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Partitioning strategies for the block Cimmino algorithm

Tony Drummond1, Iain S. Duff2,3, Ronan Guivarch4, Daniel Ruiz4 and Mohamed Zenadi4

ABSTRACT
In the context of the block Cimmino algorithm, we study preprocessing strategies to
obtain block partitionings that can be applied to general linear systems of equations
Ax = b. We study strategies that transform the matrix AAT into a matrix with a block
tridiagonal structure. This provides a partitioning of the linear system for row projection
methods because block Cimmino is essentially equivalent to block Jacobi on the normal
equations and the resulting partition will yield a two-block partition of the original matrix.
Therefore the resulting block partitioning should improve the rate of convergence of block
row projection methods such as block Cimmino.
We discuss a way of obtaining a partitioning using a dropping strategy that gives more
blocks at the cost of relaxing the two-block partitioning. We then use a hypergraph
partitioning that works directly on the matrix A to reduce directly the connections
between blocks.
We give numerical results showing the performance of these techniques both in their
effect on the convergence of the block Cimmino algorithm and in their ability to exploit
parallelism.

Keywords: sparse matrices, unsymmetric matrices, iterative methods, Cuthill McKee,
hypergraph partitioning

AMS(MOS) subject classifications: 65F05, 65F50

This report is a significantly revised version of the report RAL-P-2013-010.

1LADrummond@lbl.gov, MS 50F, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA

94720, USA.
2R 18, RAL, Oxon, OX11 0QX, UK (iain.duff@stfc.ac.uk). The research of this author was supported in

part by the EPSRC Grant EP/I013067/1.
3CERFACS, 42 Avenue Gaspard Coriolis, 31057, Toulouse, France (duff@cerfacs.fr).
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1 Introduction

The benefit of the block Cimmino algorithm for solving sparse linear systems is that the solution
process reduces to the solution of a sequence of much smaller independent systems within a very
simple iterative scheme. We describe this algorithm in Section 2. By using this algorithm it is
possible to extend techniques suitable for smaller systems, for example sparse direct methods,
to much larger systems. The Achilles heel of such an approach is that the iterative method
is effectively a block Jacobi method on the normal equations and so can suffer from slow
convergence.

In this paper, we examine how novel partitioning schemes can be used to accelerate the
convergence of the block Cimmino algorithm while, at the same time, improving the capability
of the method in exploiting parallelism.

After our description of the algorithm in Section 2, we indicate, in Section 3, why we target
orderings to block tridiagonal form and how this can be used to find a partitioning to reduce the
iteration count of block Cimmino. We then discuss two algorithms for obtaining such a form in
Sections 4.1 and 4.2. In Section 4.3, we describe a different approach to obtain a partitioning.

We then describe experiments comparing these approaches and show their efficacy on real
problems in Section 5. We present our conclusions in Section 6.

2 Block Cimmino method

We consider a block projection method for the solution of the linear system of equations

Ax = b, (2.1)

where A is a nonsingular large sparse unsymmetric matrix of order n although we note that the
approach can also be used when the system is rectangular.

The blocks are obtained by partitioning the system (2.1) into p strips of rows, with p ≤ n, as
in: 

A1

A2

...
Ap

x =


b1

b2

...
bp

 . (2.2)

The block Cimmino method projects the current iterate simultaneously onto the manifolds
corresponding to the strips and takes a convex combination of all the resulting vectors. That is
the algorithm computes a solution iteratively from an initial estimate x(0) according to:

ui = A+
i

(
bi −Aix

(k)
)

i = 1, ....p (2.3)

x(k+1) = x(k) + ν

p∑
i=1

ui (2.4)

where A+
i is the Moore-Penrose pseudo-inverse of the matrix Ai.
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A very attractive aspect of the equations (2.3) is that the p sets of equations are independent
of each other so that we can solve them simultaneously on a parallel computer.

The iteration equations (2.3) and (4) can be written as:

x(k+1) = x(k) + ν

p∑
i=1

A+
i

(
bi −Aix

(k)
)

(2.5)

=

(
I − ν

p∑
i=1

A+
i Ai

)
x(k) + ν

p∑
i=1

A+
i bi (2.6)

= Qx(k) + ν

p∑
i=1

A+
i bi, (2.7)

so, if we define the iteration matrix H by H = I−Q, then

H = ν

p∑
i=1

PR(AT
i )

where PR(AT
i ) is a projection matrix onto the range of AT

i . We thus must solve the equations

Hx = ν

p∑
i=1

A+
i bi. (2.8)

We note that, because the matrix H in equation (2.8) is a sum of projection matrices, it is
symmetric positive definite. We are thus able to use the conjugate gradient algorithm to solve
equation (2.8). We also note that, as ν appears on both sides of equation (2.8), it can be set to 1.

At each step of the conjugate gradient algorithm we must solve for the p projections in
equations (2.3) viz.

