostics

The code has a certain number of ‘special diagnostics’ that are hard-coded.
Special diagnostics will only be saved if Lsave diags is set to TRUE.

0 No special diagnostics.
1 Angular diagnostic.
2 Kα diagnostic.

Table 4.3: Special Diagnostic configurations available

4.7.1 Angular Diagnostic

This returns an analysis of the fast electrons in each spatial cell. The dg1 file will
contain the average fast electron propagation angle with respect to the x-axis.
The dg2 file will return the standard deviation of the fast electron propagation
angle with respect to the x-axis in each spatial cell.

4.7.2 K-alpha Diagnostic

This will output the Kα photon emission rate as determined by the code’s inter-
nal Kα algorithm. This algorithm is largely identical to the algorithm described
in A.G.R.Thomas et al., New J.Phys., 15, 015017 (2013). In order for this to work
properly, that component must be activated, i.e. Lkalpha must be set to TRUE.
The photon emission rate in each spatial cell is written to dg1.
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Chapter 5

Target Parameters

The TARGET parameters control the target or the background plasma. This
is done through the iconfig parameter which chooses from the following:

• Configurable Hot Plasma: One can choose a homogeneous hot plasma
(Spitzer resistivity and Ideal E.O.S. for electrons) with specified ion den-
sity, Z, and initial temperature.

• Arbitrary Hot Plasma: One can supply a 3D map of Z and ni to the code
via additional files (ninp.dat and zinp.dat) in order to obtain a multi-
material hot plasma with an arbitrary distribution of Z and ni (uniform
initial temperature).

• Set Cold Target Configurations: There are a number of hard-coded fixed
configurations that can be chosen. This includes structured and multi-
material configurations as well as homogeneous targets.

Additionally one can choose any of the above, and then request the use of a
reduced Lee-More model for the resistivity curves by setting LRedLeeMore

to .true.. The atomic model that is used for the effective Z of the back-
ground ions is, by default, a very simple analytic fit to the Thomas-Fermi
model used by Davies. The analytic fit used by More can be selected by setting
Lthomasfermi to .true.. The reduced Lee-More model automatically makes

use of this atomic model for determining the resistivity curve. The ionization
state of the ions affects not only the resistivity curves, but the rate of angular
scattering from the background ions and the level of drag on the fast electrons
due to collisions with the background electrons.

The settings that iconfig chooses from are summarized in the table below.
These are then described in more detail in the following sections.
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ICONFIG Value Description
1 Ideal Hot Plasma
2 Al-Sn-Al ‘Sandwich’ target
3 Homogeneous cold Al target
4 Homogeneous cold CH target
5 Fe-Al embedded wire target
6 Carbon Allotrope with external resistivity
7 CH foam target
8 Sulphur foil target
9 CH-Ta buried layer target
10 Gold foil target
11 Ti-Al buried layer target

Table 5.1: iconfig settings

5.1 Homogeneous Cold Targets

There are many situations where one wants to investigate fast electron prop-
agation through homogeneous targets at low temperatures (where they may
only be heated to a few eV). The iconfig presets 3,4,8, and 10 provide these
for Al, CH, S, and gold respectively. The initial temperature of the target is then
set by the temp in parameter. These settings are not otherwise configurable in
general.

5.2 Resistive Guiding Targets

The configurations selected by iconfig =2 and 5 are two ‘resistive guiding’
configurations. iconfig = 2 selects an Al-Sn-Al sandwich configuration (lay-
ers alternating in the y-direction), and iconfig = 5 selects a configuration
with an Fe wire immersed in an Al substrate.

5.2.1 Al-Sn-Al Sandwich Target

In the iconfig =2 target configuration, the default profile of the sandwich
layer icontrol1 =0 is a tanh profile,

ψ =
1
2

(
1− tanh(

y− ym − α

β
)

)
, fory ≥ ym, (5.1)

where ψ is the volume fraction of Sn, ym is the y-midpoint, α is the boundary of
the Sn layer, and β is the smoothing length. The parameter α is set by control3 ,
and the parameter β is set by control4 .

