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Abstract

In this paper ,we present a novel regularization technique for iterative
tomographic reconstruction. The proposed penalty is built on the edge-
preserving Laplacian and encourages piecewise-smooth solutions with sharp
edges. Our penalty outperforms total variation regularization, resulting in
higher signal-to-noise ratio and visually more appealing reconstructed im-
ages. Simple and effective implementation of the proposed regularization
technique within the conjugate gradient algorithm makes it a competitive
alternative to conventional regularization methods.

1 Introduction

Frequently in X-ray computed tomography (CT) the amount of collected pro-
jection data is lower than is required by the Nyquist sampling theorem [1]. In
medical imaging, the data restrictions are applied to minimize ionizing radiation
that can harm living tissue cells. In material science, the aim is to better resolve
temporal resolution via higher frame rate acquisition. In such cases of limited
data, iterative techniques can provide better reconstructions than analytical
methods [2].
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Dealing with ill-posed and ill-conditioned inverse problems, iterative meth-
ods require regularization to constrain the desirable space of solutions [3]. Due to
edge-preserving properties, total variation (TV) regularization [4] has been ex-
tensively used in tomographic iterative reconstruction for the last three decades.
However, TV penalty produces piecewise-constant (so-called “cartoon” effect)
images even if the original object is smooth [5, 6].

In this paper, we propose a novel penalty that reduces “cartoon” effect
and increases the signal-to-noise ratio (SNR) of reconstructed images. We use
a preconditioned and regularized conjugate gradient method to minimize the
least squares problem [7]. Both TV and the proposed penalty are compared
quantitatively and visually.

2 Image reconstruction problem

The tomographic image reconstruction problem consists of determining the
shape of an object based on its X-ray observations from several different angular
positions. Incoming photons with different energies are registered by detectors
and information about the path length a photon has travelled along the line can
be decoded. Therefore, by solving an inverse problem where projection data
is given, the level of absorption or attenuation coefficient of the object can be
recovered. In mathematical terms, this problem can be formulated as the least
squares problem:

û = arg min
u
‖Au− b‖22, (1)

where u is a function of spacial variables describing the observed object (e.g.
density of the object’s material), b is a function of the number of the detector
bins and the observation angle describing the projection data (sinogram), and
A is a linear operator mapping the “space of objects” to the “space of observa-
tions”. The operator A is an integral operator, and zero is a condensation point
of its singular values, which makes the problem (1) ill-posed.

The spatial and angular disretization replaces continuous functions with dis-
crete (or grid) functions that can be represented by vectors and the operator A
with a matrix. Depending on the numbers of spacial grid points, detectors and
angles, the matrix A can be “fat” (the number of rows is less than the number of
columns) or “tall” (the number of rows is greater than the number of columns).
Irrespective of the shape, the singular values of A form a very tight cluster near
zero owing to the same property of the integral operator from which A derives
[8].

3 Regularization

The quadratic functional ‖Au − b‖22 can be minimized by a suitable iterative
minimization algorithm, e.g. conjugate gradient (CG) algorithm [7], however,
the convergence of iterations can be very slow because of the poor conditioning of
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the Hessian A∗A. The slow convergence of iterations is closely related to another
difficulty in dealing with this kind of problem, which is the ill-posedness of the
problem. Generally, the solution û of the discretized problem (1) is not unique
(if A is “fat”), and even if it is, in practical computation û is indistinguishable
from any û+ h if ‖Ah‖2 is below the round-off error level, which, for A that we
are dealing with, may happen even if ‖h‖2 is substantial.

Both difficulties can be tackled by a regularization technique, whereby (1)
is replaced with

ûα = arg minψα(u), ψα(u) = ‖Au− b‖22 + αR(u), (2)

where R(u) is a suitable regularization functional, and α is a positive scalar
parameter. A prime example of the regularization is that known as Tikhonov’s,
where R(u) = ‖u‖22, which makes the minimization problem (2) well-posed, the
eigenvalues of the Hessian of ψα(u) being not less than α. Tikhonov regular-
ization is quadratic, therefore high frequencies that are related to the object
boundaries are penalized less, resulting in smooth recovery of û. To preserve
boundaries one needs to consider non-quadratic penalties, e.g. the use of total
variation (TV) [4] can significantly improve oscillatory solutions. The differen-
tiable (due to small ε constant) TV penalty is given as:

RTV (u) = ‖|∇u|‖1 =
√
u2x + u2y + ε2. (3)

We will use the TV penalty (3) for comparison with the proposed regularization
term.

It is intuitively obvious that the regularization parameter α must not be
large. In order to get some further insight into the issue, let us estimate the
difference between ûα and û assuming for simplicity that all singular values of
A are positive.

Let us assume R(u) = ‖Ru‖22, where R is a square non-degenerate matrix,
and denote M = A∗A, and N = R∗R. Then ûα (where α may be zero) satisfies

(M + αN)ûα = A∗b, (4)

which implies the following equation for the regularization error, hα = ûα − û:

(M + αN)hα = −αNû. (5)

Multiplication by M−1Nhα yields

((N + αNM−1N)hα, hα) = −α(Nû,M−1Nhα). (6)

Now, in the left-hand side of (6) we have

((N + αNM−1N)hα, hα) ≥ (Nhα, hα) = (R∗Rhα, hα) = ‖Rhα‖22,

and in the right-hand side

(Nû,M−1Nhα) = (NM−1Nû, hα) = (RM−1Nû,Rhα) ≤ ‖RM−1Nû‖2‖Rhα‖2.