Aiui = ri, (ri = bi −Aix
(k)), i = 1, ....p. (2.9)

In our approach we choose to solve these equations using the augmented system(
I AT

i

Ai 0

)(
ui

vi

)
=

(
0

ri

)
(2.10)

that we will solve using a direct method. We use the multifrontal parallel solver (MUMPS)
(Amestoy, Duff, L’Excellent and Koster 2001) to do this. The main other techniques for solving
equation (2.9) are using normal equations or a QR factorization. The former has numerical and
storage issues while the latter lacks a good distributed solver. We avoid both problems with our
approach.

A general study of the convergence of the block Cimmino method and of other related block-
row and block-column methods can be found in Elfving (1980). A block SSOR algorithm
accelerated by conjugate gradients is introduced by Kamath and Sameh (1988). Several other
papers have discussed block SSOR including comparisons with block Cimmino (Arioli, Duff,
Noailles and Ruiz 1992b, Bramley 1989, Bramley and Sameh 1992, Ruiz 1992). More recent
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work on accelerating the algorithm can be found in Duff, Guivarch, Ruiz and Zenadi (2013)
where the system (2.1) is augmented so that the blocks in the partitions are mutually orthogonal.
Determining the solution to the original system then reduces to solving a much smaller but denser
positive definite system. Our aim in this paper is to focus on preprocessing and partitioning
strategies of the original system (2.1) to bring it to the form (2.2).

If the matrix A is ill conditioned then there are some rows that are almost linearly dependent
and, as mentioned by Bramley and Sameh (1992), these linear combinations may occur within
a block or across several blocks after row partitionings of the form (2.2). Assuming that the
projections in the block Cimmino algorithm are computed exactly on the subspaces (say by using
a direct method), then the rate of convergence of the block Cimmino algorithm depends only on
the conditioning across the blocks. If we consider additionally conjugate gradient acceleration
of the block Cimmino method (Arioli et al. 1992b, Bramley and Sameh 1992), the convergence
behaviour of the resulting method is directly linked to the spectrum of the n×nmatrix H formed
as the sum of the previously mentioned projections and given by

H =

p∑
i=1

Ai
T
(
AiA

T
i

)−1
Ai , (2.11)

since, as A is nonsingular, the block-rows Ai have full row rank. An efficient implementation
of block Cimmino requires a combination of a robust method for computing the projections and
a partitioning strategy that minimizes the ill-conditioning across the blocks.

Let us see now how the ill-conditioning across the blocks can be expressed. Let the matrix
be partitioned as in (2.2), and let the QR decomposition of the blocks Ai

T be given by

Ai
T = QiRi, i = 1, . . . , p where Ai is an mi × n matrix of full row rank

Qi n×mi, Qi
TQi = Imi×mi

Ri mi ×mi, Ri is a nonsingular upper triangular matrix;

then:

H =

p∑
i=1

AT
i

(
AiA

T
i

)−1
Ai

=

p∑
i=1

QiQ
T
i

= (Q1, · · · ,Qp) (Q1, · · · ,Qp)
T .

(2.12)

From the theory of the singular value decomposition (Golub and Kahan 1965, Golub and
Van Loan 2013), the nonzero eigenvalues of (Q1, · · · ,Qp) (Q1, · · · ,Qp)

T are also the nonzero
eigenvalues of (Q1, · · · ,Qp)

T (Q1, · · · ,Qp) .
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Thus the spectrum of the matrix H is the same as that of the matrix

Im1×m1 Q1
TQ2 · · · · · · Q1

TQp

Q2
TQ1 Im2×m2 Q2

TQ3 · · · Q2
TQp

... . . . ...

Qp
TQ1 · · · Imp×mp


, (2.13)

where the Qi
TQj are matrices whose singular values represent the cosines of the principal angles

between the subspacesR(Ai
T ) andR(Aj

T ) (Björck and Golub 1973).
Note that the principal angles satisfy 0 ≤ Ψ1 ≤ · · · ≤ Ψmij

≤ π/2, and that having Ψk =

π/2, k = 1, . . . , mij , is equivalent to R(Ai
T ) being orthogonal to R(Aj

T ). Intuitively, the
wider the principal angles between the subspaces, the closer H is to the identity matrix, and the
faster the convergence of the conjugate gradient acceleration.

Nevertheless, even the knowledge of the principal angles between every pair of subspaces
would not in general give us any a priori information about the spectrum and the ill-conditioning
of the resulting matrix H. In the next section, we analyse the case for only two blocks and show
that there exists a strong relationship between these principal angles and the spectrum of the
iteration matrix H.

3 Block tridiagonal structures and two-block partitioning

If the block rows Ai are nearly mutually orthogonal, i.e. AAT is strongly block-diagonally
dominant, we can expect that the method will converge very quickly if the projections are
computed accurately. Conversely, the structure of AAT tells us about the orthogonality of the
subspaces represented by block partitions of A. If the block (i, j)th entry of AAT is zero then
the subspaces corresponding to the blocks Ai and Aj are orthogonal. Thus, if AAT is block
tridiagonal, the blocks of A are such that the even numbered blocks are orthogonal as are also
the odd-numbered blocks. Thus if we solve the projected subproblems accurately (using say a
direct method) then we also solve the subproblems corresponding to the odd and even numbered
blocks accurately. To this end, we can exploit algorithms which maximize the minimum element
on the diagonal, and which reorder A to block tridiagonal form (Ruiz 1992). The case of block
tridiagonal matrices, which is common in PDE discretization problems for instance, is very
important because, for such structures, we can introduce a partitioning with a good degree of
parallelism and a convergence directly related to the principal angles described in the previous
section.

