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Abstract 

A next-to-leading order (NLO) QCD analysis of the spin-dependent parton distributions 

Af'(z, Q2) of the longitudinally polarized photon and of its structure function g:(z, Q2) 

is performed within the framework of the radiative parton model. The important issues of 

a suitably chosen factorization scheme and related boundary conditions are discussed in 

detail. The typical effects of the NLO corrections are quantitatively studied for two very 

different conceivable scenarios for the NLO polarized parton distributions Afr(s, Q2). 



More accurate measurements of the nucleon's spin asymmetry AY(z,  Q2)  N gy(z, Q2) /  

F y ( x ,  Q2)  in polarized deep-inelastic scattering (DIS) [l], covering also a wider range 

in (x ,Q2)  and providing results for different targets (N = n , d )  as compared to early 

measurements of A;(x ,  Q2) [2], have considerably improved our knowledge about the 

nucleon's spin structure in the.past few years and also renewed the theoretical interest in 

this field. This is also due to the possibility to perform now a complete and consistent QCD 

analysis of polarized DIS in NLO, since the required spin-dependent two-loop splitting 

functions APZ) have been calculated recently [3,4]. A first such NLO analysis in the MS 
scheme has been presented in [5] based on the phenomenologically successful concept of 

the radiative parton model, i.e., the generation of parton distributions from a valence-like 

structure at some low-resolution scale p, which had previously led, e.g., to the prediction 

[6] of the small-s rise of the unpolarized proton structure function F2p(x, Q2)  as observed 

at HERA [7]. Subsequent NLO studies [8] have imposed different boundary conditions 

and/or factorization schemes. 

The knowledge of the two-loop splitting functions AI$) [3, 41 also offers the opportu- 

nity to perform a similar NLO QCD analysis of the spin-dependent parton content A f' of 

the longitudinally (more precisely, circularly) polarized photon because the required two- 

loop photon-to-parton splitting functions Alcil) = AP$, and Alc;') = APj;) can be easily 

obtained from AP$) and APji), respectively. Although such a study seems to be some- 

what premature in view of the lack of any experimental information on A f 7  up to now, 

interesting theoretical questions arise when going beyond the leading order. Apart from 

getting a feeling for the typical size of the NLO corrections it is moreover important to 

analyse the necessity (and feasibility) to introduce a suitable factorization scheme which 

overcomes expected problems with perturbative instabilities arising in the MS scheme 

in particular for large values of x.  Such instabilities were found in the unpolarized case 

where they were eliminated [9] by absorbing the the 'direct-photon' contribution to 

into the NLO photonic quark distributions (DIS, scheme). In this paper we will show that 

a similar procedure is also recommendable in the polarized case, where it works equally 

well. 
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Furthermore it is no longer inconceivable to longitudinally polarize also the proton 

beam at HERA [lO]. At such high energies the polarized electron acts dominantly as a 

source of -almost real (Weizsacker-Williams) photons, thus measurements of double spin 

asymmetries in, e.g., the photoproduction of large-pT jets can in principle reveal informa- 

tion on the parton content of the polarized photon in addition to that of the proton [ll] 
through the presence of resolved-photon processes. In the corresponding situation with 

unpolarized beams this has been already extensively studied experimentally [7]. Future 

polarized linear e+e- colliders could serve to provide additional complementary informa- 

tion on A f' [12] by measuring the spin-dependent photon structure function g:(a:, Q2) or 

spin asymmetries in resolved two-photon reactions. 

In the remainder of the paper we present all necessary ingredients for the two-loop 

evolution of the spin-dependent parton distributions of the photon and for the calcula- 

tion of its structure function gz in NLO, analysing also the aforementioned theoretical 

questions. We will work within the framework of the radiative parton model since the cor- 

responding analysis for the unpolarized photon [ 131 has again been phenomenologically 

very successful [7].  We will present two 'extreme' sets of polarized NLO distributions 

AfT(a:, Q2) following closely a previous LO analysis [14, 121. 