Thus, (6) implies

‖Rhα‖2 ≤ α‖RM−1Nû‖2. (7)
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4 Edge-preserving piecewise-smooth regulariza-
tion

At first glance, the regularization appears to be merely a compromise move that
distorts the problem so that it becomes solvable. While this is certainly so in
the case of Tikhonov’s regularization, an alternative viewpoint can be offered,
which is helpful in designing a proper regularization. Observe that the prob-
lem (1) can only be solved approximately, if only because of the inexactness of
computer arithmetic. Observe further that it may have infinitely many approx-
imate solutions that are indistinguishable in practical computation, as pointed
out in the previous section, if one is only guided by the smallness of the data
fidelity functional ‖Au− b‖22. The regularization can be viewed as some kind of
additional criterion that helps to verify whether a particular computed solution
is acceptable. This viewpoint is supported by the fact that in the case where
R(u) = ‖Ru‖22, the regularized problem (2) is equivalent to the original problem
(1) for these extended A and b:

Aα =

[
A
αR

]
, bα =

[
b
0

]
. (8)

In the problem (1) that we are dealing with here, A is a discretization of
an integral operator, owing to which ‖Ah‖2 is small on oscillating grid func-
tions h with wavelengths that are close to the grid step. Hence, if one di-
rectly applies e.g. CG algorithm to the minimization of the quadratic functional
ψ0 = ‖Au − b‖22, then after sufficiently many iterations one is likely to end up
with an oscillating short-wavelength approximate solution û. But most images
that one encounters in practice do not feature such oscillations and can be actu-
ally represented by piecewise-smooth functions û. This suggests that the value
of R(u) should be large on short-wavelength functions u. At the same time, R(u)
should remain small on the boundaries (walls) between objects constituting the
image, where u is discontinuous or has large gradients.

The following regularizer is therefore suggested:

REL(u) =

∥∥∥∥wx ∂2u∂x2

∥∥∥∥2
2

+

∥∥∥∥wy ∂2u∂y2

∥∥∥∥2
2

, (9)

where the weights wx and wy are given by

wx =

(
1 + β

(
1

ax

∂u

∂x

)2
)−1

, wy =

(
1 + β

(
1

ay

∂u

∂y

)2
)−1

, (10)

β is a positive scalar parameter, and ax and ay are the average x- and y-
derivatives of u. These averages are introduced purely for the sake of scale-
invariance, and can be computed e.g. as ax = 2umax/dx and ay = 2umax/dy,
where umax is the maximum of u and dx and dy are the sizes of the square
containing the image.
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By design, REL(u) (where EL stands for edge-preserving Laplacian) is large
on short-wavelength functions u with small oscillation amplitude (equivalent to
Laplacian smoothing), and small at the edges between objects where the x- and
y-derivatives of u are large.

5 Preconditioning

In order to simplify the computation of the gradient of ψα(u) and to deal with
the minimization of a quadratic functional, we resort to an inner-outer iterative
scheme consisting of restarted CG iterations, with wx and wy only updated on
restarts.

Let us denote by Lx and Ly the matrices representing the discretized second
partial x- and y-derivatives, and by Wx and Wy the diagonal matrices repre-
senting wx and wy. The Hessian HEL of the functional ψα(u) is (ignoring the
dependence of wx and wy on u – cf. inner-outer iterative scheme)

HEL = A∗A+ α(L∗xW
∗
xWxLx + L∗yW

∗
yWyLy) = A∗A+ αR∗ELREL, (11)

where

REL =

[
WxLx
WyLy

]
. (12)

We compare the proposed EL penalty with TV regularization (3) with the fol-
lowing Hessian HTV :

HTV = A∗A+ α(D∗xΦ(u)Dx +D∗yΦ(u)Dy), (13)

where Dx and Dy are matrices representing the discretized first partial x- and
y-derivatives, Φ(u) = diag(φ′(u)) is a diagonal matrix whose diagonal elements
are φ′(u), φ(t) = 2

√
t+ T 2.

The largest eigenvalue of the matrix REL is of the order O(h−2), h =
min(hx, hy). If α is not very small (considerably larger than h4), then the large
condition number of R∗ELREL can slow down the convergence of CG iterations
for the minimization of ψα(u). To alleviate this problem, we introduce pre-
conditioning that consists of the multiplication of the gradient of ψα(u) by the
inverse of HEL,σ = σ2I +αR∗ELREL for EL and HTV,σ = σ2I +α(D∗xΦ(u)Dx +
D∗yΦ(u)Dy) for TV in the course of CG iterations, where σ is a scalar value of
the order of the largest singular value of A. Since the matrix Hσ is very sparse,
the application of its inverse to a vector can be efficiently performed (via the
factorization of Hσ) by modern state-of-the-art sparse direct solvers [9].