Consider, for instance, a block tridiagonal matrix A partitioned in block rows Ai. It can be
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reordered as

A =



∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗


=


A1

A3

A5

A2

A4

 =

[
B1

B2

]
, (3.1)

where B1 = {Ai : i odd} and B2 = {Ai : i even}. Note that, in this partitioning of A, the
blocks in B1 each comprise three block rows from the block tridiagonal form while those in B2

comprise two. The partitioning in equation (3.1) is called a two-block partitioning. We denote
by n1 and n2 the number of rows in B1 and B2 respectively.

With such a partitioning, because of the structural orthogonality between the blocks Ai

within B1 and within B2 respectively, the matrix H in (2.11) can be considered as P1 + P2,
with P1 = PR(B1

T ) and P2 = PR(B2
T ), where each of these two projectors is in fact a sum of

independent projectors acting on orthogonal subspaces.
It was shown by Elfving (1980) that, with such a two-block partitioning, the spectrum of

matrix H is
λk = 1 + cos Ψk

λk = 1− cos Ψk−n2

λk = 1

k = 1, . . . , n2

k = n2 + 1, . . . , 2n2

k = 2n2 + 1, . . . , n

(3.2)

where {Ψk}n2

1 are the principal angles betweenR(B1
T ) andR(B2

T ).
On the one hand, matrices in this form can be easily partitioned into sufficient blocks to utilize

all the processes of the target machine (provided the matrix A is large enough in comparison with
the size of the tridiagonal substructure). On the other hand, the expression (3.2) for the spectrum
tells us that the block Cimmino algorithm with conjugate gradient acceleration in general works
better and, in exact arithmetic, takes not more than 2n2 steps for convergence where, without
loss of generality, we assume n2 < n1.

The idea of exploiting such sparsity structures appropriately in row-projection methods
has already been widely studied and discussed. For instance Kamath and Sameh (1988) have
developed a three-block partitioning strategy of this type which they have exploited within their
block SSOR algorithm accelerated with conjugate gradients. Further work and discussions can
also be found in Bramley (1989) and Bramley and Sameh (1992). In Arioli et al. (1992b), some
particular scalings used in conjunction with two-block partitioning strategies are investigated.
These scalings help to open the principal angles between the two subspacesR(B1

T ) andR(B2
T )

and can be related to oblique projections associated with ellipsoidal norms.
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4 Partitioning Strategies

We now discuss three strategies for preprocessing the matrix to obtain a partitioned system (2.2)
that will normally yield better convergence of the block Cimmino algorithm than just using a
naive partitioning.

4.1 Partitioning Strategy I

As discussed in the previous section, the main idea behind the so called two-block partitioning
strategy is to exploit structural orthogonality between the subspaces R(Ai

T ) defined by the
partitioning (2.2). We have indicated that this structural orthogonality can be analysed on the
basis of the sparsity pattern of the normal equations matrix AAT . For example, for two-block
partitionings of the type described above, the sparsity pattern of matrix AAT is block tridiagonal,
with diagonal blocks of a size corresponding to the number of rows in each block Ai defined by
the partitioning (2.2).

This simple remark can be used to define a preprocessing strategy that will enable the
construction of two-block partitionings for sparse matrices with any type of sparsity structure
(Arioli, Drummond, Duff and Ruiz 1995a). The idea is to first permute the rows of the matrix A

based on permutations that transform the normal equations matrix AAT into block tridiagonal
form. We thus determine a permutation matrix P such that

B = PAATPT (4.1)

has a block tridiagonal form. To this end, we exploit an implementation of the Cuthill-McKee
algorithm (Cuthill and McKee 1969, Duff, Erisman and Reid 1986, George 1971) for ordering
symmetric matrices. We then solve the row-wise permuted system of equations

Âx = b̂ (4.2)

with Â = PA, and b̂ = Pb, using the block Cimmino algorithm. From the block tridiagonal
structure of the matrix B, the block row partition (2.2) of Â is defined with blocks of rows with
each block determined by the size of the diagonal blocks in the block tridiagonal structure of
B, or by the number of rows in a contiguous subset of these diagonal blocks. We illustrate this
in Figure 4.1. The row partitioning we obtain from this still has the properties of the two-block
partitioning described in Section 3.

