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Abstract

This Thesis on the Physics of condensed matter collects some of my research activities performed

during my Doctorate devoted to the measurement of nuclear quantum effects on the dynamics of

hydrogen and oxygen in the water molecule. Indeed, the single-particle motion and in particular

the kinetic energy are effective thermometers representing the probe to measure the deviations

from classical or first-order quantum mechanics.

In the introduction, I present the scientific case and highlight the complexity of the mechan-

ical and thermodynamic properties of water and their physical modelling. I also explain why

neutron scattering has been chosen as the experimental technique to study this subject and

how inelastic scattering at high energy and momentum transfers can access the single-particle

motion in the case of the nuclear constituents of the molecule i.e., oxygen and hydrogen, the

latter as a proton or deuteron.

Then, a discussion on momentum distributions in statistical classical and quantum systems

is presented, introducing models enabling a physical interpretation in the case of water or

similar molecules. In particular, the use of multivariate distributions allows the measurement

of the anisotropy of the effective potential which determines the nuclear motion. In particular,

i) I optimized the data reduction and analysis routines reducing their running times and ii)

I increased the reliability of the fitting parameters describing the shapes of the momentum

distributions, reducing the number of free parameters through physical constraints. This leads

to the determination of the components of the nuclear kinetic energy matrix.

A harmonic model is then proposed to relate these observables to the translational, ro-

tational and vibrational frequencies of the molecule. This calculation is based on the model

proposed by Moreh and co-workers for the interpretation of gamma nuclear resonance scatter-

ing from excited nuclear levels. I derived the analytical generalization to a molecule in any phase

through knowledge of vibrational frequencies and molecular geometrical parameters. Moreover,

I implemented the model in the data analysis routines in order to predict, guide or compare
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with experimental results.

The results of inelastic neutron scattering experiments on the melting of light and heavy wa-

ter are then presented. Changes in the components of the kinetic-energy matrix are discussed

in the case of phase transitions and the relevance of nuclear quantum effects is highlighted.

The experimental results are compared to the harmonic model and to computer simulations

based on path-integral molecular dynamics. Another set of experiments is presented on the

measurement of the dynamic structure factor of supercritical water in thermodynamic states

across the pseudo-critical line, i.e., the locus of points with a pressure greater than the critical

pressure corresponding to a maximum of the specific heat for a temperature greater than the

critical temperature. Moreover, the changes in the dynamic structure factor are studied in the

amorphous-solid water phase across the transition from very-high-density to high-density amor-

phous ice, and then from the high-density to the low-density amorphous ice. I have been directly

involved in the experiment preparation and set-up, measurements, analysis and interpretation

of the experiments on heavy water, supercritical water and amorphous ice. I contributed to

the data analysis and interpretation of inelastic neutron scattering experiments in super-cooled,

stable liquid, supercritical water and poly-crystalline ice.

This work has been carried out at the ISIS Neutron and Muon Pulsed Source at the Ruther-

ford Appleton Laboratory in the UK for about four months for the experiments and data

analysis, at the SNS Spallation Neutron Source at Oak Ridge National Laboratory in the US

for data reduction and analysis, and in Tor Vergata for the data analysis, interpretation and

modelling.

During the three years of Doctorate I attended to the School of Neutron Scattering Francesco

Paolo Ricci (XI Edition) on the neutron investigation of bio-systems in Taormina as a student; I

participated in the International Neutron Scattering Instrumentation School at the Laboratori

Nazionali di Frascati as a student and local organizer; I attended the International Conference

on Neutron Scattering 2013 in Edinburgh contributing to the poster session with the results on

the oxygen dynamics that was for the first time measured through neutron Compton scattering;

I contributed to the VI Workshop in Electron-Volt Neutron Spectroscopy meeting in Abingdon

(UK) with a talk on competing quantum effects on the melting of heavy water.

Since September 1st, I steadily work at ISIS in Rutherford Appleton Laboratory to the

computational and experimental development of eV neutron scattering techniques.
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Chapter 1

Introduction

1.1 A long discussion

About 24 centuries ago, Plato identified water, one of the four Empedocles’s classical elements,

with the perfect solid that more resembles a slippery ball, the icosahedron. In modern science,

the chemical composition of water molecule (H2O) was defined at the beginning of XVII century

as two hydrogen (H) and one oxygen (O) atoms, and some famous scientists such as Gay-Lussac,

Lewis, Kelvin and Celsius spent their energies in the study of the compound that covers our

planet as much as composes our body. We are probably so used to it that for us it is colourless,

odourless and tasteless and is at the base of our daily comparisons and measure scales. Water

is one of the simpler, lighter and safer molecules even if it is composed of the two most common

reactive elements. Considering a molecular diameter of a = 2.75 Å, few other molecules can be

found that are smaller.

The reason why in 2014 a Ph.D thesis has water as the main subject is 72-fold [1]. This is

indeed the number of features regarding this molecule that we cannot explain and the measure

of our ignorance of its deep and shadowy nature.

1.1.1 Intermolecular forces

Water structure is considered permanent and steady. The auto-dissociation mechanism convert-

ing 2H2O 
 H3O+ + OH− takes place for a very short time (ps) with respect to the mean time

that the exchanged proton spends in the water molecule (ms). The finite size of the molecule

and the corresponding spatial charge distribution are reflected into an inter-molecular poten-

tial [2] that is repulsive when the two molecules are approached and that is attractive when

they are separated, given a vanishing interaction condition in the limit of increasing distance.
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Water dipole moments are responsible for the attraction potential. The dipole moment for a

water monomer has a value of 1.84 D, one of the highest values amongst molecules [3], and

changes to values between 2.4 D and 2.6 D in the water condensed phases [4]. The resulting

potential has been discussed by Lennard-Jones [5] and consists of a repulsive term depending

on R−12 and an attractive one depending on R−6, where R is here the inter-molecular distance.

Moreover, when a proton (H nucleus) lies between the O of its molecule and an O belonging

to a nigh molecule, both with partial negative charges, a bond is created between the two O

that is generally linear and maximized when the two opposite HO interactions are equal. When

a H participates in such a bond it is said to form a Hydrogen Bond (HB) [6–9].

The HB occurs in its stronger form when a proton is shared between two negatively-charged

fluorines and its strength decreases when fluorine is replaced by O or nitrogen. The extraor-

dinary importance of HB effects on water can be easily appreciated considering the very high

boiling point of liquid water (373 K) with respect to other similar molecules where HB does not

happen, such has H2S (211 K), H2Se (231 K) or H2Te (269 K).

The strength of HB in Water is far greater than the other inter-molecular interactions and

leads to a 15% closer arrangement of the molecules than the case with a Lennard-Jones potential

only [10]. Formation of HB between water molecules provokes a decrease of both enthalpy and

entropy of the system, and can be seen as the cause for ordered structures found in condensed

phases that are lost in the transition to water vapour.

As a consequence of the HB interaction, the structure of water is generally thought as a

tetrahedron, with an O atom at the centre and 2 bonding electrons and two lone electrons in sp3

hybridized orbitals with angular separation between the OH directions of about 109 degrees.

This structure is actually found in condensed phases such as hexagonal ice Ih, and is otherwise

approximately similar.

1.1.2 Nuclear Quantum Effects

The H and O atoms do not keep still in the previously pictured tetrahedral positions. Being

each position defined by a minimum in the inter-atomic potentials, quantum particles like atoms

cannot stay still but possess a minimum amount of energy related to the depth of this potential

and then to the importance of their localization. All the effects acting on a nucleus and resulting

in a deviation from a Maxwell - Boltzmann statistics are defined as Nuclear Quantum Effects

(NQEs) [11–17]. The resulting energy is called Zero Point Energy (ZPE) [18–20] since it is

observed even when the temperature of the system is brought to absolute zero and all the
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thermal energy has been removed from the system. Considering the atoms within a molecule,

this phenomenon brings to the definition, based on the symmetry of the molecule, of several

motions that the H must undergo and that are called stretch and bend modes [21,22]. The former

are related to motions of the H in the direction of the covalent bond, increasing and decreasing

the OH distance as by a stretching, the latter bends the molecule changing the angle between the

two covalent bonds. These motions can be thought as (and often approximated by) harmonic

vibrations. If enough energy is given to the molecule, it is possible that a vibration is promoted

from the ground level to a higher level, where the discrete level sequence can be obtained

resolving the Schroedinger equation describing the system. The presence of inter-molecular

forces brings to a similar quantization of levels and energies that hinder the free rotations of the

molecules. Changes in the molecular orientation can then be related to vibrations around an

average positions, called librations, or through discrete jumps from a position to another, with

the HB connecting two different external O before and after the jump. Since the Schroedinger

equation depends upon the mass of the atom, differences in level energies are found under

isotope substitution, that is after a replacement of a H by a Deuterium (D). Isotope effects

are of great importance in order to define the action of NQEs on the water molecule. As an

example, the classical (non quantum) value for the HB average distance is increased by ZPE in

different ways if H2O or heavy Water (D2O) molecules are considered.

The importance on NQEs increases in the limit of low temperature, and so the effect of

isotopic substitution. Accordingly, the difference between boiling temperatures of H2O and

D2O is of only 1 degree (T = 373 K), the difference between melting points is about 4 degrees

(T = 273 K), while the difference between the glass transition temperatures can reach 10 degrees

(T = 136 K), depending on the preparation of the sample [23,24]. The picture is anyway more

complicated, as the difference of 7 degrees between the the maximum density temperatures

suggests. An example of the isotope substitution effect on the HB is the Ubbelonde effect,

describing the change in the OO distance [8].

1.1.3 The phase diagram of water

The preferred physical states of bulk water at different temperatures and pressures are reported

in the phase diagram in Figure 1.1. Within each phase, the material is uniform with respect to

its chemical composition and physical state. Typically, water on Earth is a liquid, but it becomes

ice if its temperature is lowered below 273 K or transformed in vapour if its temperature is raised

above 373 K, at atmospheric pressure. A line in a phase diagram represents the pairs of values
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of temperature and pressure when two phases can stably coexist in any relative proportions

(having the same Gibbs free energy). Here, a slight change in temperature or pressure may

cause the phases to abruptly change from one physical state to the other. Where three phase

lines join, there is a triple point, when three phases stably coexist. Under the singular conditions

of temperature and pressure where liquid water, gaseous water and hexagonal ice stably coexist,

there is a triple point where both the boiling point of water and melting point of ice are equal.

This happens when TT = 272.16 K and PT = 612 Pa. Four phase lines cannot meet at a

single point. A critical point occurs at the end of a phase line where the properties of the two

phases become indistinguishable from each other, for example when, under singular conditions

of temperature and pressure, liquid water is hot enough and gaseous water is under sufficient

pressure that their densities are identical.

One can appreciate the complexity in the phase diagram of water considering the number of

triple points occurring in it. There is one critical point defined as TC = 647 K and PC = 22.064

MPa, where the line dividing the vapour and liquid phases ends. For temperatures and pressures

larger than TC , PC , it is not possible to recognize the phase as either liquid or gaseous, and it

is then defined as Supercritical water (SCW).