24



Target

5.2.2 Fe Wire Target

In the iconfig =5 target configuration, the default profile of the wire ( icontrol1 = 0

is defined by,

ψ =
1
2

(
1− tanh(

ρ− α

β
)

)
, (5.2)

where ψ is the volume fraction of Fe, α = control3 , and β = control4 . Set-
ting iconfig =1 will eliminate the Al wire (for testing).

5.3 Buried Layer Targets

The configurations selected by iconfig =9 and 11 are ‘traditional’ buried layer
targets (layers alternating in x-direction). iconfig = 9 is a Ta buried layer in
CH, and iconfig = 11 is a Ti buried layer in Al.

5.3.1 Al-Ti Target

In the iconfig = 11 configuration, the only configurable aspect is the posi-
tion of the front edge of the Ti layer and the position of its back edge. These
positions are set by control1 and control2 respectively. The Al compo-
nent uses Davies’ resisitivity curve. The default resistivity curve for Ti is user
defined through the equation,

η =
T

α + βT + γT5/2 , Ωm (5.3)

,where T is in eV, α is set by control3 , and β is set by control4 .

5.3.2 CH-Ta-CH Target

In the iconfig = 9 configuration the only configurable aspects are the posi-
tions of the front and back edges of the Ta layer. As with iconfig = 11, these
positions are set by control1 and control2 respectively. The CH compo-
nent uses Davies’ resisitivity curve. The default resistivity curve for Ta is user
defined through the equation,

η =
T

α + βT + γT5/2 , Ωm (5.4)

,where T is in eV, α is set by control3 , and β is set by control4 .

5.4 Externally Supplied Resistivity Configuration

The configuration selected by iconfig = 6 allows one to specify the ion den-
sity and initial temperature, as well as the resistivity curve. The resistivity curve
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must be supplied in a file named resinp.dat which should be a two column
text file with the first column being a list of temperatures (in eV) and the second
column being a list of of corresponding resistivities (in Ωm). The ion density
ni is taken from control2 and the ion charge, Z, from control1 .

5.5 Configurable Hot Plasma

By selecting iconfig = 1, one is choosing a homogeneous hot plasma (ideal
E.O.S. and Spitzer resistivity). The standard operation of this configuration is
to take the ion density ni from control2 and the ion charge, Z, from control1 .
The initial temperature is taken from temp in as usual.

5.6 User Defined Hot Plasma

By selecting iconfig = 1 and iconfig2 = 3, one selects a configuration in
which both the Z and ni are read in via the files zinp.dat and ninp.dat. These
need to be prepared in advance and placed in the code’s run directory. This set-
ting is highly flexible and allows the user to investigate a very wide range of
hot plasma target configurations. There is also the iconfig = 1 and iconfig2

= 5 setting, where one can also specify the initial electron and ion temperature
by supplying the file tcinp.dat as well.

5.7 Control of the Lee-More Resistivity Model

There are number of ways in which the Lee-More model can be ‘fine tuned’.
The minimum mean free path can be set as a multiple of the interatomic spac-
ing via lm mfp factor . The resistivity curve can have a global multiplier ap-

plied to it via lm multipler . Finally one can specify a mean free path mul-

tiplier for each cell individually by setting LSpecifyLMParam to .true. and
supplying an external file containing the values.

5.8 Fixed Resistivity

If the user would like to specify a universal, constant resistivity for the target
then this can be done by setting LFixedResistivity to .true.. The value of

the resistivity is then set via control9 .
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Fast Electron and Laser
Parameters

The FAST ELECTRON parameters control the injection of fast electrons. This
is meant to model fast electrons that are generated by an ultraintense laser.
Hence this entire aspect of the code is based around a ‘laser model’.