This preprocessing Strategy I for general sparse matrices exploits only the sparsity structure
in the normal equations matrix AAT and not the numerical values of the entries in this matrix.
We should mention and will illustrate it explicitly by the experiments in the following sections
that, for very general sparsity patterns, the block tridiagonal structure obtained with the Cuthill-
McKee Algorithm has diagonal blocks with very differing sizes leading to an unbalanced
partitioning with the block-row projections requiring very different amounts of work. From
the discussion in Section 2, we recall also that the main objective when defining the partitioning
is to minimize the effects of ill-conditioning across the blocks, which simply means keeping
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Figure 4.1: Row partitioning of Â (on the right) from block tridiagonal structure of B (on
the left).

the principal angles between every pair of subspaces as open as possible. Strict orthogonality
between every second block of rows is only one step in this direction; we may also try to take
into account in some way the angles themselves when defining the reorderings and partitionings.

4.2 Partitioning Strategy II

The preprocessing Strategy II that we now introduce will take into account the numerical values
in the matrix AAT as well as the sparsity structure of that matrix in an attempt to define a
partitioning strategy with numerical properties close to that of two-block partitioning but with
more flexibility for building the blocks and potentially a much better balanced partition.

In this preprocessing strategy the matrix AAT is first normalized through:

C = AAT ,

D = diag(C),

S = D−
1
2CD−

1
2 .

The entries in the normalized matrix S correspond to the cosine of the principal angle between
every pair of rows (in other words, the degree of collinearity between any pair of rows), and
we may expect that if such a cosine is relatively small, then the corresponding pair of rows are
almost orthogonal and can be considered so. Our next step in this preprocessing strategy is then
to keep only the nonzero entries in S which are above a given threshold τ in absolute value, viz

F = filter(|S|, τ),

and to permute the resulting matrix F into the block tridiagonal form

B̂ = PFPT , (4.3)

using the Cuthill-McKee algorithm as before. We then solve (4.2) by using the row partitioning
for Â defined by the block tridiagonal structure of B̂.

In practice, we do not want to use the normal equations matrix AAT to solve the
subproblems, but we first ensure that the diagonal entries will be one by scaling the original
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matrix A so that the rows have 2-norm equal to one. This can be done by using the HSL
routine MC77 (Ruiz 2001). Of course, since numerical values have been dropped from the
normal equations matrix, we cannot expect that the resulting partition will provide two subsets
of structurally orthogonal blocks of rows but, if the values dropped are sufficiently small, we
may expect that the numerical properties of the resulting iteration matrix will be relatively close
to that of the “strict” two-block partitioning case. Additionally, since the filtered matrix F has
less entries than the original normal equations matrix C, the resulting block tridiagonal permuted
matrix B̂ will surely have a smaller bandwidth than B and this may help to define a partitioning
on A with more blocks, better balanced projections, and a higher degree of parallelism. In
Section 5, we will experiment and compare these two preprocessing strategies with another
strategy that we will now describe.

4.3 Hypergraph partitioning

A main aim of the partitioning strategies that we have just described is to decouple the blocks to
reduce the number of block Cimmino iterations. We now look at a way to do this more directly.

A hypergraph H = (V ,N ) is a generalization of the concept of graphs, where V are the
vertices andN are the hyperedges, also called nets. In a hypergraph, nets can connect more than
two vertices whereas, in a graph, edges connect only two of them.

1

2

3

4

5

6

1

2

4

3

5

6

Figure 4.2: A hypergraph representing a sparse matrix. Large circles are the vertices
(corresponding to the rows) and small dark circles are the nets (corresponding to the columns).

Hypergraphs can be useful to represent a sparse matrix where the vertices can be associated
with the rows and the nets with the columns. We show in Figure 4.2 an example of a hypergraph
with 6 vertices and 6 nets representing a 6×6 sparse matrix shown in Figure 4.3. Notice how we
can easily see from the hypergraph all the connections between the different rows in the matrix.
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Figure 4.3: The sparse matrix represented by the hypergraph in Figure 4.2.

1

1

2

2

3

3

4

4

5

5

6

6

× × × ×
× × ×
× × ×

× ×
× ×
× × ×

Figure 4.4: A partitioning of the matrix in Figure 4.3 with the columns causing communications
shaded in gray.

If we partition the rows of the matrix uniformly into three sets (blocks) as in Figure 4.4, we
see that each block has overlapping columns with all the other blocks. This creates all-to-all
interactions between the blocks. Columns 2, 5 and 6 are shared by all blocks, whereas columns
1, 3 and 4 are shared between two blocks. A partitioning with such an overlap will be prohibitive
for parallel runs because of the communication cost.

A k-way hypergraph partitioning creates a partitioning Π = {V1,V2, . . . ,Vk}, where Vi is
a nonempty subset of the vertices V where Vi ∩ Vj = 0, i 6= j and

⋃k
i=1 Vi = V , i.e. all the

blocks in Π are pairwise disjoint and their union is equal to V . The problem of minimizing the
connections between the blocks is NP-hard (Lengauer 1990).

A possible partitioning of the previous hypergraph is shown in Figure 4.5 where the three
regions represent the three blocks. To easily distinguish the three blocks we duplicate the
hyperedges 2, 5 and 6, corresponding to the column overlaps. The interconnections and the
resulting permuted matrix are shown in Figure 4.6.

We see that, compared to the partitioning in Figure 4.4, the number of global interconnections
reduces from 4 to 2 and the total number of interconnections reduces from 6 to 3.