When a pure water sample, with resistivity larger than 25 MΩ, is cooled in the region of

the melting point, it can happen that no phase transition from liquid to solid occurs, and that

the sample enters a metastable phase where it is still liquid even if its temperature is below

273 K and its thermodynamic coordinates in the phase diagram would suggest it to be in the

solid phase. This condition is defined as supercooling [25–27] and occurs when the number of

nucleation centres in the sample, that is the impurities within, is particularly low. The Gibbs

energy for this state must have a local minimum or can be thought as an unstable equilibrium

state. Indeed, a small perturbation can brake this fragile equilibrium and bring to the transition

to ice with release of heat. There is no experimental way to super-cool bulk water under 232

K [28] unless in micrometre-sized droplets that have been evaporatively cooled as in Ref [29],

where T = 227 K was reached.

The known ices can be roughly divided by cluster analysis of their structures into crystalline

and amorphous ices, the former presenting an ordered HB network, the others with features

similar to glasses and with no crystalline structure. The density of these latter can largely

change when moving in the phase diagram.

In the next Chapters 4, 5 and 6 we will discuss the change in dynamical molecular observables

in the passage from liquid to solid for H2O and D2O, as well as the passage from liquid to
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supercritical region and from high to low density amorphous ice.

1.2 The Neutron as a probe

The strange behaviour in passing through thick materials puzzled scientists like Rutherford,

forcing them to imagine strange explanations for what was not an α, a β or a γ radiation. In

1932 Chadwick understood the puzzle and opened the way for the basic properties of the neutron

as we all know: a mass of 1.008 a.m.u., the same as the proton within 1%, as the standard

model can easily predict; no electric charge, explaining why they can penetrate thick metal

samples; half-integer spin, as can be evinced by the laws governing neutron stars dynamics.

What emerged by a more complete study of this particle is its anomalous nuclear magnetic

momentum, that should be zero due to its vanishing charge and instead is 1.91 in the Bohr

magnetic moment units, being this a fortune for those that can study the magnetic properties

of superconductors thanks to neutron spin-echo technique.

The existence of this work of thesis has its origin a long time ago, in a difficult moment for

Humanity. The Nobel prize in 1938 to Enrico Fermi came to underline its contribution to the

understanding of slow neutron interactions with matter, and the resulting production of nuclear

fission. Its fruitful work gave us nuclear fission facilities, that have been in the past the main

neutron sources for neutron science as well as energy for everyday life.

Fission reactor facilities are able to offer a continuous flux of neutrons thanks to the fission

reactions 235U + n → X + Y + 2.5 n, where 2.5 is the average number of neutrons generated

in the reaction, each of which has about 2 MeV of energy. These neutrons are then treated

with moderators around the core and let escape through neutron guides in order to be used on

corresponding beam lines.

Aside nuclear facilities, spallation neutron sources appeared during the ’70s of the last cen-

tury. These sources are based on acceleration of electrons or protons hitting a target composed

of some heavy element generating a large number neutrons. In the case of proton acceleration,

the charged particle energy can reach hundreds of MeV and generate neutrons up to the same

high energy. The fluxes from these latter facilities differ for two reasons from those accessible in

reactor neutron sources: firstly, the energy of the neutron can easily reach hundreds of eV; sec-

ondly, the flux is not continuous but pulsed, enabling time of flight techniques for the measure

of neutron energies.

Obviously, both kind of sources are of great importance in the frame of condensed matter
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studies, for a community that increases year after year, both with pros and cons. However,

due to the subject of this work, all the proposed experiments have been performed at pulsed

sources. As explained in Chapter 2, the reason is that we are interested in quantities based

on single-particle scattering and in regimes of neutron energy transfer comparable or greatly

larger than the water molecule binding energies, that means energies between tens of meV up

to hundreds of eV, that only pulsed spallation sources can access.

Depending on the energy of the neutron used as a probe, common use defines a name based

on the temperature that condensed matter would have being in thermal equilibrium with that

neutron. This procedure is based on the simple equivalence between energy and temperature

through the Boltzmann constant kB, that is

E = kBT. (1.1)

Neutrons whose energy corresponds to ambient temperature, that is around 25 meV (for a

temperature of 300 K) are called thermal neutrons. Even if there is no convention establishing

the exact boundaries for thermal region, we can imagine it going from some meV up to 500

meV. Neutrons with these energies are well suited to study property of condensed matter such

as molecular vibrations and rotations. After the higher limit, up to some keV, we speak of

epithermal neutrons, source of knowledge of the nuclear momentum distributions through the

technique of neutron Compton scattering [30]. At energies lower than the meV, cold and ultra

cold neutrons can be used to study diffusion processes or explore the structure of molecules

through crystallography. Aforementioned neutrons are referred to as slow, against the fast

neutrons, with energies up to tens of MeV and whose importance is mainly related to industry

and cultural heritage matters such as the study of the response of electronic devices irradiated

with cosmic rays.
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Chapter 2

Inelastic Neutron Scattering

Thermal and epithernal neutron scattering is the framework where the experimental

results presented in this work have been obtained. For this reason, and for a definition

of notation and constants, a brief revision of the theory describing neutron interactions

with condensed matter will be reported in the present chapter.

The basic behaviour of a neutron entering a condensed-matter medium can be described

considering the incident wave function as a plane wave defined by the wave number k, and

the scattered wave function as the first term of an expansion in spherical harmonics, that is a

spherical wave in the reference frame of the centre of mass,

ψ(x) = eikz ψ′(x) = − b
r
eikr (2.1)

with b a constant taking into account the intensity of the scattered wave, and hence related

to the cross section of the interaction, dependent on the scattering nuclide and known as the

scattering length, with a positive value corresponding to a repulsive potential (in most cases).

The scattering is elastic, that is we consider the same modulus k in both the definition of ψ and

ψ′, if the position of the nucleus is fixed and if the energy of the neutron is too small to excite the

internal structure of the nucleus. The first of these two conditions will be soon relaxed, since we

are mostly interested in atomic motion, considering it equivalent to the motion of the nucleus,

while the second condition will be maintained for all the treatment. Anyway, any information

about resonances or adsorption probability of the neutron by the scattering centre is embedded

in the imaginary part of the scattering length, that is in general a complex number. If the

absorption is near a resonance, the imaginary part largely changes with the neutron energy,
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otherwise b can be thought as non depending at all on the energy at all. With these hypothesis,

from the experimental definition of the differential cross section, we can obtain the result

dσ

dΩ
=

Number of neutron throught detector area per second

Incident flux × detector angular acceptance
=
v |ψ′|2 dS
v |ψ|2dΩ

= |b|2 (2.2)

and hence, integrating over the angular dependence, the total scattering cross section is

σtot = 4π|b|2. (2.3)

2.1 Theory of Thermal Neutron Scattering

We relax now the conditions on the elasticity of the scattering and the restiction to the neutron

wave functions. The scattering of a neutron of incident wave vector k and final wave vector k′

on a single nucleus passing from the state λ to the state λ′ can be generally expressed in terms

of the double differential cross section

(
d2σ

dΩdE′

)
λ→λ′

=
d2σ

dΩdk′
dk′

dE′
=

m

~2k′
d2σ

dΩdk′
=

m

~2k′
Wkλ→k′λ′

Φ
=

m2

~3kk′
Wkλ→k′λ′ (2.4)

where the transition rate from the initial to the final state, W , has been introduced, E and

E′ are the neutron energies before and after the scattering and m is the neutron mass. Finally,

dΩ and dE′ are the detector angular and energy acceptances. The Fermi Golden Rule relates

this transition rate to: a) the density of states ρ, b) the matrix of states of the potential V

of the interaction neutron-nucleus and c) the energy conservation, with the positively defined

energy lost by the neutron, E − E′ = ~ω, adsorbed by the scattering centre, according to the

equation

Wk,λ→k′,λ′ =
2π

~
ρk′λ′ |〈k′, λ′|V |k, λ〉|2δ (~ω + Eλ − Eλ′) (2.5)

In an experiment, the prepared incident neutron and the detected neutron are far away from

the scattering centres, and then their wave functions can be defined as plane waves. In this case

the matrix element 〈k′, λ′|V |k, λ〉 can be expressed as

〈f |V |i〉 = 〈k′λ′|V |kλ〉 =

∫
dr dR e−ik

′·rφλ′(R)V eik·rφλ(R) (2.6)
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As discussed in the Introduction, the fact that neutrons are extremely penetrating particles

is due to their vanishing charge, excluding any interaction with paired-electron clouds and

distant nuclei through the long distance electric potential. They only scatter when they hit the

small nucleus at the centre of the atom, occupying a part of section over about 1030. This was

clear to Enrico Fermi, that introduced a simple form for V , called the Fermi pseudo potential,

based on the idea of a point like scattering centre:

V = V (r−R) = aδ(r−R) =
2π~2

m
bδ(r−R) (2.7)

where b is the already mentioned scattering length1 and the square of his magnitude, al-

ready introduced in Eq. 2.3, is of the order of 1 barn = 10−28 m2. The merit of the Fermi

pseudo potential far exceeds the admirable simple physical interpretation in its form, making

the integration processes also very simple. The integration over the position of the neutron will

disappear, since the scattering requires an overlap of the probing particle and of the scattering

centre. Eq 2.6 can evolve in the simpler

〈f |V |i〉 =

∫
dr dR e−iq·rφλ′(R)aδ(r−R)φλ(R) = a〈λ′|e−iq·R|λ〉 (2.8)

with q = k− k′ being the momentum transferred from the neutron to the system.

The second quantity that we need in order to calculate the double differential cross section

is ρk′,λ. Applying the same condition of plane wave for the scattered neutron, no quantization

of energy or momenta affects its density of states. If then the reader excuses the liberty we take

in using a unitary spatial volume, not affecting the following results, the density of final states

that the neutrons can reach after the scattering is

ρk′dk
′ =

1

(2π)3
k′2dk dΩ (2.9)

Grouping these quantities, thanks to a wonderful (but not casual) cancellation of constants,

we can express the double differential cross section in the form

(
d2σ

dΩdE′

)
kλ→k′λ′

=
k′

k

∣∣b〈λ′|e−iq·R|λ〉∣∣2 δ (~ω + Eλ − Eλ′) (2.10)

Since this moment, the sample has been thought as composed of a single nucleus. No

coherent or incoherent scattering can occour, the two being possible when a sum over a great

1In particular, this is the bound scattering length, since it is relative to a nucleus fixed in space. Since an

actual nucleus is in general free, the scattering length should be replaced with bf = M
m+M

b
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number of atoms is introduced and interference can act between the resulting scattered waves.

Also, when more than an atom is considered, it is not possible to univocally define the states |λ〉
and |λ′〉. The initial state of the nucleus, λ, must be replaced with an average over a thermal

ensemble possibilities, accordingly with weights nλ, and a sum over all the final accessible states

needs to be performed. In practice,

∣∣b〈λ′|e−iq·R|λ〉∣∣2 →∑
λ′

∑
λ

nλ
∑
j,j′

b∗j′bj〈λ|e−iq·Rj′ |λ′〉〈λ′|e+iq·Rj(t)|λ〉 (2.11)

The sums over initial and final states involves the delta function for the energy conservation.