6.1 Laser Model

Fast electrons are injected into the computational domain by assuming that
they are promoted from the background. Fast electron generation is not done
self-consistently, but is done as an energy dump over a ‘laser spot’ profile in
the transverse direction and a few cells depth in the x-direction. Effectively the
number of fast electron injected into these ‘generative’ cells every time step is,

N f ast =
ηabs I(r)∆y∆zdt

ε̄ f ast
, (6.1)

where ηabs is the absfrac (absorption fraction) parameter, I(r) is the intensity
as a function of radius (in the transverse direction), and ε̄ f ast is the average fast
electron energy.

The laser model parameters of immediate importance are : Ilaser, absfrac,
and tlaser. The parameter Ilaser determines the peak laser intensity and is
given in units of Wcm−2. The parameter tlaser determines the laser pulse
duration and is given in units of seconds. The parameter absfrac should be
in the range 0–1 and this simply defines ηabs. The user needs to determine
this depending on what he or she believe the conversion efficiency to be in the
problem that is being simulated.

The primary laser spot is always located adjacent to the x = 0 plane, how-
ever the central position of this laser spot can be defined by the user. If ilaser2
is set to zero then the spot will be centred on the midpoint. If however ilaser2
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is set to 1 then the spot will be centred by the values given to ylaser and
zlaser.

A second laser spot on the x = xmax plane can be used by setting Lsecondspot

to TRUE. Details of this feature are given later on.

6.2 Laser Temporal Profile

The only temporal profile that is currently implemented is a top hat profile
from t = 0 up to t =tlaser

6.3 Laser Spot

The transverse profile of the ‘laser’, i.e. I(r), is controlled by the ilaser spot

parameter in the input deck. This provides a multiplier for Ilaser to deter-
mine the ‘laser intensity’ at a given radial point. The following options are
available for ilaser spot:

default (0) Gaussian; ∝ exp
[
− r2

2r2
L

]
1 JRD’s q-Gaussian;∝ 1

(1+
(

r
rL

)2
)1.4748

2 4th order super-Gaussian; ∝ exp
[
− r4

r4
L

]
3 8th order super-Gaussian; ∝ exp

[
− r8

r8
L

]
4 Top-Hat; I = I0

5 Exponential; ∝ exp
[
− r

rL

]
Table 6.1: The angular distribution models available and corresponding
ilaser spot values.

In these relations the term rL is defined by the input parameter rspot. Use
the relations provided in table 6.2 to determine the relation between rL and
the HWHM of the spot. The injection region extends up to the radius defined
by rspotmax. A ring-shaped injection profile can be specified by giving the
parameter rspotmin a value.

6.4 Fast Electron Energy Distribution

The distribution function of the fast electron is selected via iinject func. The
various options are detailed in what follows. Nearly all of these are based on a
single energy parameter. This is determined by default via a Wilks-like scaling
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relation :

Tf = 2mec2

√1 +
Iλ2

L
1.38e18

− 1

 , (6.2)

where λL is determined by the input parameter lambda laser (which is given
in units of microns). This can be circumvented by setting ilaser1 to 1 (it
should be set to 0 otherwise). Once this is done the user can specify an in-
tensity independent fast electron temperature via control5 in units of electron
volts.

The options for the distribution function are :
iinject func = 0: The fast electrons have an exponential energy distribu-

tion of the form,

f (E) = exp

[
− E

Tf

]
. (6.3)

iinject func = 1: The fast electrons have a monoenergetic energy distri-
bution.

iinject func = 2: The fast electrons have a top-hat or waterbag distri-
bution. This is a uniform distribution from 0.5 to 1.5 times the characteristic
energy.

6.5 Fast Electron Angular Distribution

The angular distribution is set by the iinject mode parameter. This selects
from a number of hard-coded models that are included in the code. Below is a
list of these models.