We use the hypergraph partitioning scheme of Çatalyürek and Aykanat (1999a). Their code,
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5′′

6′′

2′′′

5′′′

6′′′

2′
5′

Figure 4.5: A possible partitioning of the hypergraph in Figure 4.2.

1
1
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4
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3

3
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6

2

2

×× ××

× ××
× ××
× ×
× ×
×× ×

Figure 4.6: The partitioning using a hypergraph partitioner of the matrix from Figure 4.2. The
columns in gray show the interconnections.

PaToH (Çatalyürek and Aykanat 1999b), generates a k-way partitioning of a sparse matrix. An
input parameter in the code permits us to balance the number of rows in each block. In the
following experiments, we will use two levels of balancing. The first is a weak balancing where
we allow the blocks to have a large difference in number of rows while reducing greatly the
number of interconnections. This helps to group the interconnected rows within the blocks as
much as possible. The second level of balancing is strong balancing where the target is to have
an almost equal number of rows per block. Although we note that such a balancing does not
directly balance the amount of work for each projection, it is a good heuristic that is readily
available within the PaToH code.

5 Partitioning Experiments

In this section, we perform some experiments with the block Cimmino solver using block CG
acceleration (Arioli et al. 1995a, Arioli, Duff, Ruiz and Sadkane 1995b) and focus on the effects
of the preprocessing strategies on the performance. We have therefore chosen a fixed block
size for the block CG acceleration and stop the iterations on the basis of a normwise backward
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error (Arioli, Duff and Ruiz 1992a)

ωk =
‖Ax(k) − b‖∞

‖A‖∞‖x(k)‖1 + ‖b‖∞

of less than 10−12. A small value for ωk means that the algorithm is normwise backward
stable (Oettli and Prager 1964) in the sense that the solution x(k) is the exact solution of a
perturbed problem where the max norm of the error matrix is less than or equal to ωk.

In Section 5.1, block Cimmino is used to solve the SHERMAN3 linear system from the
Harwell-Boeing matrix collection (Duff, Grimes and Lewis 1997). We choose this test problem
because the matrix is very typical of a wide range of matrices arising from the solution of
discretized partial differential equations but is difficult to solve because of the inclusion of
temperature in the model. Section 5.2 contains the results from experiments of runs of block
Cimmino on the bayer01 problem from the sparse matrix collection at the University of
Florida (Davis 2008). This problem has been chosen to be representative of larger problems
with structures quite different from those from PDE discretizations. We then perform some
experiments with a parallel implementation in Section 5.3.

5.1 Solving the SHERMAN3 problem

The matrix SHERMAN3 is an unsymmetric matrix of order 5005. This matrix comes from the
discretization of partial differential equations extracted from a three dimensional oil reservoir
simulation model on a 35× 11× 13 grid using a seven-point finite difference approximation.

The pattern of the matrix SHERMAN3 is shown in Figure 5.1. In the first experiment, a naive
block-row partition of the linear system is used, with eight equal-sized blocks of rows. This
results in blocks of 625 rows except for the last one of 630.

Figure 5.2 shows the spectrum of H when using the naive partitioning shown in Figure 5.1.
Figure 5.2 shows a large cluster of eigenvalues around 1 but a few trailing eigenvalues associated
with bad conditioning (the smallest eigenvalue is of the order 10−8).

The block Cimmino method is numerically independent of any column permutations so, after
the row-partitioning of the system, we also perform some column permutations to group together
columns belonging to the same subsets of row-partitions in order to facilitate the communication
phase in the algorithm when merging the results from the different projections.

In the second round of experiments, the preprocessing Strategy I from Section 4 is used.
From the block tridiagonal structure of the permuted normal equations matrix of SHERMAN3,
the matrix is partitioned into blocks of rows. Figure 5.3.b shows the pattern of matrix
SHERMAN3 after row permutation following the preprocessing Strategy I, using the Cuthill-
McKee algorithm, to permute the normal equations matrix into block tridiagonal form, as shown
in Figure 5.3.a. The resulting partitioning shown in Figure 5.3.b is a two-block partitioning,
and columns belonging to the same subsets of blocks have been grouped together as mentioned
before. The block-row partitions have been defined using the block tridiagonal structure in the
normal equations matrix. As in the case of the naive partitioning, we again aim at obtaining 8
blocks of about 625 rows each.
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Figure 5.1: Sparsity pattern of the SHERMAN3 matrix. The matrix has been partitioned into 8
equal-sized blocks of rows using the original ordering. We call this the naive partitioning.
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Figure 5.2: Eigenvalue spectrum of H for the SHERMAN3 problem with a naive
partitioning.
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(a) (b)

Figure 5.3: (a) Permuted normal equations from SHERMAN3 using the Cuthill-McKee algorithm. (b) Matrix

SHERMAN3 after row permutations following the preprocessing Strategy I and with additional column grouping.