6 Numerical Results

Here we present numerical experiments with reconstruction of 2D Shepp-Logan
(SL) phantom of N,M = 256 pixels size. Reconstructions performed from noisy
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projection data (3% normally distributed random noise is added to sinogram).
Projections were sampled significantly lower than it is required by the Nyquist
theorem, therefore we consider only 90, 45 and 30 projections. According to the
Nyquist theorem, the number of projection angles θ should be at least θ ≈ 2.83N
[1].

Four reconstruction algorithms were used to reconstruct sparse and noisy
projection data, namely: Filtered back-projection (FBP), conjugate gradients
for least squares (CGLS), CGLS with TV penalty (CGLS-TV) and CGLS with
the proposed edge-preserving Laplacian penalty (CGLS-EL). All reconstruction
parameters (the number of inner-outer iterations, α, β, T ) for the compared
algorithms were thoroughly optimized with respect to the minimum value of
the root mean square error (RMSE) given as:

RMSE(u, û) =

√√√√ 1

N

N∑
i=0

(ui − ûi)2. (14)

In Fig. 1, we present RMSE curves for each of the compared methods and
reconstructions for the best RMSE values are presented in Fig. 2. RMSE curves
are given for experiments with 90, 45 and 30 projections. Notably, the proposed
CGLS-EL method outperforms CGLS-TV in all experiments. Moreover, CGLS-
EL is more stable than CGLS-TV in cases of very limited noisy data (see Fig.
1 for 45 and 30 projections). In Table 1, the best achieved values of RMSE for
each method are presented.

Table 1: RMSE values for FBP, CGLS, CGLS-TV and CGLS-EL methods

FBP CGLS CGLS-TV CGLS-EL
90 projections 0.148 0.057 0.037 0.029
45 projections 0.183 0.0765 0.055 0.041
30 projections 0.220 0.092 0.075 0.063

From the obtained reconstructions (see Fig. 2) some visual quality assess-
ment can be done. FBP reconstruction in all cases is very noisy and CGLS
reconstruction looks significantly better. However, noise is still present in CGLS
reconstructed images and the most importantly ring artifacts are visible (see re-
constructions from 45 projections). Those artifacts are related to prematurely
stopped CGLS iterations to avoid increase of the RMSE. On the early iterations
of CGLS, higher frequencies are not fully recovered, and the blurring effect is
more visible (see reconstructions from 30 projections). Using regularization it is
possible to iterate CGLS longer which leads to significant improvement of res-
olution. Notably, CGLS-EL is better at removing ring effects and regularizing
solution (less noise, sharper boundaries) than CGLS-TV (see reconstructions
from 45 projections).

Additionally, visual characteristics of reconstructed images can be better
recognized on the magnified parts of the reconstructed SL phantom (see Fig.
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3). Because the second derivatives are used in the EL model instead of the first
order derivatives as with the TV regularization, the uniform areas look much
smoother but prominent edges remain unsmoothed.

In the next experiment, we aim to show how the proposed regularization
deals with recovering ramp like surfaces in images. In Fig. 4, the reconstruction
experiment with the ramp phantom is presented (the magnified part of the phan-
tom is shown). The full phantom is 300 × 300 pixels and 360 projections were
collected. In reconstructed images one can see that with iterative methods noise
is substantially reduced (see Fig. 4 (right)). However, the CGLS-TV method
brings patchy appearance to the reconstruction, and image reconstructed with
CGLS-EL is smoother. The RMSE is also lower for CGLS-EL than for CGLS-
TV.

7 Discussion

In this paper, we claim that the piecewise-smooth images are more favourable
than the piecewise-constant, however this might not be the case for all recon-
structed objects. Therefore, some prior knowledge about the investigated object
is needed to choose an appropriate regularization term. In terms of the choice
of reconstruction parameters, complexity of computer implementation and the
speed of computation, our method is very similar to the TV penalty. Our fu-
ture work will be to explore further the parameter space of our method and give
some recommendations for automated choice of parameters.

8 Conclusion

In this paper, we presented a novel regularization technique that outperforms
in terms of signal-to-noise ratio the conventional total variation regularization.
From the preliminary experiments the proposed method is more suitable for
the limited data problems in tomography than total variation regularization.
Additionally, due to properties of the proposed penalty term we reduce the
“cartoon” effect substantially and achieve more realistic images.
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Figure 1: RMSE for FBP, CGLS, CGLS-TV and CGLS-EL algorithms for 90, 45
and 30 noisy projections.
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Figure 2: Reconstructions of SL phantom from 90, 45 and 30 projections using
FBP, CGLS, CGLS-TV and CGLS-EL methods.

Figure 3: Magnified image of SL phantom reconstructed from 90 projections
using FBP, CGLS, CGLS-TV and CGLS-EL methods. Note the better SNR of
CGLS-EL reconstruction compared to the CGLS-TV method.
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Figure 4: Reconstruction of the ramp phantom from 360 projections using FBP,
CGLS, CGLS-TV and CGLS-EL methods; left: RMSE curves for all methods,
right: magnified region of the phantom and reconstructed images.
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