0 Uniform distribution over a solid angle subtended by a half-angle of div angle

1 ∝ cos2

2 ∝ cos4

4 ∝ cos8

5 ∝ cos10

6 ∝ cos12

7 ∝ cos20

8 ”Moore” model (Energy Dependent)
9 “Sheng” model (Energy Dependent)

Table 6.2: The angular distribution models available and corresponding
iinject mode values.

The “Moore” model uses a uniform distribution at each electron energy up
to tan−1

(
2√

γ−1

)
or div angle (whichever is smaller). The “Sheng” model is

similar but includes the angle of incidence (equal to div angle;no high angle
clamping).
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6.6 Second Laser Spot

A second laser spot is available by setting Lsecondspot to TRUE. This spot is
controlled as follows:

• The intensity, pulse duration, and spot characteristics are independently
controlled by Ilaser 2, absfrac2, lambda laser2, tlaser2, etc. in the
same way as these control the primary laser spot.

• Currently the fast electron temperature relation cannot be set indepen-
dently.

• Currently the fast electron angular distribution cannot be set indepen-
dently, but a different characteristic angle (div angle2) can be specified.

• The central position of this spot can be set independently when ilaser2

is set to 1 via ylaser2 and zlaser2.

The macroparticles are divided equally between each pulse when Lsecondspot

is TRUE. This means that the PPC of each beam is degraded compared to a sin-
gle beam. To maintain PPC the user must therefore double the total number of
macroparticles.
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ZEPHYROS Output

7.1 ZEPHYROS Output

In this chapter we will look at visualizing ZEPHYROS output using common
scientific software. Firstly let us look at the various files that are produced:

7.1.1 EM Fields

ex **.dat

ey **.dat

ez **.dat

bx **.dat

by **.dat

bz **.dat

These are the electric and magnetic fields (in SI) at the grid cell centres. They
are written into a single data column of total length equal to nx*ny*nz. This is
written with the x loop innermost, and the z loop outermost.

7.1.2 Particle Moments

nf **.dat

jx **.dat

jy **.dat

jz **.dat

These are the fast electron density and the components of the fast electron cur-
rent density (both in SI) at the grid cell centres. They are written into a single
data column of total length equal to nx*ny*nz. This is written with the x loop
innermost, and the z loop outermost. The fast electron current densities will
only be saved if Lsave currents is .true..
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7.1.3 Background

ni 00.dat

Z **.dat

tb **.dat

ti **.dat

eta **.dat

These are the background ion density, average ion charge, background elec-
tron temperature, the background ion temperature, and the background resis-
tivity in the aforementioned format. The background electron and ion temper-
atures are not in SI and are in units of eV instead. The switch Lsave resist

must be set to .true. in order for the resistivity files to be saved.

7.1.4 Fast Electron Kinetics

The parameters pxx x1 and pxx x2 define a lower and upper y-z plane in the
domain. At each save point the code will record output about the macroparti-
cles within this ‘sample window’ depending on the value of ipxxmode :

ipxxmode = default: y,z,px,py,pz (momenta are per electron not per macropar-
ticle) of every macroparticle between these two planes.

ipxxmode = 1: px,py,pz (momenta are per electron not per macroparticle) of
every macroparticle between these two planes, and the number of real electrons
per macroparticle as a fourth number.

This output is saved in the pxx **.dat files.

7.2 Visualization with MATLAB

MATLAB is a common commercial mathematical and data analysis package.
Visualizing ZEPHYROS output in MATLAB is fairly straightforward, however
a full explanation of all that can be done in MATLAB goes well beyond the
scope of this manual. ZEPHYROS users who will regulary used MATLAB are
advised to seek MATLAB specific training! First set the MATLAB path to point
to the directory. The files can then be immediately loaded in via MATLAB’s
load facility:

y = load('nf__01.dat');

This line for example will load the first data output of the fast electron density
into the vector y. This can then be transformed into a 3D array as follows:

nx = 100;
ny = 100;
nz = 100;
for iz = 1:nz
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for iy = 1:ny
for ix = 1:nx
n = ix + nx*(iy−1) + nx*ny*(iz−1);
nf(ix,iy,iz) = y(n);
end;
end;
end;