Similarly to the purely hadronic case it is convenient to decompose the spin-dependent 

parton distributions AfT(a:,Q2) (f = U, d, s, g) of the longitudinally polarized photon 

into flavor non-singlet (NS) quark combinations AqgS and the singlet (S) part A G  

(E:), where A D  E Cr(Af' + A F )  with f running over all relevant active quark 

flavors and Ag' denotes the polarized photonic gluon distribution. The so defined combi- 

nations A$(a:, Q2) (i=NS, S )  satisfy the well-known inhomogeneous evolution equations 

schematically given by' 
I ,  

dAq'(a:C, Q 2 )  = AlCi(a:, Q2) + (APi * A$) (a : ,  Q2) , 
dln Q2 

where the symbol * denotes the usual convolution in Bjorken-a: space which reduces, in 

Mellin-n space, to a simple product AyAqTl" with the nth moment of a function h(z ,  Q2) 
~~ 

'We follow closely the notation adopted in the unpolarized case as presented in refs.[l5] and [9]. 
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being defined as 
1 

h"(Q2) E 1 z"-'h(z, Q2) dz . (2) 
0 

The polarized photon-teparton and parton-teparton splitting functions, Ak;(z, Q2) and 

AP;(z, Q2), respectively, in eq.(l) receive the following l-loop (LO) and %-loop (NLO) 

contributions (i=NS, S): 

where a 111 1/137 and the NLO running strong coupling is given by 

with PO = 11  - 2Nj/3, 

the singlet (S) case eq.(l) becomes, of course, a coupled 2 x 2 matrix equation where 

= 102 - 38Nj/3, and Nj being the number of active flavors. In 

in eq.(3) with j = 0 , l .  The hadronic polarized splitting functions APK! can be found in 

[3, 41 and apart from obvious NS and S charge factors, (e4) - (e2)2 and (e2), respectively, 

where (ek) E Ny' Czl eti, the spin-dependent photon-teparton splitting function Ak?) 

can be obtained from APii)  by multiplying it with N ~ N c / T F  where Nc = 3 and TF = 

Nj/2; similarly the NLO quantities Akil) and Akr)  correspond to the CFTF terms of 

AP$) and AP$), respectively, multiplied by NjNc/T' :2 

Ak$L(z) = NjNc((e4) - (e2)2)A&)(z) , 
A/c(')(z) = 2 [s2 - (1 - z ) ~ ]  

AK(')(I) = C F  [ - 9 l n s  + 8(1-  zc)ln(l - z) + 27z - 22 

Akf)(z) = NjNc(e2)Adj)(s) 

2Note that Akp) = 0 due to the missing photon-gluon coupling in lowest order. Furthermore, there is 
a subtlety in deriving Ak:) from A&' because the latter splitting function is a diagonal quantity and 
hence contains a( 1 - z) terms originating from gluon self-energy contributions which have to be omitted 
in A k f )  [9, 161. 
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l n 2 z  + 21n2(1 - 2 )  - 41nzln(l  - 2 )  - 

Akf')(z) = 0 

Akj')(z) = NjNc(e2)CF [-2(1 + z ) l n 2 z  + 2(2 - 5 ) l n z  - lO(1 - 2 ) ]  , (6) 

where CF = 413. 

The evolution equations (1) are most conveniently solved directly in Mellin-n space 

where the solutions can be given analytically and one can easily keep track of the contri- 

butions stemming from different powers of Q, in order to avoid terms beyond the order 

considered. Taking, according to eq.(2), the nth moment of eq.(l) the various convolu- 

tions simply factorize and the required moments of the photonic inhomogeneous LO and 