It is useful to write this function in its integral form,

δ (~ω + Eλ − Eλ′) =

∫ ∞
−∞

dtei(~ω−Eλ+Eλ′ )t/~ (2.12)

Also, combining the definition for the energy of the nuclear states, H|λ〉 = Eλ|λ〉, with H the

Hamiltonian of the system, and introducing the time dependent Heisenberg operator for the

nuclear position Rj(t) = eiHt/~Rje
−iHt/~, and finally using the unitary condition for the energy

eigenvector base
∑

λ′ |λ′〉〈λ′| = 1, it is possible to simplify the actual result in

d2σ

dΩdE′
=
k′

k

∑
λ

nλ
∑
j,j′

b∗j′bj

∫ ∞
−∞
〈λ|e−iq·Rj′eiq·Rj(t)|λ〉e

−iωt

2π~
dt (2.13)

and recognizing (2π~)−1
∫
. . . exp (−iωt) as the Fourier transform Ft . . . of . . . , we can write

d2σ

dΩdE′
=
k′

k

∑
j,j′

b∗j′bjFt〈e−iq·Rj′eiq·Rj(t)〉 (2.14)

with the ensemble average 〈. . . 〉 =
∑

λ nλ〈λ| . . . |λ〉

2.2 Coherence and Incoherence

For a pure target that has only one nuclide with nuclear spin I = 0, we have bj = b for every

j, and if the inter atomic distance d is always the same, the neutron scattering is coherent and

the double differential cross section simplifies to the form

(
d2σ

dΩdE′

)
no isotopes, I=0

=
k′

k
|b|2

∑
j,j′

Ft〈e−iq·Rj′eiq·Rj(t)〉 (2.15)

that, considering a general displacement from the mean value of the nuclear position small

enough compared to the internuclear distance d, has the two limit cases
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(
dσ

dΩ

)
kd�1

= 2|b|2
(
dσ

dΩ

)
kd�1

= |b|2 (2.16)

In an actual situation these ideal conditions are not satisfied, and so two quantities are

defined,〈b〉 =
∑
fibi and 〈|b|2〉 =

∑
fi|b|2i , with fi the fraction of atoms of type i. The scattering

can be thought as composed of two contributions

(
d2σ

dΩdE′

)
C

=
k′

k
|〈b〉|2

∑
j,j′

Ft〈e−iq·Rj′eiq·Rj(t)〉 (2.17)

where pairs of atoms are considered together with their interference effects, and

(
d2σ

dΩdE′

)
I

=
k′

k

(
〈|b|2〉 − |〈b〉|2

)∑
j

Ft〈e−iq·Rjeiq·Rj(t)〉 (2.18)

where atoms are considered individually. Finally, for the total cross section we have

σT
4π

= 〈|b|2〉 = |〈b〉|2 +
(
〈|b|2〉 − |〈b〉|2

)
= |bC |2 + |bI |2 =

σC + σI
4π

(2.19)

The sources of incoherent scattering are in those situations that neglect the three hypothesis

of Eq. 2.15, and they are referred to as isotopic or spin incoherence. For example, the scattering

length depends on the spin of the system nucleus + neutron, giving rise to two different length,

b+ relative to the state I + 1
2 and b− relative to the state I − 1

2 , with I the spin of the nucleus.

If the only difference in the atoms of a target is in their spin, the averages above are evaluated

from the spin statistics with the weight

g+ =
I + 1

2I + 1
g− =

I

2I + 1
(2.20)

In terms of these weights it is possible to define the coherent and incoherent cross sections

(in the case of simple spin incoherence) as:

σS
4π

= g+|b+|2 + g−|b−|2
σC
4π

= |g+b+ + g−b−|2
σI
4π

= g+g−|b+ − b−|2 (2.21)

from which is straightforward the definition of bC and bI , and, for the inverse transforma-

tions,

b+ = bC +

√
g−
g+
bI b− = bC −

√
g+

g−
bI (2.22)

and, of course and by definition,
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Element σC [barn] σI [barn] σA[barn]

H 1.758 80.27 0.333

D 2.050 7.640 0.001

C 0.001 5.551 0.003

O 4.232 0.001 0.002

Ti 2.870 4.350 6.090

Fe 0.400 11.62 2.560

Zr 0.020 6.460 0.185

Sn 0.022 4.892 0.626

Table 2.1: Coherent and Incoherent neutron cross sections for some of the elements treated in

this work.

bC = g+b+ + g−b− = 〈b〉 (2.23)

2.3 Incoherent Scattering

In this work on Inelastic Neutron Scattering (INS) we are principally concerned with single-

particle dynamics. In Table 2.3 the coherent, incoherent and absorption cross sections for the

atoms concerned to the present experiments are reported. As it can be appreciated, all the

atoms but oxygen have a larger incoherent than coherent cross section. Then, we will develop

our calculations with special interest on the incoherent phenomena.

2.4 Harmonic approximation

We approach the problem starting from the simplest case of a sample composed of a single

element. We express every j-atom position as a mean position ~j plus a displacement ~uj . The

spatial homogeneity of the sample guarantees that the correlation function

I(q, t) =
1

N

∑
j

〈e−iq·Rjeiq·Rj(t)〉 = 〈e−iq·u(0)eiq·u(t)〉 = 〈eUeV 〉 (2.24)

evaluated on the ensemble average gives the same result for each of the N nuclei. If the forces in

the sample are linear functions of the displacement with respect to the rest position, the system

is harmonic and a superposition principle can be used to express the overall displacement as
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the sum over normal modes. Therefore, the argument of the exponential can be developed in

the normal mode expansion

q · u =

(
~

2MN

) 1
2 ∑

s

q · es√
ωs

[ase
−iωst + a†eiωst] (2.25)

with as and a†s the creation and annihilation operator for a normal mode of energy ~ωs in the

q direction. Omitting some long calculations based on the commutation properties of a and a†

and hence U and V , it is possible to write

I(q, t) = 〈eUeV 〉 = e〈U
2〉e〈UV 〉 =

(
1 + 〈UV 〉+

1

2!
〈UV 〉2 . . . 1

p!
〈UV 〉p

)
e−2W , (2.26)

having introduced the series expansion known as phonon expansion, and having introduced the

Debye - Waller factor

2W =
~

2MN

∑
s

(q · es)2

ωs
〈2ns + 1〉 =

~
2MN

∑
s

(q · es)2

ωs
coth

(
~ωs

2kBT

)
. (2.27)

The number operator ns appears through its quantum definition when creation and annihilation

operators are applied. Its equality to coth
(

~ωs
2kBT

)
holds when the average of the operator is

taken over an ensemble of Maxwell Boltzmann particles at temperature T .

The phonon expansion represents the ensemble of the processes when 1, 2 . . . p neutrons lose

~ω > 0 or gain ~ω < 0 enough energy to insert or cancel a harmonic mode of frequency ωs

in the overall motion of the scattering centre. The Debye - Waller factor takes into account

the fact that the scattering nucleus is indeed moving, and so it is in part delocalized in a

volume whose linear dimension is of the order of
√
〈u2〉2

modes
. When ω is bigger enough with

respect to KBT , the hyperbolic cotangent function reaches the constant value 1, and the relation

~ω/4 = Mω2〈u2〉 holds on a time scale greater than ω−1 and for a particle in its ground state.

The Incoherent cross section can be then read in the form(
dσ2

dΩdE′

)
I

=
σI
4π

k′

k

N

2π~
e−2W

∫ ∞
−∞

(1 + 〈UV 〉 . . . )e−iωtdt. (2.28)

It is possible to obtain important pieces of information from INS considering only the first

two terms of this expansion, in particular the second one. Indeed, the first term is the elastic

contribution with no dependence on the energy transfer. It is expressed by a single differential

cross section (
dσ

dΩ

)
I,elastic

=
σI
4π
Ne−2W (2.29)

where a directional dependence can be found in the Debye-Waller factor. The second term

corresponds to the one phonon creation or annihilation is expressed as a double differential
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cross section(
dσ2

dΩdE′

)
I,1 ph

=
σI
4π

k′

k

1

2M
e−2W

∑
s

(q · es)2

ωs
[〈ns + 1〉δ(ω − ωs) + 〈ns〉δ(ω + ωs)] . (2.30)

2.5 Dynamic Structure Factor

The appearance, in previous chapters, of a Fourier transform of the Intermediate correlation

function, as well as its name, suggest that a more physical quantity can be related to the cross

section. This quantity is called the Dynamic structure factor, and it is defined as

S(q, ω) = FtI(q, ω), (2.31)

allowing a more direct definition of the incoherent double differential cross sectionas(
d2σ

dΩdE′

)
I

= bI
k′

k
NS(q, ω). (2.32)

Being this a shared property of all the nuclei in an homogeneous sample, the sum over all nuclei

has been replaced with the dynamic structure factor times the number of scattering centres N .

When compounds are considered, with more elements or isotopes composing the same molecule,

different contributions are defined due to the dependence upon the mass and (q ·es). Moreover,

in this case the scattering from different elements is weighted by different cross sections as well.

In the case of water, it is straightforward to introduce a H-projected dynamic structure factor,

meaning that the experimental content is mainly related to the H small mass and high cross

section. If only scattering processes with positive energy loss of the neutron are studied, looking

at Eq. 2.30, we can express the dynamic structure factor as

S(q, ω) =
1

2M
e−2W

∑
s

(q · es)2

ωs
〈ns + 1〉δ (ω − ωs) (2.33)

The case of a discrete sum over well defined frequencies,
∑

s δ(ω − ωs), well representing the

case of a monoatomic crystal, is a too limiting condition when other samples, such as the water

molecule at the base of the next discussion, are considered. The previous equations can be

simply modified considering a continuous function z(ω) defined as the phonon density of states.

In this case the condition
∫∞

0 z(ω)dω = number of modes, should be taken into account for the

normalization of this function. Also, for a polycrystalline or isotropic material, the substitutions

(q · es)2 → q2 and 2W = q2〈u2〉, with 〈u2〉 representing the mean square displacement of the

struck nucleus

S(q, ω) =
1

2M
e−q

2〈u2〉 q
2

ω
z(ω)〈n+ 1〉. (2.34)
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This will be the basis for the data reduction of INS experiments proposed in the next

Chapters 5, 6 and 7. Anyway, it is still possible to learn how water dynamics depends on the

phonon density of states if the harmonic model is studied in detail. This will be done in the

Chapter 4, where a discussion on how the information on the normal modes of this so important

molecule can be used to determine the kinetic energy of its constituent atoms.

2.6 INS spectrometers

In order to evaluate the H density of states, the INS experiments we will discuss have been

performed with the spectrometers Mari and Sequoia, whose experimental set up, geometry and

detector configuration is discussed below.

Sequoia [31] is a fine resolution thermal - epithermal spectrometer located on the beamline

17 at the SNS of the Oak Ridge National Laboratory in Tennessee (USA). It works in direct

geometry mode, with the initial energy of the neutron defined by a chopper, and the final energy

evaluated with the time-of-flight (t.o.f.) technique.

Neutrons come out of a moderator composed of ambient-temperature water poisoned with

Gd and encounter, after about 10 meters a first chopper (T0 chopper). The purpose of the

T0 chopper is to suppress the prompt pulse of fast neutrons produced when the proton beam

strikes the target. This suppression is accomplished by having an approximately 0.20 m thick

piece of the alloy Inconel X-718 in the beam when the proton pulse hits the target. This piece

of inconel must be out of the beam in sufficient time for the 0.01 - 2 eV neutrons to pass. It

can operate at rotational speeds between 30 Hz and 180 Hz in multiples of 30 Hz.

At about 18 meters from the moderator a Fermi chopper reduces the large range of neutrons

so far come and defines the incident energies in the suggested range from 5 meV to 4 eV.

It is composed of a series of neutron adsorbing blades closely packed and able to rotate up

to frequencies of 600 Hz around a vertical axis perpendicular to the beam line. The energy

resolution can be of 2-5% of the energy transfer for incident energies lower than 100 meV, or of

the 5-10% for higher incident energies.