Now that the full 3D array has been created, any slice or lineout that one wishes
can be created. A typical approach might be to do a ‘pseudocolor’ plot the x-y
midplane:

pcolor(log10(max(1e24,f(:,:,50).')));

If one only intends to look at the midplane plots, then the procedure can be
simplified as follows:

y = load('nf__01.dat');
nx = 100;
ny = 100;
nz = 100;
iz = 50;
for iy = 1:ny
for ix = 1:nx
n = ix + nx*(iy−1) + nx*ny*(iz−1);
nf(ix,iy) = y(n);
end;
end;
pcolor(log10(max(1e24,f(:,:).')));

7.3 Visualization with Pytheros Scripts

The Pytheros suite is a set of Python scripts that were build to complement the
ZEPHYROS code by providing handy utilities for post-processing the ZEPHY-
ROS data. The main ZEPHYROS output files are usually fairly bulky (> 50MB),
and ZEPHYROS users often only want to study small portions of the data, at
least initially. Currently Pytheros contains the following:

1. pyth zslicer.py: This will produce an x-y slice at a specified z-plane.
It will write the output in a format ready for use by pyth autoplot.py.
This operation will be performed on all files of a specific prefix (e.g. ‘nf’)
in the directory that it is called from.

2. pyth autoplot.py: This script will look for files of a certain prefix, and
then prepare, write and execute a gnuplot script to produce pseudocolor
plots of all these files.

3. pyth zsliceplot.py: Extracts slice for a specified value of z, i.e. an x− y
slice. Plots using matplotlib library.
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4. pyth xsliceplot.py: Extracts slice for a specified value of x, i.e. an y− z
slice. Plots using matplotlib library.

5. pyth ysliceplot.py: Extracts slice for a specified value of y, i.e. an x− z
slice. Plots using matplotlib library.

So to automate the graphing up of the fast electron density at the x-y midplane
for all outputs can be done by simply making two calls to each of these scripts.
You will then have a set of PNG files that can be quickly downloaded for view-
ing, with axes already labelled!

7.3.1 Slicing

Before auto-plotting, one must first slice the data. For this, use pyth zslicer.py.
The first step is to edit the script. On opening the script, you will see that there
is a clear ‘header’ region, and a ‘code’ region, with a comment asking you not
to edit past a certain point. The header should look like this:

#
# z−slicer script for ZEPHYROS post−proc
# Currently written assuming Python 2
#
# Formats sliced file
# for GnuPlot plotting
#
import os
import math

#Set file set to be sliced:
toslicename = 'nf__'
#Set output file prefix:
outprefix = 'nfzs'
outsuffix = '.dat'
#Define grid sizes:
nx = 100
ny = 400
nz = 400
#Define cell sizes
delx = 0.5
dely = 0.5
#Set slice layer:
nzslice = 200

# NO NEED TO DEAL WITH ANYTHING BELOW!!

So one needs to check that all of these parameters are set correctly. The first
parameter ‘toslicename’, is the leading string that the script will search for in
the files that you want to slice. In this case it will search for the fast electron
density files, but one can set it to any of the other outputs (e.g. ‘ex__’,‘bz__’,’tb__’,
etc etc).

Next one must make sure that you are happy with the ‘outprefix’ and ‘out-
suffix’ which along with a number between them, will define the name of
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the sliced file that is produced. The script must also know the grid lengths
(‘nx’,‘ny’, and ‘nz’) and also the z-index that you want to slice at (‘nzslice’).
The cell sizes should also be specified, as the sliced file contains x and y coordi-
nates (for plotting in gnuplot). In the example above, I have specified the cell
size in microns.

Once these are set. Call the script from the command line via:

>python pyth_zslicer.py

and check that a set of sliced files appears in the directory. Note that you must
do this from the directory in which the files sit. The sliced files can now be used
on their own, or as an input to pyth autoplot.py.