NLO Ak terms in eqs.(1,3,5,6) are given by 

1 Ad')" = CFAdO)" 2 
n 2n2(n + 1)2 

5n4 + ion3 - n + 2 
- S2(n) - -Sl(n) + 

with Sk(n) zjn=lj-k. The Mellin moments AP;;? of the 1- and 2-loop hadronic 

splitting functions can be found in [513 in a form appropriate for a straightforward analytic 

continuation in n (also given in [5]) which is required for a numerical Mellin inversion back 

into 2-space. The solution of eq.( 1)  can be decomposed into a 'pointlike' (inhomogene~us~) 

and a 'hadronic' (homogeneous) part, i.e., 

A4'"(Q2) = A$$L(Q~) + A$Gd(Q") (8) 

(z = NS, S) and can be found in [9] (with the obvious replacements of all unpolarized 

quantities like, e.g., k;(l)", by the corresponding polarized ones, e.g., Arc;(')"); they need not 

: 

-dimensions A#,),'' as given in [3, 51 are related through AP(')" = -+AT;)," and AP;;!" = -QAyj'):. 
3Note that the nth moments of the hadronic splitting functions AP$" ( j  = 0, 1) and the anomalous 

4By definition, we choose the pointlike part to satisfy Aqj,bL(pz) y:, = 0 ( i  =NS,S) at the input scale p.  
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be repeated here. Having solved the evolution equations (1) for Aq$",Q2), AC7*"(Q2), 

and As.,"( Q2) one finally obtains the desired photonic parton distributions Af71"(Q2) 

( f  = U, d, s, g) by a straightforward flavor decomposition. 

In moment-n space the NLO expression for the spin-dependent photon structure func- 

tion g: is given by 

AC; (Apn(Q2)  + Apin(Q2))  + LAC:Ag7in(Q2)] } 
+ 27r Nf 

with the usual hadronic spin-dependent Wilson coefficients ACp" and AC; which in the 

conventional scheme can be found, e.g., in ref.[5]. The photonic coefficient AC; can 

be easily derived from AC; and is in the scheme given by: 

corresponding to the s-space expression 

We note that the LO expression for g: is entailed in the above formula (9) by simply 

dropping all NLO terms, i.e., all AC? (z = q, g,  7). For what follows it is convenient to 

introduce the decomposition of gZ1"(Q2) into a pointlike and a hadronic part, analogously 

to eq.(8): 

d*"(Q2) &,';L(Q~) + S:,'L(Q2) 9 (12) 

where g;,';L(Q2) is obtained from eq.(9) by taking only AfTsn(Q2) = A$i(Q2) with 

AfYi(Q2) as defined in (8). Conversely, for g;,'iad(Q2) one uses the AC::(Q2) of (8), and 

one obviously has to omit the AC," term in (9) in this case. 

The desired s-space expressions for AfY(z, Q2) and g:(s, Q2) can be easily obtained 

from the above given n-space expressions Af7*"(Q2) and g:*"( Q2), respectively, by per- 

forming a standard numerical Mellin inversion. 
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The solutions for Afy*"(Q2) (Afy(z, Q2)) depend on the up to now unspecified hadronic 

input distributions at the input scale Q2 = p2, i.e., on the boundary conditions for the 

hadronic pieces AG;: in (8) which one would intuitively relate to some model inspired by 

vector meson dominance (VMD). On the other hand, beyond LO both the 'pointlike' as 

well as the 'hadronic' pieces in (8) depend on the factorization scheme chosen, and it is a 

priori not clear in which type of factorization schemes it actually makes sense to impose 

a pure VMD hadronic input. Indeed, in the unpolarized case it was observed that [9] the 

In( 1 - x) term in the photonic coefficient function C2,7(5) for F;, which becomes negative 

and divergent for x + 1 ,  drives the pointlike part of F;(x, Q2) in the MS scheme to large 

negative values as x + 1 ,  leading to a strong difference between the LO and the NLO 

results for FZPL in the large-z region. As illustrated in Fig.1, a very similar thing happens 

in the polarized case: Here it is the ln(1 - z) term in the polarized photonic coefficient 

function AC,(x) (see eq.(ll))  for gl that causes large negative values of the pointlike 

part of gl(x, Q2) in the MS scheme as 5 + 1 ,  strongly differing from the corresponding 