Along the same line, at about 20 meters from the moderator, the sample position is at

the centre of a cylindrical geometry covered by the detectors. In the horizontal plane passing

through the sample, the detector distance is about 5.5 m. The detector array is an assembly of

linear position sensitive detectors with dimensions 1.2 m (heigh) times 2.5 cm (width) and filled

with 3He at a pressure of 1 MPa. When a neutron enters a detector, the reaction n+ 3He→
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T+p generates a tritium and a proton sharing 0.76 MeV. The electron shower generated by

the passage of these charged energetic particles are collected by wires at high voltage and with

low resistance, able to determine the position along the detector where the neutron arrived.

Knowing the position of the detector from the sample, the initial energy and the initial neutron

path, it is possible to define the final energy of the neutron, and the energy transfer ~ω with

a t.o.f. measure, and the angular position of the detectors, together with the initial and final

energies will define the momentum transfer q.

Mari is a chopper spectrometer in Target Station 1 at ISIS spallation neutron source in

Oxfordshire, UK. A good resolution makes it ideal for the study of phonon densities of states

in crystalline and disordered systems, and crystal field excitations in magnetic materials. It

has a wide continuous detector bank coverage ranging from 3 degrees to 134 degrees. Being

the only chopper spectrometer at ISIS not to be equipped with a pixilated detector array using

position sensitive detectors, MARI is the instrument of choice for studies of polycrystalline and

powdered samples, and liquids. MARI also boasts the lowest instrumental background of the

ISIS suite of chopper spectrometers, making the machine highly sensitive despite the relatively

low incident neutron flux. The moderator is composed of liquid methane at 105 K poisoned

with Gd.
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Figure 2.1: A picture of the Sequoia spectrometer (top) and the MARI spectrometer (bottom).
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Chapter 3

Momentum Distributions

The main properties of the neutron Compton profile are presented as the main experi-

mental tool of investigation in the following Chapters 5 and 6. In particular, I present

some new symmetry properties, numerical improvements and physical conditions that I

implemented in the data analysis of the experiments presented in this Thesis regarding

the multivariate momentum distribution. These achievements have been introduced in

the data reduction routines for future experiments on the VESUVIO spectrometer at

ISIS.

3.1 Scattering from a single free nucleus

The Dynamic structure factor is generally related to the measure of vibrational spectra, as we

will do in the experiments proposed in the next chapters. These vibrations are originated by

potentials due to atoms surrounding the nucleus hit by the probing neutron. If no other atom

was in the proximity of the one struck, going back to equation 2.10 and considering that also

|λ〉 and |λ′〉 would be plane waves, the quantity

〈λ′|eiq·R|λ〉 =

∫
e(~q−p+p′)·R/~dR = ~δ

(
~q− p + p′

)
(3.1)

would request for momentum conservation by a Dirac δ function. The condition for momentum

conservation is always fulfilled when no external forces are acting, as in this case. When we

try to express S(q, ω) in terms of the so-simplified matrix elements, combining energy and

momentum conservations, we have

S(q, ω) =
∑
λ

nλ δ

(
~ω − ~2q2

2M
− ~q · p

M

)
. (3.2)
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Moreover, it is not possible to consider a discrete series for the average over all initial state since

in the absence of an interaction energy is not quantized. We then have to substitute the sum

with an integral over a continuous range of energy values. The result would then appear in the

form

S(q, ω) = ~
∫
n(p)δ

(
~ω − ~2q2

2M
− ~q · p

M

)
dp. (3.3)

The experimental conditions enabling the use of such a result in studies concerned with the

condensed matter are fulfilled in the frame of Neutron Compton Scattering.

3.2 Momentum Distributions

Momentum distributions are indeed a key concept in a large part of modern Physics studies1.

These quantities are needed in Compton-like scattering experiments, originally proposed by

Compton [32] studying X-ray scattering by electrons, then applied to the measure of bound

electron momentum distributions [33] and then generalized to all scattering processes where

energy transfer is largely greater than any binding energy of the system. Deep Virtual Compton

Scattering for the study of parton distribution functions in hadrons is an example.

It was first pointed out by Gol’ldanskii [34], Ivanof [35, 36], Hohenberg and Platzmann

[37] that Neutron Compton Scattering (NCS), also named Deep Inelastic Neutron Scattering

(DINS), could be a powerful tool for the study of atomic motions in condensed matter [38–41].

When, in an experiment, momentum, ~q, and energy transfer, ~ω, are much larger compared to

momenta and energies characteristic of the system in its ground state, the Impulse Approxima-

tion (IA) can be applied. In this regime a single particle of the system is struck by the probe,

according to our interest for incoherent scattering, and freely recoils after the scattering process.

In principle, the conditions can be thought as those met in the case of a free single nucleus,

with the exception that now we do not have only one scattering centre, but a great number of

them, composing an ensemble of particles, and then a momentum or energy distributions can

be accessed experimentally, together with the knowledge that they embed.

In theory, given the state |Ψ〉 describing the system, it is possible to define the momentum

distribution through the annihilation and creation operators,

n(p) = 〈Ψ|a†p ap|Ψ〉 (3.4)

1This being fortunate for the Author, educated in hadron and parton phenomenology!
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or considering the Fourier transform of the wave function,

n(p) = |φ(p)|2 = |〈p|Ψ〉|2 =

∣∣∣∣ 1√
2π

∫
dxeipx/~〈x|Ψ〉

∣∣∣∣2 =

∣∣∣∣ 1√
2π

∫
dxeipx/~ψ(x)

∣∣∣∣2 (3.5)

3.2.1 Fermi distributions

According to [42], atomic, electronic and nuclear systems, characterized by energies and inter-

particle distances varying in a range containing several orders of magnitude, can all be treated

in a very similar way. This is because the ratio of the typical binding energy and of the Fermi

energy is constant for all these systems. Differences from a Maxwell - Boltzmann distribution

can arise when the de Broglie wave length is comparable to interparticle distances, and in this

case a strong dependence on Fermi or Bose statistics can be found. The limit temperature for

the two regimes is defined as characteristic temperature and for a Fermi system it is derived

from the Fermi energy, i.e. the highest single-particle energy level occupied at T = 0 K.

Since each energy level can be occupied by no more than one fermion, when no excitation due

to thermal energy is added to the system, all lower energy levels are homogeneously occupied

with a energy density g(ω) = g0, up to the level occupied by the most energetic particle, in the

energy level EF . The upper levels are no more occupied, with g(~ω > EF ) = 0. In this system

the momentum distribution can be defined as

nF (p) = n0 for p < pF , nF (p) = 0 elsewhere (3.6)

In particular, the Fermi energy for a metal like system at T = 0 K is defined as

EF =
p2
F

2m
=

~2

2m

(
6π2n

2σ + 1

) 2
3

(3.7)

where 2σ + 1 is the multiplicity due to the half-integer spin σ of the considered fermions. At

a larger value of T, some fermions reach energy levels higher than EF , and the momentum

distribution is often taken of the form

nF (p) =
N

exp(
p2−p2F
2mkBT

) + 1
(3.8)

that gives the previous result in the limit T → 0. The factor N is not a normalization constant

since this integral does not converge in the range [−∞,∞] . As an estimate of the importance

of the statistics in the Water case, we can try to adapt the previous equation to the H in a

H2O molecule: the H spin is σH = 1
2 ; the mass density is ρH = 1

9ρH2O = 0.020 a.m.u.Å−3

and nH = ρH/mH . The corresponding value of the Fermi wave number is kF = pF /~ = 0.59

27



Å−1. We will later see that this value is an order of magnitude lower than the typical mean

momentum of a water hydrogen, meaning that the quantum effect due to the fermionic nature

of this atom is not important at the molecular level.

3.2.2 Harmonic and isotropic distribution

A result that we already used in the previous sections is to consider the weight nλ, and then

the probability function n(p) for the simple case of a Maxwell Boltzmann distribution. In this

case

nλ =
e−βEλ∑
λ e
−βEλ

, (3.9)

with β = 1/kBT and kB the Boltzmann constant. We know from the kinetic theory of gases

that the mean kinetic energy of particles whose energies are distributed according to a Maxwell

- Boltzmann statistical law is 〈EK〉 = 3
2kBT . Considering the dispersion relation E = 3p2

2M ,

we also know that the mean square momentum is 〈p2〉 = MkBT , and then the momentum

distribution for a classical ensamble of non relativistic and non interacting particles is

nMB(p) =

(
1

2πMkBT

) 3
2

e
− p2

2MkBT (3.10)

The momentum distribution and the mean kinetic energy are generally related throught the

equation ∫
p2n(p)dp = 4π

∫ ∞
0

p4n(p)dp = 2M〈EK〉 (3.11)

The approximations for the validity of Eq. 3.12 are based on the fact that particles are non

interacting in a perfect gas at thermodynamic equilibrium. Also, the momentum distribution

has no angular dependence, and the wave function and the potential can be considered isotropic.

A first generalization of Eq. 3.12 for interacting particle in an isotropic potential is

nH(p) =
exp

(
− p2

2MkBT∗

)
√

2πMkBT∗
3 =

exp
(
− p2

2~2σ2

)
(
√

2πσ)3
(3.12)

with T∗ an effective temperature taking into account the contributions from the interaction to

〈EK〉, and σ2 = MkBT∗. In this case the (higher) mean kinetic energy can be directly related

to the standard deviation σ and has the value

〈EK〉H =

∫
p2nH(p)dp = 4π

∫ ∞
0

p4nH(p)dp =
3~2σ2

2M
(3.13)

The condition for the validity of this equation is that the local nuclear potential must be

isotropic and harmonic, since a Gaussian wave function and the resulting Gaussian momentum
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distribution of Eq. 3.12 are the solution of a Schroedinger equation with a quadratic potential

V (r) = 1
2M

k2BT
2
∗

~2 r2.

3.2.3 Anharmonic isotropic distribution

A Gaussian function for the momentum distribution can only be related to a harmonic potential

V (x) = 1
2Mωx2 with a quadratic dependence on the displacement from the mean position of

the nucleus, x. Even if this is the basic assumption for all potentials in Nature, a number

of deviations from this simple frame have been observed and related to mechanical deviations

from the harmonic potentials, as cubic contributions (strongly related to thermal expansion of

matter), or quantum effects such as the possibility of tunneling of the nucleus between double

potential wells. It is generally not possible to find an analytical solution for complex potentials

in condensed matter, and then a general form of the momentum distribution is introduced [43]

nA(p) =
exp

(
− p2

2~2σ2

)
(
√

2πσ)3

∑
n

an(−1)nL
1
2
n

(
p2

2σ2

)
(3.14)

with L
1
2
n (x) the generalized Laguerre polynomials defined by

Lαn(x) =
x−αex

n!

dn

dxn
(
e−xxn+α

)
(3.15)

Equation 3.14 represents a function base and can then describe any momentum distribution.