7.3.2 Auto-plotting

The pyth autoplot.py script will automatically generate a gnuplot based script
that includes a plotting call for every sliced file that it finds in its local directory.
It requires the sliced files produced by pyth zslicer. The script is currently
configured for use on SCARF (where RMGMT and I have installed gnuplot
in the CLF work area, and where Derek Ross (e-Science) has kindly the MS
TrueType fonts package), although with a little re-jigging it can work on other
systems as well. To use this script, first edit the ‘header’:

# Python script to do automatic plotting
# of sliced data via GnuPlot
#

import os

# Prefix of slices to be auto−plotted:
prefix = 'nfzs'
# Plotting details:
plotxlabel = 'x (Microns)'
plotylabel = 'y (Microns)'
plotxrange = '[0:50]'
plotyrange = '[0:200]'
colrange = '[1e24:1e27]'
xformat = '%3.0f'
yformat = '%3.0f'
reqfont = 'comic'

# Please don't change these unless
# you REALLY have to
#Specify location of gnuplot:
gplotloc = '/work/clf/gplot_public/gnuplot−4.6.0/src/'
#Specify location of TrueType Fonts:
fontpath = '/usr/share/fonts/msttcorefonts/'

The most important first step to to set the prefix of the sliced files that you
want to plot, which is done by setting the string prefix. So here I am setting it
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to look for the z-sliced files of the fast electron density that I produced using
the z-slicer script.

The remaining bits are cosmetic/aethestic really. You can write x and y la-
bels using the plotxlabel and plotylabel strings. The spatial ranges over which
you plot is then controlled by setting plotxrange and plotyrange, and the color
range is set by colrange. The precision of the axis labels is set by the xformat
and yformat strings. The font is set by the reqfont string (SCARF has arial,
times, verdana, courier, and georgia available too).

Currently the script is set to do log plots. In later versions this will be con-
trolled via the header. To switch back to linear, one will need to go into the
code section and comment out the following line with a ‘#’:

gplotfile.write('set log cb' + "\n")

7.3.3 Single Slice Scripts

The pyth zsliceplot.py, pyth xsliceplot.py, and pyth ysliceplot.py scripts
are all useful for where one wants to get single slices at particular times rather
than process an entire data set. Use of these scripts will require the matplotlib
library to be installed. To use these scripts start by editing the ‘header’ mate-
rial:

# PYTH_ZSLICEPLOT.PY:
#−−−−−−−−−−−−−−−−−−
# by A.P.L.Robinson, CLF, 2013
# Copyright : Science and Facilities Council 2013
# email : alex.robinson@stfc.ac.uk
#
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Dependencies : None
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Release History : ver 1 January, 2013
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Single Plot script for ZEPHYROS post−proc
# Currently written assuming Python 2
# makes use of the matplot lib library
#
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

import os
import math
import numpy as np
from matplotlib import pyplot as plt

#Set file set to be sliced:
toslicename = 'nf__10.dat'
#Set output strings:
title = "Z Map"
xlab = "x / microns"
ylab = "y / microns"
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figfile = "nf10.png"
#Define grid sizes:
nx = 250
ny = 200
nz = 200
#Define cell sizes
delx = 1.0
dely = 1.0
#Set slice layer:
nzslice = 100

# NO NEED TO DEAL WITH ANYTHING BELOW!!
#
#CODE *****************

Set the cell numbers and cell sizes to conform to your simulation data. Set the
desired slice index via nzslice, and that toslicename refers to the correct file.
You may have to check in the code section for anything to do with extra data
processing, e.g. for log plotting.

7.3.4 Other Pytheros Scripts

Other Pytheros scripts that may be of interest include:

• pyth makeb.py:Will produce files containing the magnitude of B in each
cell.

• pyth makej.py:Will produce files containing the magnitude of jf in each
cell.