LO result also shown in Fig.1. Clearly, the addition of a VMD-inspired hadronic part 

Afl,$(Q2) cannot be sufficient to cure this observed instability of gT,pL in the large-z 

region since any VMD input vanishes as x + 1. Instead, as in the unpolarized case, an 

appropriately adjusted ('fine tuned') non-VMD hadronic NLO input would be required 

in the MS scheme, substantially differing from the LO one, as the only means of avoiding 

unwanted and physically not acceptable perturbative instabilities for physical quantities 

like g;l(x, Q2). 

In' the unpolarized case the so-called DIS, scheme [9] was introduced to avoid such 

'inconsistencies' by absorbing the photonic Wilson coefficient for F; into the photonic 

quark distributions. Analogously, one expects that a similar procedure for the coefficient 

AC, for gl cures the problem observed for gl,pL in the MS scheme. This redefinition of 

the polarized photonic quark distributions implies, of course, also a transformation of the 

NLO photon-to-parton splitting functions Akj" due to the requirement that the physical 

quantity g: has to be scheme independent. In the polarized case the transformation to 

the DIS, scheme reads 
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where JAC; = -AC;. This implies for the Ak!"" (i =NS,S) in eq.(7) that Ak!')" -+ 
Akj')" + JAlci(l)" with [9] 

It should be emphasized that all hadronic quantities, in particular AC; and AC:, are 

unaffected by this kind of scheme transformation. We remark that if one chooses to solve 

the evolution equations for the DIS, polarized photonic parton distributions Af'(s, Q2) 

directly in s-space by a (cumbersome) numerical iterative procedure the Mellin inverse of 

JAk/"" in eq.(14) is explicitly needed. Using standard integrals [17] and [9] 

one obtains for At$ = AP,So)"AC; 

Alcq(s) = CF - 7 + 4 s + ( - 5 + 8 s ) l n s + ( l 5 - 1 6 s ) l n ( l - z )  [ 
+ (2s-1)[41n2(1 - s ) - 4 1 n ( l  - s ) l n r + l n 2 s + 2 L i l ( r ) - n 2 ] ]  , (16) 

and the inverse of AK; G APj:)"AC; reads 

n2 
3 Atcg(s) = 2cF - 12( 1 - s)  + (-7 + s) In s - (1 + s)  ln2 z + ( I  + 2)- 

+ 5(1 - s) ln( l  - s )  - 2(1 + 2)Li2(2) . (17) 1 .  
Inspecting eqs.(6),( 14),( 16),( 17) one finds that the transformation to the DIS, scheme, 

besides curing the instabilities at s + 1 ,  also eliminates all terms - l n 2 s  from the 

polarized NLO photon-teparton splitting functions Alci(')(x) (i =NS,S), i.e., removes the 

MS terms leading for 2 + 0 (for corresponding observations in the unpolarized case see 
- 

[18, 191). 

The result for g;,pL after the transformation to the DIS, scheme is also shown in 

Fig.1. The similarity between the NLO (DIS,) and the LO curves strongly suggests that 

it is indeed recommendable also in the polarized case to work in the DIS, scheme. We 
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note that it turns out, however, that the resulting g:,pL slightly exceeds the pointlike 

part of the unpolarized photon structure function qPL in the vicinity of x N 0.6, thus 

making a violation of the fundamental positivity constraint Ig:l 5 F? imminent there. 