The Gaussian leading term is corrected by polynomials of decreasing importance, due to the

numerical factors by which they are weighted. The first terms of this expansion are

L
1
2
0 (x) =1 (3.16)

L
1
2
1 (x) =

1

1!21
(3− 2x) (3.17)

L
1
2
2 (x) =

1

2!22
(15− 20x+ 4x2) (3.18)

L
1
2
3 (x) =

1

3!23
(105− 201x+ 84x2 − 8x3) (3.19)

Each of these terms appears together with a coefficient an taking into account the importance of

each contribution. We notice that, due to the properties of n(p), the coefficient a1 must vanish,

while the leading Gaussian term has a weight a0 = 1. The mean kinetic energy in this case

〈EK〉A =

∫
p2nA(p)dp = 4π

∫ ∞
0

p4nA(p)dp =
3~2σ2

2M
= 〈EK〉H (3.20)

does not differes from the result of a simple Gaussian momentum distribution.
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3.2.4 Multivariate anisotropic distribution

If anisotropy is more important, or more simple to measure, than deviations from an harmonic

model, a multivariate Gaussian function can be used to describe the system:

nM (p) = ΠαNα exp

(
− p2

α

2~2σ2
α

)
= N exp

(
− p2

x

2~2σ2
x

−
p2
y

2~2σ2
y

− p2
z

2~2σ2
z

)
(3.21)

with α = x, y, z three spatial directions, Nα = 1√
2πσα

and N = ΠαNα the normalization factor.

In the case of water molecule, it is possible to simplify the local potential affecting the H atom,

as the product of three decoupled harmonic potentials, one per spatial degree of freedom, and

with the stronger potential in the direction of the covalent bond (stretch mode). The resulting

wave function, as well as the momentum distribution, is the product of three unidimensional

Gaussian functions. The parameters σα represent the mean momenta along the three axes, and

for each direction a mean kinetic energy 〈EK〉α is defined,

〈EK〉M =

∫ (∑
α

p2
α

)
nM (p)dp =

∑
α

∫ ∞
−∞
Nαp2

αe
− p2α

2~2σα dpα =
∑
α

~2σ2
α

2M
=
∑
α

〈EK〉α (3.22)

In Chapter 4 a general interpretation for these quantities in relation with the geometry and dy-

namics of the water molecule is discussed. The Cartesian components of the vector p, (px, py, pz)

can be transformed in the more proper polar components, (p, θ, φ) according to the transforma-

tion

px = p cosφ sin θ py = p sinφ sin θ pz = p cos θ (3.23)

In what follows we will prefer the polar coordinates because, for any powder, liquid or non

oriented sample, we have different orientations for each atom, and only an angular average n(p)

of the previously defined n(p) can be accessed. In particular,

nM (p) =

∫
Ω

dΩ

4π
nM (p) = N

∫
Ω

dΩ

4π
exp

(
−p

2

2

[
sin2 θ cos2 φ

σ2
x

+
sin2 θ sin2 φ

σ2
y

+
cos2 θ

σ2
z

])
(3.24)

The angular dependence in this function can be restricted in the quantity

1

S2(θ, φ)
=

sin2 θ cos2 φ

σ2
x

+
sin2 θ sin2 φ

σ2
y

+
cos2 θ

σ2
z

(3.25)

We first notice that in the case of isotropy, σα = σ ∀α, we have the simple case S2(θ, φ) = σ2

and nM (p) = nH(p), as it should be. Secondly, there is a strong symmetry of the argument of

the integral with respect to the integration domain, since the periodic trigonometric functions

appear always as squared functions. In particular, we can simplify the integration domain as

follows ∫
Ω

dΩ

4π
→

∫ 1

−1

d(cos θ)

2
×
∫ 2π

0

dφ

2π
→ 2

π

∫ 1

0
d(cos θ)

∫ π
2

0
dφ (3.26)
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i.e., we used an 8-fold symmetry and we can look at only 1 part over 8 of the ellipsoidal

momentum distribution. The use of this symmetry will be of great help when we will use this

momentum distribution as the base of the fit procedure in the data analysis.

3.3 y-scaling in the Impulse Approximation

Now that we have a number of functions describing different physical situations, we can develop

the experimental method used in order to analyse experimental data. Firstly, looking back at

the condition for energy conservation in Eq. 3.3, we can introduce the recoil energy ~ωr = ~2q2
2M

as the amount of energy gained by a still (but not fixed) nucleus, and write

~ω − ~2q2

2M
− ~q · p

M
= ~ω − ~ωr −

~2q

M
y = 0 (3.27)

with the introduction of the quantity ~y, corresponding to the momentum of the target nucleus

in the direction of q before the scattering, namely

y =
1

~
p · q̂ =

M

~q

(
ω − ~q2

2M

)
(3.28)

We notice that y vanishes both if the target nucleus is stationary or if it is moving perpen-

dicularly to q. During an experiment in which ~q and ~ω are both measured, it is possible to

access the probability distribution of finding a nucleus with a certain value of y, corresponding

to the neutron Compton profile, J(y). This quantity is simply interpretable as the projection

of the momentum distribution n(p) in the y-space, that is

J(y) = ~
∫
n(p)δ

(
~y − p‖

)
dp = ~

∫
n(p⊥, ~y)dp⊥ (3.29)

with the consideration J(y) = ~J(~y) and p = (p⊥, p‖ = p · q̂). The West variable, combining

momentum and energy transfer according to Eq. 3.27 allows the definition of a function, J(y),

that no more depends on q, ω separately, but only on y. Since the momentum conservation at

the base of the definition of the West variable is only an approximation (q, ω →∞), the validity

of this scaling law holds only in limiting cases, in a regime known as the Impulse Approximation

(IA). The dynamic structure factor in this regime is generally expressed as

S(q, ω) = ~
∫
n(p)

M

~q
δ
(
~y − p‖

)
dp =

M

q
J(y) (3.30)

leading to the formulation of its scaling property in the form

qS(q, ω) = function of y only (3.31)
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It exist a West variable for each element (or isotope) composing the experimental sample, since

the definition of y is based on the mass M of the struck nucleus. This means that the momentum

distributions and neutron Compton profiles of more elements can be studied simultaneously.

For a disordered or non oriented sample the dynamic structure factor must be invariant under

spatial reflections of the momentum transfer, that is S(−q, ω) = S(q, ω), and then the neutron

Compton profile is a even function of y, with a maximum for y = 0, meaning that the mean

momentum of the nucleus in the direction of q is zero, even if the nucleus is certainly moving.

Also, the normalization of the momentum distribution is naturally reflected in the normalization

of J(y). For every isotropic momentum distribution, n(p⊥, ~y) = n(p2
⊥ + ~2y2) = n(p2), Eq

3.29 can be expressed using polar coordinates for the variable p⊥, as follows

J(y) = 2π~
∫ ∞

0
p⊥n(p⊥, ~y) = 2π~

∫ ∞
|~y|

pn(p) (3.32)

leading to the also useful reverse equation

n(p) =

(
1

2π~3y

d

dy
J(y)

)
~y=p

(3.33)

3.3.1 Deviations from the impulse approximation

Sensible deviations from the approximation discussed since now can come any time that the

momentum transfer fails to be high enough. In this case interactions due to external forces

sensibly affect the final trajectory of the struck particle. The scaling is no more exactly satisfied

and an additional dependence on the momentum transfer must be considered. A well tested

procedure [44] in considering these Final State Effects (FSE) is with an additive correction of

terms in powers of 1/q, as follows

J(y, q) = J(y) + ∆J(y, q) = J(y) +
∞∑
n=3

(−1)nAn(q)
dn

dyn
J(y) (3.34)

The coefficient An are introduced in order to consider the inter particle potential, V , and are

of the form

An(q) =



1 , n = 0

0 , n = 1, 2

O
(

1
q

)
, n = 3, 4 . . .

O
(

1
q2

)
, n = 4, 6 . . .

(3.35)
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The first term is defined as

A3 =
M

36~2q
〈∇2V 〉 (3.36)

where the Laplace operation on the potential, for an harmonic potential, is of the form

〈∇2V 〉 = 3ω̄2 =
12~2σ̄4

M
(3.37)

having introduced the mean curvature of the potential, ~ω̄ = 2~2σ̄2/M , that, in the case of the

multivariate momentum distribution, is the average of the three curvatures ~ωα = 2~2σ2
α/M .

With this consideration, we can express the first term in this correction series as

A3 =
σ̄4

3q
(3.38)

Considering the same case, that is a general treatment for the already mentioned momentum

distributions nM (p) and nH(p), we can express the second correction term, found in the litera-

ture as

A4 =
m2

72~4q2
〈F 2〉 =

m2

72~4q2
〈EK〉〈∇2V 〉 (3.39)

as a function of the average mean square momentum only

A4 =
σ̄6

6q2
(3.40)

As we will see in a moment, the fact that these parameters can be expressed as functions of an

already introduced parameter, allows the fit procedure to be largely more accurate fixing the

meaning of parameters that in the past were considered free.

We will now define the neutron Compton profile (NCP) J(y, q) of Eq. 3.34, considering

the terms with n = 1, . . . , 4, in the case of harmonic isotropic and multivariate momentum

distributions.

3.3.2 Harmonic and isotropic J(y, q)

The neutron Compton profile in the IA for a system whose momentum distribution is harmonic

and isotropic is defined through Eqs. 3.32 and 3.12, that is

JH(y) = 2π~
∫ ∞
|~y|

pnH(p)dp =
exp

(
− y2

2σ2

)
√

2πσ
(3.41)

The first correction due to FSE is in the form

−A3
d3

dy3
J(y) =

σ

3q

1
√

2
3H3

(
y√
2σ

)
J(y) (3.42)
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Figure 3.1: A neutron Compton profile is reported with (blue line, J(y,q)) and without (black

line, J(y)) the FSE contributions in the case of a harmonic and isotropic momentum distribution

with a value of σ = 5 Å−1. A constant value for the momentum transfer q = 70 Å−1 has been

considered.

with H3(x) = 8x3 − 12x. This is a structured correction, with a polynomial dependence upon

y, and with an intensity weighted by the ratio σ/q. The following term is, similarly,

+A4
d4

dy4
J(y) =

σ2

6q2

1
√

2
4H4

(
y√
2σ

)
J(y) (3.43)

with H4(x) = 16x4 − 48x2 + 12. The final result for the J(y, 1) is then the sum of the leading

order and these two corrections, that is

J(y, q) = J(y)

[
1 +

σ

3q

1
√

2
3H3

(
y√
2σ

)
+
σ2

6q2

1
√

2
4H4

(
y√
2σ

)]
(3.44)

In the Figure 3.1 it is possible to see how the the two considered terms will affect the measured

neutron Compton profile. The A3 correction is an odd function of y, positive for y ∈ [−ε, 0]

and negative for y ∈ [0, ε], contributing the an apparent shift of the centre of the NCP towards

negative values of y. The A4 contribution is an even function of y and it is generally small

enough to be neglected as a contribution in an experiment.
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3.3.3 Anharmonic J(y, q)

Similarly, through the definition Eq. 3.32 we can define a general function base with the physical

interpretations of an isotropic but non-harmonic system relative to the momentum distribution

of Eq. 3.14, that is

JA(y, q) =
exp

(
− p2

2σ2

)
√

2πσ

∑
n

c2n

n!22n
H2n

(
y√
2σ

)
(3.45)

with the first even Hermite polynomials

H0(x) =1 (3.46)

H2(x) =4x2 − 2 (3.47)

H4(x) =16x4 − 48x2 + 12 (3.48)

H6(x) =64x6 − 480x4 + 720x2 − 120 (3.49)

The condition on the normalization of J(y) to unity, and its second moment in y equal to the

standard deviation of the profile, require that c0=1 and c2 = 0 In principle, with this neutron

Compton profile it is possible to fit any experimental profile, using σ, c2n as fit. parameters, but

still the physical interpretation of the coefficients is hard. Since the polynomials term added to

the leading Gaussian are corrections to it, the FSE can be derived from the precedent section

as that of a harmonic J(y). The resulting J(y, q) is in the form

J(y, q) = J(y)