The sparsity pattern of the permuted SHERMAN3 matrix after completion of preprocessing
Strategy II is shown in Figure 5.5.b. In this case we dropped the entries of the normalized
normal equations matrix that are below 0.2, although other values can be used as we discuss
later. We plot in Figure 5.4 all the entries of the normal equations matrix, where we see that
dropping at 0.2 will remove less than half of the entries. The matrix with the entries dropped
was permuted using the ordering from the Cuthill-McKee algorithm. The associated block-row
partition, indicated in Table 5.1, was obtained from the block tridiagonal structure of the matrix
B̂ in (4.3), as described in Section 4, with the aim of again obtaining 8 blocks of about 625 rows
each.

In the case of the hypergraph partitioning, we use two different imbalance parameters, a weak
balancing which tolerates blocks up to 8 times larger than other blocks, and a strong balancing
which tolerates up to 50% imbalance.

As expected, the matrix B̂ in Figure 5.5.a has a smaller bandwidth than the matrix in
Figure 5.3.a. Thus the preprocessing Strategy II offers more degrees of freedom to define the
row partitions than Strategy I, since they are of smaller size. Therefore, we can define more
partitions while maintaining a good balance between the number of rows in each block.

The spectrum of H for strategies I and II is shown in Figures 5.6 and 5.7, respectively. Notice
that compared to the spectrum of H arising from the naive partitioning the spectrum presents a
better clustering of the eigenvalues. In Strategy I the largest eigenvalue is 2, consistent with a
two-block partitioning. However, using Strategy II, the largest eigenvalue is only slightly larger
than 2, and thus we call Strategy II a near two-block partitioning. The convergence results in
Table 5.2 illustrate the effect of the better clustering of eigenvalues obtained using Strategy II.

The second column of Table 5.2 shows results from the runs of the block Cimmino method
using different partitioning strategies. These results should be multiplied by the block size (8 in
our case) to obtain the number of matrix-vector operations, and we show them in the last column
so we can easily compare the amount of work. We note that the naive partitioning requires the
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Figure 5.4: Normalized nonzero entries in the normal equations matrix from SHERMAN3. On the x-axis, the

entries are displayed in increasing order of their absolute numerical value (given on the y-axis).

Number of rows in each part

Original Matrix A 625 625 625 625 625 625 625 630

Strategy I 625 625 625 635 629 628 784 454

Strategy II (drop 0.1) 625 625 625 744 707 669 628 382

Strategy II (drop 0.2) 625 625 625 627 641 671 630 561

Strategy II (drop 0.4) 637 637 637 637 637 637 637 546

PaToH (weak balancing) 1019 396 1015 400 544 544 544 543

PaToH (strong balancing) 626 626 626 625 626 625 626 625

Table 5.1: Description of the 8 block-row partitions obtained for matrix SHERMAN3.

highest number of iterations for convergence since neither the structure of the matrix nor the
value of the matrix entries were taken into account.

However, when we take into account both the value of the entries and the structure of the
matrix as in Strategy II, we are able to reduce the iteration count to 68 when dropping at 0.2
compared to 102 when using Strategy I. We examine further the effect of dropping on the
convergence by showing counts for dropping at 0.1 and 0.4. We see that, as we increase the
dropping threshold from 0.1 to 0.2, we get a finer partition with the higher values in the blocks.
However, as we increase the dropping threshold more (to 0.4) we start to lose these connections
resulting in an increase in iteration count.

Using PaToH, we can reduce the iteration count to 52 when we use weak balancing and
tolerate some large blocks in order to reduce the interconnections between them. We notice that,
when using a strong balancing, the iteration count rises to 74.
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Nb. of iterations M-V operations

Naive partitioning 190 1520

Strategy I 102 816

Strategy II (drop 0.1) 73 584

Strategy II (drop 0.2) 68 544

Strategy II (drop 0.4) 89 712

PaToH (weak balancing) 52 416

PaToH (strong balancing) 74 592

Table 5.2: Convergence of SHERMAN3 in the three different sets of experiments.

(a) (b)

Figure 5.5: (a) Sparsity pattern of matrix B̂ in (4.3), obtained after removing nonzero entries less than 0.2 from the

normalized SHERMAN3 normal equations matrix, and using the Cuthill-McKee algorithm to permute the resulting

matrix into block tridiagonal form. (b) Matrix SHERMAN3 after row permutations following the preprocessing

strategy II and with additional column grouping.
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Figure 5.6: Eigenvalue spectrum of H for the permuted SHERMAN3 problem arising from
using Strategy I.
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Figure 5.7: Eigenvalue spectrum of H for the permuted SHERMAN3 problem arising from
using Strategy II with a drop at 0.2.
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5.2 Solving the bayer01 problem

We now look at these strategies on a larger problem, bayer01. This matrix was obtained from
Bayer AG by Friedrich Grund and is available from the sparse matrix collection at the University
of Florida (Davis 2008). It is of order 57735 and has 277774 nonzero entries. We show the
pattern of the matrix in Figure 5.8 where we have superimposed the naive partition with 16
blocks.

Figure 5.8: Nonzero pattern of the matrix bayer01showing the naive partitioning.
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Figure 5.9: Spectrum of block Cimmino iteration matrix, H, for bayer01 with 16 uniform
partitions.