The underlying reason for this feature is not a defect of the DIS, scheme as such, but 

resides in the fact that in the unpolarized case the DIS, scheme was formulated [9] in 

terms of (the only measuied structure function) FZy, and not F?. The difference between 

the unpolarized photonic coefficient functions C: and Cz (for F: and F;, respectively) 

decreases FlPL with respect to FzpL/2x, which explains the above effect. The problem 

could be straightforwardly resolved by repeating the analysis of [9, 131 in a modified DIS, 

scheme for which one would choose to absorb CT rather than C; into the unpolarized 

NLO photonic quark densities. This is clearly beyond the scope of this paper. We 

mention in this context that in the unpolarized case also an alternative factorization 

scheme was suggested [20] for which only the 'process independent' part of the photonic 

Wilson coefficient for FZy is absorbed into the photonic quark distributions. This scheme 

partly shares the properties of the DIS, scheme to warrant a reasonable behaviour of 

FzpL in the large-s region. In the polarized case it is easy to see that the ansatz of 1201 

amounts to transforming AC: via eq.(13) by 

Sl(n) + n(n + 1>2 
n - 1  

n(n + 1) 
JACY = -2 [- 

with corresponding changes of For completeness we include the result for g:,pL in 

this factorization scheme in Fig.1. It turns out that the above mentioned slight violation 

of positivity does not occur if both the polarized and unpolarized NLO quark densities are 

defined in this scheme. On the other hand, it becomes obvious that a significant dissimi- 

larity between the LO and NLO results remains, which would demand compensation by 

sizeably different LO/NLO hadronic inputs5. We therefore do not pursue this scheme any 

further, but will henceforth adopt the DIS, scheme as introduced above when studying 

the polarized photon structure beyond the leading order. 

For convenience, we provide the relation of the NLO DIS, and photonic parton 

distributions since it is to be expected that future calculations of NLO corrections to 

5Similar features were observed for this scheme in the unpolarized case [18]. 
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polarized cross sections will be carried out within the MS scheme. The Af7 in the MS 
scheme can be obtained by the transformation 

with 

(20) 
cr 

6Aq7(z,Q2) = JA?(x,Q2) = -Nce2-AC,(z) , SAgr(z,Q2) = 0 , 
9 4n 

where AC,(z) is given in eq.(11)6. 

To finish this technical part of the paper, we briefly discuss the so-called NLO 'asymp- 

totic' solution for the spin-dependent parton distributions of the photon, which is obtained 

by dropping all terms in the full (pointlike) solution which decrease with increasing val- 

ues of Q2. In this way all dependence on the input scale and the boundary conditions 

is eliminated, and one ends up with the unique QCD prediction (see [21, 15, 9,  221 for a 

discussion of the asymptotic solution in the unpolarized case) 

where 

The above equations have been written for the singlet case; extension to the non-singlet 

sector is trivial. The polarized LO asymptotic solution, which was already studied in [23], 

is entailed in the expressions by dropping all NLO terms, i.e., keeping the AZ term only. 

The NLO asymptotic parton densities in (21) are obviously again subject to the factor- 

ization convention adopted. For instance, one could choose to work in the MS scheme for 

which the Al(l)" is as given in (7 ) ,  or again in the DIS, where the transformation (14) 

is to be taken into account. However, unlike the non-asymptotic pointlike solution g:,pL, 

the asymptotic prediction for g;Y, to be obtained from eqs.(21),(9), is readily seen to be 
~ 

6Alternatively, of course, one can work directly with the DIsdistributions by applying an appropriate 
transformation [9] to NLO sub-cross sections calculated in the MS scheme for processes involving polarized 
real photons. 
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scheme-independent up to terms of O(cr,), as it has to be. It is also displayed in Fig. 1 

for Q2 = 20 GeV2. The practical utility of the asymptotic solution is very limited, since it 

only applies at very large Q2 and x .  Furthermore, the determinants of the denominators 

1 - (2/pO)Ak(O)" and AP(O)" in (22) can vanish, causing completely unphysical poles of 

the asymptotic solution which are not present in the full solution where subleading ('non- 

asymptotic'), terms regulate such pole terms. These obvious defects of the asymptotic 

solution are well-known from the unpolarized case [15, 91 and need not be discussed again 

in detail. We only mention that the position of the poles in Mellin-n space can differ 

from the unpolarized case due to the in general different splitting functions involved: For 