7.4 Visualization with VisIt

The VisIt package (https://wci.llnl.gov/codes/visit/) can be used to perform
a range of fully 3D visualizations of ZEPHYROS output. There is a Windows
version of VisIt available.

The first step is to convert the ZEPHYROS output files into .vtk files. This
can be done with the clfVtkWriter script that is available. This linux script
should be run as follows :

>./clfVtkWriter <input filename> <nx> <ny> <nz> <output filename>

So a typical usage might be something like this :

>./clfVtkWriter nf__01.dat 200 200 200 thickness_scan_1.vtk

The .vtk files will most likely be somewhat larger (a factor of a few) bigger
than the .dat files. If data storage is an issue then please be aware of this. The
.vtk files can then be visualized in VisIt. Like MATLAB, the entireity of the
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possiblities in VisIt is well beyond the scope of this manual. However a basic
procedure would look something like this:

1. Choose ‘Open File’ and select your .vtk file. Tell VisIt to open it as a VTK
file.

2. Add a pseudocolor plot, selecting ‘scalars’

3. Add a three-slice operator, choosing the slice planes as 1, ny/2, nz/2 for
x, y, and z respectively.

4. Select Draw to produce the plot.

7.5 Other Tools

MATLAB and VisIt are not the only tools that can be used to visualize ZEPHY-
ROS output. ZEPHYROS output can be visualized using Golden Software’s
Voxler 3 package with a simple post-processing of the .dat files in MATLAB,
and in the GNU-licensed Octave package.
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Example Run

8.1 Overview

In this chapter we will present an example input deck and the output that this
produces. New users may wish to try running this input deck and checking
that they can obtain the same or at least similar output.

8.2 Example Input Deck

The input deck used for this example is as follows:

!##
!## Example Input Deck for Zephyros v1.1
!## A.P.L.Robinson July 2014
!##

&inpvars

nfasts = 200000000
nx = 200
ny = 200
nz = 200
dx = 1.0d−6
dy = 1.0d−6
dz = 1.0d−6
iconfig = 3
idiagnostic = 0
tstop = 2.0d−12
dtsave = 0.1d−12
timefrac = 0.75d0
temp_in = 1.0d0
loglambda = 5.0d0
loglambdascat = 5.0d0
loglambdadrag = 5.0d0
rspot = 5.0d−6

39



Example Run

rspotmax = 15.0d−6
rspotmin = 0.0d−6
Ilaser = 3.0d20
absfrac = 0.3d0
tlaser = 5.0d−13
iinject_mode = 0
ilaser_spot = 0
iinject_func = 0
lambda_laser = 1.053d0
div_angle = 0.8727d0
control1 = 0.0
control2 = 0.0
control3 = 0.0
control4 = 0.0
control5 = 7.04d6
control6 = 0.0
control7 = 0.0
control8 = 0.0
control9 = 0.0
control10 = 0.0
control11 = 0.0
control12 = 0.0
icontrol1 = 0
icontrol2 = 0
icontrol3 = 0
ilaser1 = 1
ilaser2 = 0
ylaser = 100e−6
zlaser = 100e−6
las_control1 = 0.0
las_control2 = 0.0
las_control3 = 0.0
las_control4 = 0.0
las_control5 = 0.0
Lbrems = .false.
Lxchang = .true.
Lmdiff = .true.
LBevolve = .true.
Lcheck_params = .true.
Lthomasfermi = .true.
LRedLeeMore = .true.
Linjcontrols = .false.
Lkalpha = .false.
LSpecifyLMParam = .false.
LFixedResistivity = .false.
nresinp = 401
iconfig2 = 0
iconfig3 = 0
icontrol4 = 0
ibcs=2
ifields = 0
lm_mfp_factor = 8.0d0
lm_multiplier = 1.0d0
Lsave_currents=.false.
Lsave_diags = .false.
Lsave_resist = .true.
Lsave_eden = .false.
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Lsave_zstar = .true.
pxx_x1 = 0.0d0
pxx_x2 = 1.0d−6
ipxxmode = 0
Lsecondspot = .false.
Ilaser_2 =1.0d20
absfrac2 =0.3d0
lambda_laser2=1.0d0
tlaser2=1.0d−12
rspot2=5.0d−6
rspotmax2= 20.0d−6
rspotmin2=0.0d0
ylaser2= 120.0d−6
zlaser2= 100.0d−6
div_angle2=0.6d0/
&end