If we run the block Cimmino algorithm on the matrix partitioned as in Figure 5.8 then the
resulting spectrum of the iteration matrix H is shown in Figure 5.9. We see that, while there
is a good clustering of the eigenvalues around the value 1, just as we noticed with the matrix
SHERMAN3, the matrix is still quite badly conditioned. Indeed, many small eigenvalues are
present and these eigenvalues will increase the iteration count when using the conjugate gradient
acceleration.
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If, however, we first reorder the matrix using PaToH and then partition it, we get the spectrum
for the iteration matrix shown in Figure 5.10 where we note that the intermediate eigenvalues
have been shifted towards 1 thus improving the clustering of eigenvalues in the iteration matrix.
The reduction in the number of small eigenvalues is expected to improve the convergence.
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Figure 5.10: Spectrum of block Cimmino iteration matrix for bayer01 with 16 blocks obtained
using the hypergraph partitioner PaToH.

Smallest block. Largest block. Ratio Time

Original Matrix A 3608 3615 1.00 n/a

Strategy I 1673 4342 2.60 0.25

Strategy II (drop 0.05) 1448 4017 2.77 0.42

Strategy II (drop 0.1) 3318 3660 1.10 0.55

Strategy II (drop 0.2) 3522 3634 1.03 0.94

PaToH (weak balancing) 952 7597 7.98 0.40

PaToH (strong balancing) 3608 3609 1.00 0.35

Table 5.3: Information on the 16 block-row partitions obtained for matrix bayer01.

Table 5.3 summarizes the partitioning information after applying the different strategies. As
there are 16 blocks, we show only the smallest, the largest, the ratio between the largest and
the smallest block, and the time it takes to obtain the partitioning sequentially on a Intel Xeon
E5-2687w at 3.1GHz. We notice that when using Strategy I we are constrained by the size of
the level sets so that balancing the partition is quite difficult, and the largest block is more than
2.5 times the size of the smallest block. This is because it is not possible to permute the normal
equation matrix to one with a small bandwidth. We overcome this problem with Strategy II and
obtain better load balancing. This improves as we increase the dropping threshold parameter.
The increase in execution time from Strategy I to Strategy II that continues when increasing
the dropping threshold is related to a higher number of level sets in the Cuthill-McKee process.
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In the case of PaToH, weak balancing gives the greatest freedom for partitioning, and
our largest block is nearly 8 times larger than the smallest. If we constrain this freedom by
strengthening the balancing, we obtain a partition with almost equal-sized blocks. We notice
that the hypergraph partitioning on bayer01 takes slightly longer than using Strategy I, and
that using strong balancing is faster than using the weak balancing.

Nb. of iterations M-V operations

Naive partitioning 256 2048

Strategy I 459 3672

Strategy II (drop 0.05) 270 2160

Strategy II (drop 0.1) 204 1632

Strategy II (drop 0.2) 343 2744

PaToH (weak balancing) 52 416

PaToH (strong balancing) 105 840

Table 5.4: Convergence of bayer01 with the different partitioning strategies.

We show in Table 5.4 the results for the matrix bayer01. We notice a similar behaviour as
with the SHERMAN3 matrix where the preprocessing Strategy II improves the iteration count
when dropping until a certain threshold. However, the preprocessing Strategy I is worse than
just using the naive partitioning. This behaviour was seen on several problems which makes this
strategy unreliable. Finally, using PaToH both with weak and strong balancing gives the best
results.

5.3 Parallel Experiments

In this section we solve some standard test problems with a parallel version of our code. This
version uses a distributed block CG acceleration, illustrated in Figure 5.11, where the blocks
are distributed over multiple processes called masters. All these processes solve the problem
in a distributed manner and communicate only for dot product and matrix-vector computations.
The matrix-vector part involves the projections on the subspaces that are solved using the direct
solver MUMPS (Amestoy et al. 2001). As MUMPS is itself a parallel code, it can use supplementary
processes, called workers in our illustration.

We list, in Table 5.5, the matrices from the linear systems that we will solve in parallel. We
have seen that PaToH gives a better partitioning compared to the other strategies. Thus we only
do runs with PaToH in this section. For the first three problems we use a block size of 1, which
means a classical CG acceleration, while for the fourth problem we use a block size of 4 as it
is needed for better convergence. We will compare the effect of balancing when using PaToH,
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Figure 5.11: Representation of how the processes are organized. TheMk circles are the masters,
the other circles are the workers.

and see whether the lower iteration count of weak balancing compensates for its more poorly
balanced partition.

Problem Size Nonzeros Application Parts

N1: torso3 259,156 4,429,042 3D model of torso 16

N2: CoupCons3D 416,800 17,277,420 structural problem 32

N3: cage13 445,315 7,479,343 DNA electrophoresis 256

N4: Hamrle3 1,447,360 5,514,242 Circuit Simulation 64

Table 5.5: Matrices from the University of Florida Sparse Matrix Collection.