Nj = 3 flavors the determinant of 1 - (2/pO)AP(')" vanishes for n = 0.2903 in the non- 

singlet case7 and for n = 0.3673 and n = 1 in the singlet case. It turns out, however, 

that the pole at n = 1 is cancelled twice by terms in the numerator, such that the LO 

asymptotic solution has a vanishing first moment. The situation becomes worse at NLO, 

where the poles arising from l/A$(O)" have to be taken into account. Since the first 

moment of APii)  vanishes, the non-singlet solution has a potential pole at n = 1. As in 

LO, it is cancelled by terms from the numerator, but this time the result remains finite at 

n = 1 ,  such that the NS part of the asymptotic solution has a non-vanishing first moment 

beyond LO. In the singlet sector, the determinant of AF(')" develops a zero at n = 1.5723 

(NI = 3). This implies that the singlet asymptotic solution will rise as * 5-1*57 as x + 0, 

i.e., the polarized NLO asymptotic photonic parton densities, as well as the asymptotic 

result for g:, will not be integrable anymore. This clearly underlines that the asymptotic 

solution can in general not be regarded as a reliable or realistic estimate for the polarized 

photon structure. 

To study more quantitatively the influence of the QCD corrections we extend a pre- 

vious LO analysis of the polarized photon 'structure within the radiative parton model 

[14, 121 to NJiO in the DIS, factorization scheme as described above. As pointed out 

above, the main advantage of the DIS, scheme is [13] that an optimal perturbative sta- 

bility is achieved for the pointlike part of the photonic structure functions and g:, 

implying t h a ~  no additional 'fine-tuned' input is required in NLO. One thus expects that 

'Needless toJsay that in this case AP(O)" + AP$)" = P$". 
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the hadronic inputs in LO and NLO will differ by just the small amounts known from 

similar analyses of nucleon structure functions (see, e.g., [6], and [5] for the polarized 

case), and that beyond the LO the DIS, scheme is the most likely scheme in which a pure 

VMD hadronic input can be successfully implemented. In fact, such a result was found 

in the unpolarized case in [13], where, starting the evolution from a low input scale, it 

was shown that rather similar hadronic VMD-inputs were sufficient in LO and NLO to 

describe existing data for F: at larger Q2 accurately. Since nothing is known experimen- 

tally about the parton structure of vector mesons, the parton densities of the neutral pion 

as determined in a previous study [24] were used instead which are expected not to be too 

dissimilar from those of, e.g., the p. Unfortunately, such a procedure is obviously impos- 

sible for determining the VMD input distributions Af, (z ,  p2) for the polarized photon. 

Therefore, to obtain a realistic estimate for the theoretical uncertainties in the polarized 

photon structure functions coming from the unknown hadronic input, two very different 

scenarios were considered in [14, 121: For the first ('maximal scenario') the input was 

characterized by 

'.Cad(., p2) = .Cad(x, p2)  (23) 

whereas the other extreme input ('minimal scenario') was defined by 

with p2 = p i o  = 0.25GeV2 and the unpolarized LO distributions cad(x ,p2)  = 
f; lbdco(z,pio) taken from [13]. We will closely follow this approach and thus in NLO 

(DIS,) take p2 = pLLo = 0.3GeV2 and the unpolarized NLO densities zad(x ,p2 )  = 

f;Tad,NLo(z, p L L o )  from [13] in eqs. (23) and (24) to define the two extreme scenarios. We 

mention at this point that a sum rule expressing the vanishing of the first moment of 

the polarized photon structure function g: was derived from current conservation in [25], 

which we could use to further restrict the range of allowed VMD inputs. The sum rule 

can be realized in LO and NLO (E or DIS,) by demanding 

Aq;Thnd=l(p2) = 0 , 

i.e., a vanishing first moment of the photonic quark densities at the input scale. Inspect- 

ing the relevant LO a i d  NLO evolution kernels and coefficient functions for n = 1 ,  in 
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particular the expressions for the Alcj')" in (7) and (14), one finds that the sum rule 

g:*"='(Q2) = 0 is then maintained for all Q2 even beyond the L08.  Of the two extreme 

hadronic inputs introduced above only the 'minimal' one (eq.(24)) satisfies (25). On the 

other hand, we are interested only in the region of, say, x > 0.01 here, such that for the 