8.3 Understanding the Input Deck

The fortran comments (‘! blah blah’) at the top are indeed just comments. You
can use this to insert notes into each input deck. It is a good idea to make use
of this to label each input deck, and in the long run it can be invaluable for
record-keeping.

The first seven lines should be clear. Twenty million macroparticles will be
used on a 200×200×200 grid. Assuming 8 bytes per double precision number,
you should make sure that your system memory can comfortably accommo-
date this. Next we notice that iconfig is set to three. This means that the
target will be a homogeneous Al target. Further down we see that the Thomas-
Fermi and Lee-More logical switches are set to .true. as well. From tstop

and dtsave we see that the simulation is set to run up to 2 ps, with output data
saved every 0.1 ps.

In terms of the fast injection model (or ‘laser’) we see that it consists of
a 5 µm Gaussian spot, an intensity of 3×1020Wcm−2, a laser to fast electron
conversion efficiency of 30%, and a 0.5 ps pulse duration. As ilaser1 is set to
1, the fast electron temperature is taken from control5 (7.04 MeV in this case).
The fast electrons are injected with a uniform distribution over a solid angle
subtended by a half-angle of 50◦.

These are the essential aspects of the simulation. In summary we have a
240 TW, 0.5 ps, 120J system. In reality since only 30% of the laser energy will be
in the central laser spot, an actual laser system that delivered this would have
to be a 360 J, 720 TW system. This is comparable to the CLF’s VULCAN facility
or LLNL’s TITAN. This is irradiating a thick Al foil.

8.4 Running the Example

This input deck does not require any files other than the executable and the
input deck. Here are a simple set of steps for running the code on a linux
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system, assuming that you have the source files and makefile.

1. Ensure that the fortran compiler is the correct one for your system. Most
linux distributions will include gfortran in the packages. So you should
be able to install this, and then set FC equal to gfortran. Do make zeph

at shell prompt (in the directory containing both the .f90 files and the
makefile) to build the code. You should end up with a zeph executable.

2. Create a ‘run’ directory in a suitable location using mkdir. Copy the zeph
executable to this location.

3. In your ‘run’ directory create a text file. Copy the input deck (above) into
this file and save it as readin.in.

4. Now do ./zeph at the shell prompt in your run directory. The code
should execute.

8.5 Output

The output of this simulation can be visualized using the “pytheros” python
scripts mentioned in Section 7.3 of Chapter 7. We will use ‘pyth_zslicer’ and
‘pyth_autoplot’.

Starting with the electron density we check that, in ‘pyth_zslicer.py’, the
target prefix is set to ‘nf’ and the correct cell numbers and cell sizes are inserted.
Then run the python script from the shell prompt via python pyth zslicer.py.
Once this has run you can run ‘pyth_autoplot.py’. Make sure that it is target-
ting the correct prefix, which should be ‘nfzs’, and the the x, y, and colorbar
ranges are set appropriately. For this run they should be 0 to 200 for x and
y, and 1e24 to 1e27 for the colorbar range. On running ‘pyth_autoplot.py’ via
python pyth autoplot.py, you should get a series of .png files.

Here are the fifth (500 fs) outputs for fast electron density, temperature and
the Bz component of the magnetic field:
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Figure 8.1: Fast Electron Density (m−3) at 500 fs in example run.
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Figure 8.2: Background Electron Temperature (eV) at 500 fs in example run.
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Figure 8.3: Bz (T) at 500 fs in example run.
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