In Table 5.4 in the previous section we saw that using weak balancing can result in much
faster convergence than using strong balancing. However, as we saw in Table 5.3 there is a
dramatic difference in the ratio of sizes of blocks in the partitions for these two strategies. When
running in parallel this latter effect can be very important and may well more than offset any
reduction in the number of iterations. For example, in our runs on the cage13 problem (N3 in
Table 5.5), on a 32 core machine, we varied the balancing parameter and partitioned the matrix
into 256 blocks. With weak balancing, the factorization took about 19 seconds and the block
CG converged in 16 iterations in about 5 seconds. Using strong balancing, the factorization took
about 10 seconds and the block CG converged in 17 iterations in about 4 seconds. Clearly, there
will always be a trade-off between getting a well balanced partition and reducing the iteration
count that will be problem dependent.

Our parallel experiments are on a machine with nodes having two quad-core Nehalem sockets
and 32GB of memory for both processors. In all cases we will use the 8 cores of each node and
increase the number of nodes. This way we test for 1, 8, 16, 32, 64 and 128 MPI processes. The
matrices are partitioned using PaToH with weak balancing.

We show in Tables 5.6 and 5.7 the time spent in seconds to factorize the augmented systems
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Factorization
MPI procs 1 8 16 32 64 128

N1 46.89 12.11 8.68 3.37 1.74 1.24

N2 83.27 14.41 8.78 6.11 3.18 1.73

N3 77.09 28.15 16.04 9.16 6.58 4.68

N4 34.8 6.67 4.33 2.01 1.62 1.05

Table 5.6: The elapsed time in seconds to factorize the augmented systems.

block CG
MPI procs 1 8 16 32 64 128

N1 21.57 6.34 4.43 2.94 1.56 1.32

N2 272.21 63.49 36.89 22.88 13.50 9.37

N3 41.67 13.64 8.14 4.33 2.67 1.53

N4 3905.0 773.0 422.4 221.3 149.52 130.13

Table 5.7: The elapsed time in seconds for the block CG acceleration to converge.

a. Factorization speedup b. block CG speedup

Figure 5.12: Parallel results of the factorization of augmented systems and block CG acceleration speedups.

(2.10) and the time taken for the block CG to converge. In these runs we have performed a
strong scaling analysis showing the speedups when a single system is solved on an increasing
number of processes. As we see in both plots in Figure 5.12, we obtain a good speedup on all
four problems. However, the speedup is not uniform. It is very good for each problem until
the number of processes is equal to the number of blocks when it becomes somewhat poorer.
The reason for this lies in the way our algorithm handles the partitions, when we have less
processes than blocks, each process will handle more than one partition. Increasing the number
of processes will decrease the amount of work done by each process which results in good
speedups. However, when we increase the number of processes above the number of blocks, the
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masters will handle only a single block and hence we no longer have speedups from the first level
of parallelism. Other processes (the workers) will be used by the direct solver MUMPS yielding a
second level of parallelism. Further discussion on this aspect of our work is beyond the scope of
this paper.

6 Conclusions

We have shown that preprocessing the original system of equations to obtain a different
partitioning of the system can have a significant effect on the convergence of the block Cimmino
algorithm resulting in a more robust and efficient implementation. Indeed, a good preprocessing
strategy can minimize the ill-conditioning between the different blocks. Our Strategy I did this
by enforcing a two-block partitioning but it was not very good at obtaining a balanced blocking
or at reducing the number of iterations. We thus tried Strategy II which did much better with
respect to a naive partitioning but at the cost of losing, to a controlled extent, the properties of
the two-block partitioning. Although this did better than Strategy I, it was still not a robust
approach and did not always provide an improvement over a naive partitioning of the original
system. It also required the selection of a dropping threshold parameter that was dependent on
the problem being solved and was hard to choose in advance. We thus examined a strategy that
uses a hypergraph model to partition the original system with the aim of directly reducing the
connection between blocks. We used the PaToH software to effect this partition and found that
it compared very favourably to our strategies based on the normal equations. It was also more
robust in that it always produced partitions better than a naive partition of the initial matrix. It
was also possible to use PaToH to obtain a well balanced partition (that is with subblocks of
roughly equal size). For the experiments using a parallel version of our code, we thus chose only
to examine the performance of the partitioning using PaToH.

Our implementation of the block Cimmino method uses block conjugate gradients to
accelerate its convergence. In order to exploit parallelism, we developed an MPI implementation
of our block Cimmino with block CG acceleration. We used strong and weak partitioning
strategies to define the subblock sizes (number and choice of rows in A in each subblock). We
observed that forcing a more balanced workload distribution produced better speedups, even if
the overall iteration count was higher.

Future multi-level hybrid parallel systems may be able to exploit more non-uniform block
sizes and dynamically adjust the number of processes to the size of the block in a manner that
reduces the iteration count, minimizes load imbalance, and produces better resource utilization.
We have shown that we can exploit both the parallelism from the partitioning as well as that
from the direct solver MUMPS so that the block Cimmino computational scheme should be a
good approach for solving systems on heterogeneous multi-level parallel systems.
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