[
1 +

σ

3q

1
√

2
3H3(x) + c2H2(x) + c4H4(x) + c6H6(x)

]
x= y√

2σ

(3.50)

3.3.4 Multivariate J(y, q)

Similarly, the neutron Compton profile related to a multivariate Gaussian momentum distribu-

tion together with the first correction of the FSE is derived using Eqs. 3.32 and 3.21

JM (y) =
1√

2πσxσyσz

2

π

∫ 1

0
d(cos θ)

∫ π
2

0
dφS2(θ, φ) exp

(
− y2

2S2(θ, φ)

)
. (3.51)

As already mentioned, the angular integration of this function is a key aspect in the data analysis

of the next experiments, since in a fit procedure this integration can be called a huge number

of times, and the time required by the fit can be very large. As it is shown in the Fig 3.2, it

is not possible to consider the fitting procedure stable if the number of steps for the angular

integration both in d(cos θ), dφ is less then 35 × 35, that means more than 1×103 passages any

time that the function is called. This potential complication can be anyway avoided through a

deeper analysis in Fig. 3.3. In this Figure, the red, dark-red and green lines are the difference of
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two integrated multivariate distributions: one has been integrated with a 45 × 45 grid in cos θ, φ

and is takes as a best integration, while the others vary from 20 × 20 (red line) to 36 × 36 (green

line). According to the previous section, the finer the integration grid, the more the integrated

distribution converges to the right value or, equivalently, to the best integration. Moreover, the

same difference is taken with a large integration grid defined by 12 × 12 steps. This difference

divided by a factor of 10 is reported as an orange line in the Figure. The orange and green lines

are approximately the same line, meaning that a more rough integration (12 × 12) does not

differ from a finer integration (36 × 36) but for a constant value. On the other hand, when the

difference of an isotropic distribution with the same width of the 45 × 45 integrated momentum

distribution is taken, a difference with structural nodes appears (black line in the Figure, but

see also Figure 3.5). With this in mind, it is clear that, if in the fitting procedure the amplitude

of the profile is a free parameter, a wrong normalization constant due to a rough integration

grid can be fixed in the very fitting parameter, and a faster estimate of the multivariate profile,

with 122 steps, can be done.

In the same Fig. 3.3, it is possible to appreciate the different structures of a multivariate

profile with respect to the isotropic one. The big difference between the two profiles in y = 0 is

a simple consequence of the difference between the normalization constants and then the value

that the function has at the origin, namely

σxσyσz
σ3

=
3

3
2σxσyσz

(σ2
x + σ2

y + σ2
z)

3
2

> 1 (3.52)

Also, there are 4 points, two in the figure and other symmetric two in the y < 0 region, where the

two profiles intersect. However, the difference that mostly is important in NCS experiments, is

the fact that in the region of the tail, the multivariate profile is always greater than the isotropic

one, this bringing to the conclusion that, generally, a fit of an experimental line shape done with

a multivariate momentum distribution will correspond to a higher kinetic energy with respect

to an isotropic fit on the same data.

The FSE corrections are taken into account as before, with a small adaptation to the present

case, giving the following result as the consequence of the passages in Appendix B

−A3(q)
d3

dy3
J(y) =

σ4
x + σ4

y + σ4
z

9
√

2πσxσyσzq

∫
Ω
dΩ

[
y3

S2(θ, φ)4
− 3

y

S2(θ, φ)2

]
exp

(
− y2

2S2(θ, φ)

)
(3.53)

In Fig. 3.3.4 it is possible to appreciate the difference of NCPcorrected by FSE and of the cor-

rections themselves in the case of isotropic and multivariate distributions. While the functions

in the IA would share the same position of the centroid, the corrected profile may have their

maximum value in two different points due to the small difference in the two corrections.
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Figure 3.2: The multivariate neutron Compton profile as the result of a numerical integration in

the variables cos θ and φ. The numbers reported in the caption are the pairs of steps (ncos θ, nφ).
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Figure 3.3: The multivariate neutron Compton profile as the result of a numerical integration in

the variables cos θ and φ. The numbers reported in the caption are the pairs of steps (ncos θ, nφ).
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Figure 3.4: The multivariate neutron Compton profile as the result of a numerical integration in

the variables cos θ and φ. The numbers reported in the caption are the pairs of steps (ncos θ, nφ).

3.3.5 JM(y) as a Gauss-Hermite expansion

The isotropic momentum distribution has a practical important advantage: the very lower

amount of time required for a fit. This problem has been introduced in the previous section,

where we found the minimum number of steps for the angular integration in order to minimize

it. An alternative way would be to relate the anisotropy of the distribution defined by the

parameters σα to the first terms in the series defining the very general distribution JA(y). We

then underline that we defined the Gauss-Hermite expansion as anharmonic because it can be

so in principle, but there are some conditions that leave it harmonic, such as all the coefficients

of the polynomials vanishing or the relations that we are going to deduce. The road that we

intend to follow is the following.

We can imagine that, when the quality of data is good enough, a measure of the second,

forth and sixth moment of J(y)

M2n[J(y)] =

∫ ∞
−∞

y2nJ(y)dy n = 1, 2, 3 (3.54)

can be determined as non dependent upon the model and not affected by the noise on the tails

of the distribution. These quantities have a different expression depending on the used model,
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Figure 3.5: Differences between isotropic and multivariate NCPs.
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i.e. a Gauss Hermite expansion or a multivariate Gaussian. Imposing that these 3 quantities are

equal for the two models it is possible to fix the parameters of one knowing the parameters of

the other, and in particular, have information on the anisotropy of the momentum distribution

using a faster integration based on a Gauss-Hermite fit procedure.

The second moment for the Gauss-Hermite model has a contribution only from the pure

Gaussian term, since all other terms have polynomials of degree ≥ 4,

M2[JA(y)] =

∫ ∞
−∞

y2JA(y)dy = σ̄2 (3.55)

while for the multivariate Gaussian it gives the average contribution from the directional stan-

dard deviations

M2[JM (y)] =

∫ ∞
−∞

y2JM (y)dy =
σ2
x + σ2

y + σ2
z

3
. (3.56)

The equality between these two quantities yields the definition of the average value σ̄ for the

multivariate distribution

σ̄2 =
σ2
x + σ2

y + σ2
z

3
. (3.57)

The forth moment for Gauss-Hermite line shape gives as a result

M4[JA(y)] =

∫ ∞
−∞

y4JA(y)dy = 3(1 + c4)σ̄4 (3.58)

while for the anisotropic case we have

M4[JM (y)] =

∫ ∞
−∞

y4JM (y)dy =
2σ̄4

5

[
σ4
x + σ4

y + σ4
z

σ̄4
+

9

2

]
(3.59)

and then, from the comparison of these two results we obtain

c4 =
2

15

[
σ4
x + σ4

y + σ4
z

σ̄4
− 3

]
(3.60)

that relates the first Hermite coefficient to the kurtosis of the multivariate Gaussian. Finally,

from the comparison of the sixth moments for the two line shapes

M6[JA(y)] =

∫ ∞
−∞

y6JA(y)dy = 15 (1 + 3c4 + c6) σ̄6 (3.61)

and

M6[JM (y)] =

∫ ∞
−∞

y6JM (y)dy =
12σ̄6

7

[
σ6
x + σ6

y + σ6
z − σ2

xσ
2
yσ

2
z

σ̄6
+

27

4

]
(3.62)

we can access the last condition defining the second Hermite coefficient as

c6 =
8

315

[
σ6
x + σ6

y + σ6
z + 6σ2

xσ
2
yσ

2
z

σ̄6
− 9

]
. (3.63)
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Even if this procedure can make the anisotropic fit really fast, the highly non-linear combi-

nation of the σα as fit parameters leads to large correlations that are under study at this stage

and that will be solved introducing active parameters that the fit procedure can easily access.

Alternatively, one could look for the inverse relations giving the parameters of the multivariate

knowing those of the anharmonic distribution, but in this way one is not sure that the resulting

c4 and c6 parameters can correspond to a harmonic distribution.

In reference [45], Reiter et al., propose a similar procedure for the analytic integration of a

multivariate distribution with two equal variances, obtaining

σ2 =
2σ2

x + σ2
z

3
and c2n =

(
δσ2

σ̄2

)n〈(
1

3
− cos2 θ

)n〉
(3.64)

with δσ2 = σ2
x − σ2

z . Explicitly,

c4 =
4

45

(
δσ2

σ̄2

)2

(3.65)

c6 =
16

945

(
δσ2

σ̄2

)3

(3.66)

that give the same result for the c4 coefficient, wile the same result but with opposite sign for

the c6 coefficient, that can be explained redefining the quantity δσ2 = σ2
x − σ2

z → σ2
z − σ2

x. In

conclusion, the equations for a degenerate multivariate distribution proposed in the reference

are here generalized to the case of three different variances.

In Figure 3.6 a graphical representation of the link equations is presented as the second (red)

and third (orange) Hermite corrections to a Gaussian line-shape (green) in order to exactly

reproduce an integrated multivariate NCP (blue).

3.4 The Vesuvio spectrometer

The NCS measurements we deal with in this work have been performed on the VESUVIO

spectrometer [46,47] at the ISIS Pulsed Neutron and Muon Source (Rutherford Appleton Lab-

oratory, UK). VESUVIO operates in the IA regime where the incident neutron wavelengths in

the range 30 Å−1 ≤ q ≤ 200Å−1 are much less than interatomic spacings and thus atoms scatter

incoherently, with scattered intensity being the sum of intensities from individual atoms in the

sample. Also, the energy transfer, 1 eV ≤ ~ω ≤ 100 eV, largely exceeds binding molecular en-

ergies. It works in inverse-geometry mode, i.e., detectors fix the scattered neutron final energy

and evaluate the incident energy through a t.o.f. technique. The count rate as a function of the
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Figure 3.6: The second (red) and third (orange) Hermite corrections to a Gaussian line-shape

(green) are reported. Their sum exactly reproduces the integrated multivariate NCP (blue)

when the link equations are used.

t.o.f. t is defined as

C(t) =

√
8E3

0

mNL2
0

I(E0)D(E1)

(∑
M

NM
d2σM
dΩdE1

)
dΩ (3.67)

where I(E0)dE0 is the number of incident neutrons s−1 with energies between E0 and E0 + dE0,

D(E1) is the probability that a neutron of energy E1 is detected, mN is the neutron mass, L0

is the distance between the moderator and the sample, NM is the number of atoms of mass M

in the sample and d2σM
dΩdE1

is the double differential cross-section for mass M . Incoming neutrons

are moderated by a water bath at T=295 K. The resulting energy spectrum shows a peak at

about E0 = 300 meV, and an epithermal tail of the form E0.9
0 .

Neutrons scattered in the forward direction are detected by Yttrium Aluminum Perovskite

scintillators [48], located at a distance L1, ranging between 0.5 m and 0.75 m from sample

position, in the angular range 32.75o to 72.5o. In the backward direction scattered neutrons

are detected by 6Li scintillators, located at a distance ranging between 0.46 m and 0.67 m from

sample position, in the angular range 130o to 163o. At each scattering angle the energy of the

scattered neutrons E1 is selected by using Au analyzer foils (E1 =4897 meV). The instrument

operates using the Foil Cycling (FC) technique, in forward scattering [49, 50], and the Double
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Figure 3.7: Schematics of the VESUVIO spectrometer at ISIS.

Difference (DD) technique [51], in backward scattering. A schematic picture of the instrument

is presented in Figure 3.4.