'maximal' scenario (23) the current conservation constraints at the input scale could well 

be implemented by contributions from smaller x which do not affect, of course, the evo- 

lutions at larger x .  In addition to this, the first moment of the polarized photonic gluon 

distribution remains completely unconstrained by current conservation considerations. 

Rather than artificially enforcing the vanishing of the first moment of the AqZad(z,p2) 

in the 'maximal' scenario (see [14]), we therefore stick to the two extreme scenarios as 

introduced above. 

This fully specifies our polarized photonic NLO (DIS,) distributions Af'(z, Q2) for 

all Q2 2 p2. The values for the QCD scale parameter Am in NLO, appearing in eq.(4) 

and used in the evolution equations, are also taken from [13], i.e., 

AEf$ = 248, 200, 131 MeV . (26) 

We adopt all threshold conventions as in [13] and our LO analysis [14, 121. 

In Fig.2 we compare our LO [14, 121 and NLO (DIS,) distributions zAu,/a, xAgr/a 

for the two extreme scenarios at Q2 = 10GeV2. As can be seen, the NLO distributions 

in the DIS, scheme are very similar to the LO ones. Fig.3 shows the photonic structure 

function zg:/a in LO and NLO as calculated according to eq.(9). Very satisfactory 

perturbative stability is found. The result is presented for Nj = 3 flavors, i.e., we have 

not included the charm contribution to g;Y which could be calculated via the polarized 

'direct' fusion subprocess y*y -+ ct? and the (small) 'resolved' process y*g -+ ct? in which 

the polarized photonic gluon distribution takes part [12]. The charm contribution is 

immaterial for our more illustrative purposes. 

To summarize, we have provided all ingredients for a NLO analysis of the spin- 

dependent parton distributions of the photon and of its polarized structure function 9:. 

8As mentioned above, this is no longer true for the NLO asymptotic solution. 
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We have shown that gz suffers from the same perturbative instability problems as the 

corresponding unpolarized structure function in the scheme which hampers a 

straightforward NLO analysis. As we have demonstrated, it is therefore recommendable 

to work in a 'polarized version' of the DIS, factorization scheme originally introduced in 

the unpolarized case in order to circumvent such problems. We have finally presented two 

extreme sets of polarized photonic NLO parton distributions Af'(z, Q2). 

We are grateful to M. Gluck and A. Vogt for many helpful discussions. The work of 

M.S. has been supported in part by the 'Bundesministerium fiir Bildung, Wissenschaft, 

Forschung und Technologie', Bonn. 
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Figure Captions 

Fig.1 The 'pointlike' part of zgy/cu (see eq.(12)) in LO and NLO for the and the 

DIS, factorization schemes. Also shown is the result obtained when extending the 

factorization scheme of [20] to the polarized case ('AFG', see text). .The toy input 

scale p = 1 GeV, the QCD scale parameter A = 200 MeV and Nj = 3 flavors have 

been used. For illustration the NLO asymptotic solution as obtained from eqs.(21), 

(22) is included in the lower part for Q2 = 20GeV2. 

Fig.2 Predictions for the NLO (DIS,) polarized photonic parton densities for the 'max- 

imal' and 'minimal' inputs of eqs.(23) and (24), respectively. For comparison we 

also show the corresponding LO results of [14, 121. 

Fig.3 NLO predictions for the spin-dependent photon structure function gz for the 'max- 

imal' and 'minimal' inputs of eqs.(23) and (24), respectively. The results shown 

correspond to Nj = 3 flavors. For comparison we. also present the respective LO 

predictions of [14, 121. 
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