The FC technique is used in order to increase the energy resolution. It is based on the alter-

nation of presence and absence of a secondary gold foil in the secondary neutron path, between

the sample and the detector. When the difference is taken between the two alternated measures,

an improvement of about 1/
√

2 on the resolution full-width-half-maximum is obtained, while

the loss in statistics is only about 10%.

The DD technique for backward scattering detectors has the same goal as the FC but it

is based on two independent measures done with resonant foils of the same material but with

different thickness. When a linear combination of the two measures is taken, it is possible to

reduce the principal contribution to the experimental width, the one coming from the width of

the nuclear resonance for the gamma capture.

During an experiment, the double differential cross-section from Eq. (3.67) can be expressed

as a function of the NCP
d2σM
dΩdE1

= b2
(
E1

E0

)1/2 M

~q
J(y). (3.68)

Due to the finite q values in the scattering process, the NCP at each l detector retains the q

dependence, expressed by the function F (y, q). The latter includes a further broadening due to

experimental resolution function, R(y, q) The F (y, q) function is related to the count rate via
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the expression

F (y, q) =
BM

E0 I(E0)
q Cl(t) (3.69)

where B is a constant taking into account the detector solid angle, its efficiency at E = E1,

the time-energy Jacobian, the free-atom neutron cross section and the number of particles hit

by the neutron beam. NCS data sets presented in the following Chapters have been y-scaled

according to Eq. (3.69).

VESUVIO works as a mass-selecting spectrometer, since the position of the recoil peak

depends on the mass of the struck nucleus. In Figure 3.4, simulations of t.o.f. spectra for

forward (top) and backward (bottom) scattering detectors are reported for H, D, O and two

experimental containers available at ISIS, a copper and a TiZr cells.

It is possible to define the mean value of the energy of the neutron when scattered by a

nucleus of mass M . The general form of the result can be obtained imposing y = 0 yielding

Ei

(
1− mN

M

)
− Ef

(
1 +

mN

M

)
+ 2

mN

M

√
EiEf cos θ = 0 (3.70)

Solving the previous equation with respect to the initial energy, being the final fixed by a

resonant foil, and introducing the parameter X = M/mN as the ratio of the nucleus to neutron

mass, we find

Ei(y = 0) = Ef

 X + 1

cos θ +
[
X2 − sin2 θ

] 1
2

2

(3.71)

that gives the simple result for H when X ' 1

Ei(y = 0) =
Ef

cos2 θ
for Hydrogen, M ' mN (3.72)

The result is that the energy of the scattered neutron depends on the mass of the nucleus

and on the angular position of the detector. In particular, the energy change is very large for

light masses and backward scattering is forbidden for H single scattering. On the contrary, in

the limit X → ∞ there is no angular dependence for the incident energy that is also always

equal to the final energy, giving elastic scattering.

The average position of a nucleus in a t.o.f. spectrum is given once the geometry of the

instrument is known. If L0 is the distance of the sample from the moderator, that the neutron

exits at time 0, and L1 is the distance from the sample to the detector, the time when a scattered

neutron joins the detector is

t =

√
m

2Ei
L0 +

√
m

2Ef
L1 (3.73)
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Figure 3.8: Simulations of t.o.f. spectra on VESUVIO for detectors in forward scattering (top)

and backward scattering (bottom) for some typical masses.
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The NCP corresponding to different masses will be centred at different times corresponding

to Ei(y = 0), that means for H

tH(y = 0) =

√
m

2Ef
(L0 cos θ + L1) for Hydrogen (3.74)

or in general

tX(y = 0) =

√
m

2Ef

(
L0

cos θ +
√
X2 − sin2 θ

X + 1
+ L1

)
for X > 1 (3.75)

It can be useful to interpret the factor
√

m
2Ef

as a time of 32.6 µs that a neutron takes in order to

travel 1 meter at E = Ef = 4897 meV. This time is multiplied by an effective distance defined as

the sum of final distance L1 and the initial distance L0 scaled by a kinematic factor depending

on the mass M and the angular position of the detector . Moreover, there is a maximum t.o.f.

corresponding to vanishing energy loss, i.e. to elastic scattering from a infinitely massive object,

t∞ = tM→∞ =
√

m
2Ef

(L0 + L1).

Therefore, we can try to transform the t.o.f. spectra into spectra shifted with respect to this

parameter and normalized to it, i.e., changing variable from t to z = (t∞ − t)/t∞ = 1− t/t∞,

with the new variable changing in the range 0 < z < 1. The mean position of an element in the

new variable spectra is

zH(y = 0) =
L0

L0 + L1
(1− cos θ) for Hydrogen (3.76)

and

zX(y = 0) =
L0

L0 + L1

(
1− cos θ +

√
X2 − sin2 θ

X + 1

)
for X > 1 (3.77)

Examples of shifted spectra and a comparison with t.o.f. spectra is taken for experimental

data on water in Figure 3.4. The spectra in the shift variable z, contrarily to those in t.o.f.,

have no dependence on the energy of the resonance foil and the dependence on the flight paths

is reduced since the factor (L0 + L1)/L1 ' 1 for all the detectors. Therefore, this visualization

method is undressed of all the geometry-dependence of the instrument, and can facilitate the

reading of the physical information in the experimental data, with a particular benefit for the

expanding community of non-physicists interested in the use of this spectrometer.
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Figure 3.9: Experimental data for a water sample in the case of three detectors with different

angular positions. In the top image the t.o.f. spectra as traditionally represented on VESUVIO,

in the bottom image their transformation in the shift variable z quasi non dependent on the

geometry of the instrument.
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Chapter 4

Nuclear Kinetic Energies in a

First-Order Quantum Harmonic

Model

In this Chapter, I present a model that I developed for the evaluation of the parameters

defining the amount of energy from each molecular vibration to the nuclear kinetic

energies. Two force constants define the three internal modes and are fixed through

the measured stretching and bending frequencies. The model can be applied to any

triatomic XY2 molecule in any phase and will be used in the following Chapters 5,6

and 7.

Water, as well as all triatomic non linear molecules, has 3×(number of atoms)−6 = 3

internal modes: two of them are symmetric vibrations, one stretching and one bending, and one

is an antisymmetric stretching. This motions occur with variation of the inter nuclear distances

and no displacement of the centre of mass. In addition, there are 6 external motions for the

molecule as a rigid body: 3 translations and 3 rotations around the axes passing through the

centre of mass. For an isolated molecule and no external interaction, the mean energies for the

translational modes would be defined by the kinetic theory of the perfect gas as kBT/2. The

important action of the HBs hinders the translational and rotational modes to small vibrations

of the molecule around mean positions in the water cluster. As a consequence, energies higher

than the classical value define each translational mode, and there are no free rotations but

librational modes.
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In a first-order quantum model each s mode has a ZPE defined by its frequency ωs. In

addition, we impose the harmonic condition of i) full decoupling of the modes and ii) only

quadratic terms for the nuclear potentials, as if the interaction were due to a spring of a given

force constant. In principle, each atom can move when a vibration occurs, transforming a part

of the energy enclosed in the vibration to its kinetic energy.

This is a single-molecule model, meaning that no external interaction is considered. Any-

way, the effective action of the HBs is considered when the frequencies ωs are experimentally

measured, e.g., the softening of the stretching force constant by the HB along the OH direction

is enclosed in the experimental stretching frequency. Also, the very fact that frequencies are

considered for the translational and librational modes is an effective introduction of the HB

interaction.

Our goal is to define the parameters enabling to express the total mean kinetic energy for

each atom as

〈EK〉 = τ
tra∑
t

~ωt
4

coth

(
β~ωt

2

)
+

lib∑
r

ρr
~ωr
4

coth

(
β~ωr

2

)
+

vib∑
v

fv
~ωv

4
coth

(
β~ωv

2

)
. (4.1)

4.1 Translation and rotation

We consider a symmetric triatomic molecule with two equal atoms of masses m and one atom

of mass M and define the useful parameter µ = 2m
M .

The energy of the translation of the molecule of total mass 2m+M is divided amongst the

nuclei through the two parameters

τM =
M

2m+M
=

1

µ+ 1
τm =

µ

2(µ+ 1)
, (4.2)

i.e., the ratio of each atom mass to the total mass. The fraction τ of translational energy of

the centre of mass is the same for the three spatial directions, but in general different frequencies

can be found in a vibrational spectrum relative to translations in different directions. Anyway,

since the differences in these frequencies are often small compared to an experimental resolution,

we consider an average frequency ωt of the possible translational frequencies.

In Figure 4.1, the geometry of the molecule is presented. The two axes in the molecular

plane are y and z and in their intersection lies the centre of mass of the molecule. The x axis

is perpendicular to this plane and passes through the centre of mass as well. As a rigid body,

the molecule can rotate around these axes and for each rotation a moment of inertia I can be

geometrically defined. The parameter ρ defining the amount of kinetic energy that each nucleus
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Figure 4.1: Geometry of the XY2 molecule considered in the text.

receives form a librational vibration is defined by

3ρ = ρz + ρx + ρy =
Iz

I2m+M
z

+
Ix

I2m+M
x

+
Iy

I2m+M
y

, (4.3)

i.e., the sum over the three directions of the ratios of the nuclear moment of inertia around

that axis to the total moment of inertia I2m+M around the same axis. As a difference from the

previous translational case, we have now three different fractions ρx, ρy and ρz with the same

experimental problem of only an average librational frequency ωρ. For this reason, we have

defined the average librational parameter ρ.

In particular, there is no angular motion of the mass M around the z axis, while the light

atom moves at a distance l sinα, so that

IMz = 0 Imz = ml2 sin2 α (4.4)

Looking again at the Figure 4.1, the moments of inertia around the second molecular axis

y are

IMy = M

(
µ

µ+ 1

)2

l2 cos2 α Imy = m

(
1

µ+ 1

)2

l2 cos2 α. (4.5)

Finally, for the rotation around the third axis x we have Ix = Iz + Iy. As a result, the

parameters defining kinetic energies for the librational modes are
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Figure 4.2: The three symmetry modes of vibration for a XY2 non linear molecule.

ρMz = 0 ρmz = 1
2

ρMy = µ
µ+1 ρmy = 1

2(µ+1)

ρMx = µ cos2 α
(µ+1)(1+µ sin2 α)

ρmx = (µ+1)2 sin2 α+cos2 α

2(µ+1)(1+µ sin2 α)

(4.6)

Sum rules exist for these parameters. For example, given a mode s, the sum of twice the

parameter for the atom m and the parameter for the atom M must be equal to 1, so that

all the potential energy enclosed in the vibration is used to move the atoms and the energy

conservation condition is fulfilled.

Finally, in the limit of infinite temperature, i.e., kBT largely higher than any binding energy

of the molecule, each nucleus can be separated from the others and moves of simple translational

motion with energy 3KBT/2. Indeed, in this limit one has

~ωs
4

coth

(
~ωs

2KBT

)
→ KBT

2
(4.7)

for each S, and then the sum of all the parameters for each atom must equal the number of

degrees of freedom

3τ + 3ρ+ f1 + f2 + f3 = 3 as T →∞. (4.8)

4.2 Vibrations

For the sake of clarity, in the following sections we consider a light water molecule as an example

of the application of the general treatment for any XY2 molecule. For example, in the Chapter

6 we will apply the same procedure to the heavy water molecule.

We first define a harmonic potential affecting the three atoms. The force acting on each

nucleus is due to the other two nuclei, and it is proportional to the displacement from the
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mean distance and tends to bring back the nuclei to their mean position. Since these are the

well-known features of the force due to an elastic spring, we use the classical result for the total

potential energy of a system of three springs

U = qTBqq =
kOH

2
q2

1 +
kOH

2
q2

2 +
kHH

2
q2

3. (4.9)

In particular, we introduced two equal springs with an elastic constant kOH connecting the

atoms H and H’ to the atom O, and a spring with an elastic constant kHH connecting H to H’.

The vector q = (q1, q2, q3) has as components the moduli of the distances from O to H q1, from

O to H’ q2 and from H to H’ q3. These are the so called internal coordinates and Bq is the

potential energy matrix in the base of the internal coordinates. The matrix Bq is diagonal and

its elements are proportional to the force constants. The internal coordinates are related to the

Cartesian coordinates through the transformation q = Qx, with the matrix Q given by

Q =


0 0 − sinα − cosα sinα cosα

sinα − cosα 0 0 − sinα cosα

−1 0 1 0 0 0

 (4.10)

and x = (yH , zH , yH′ , zH′ , yO, zO) the vector of the Cartesian coordinates, that is the nuclear

displacements from the mean position along two molecular axes. The definition of the two axes

is given in Figure 4.1. Cartesian coordinates are the best way to express the kinetic energy.

Indeed, in the basis the kinetic energy matrix Ax is diagonal and its elements are proportional

to the individual masses of the system

E = ẋTAxẋ =
m

2
(ẋ2
H + ẏ2

H + ẋ2
H′ + ẏ2

H′) +
M

2
(ẋ2
O + ẏ2

O). (4.11)

The kinetic and potential matrices Ax and Bq are expressed in two different bases. We

find useful to transform them into a third basis composed of the so-called symmetry-adapted

coordinates S = (S1, S2, S3). The symmetry coordinates are not unequivocally defined, being

our definition depicted in Figure 4.2. The symmetry coordinates should reproduce the molecular

normal modes introduced in the Chapter 2 and belong to a given symmetry group. In particular,

for the water molecule and for any non-linear XY2 molecule there are two symmetric modes

and one anti-symmetric mode. The former are a stretching and a bending while the latter is

a stretching as well. It is possible to transform the vector x into the vector S through the

52



transformation x = ΣS, with the matrix

Σ =



− sinα − cosα − sinα

− cosα sinα − cosα

sinα cosα − sinα

− sinα cosα sinα

0 0 µ cosα

µ cosα −µ sinα 0


. (4.12)

The matrix Σ enables the definition of the kinetic energy matrix in the symmetry-adapted

basis AS , in particular

E = ẋTAxẋ = ṠT
(
ΣTAxΣ

)
Ṡ = ṠTASṠ, (4.13)

obtaining as an expression for AS

AS = m


1 + µ cos2 α −µ cosα sinα 0

−µ cosα sinα 1 + µ sin2 α 0

0 0 1 + µ cos2 α

 . (4.14)

In the case of the potential energy matrix, two coordinate transformations are required, the

first one is q → x and the second one is x→ S, obtaining

U = qTBqq = ST
(
ΣTQTBqQΣ

)
S = STBSS, (4.15)

obtaining the potential energy matrix in the base of the symmetry-adapted coordinates BS

whose components are
kOH(1 + µ cos2 α) + 2kHH sin2 α

[
2kHH − kOHµ(1 + µ cos2 α)

]
sin 2α

2 0[
2kHH − kOHµ(1 + µ cos2 α)

]
sin 2α

2 (2kHH + kOHµ
2 sin2 α) cos2 α 0

0 0 kOH(1 + µ cos2 α)2

 .

(4.16)

4.2.1 Eigenvalues and free parameters

The matrices AS and BS are now expressed in the same base and they can be used in order to

write the secular equation describing the system

|B − λA| =
[
(b11 − λa11)(b22 − λa22)− (b12 − λa12)2

]
(b33 − λa33) = 0. (4.17)

Here λ = ω2 is one of the three eigenvalues of the system proportional to the square of the

frequency of the relative vibrational mode. The secular equation is such that the symmetric
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and anti-symmetric components are not mixed. Both the kinetic and potential energy matrices

are indeed block matrices (2× 2)⊗ (1× 1).

We point out that we can experimentally access the eigenvalues through the measure of a

vibrational spectrum. Hence, the secular equation will be used to define the unknown force

constants. For example, the kOH parameter is easily defined through the anti-symmetric part

of the secular equation, leading to the result

kOH =
mλ3(1 + µ cos2 α)

(1 + µ sinα cosα)2
. (4.18)

For water vapour, the asymmetric stretching frequency is ν3 = 3738 cm−1 and the angle

2α = 108.4 degrees, giving as a result a value for the force constant kOH = 7.66× 102 kg/m. It

is interesting to point out the weak dependence of the force constant on the molecular angle.

Indeed, for a rectangular water molecule with 2α = 90 degrees the force constant would be

kOH = 7.76× 102 kg/m, while for a linear molecule with 2α = 120 degrees the parameter would

be kOH = 7.65× 102 kg/m changing for less then 2%.

The symmetric part of the secular equation

D(λ) =
1 + µ

4

[
8kOHkHH(1 + µ) cos2 α−Mλµ(4kHH + 2kOH(1 + µ cos2 α)−Mλµ)

]
(4.19)

defines the second free parameter kHH of the model

kHH =
Mλ2µ

[
2kOH(1 + µ cos2 α)−Mλ2µ

]
4 [2kOH(1 + µ) cos2 α−Mλ2µ]

(4.20)

In principle, it is not clear which frequency should be used in this case between ω1 and

ω2, both corresponding to a symmetric vibration. The fact that the number of physically-

observable frequencies (ω1, ω2 and ω3) exceed by one the number of free parameters (kOH and

kHH) gives the possibility to test the accuracy of the model. Indeed, after that two frequencies

are used to fix the parameters it is possible to evaluate the third frequency within the model

and compare that value with the measured one. This is done in Table 4.1, where we try to

fix kHH the first time using ω2 and reporting the evaluated ω1 and then fixing kHH using ω1

and then evaluating ω2. As one can see, while in the former case the discrepancy between the

evaluation and the measure of ω1 is of about the 20%, in the latter case a negative eigenvalue

leading to an imaginary non-physical frequency is found.

In the literature, examples of models with more than 2 force constants can be found, for

example in Ref. [52,53]. Anyway, we decided not to follow this example since, even if one could

expect to improve the accuracy of the model introducing more free parameters, no possible test
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solid liquid vapour

2α [degrees] 108.4 105.5 104.3

ν1 [cm−1] 3085 3289 3686

ν2 [cm−1] 1650 1645 1596

ν3 [cm−1] 3220 3490 3738

kOH [102 kg/m] 5.684 6.684 7.673

kHH(ν2) [102 kg/m] 5.957 3.713 2.807

evaluated ν1 [cm−1] 5245 4661 4536

kHH(ν1) [102 kg/m] -0.25 -0.53 -0.01

evaluated ν2 [cm−1] 581i 885i 143i

Table 4.1: The parameters and the corresponding results for the force constants in the case

of light water in its three stable phases. kHH(ν) is the parameter fixed using the frequency ν,

while the corresponding evaluated frequency is the estimate of the only frequency that has not

been used to fix the force constants.

on physical observables can be done such as the one now discussed. In order to understand why

the accuracy of the model is of the 20%, I tried the same evaluations on a number of triatomic

XY2 molecules reporting the results in the Table 4.2. Interestingly, for 6 of the considered

molecules over a total of 8, the accuracy is more or less the same and no dependence on µ is

shown.

Then, we decide to use ω2 to define kHH . The angular dependence of both kOH and kHH for

the ice Ih, liquid and gas phases of water are reported in Figure 4.3.

4.2.2 Eigenvectors and energy fraction

Once that the free parameters are fixed, it is possible to go back to the secular equation and

evaluate the eigenvector in the symmetry base for each internal vibration

(BS − λAS)S = 0. (4.21)

Due to the block structure of the matrices, one eigenvector A = (0, 0, 1) corresponds to the

antisymmetric stretching and two eigenvectors of the form S = (1, v(λ), 0) are related to the

symmetric vibrations. The parameter

v(λ) =

(
2kOHµ(1 + µ cos2 α)− 4kHH −Mλµ2

)
sin(2α)

8kHH cos2 α+ kOHµ2 sin2(2α)− 2Mλµ(1 + µ sin2 α)
(4.22)
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Molecule ν2 [cm−1] ν3 [cm−1] 2α [deg] µ ν1 [cm−1] evaluated ν1 [cm−1] error

H2O 1594 3756 104.3 0.12 3654 4536 21%

D2O 1178 2788 104.5 0.25 2666 3269 20%

F2O 461 831 103.0 2.37 928 1285 32%

H2S 1183 2626 92.1 0.06 2615 3046 15%

D2S 855 1999 92.0 0.12 1896 2250 17%

H2Se 1034 2358 91.0 0.03 2344 2719 15%

Cl2O 296 686 110.9 4.37 639 593 07%

SO2 518 1362 120 1. 1151 1474 25%

Table 4.2: The accuracy of the present model tested on a number of triatomic XY2 molecules.

The relative error is defined as the difference of the experimental and evaluated frequencies

divided by their average.
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Figure 4.3: Angular dependence for the force constants when the experimental frequencies for

vapour, liquid and solid water are considered.
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has the two limiting cases v(λ)� 1 for λ→ λ1 and v(λ)� 1 for λ→ λ2. When these vectors

are evaluated, the corresponding vectors in the Cartesian space can be defined through the

transformation Σ. In particular, xA = ΣA and xS(λ) = ΣS. Due to the symmetry of each

vibration, there are some conditions on the components of the vectors xS and xA. In particular,

Symmetric vibration



yH = −yH′
zH = zH′

yO = 0

zO = −µzH

(4.23)

and

Antisymmetric vibration



yH = yH′

zH = −zH′
yO = −µzH
yO = 0

(4.24)

In both cases, two parameters such as xH and yH are enough to define the other four parameters

and the first two equations in the system x = ΣS are sufficient to define the Cartesian vectors.

When this is done and all the Cartesian displacement are known, it is possible to evaluate the

fraction of kinetic energy of each atom when one of the three vibrations takes place. As already

mentioned at the beginning of the Chapter, the mean kinetic energy for one of the three nuclei,

e.g., the H, is m(ẏ2
H + ż2

H) and in a harmonic motion this is proportional to m(y2
H + z2

H), with

the frequency ω the proportional constant. Hence, the ratio of the nuclear kinetic energy to the

total kinetic energy can be expressed as

fm,λ =
µ(ẋ2

1 + ẏ2
1)

2
(
µ(ẋ2

1 + ẋ2
2) + ẋ2

3 + ẏ2
3

) (4.25)

for the atom of mass m, while for the atom of mass M one has the similar result

fM,λ =
ẋ2

3 + ẏ2
3

µ(ẋ2
1 + ẋ2

2) + ẋ2
3 + ẏ2

3

. (4.26)

These are the fractions of the total kinetic energy that each atom takes from an internal vi-

bration. In the Table 4.3, these parameters in the case of the internal vibrations of a water

molecule in the case of the ice Ih, liquid and vapour phases are reported
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Ice Ih H2O f1 f2 f3

H 0.480 0.446 0.479

O 0.039 0.107 0.041

Liquid H2O f1 f2 f3

H 0.500 0.450 0.478

O 0.000 0.100 0.044

Vapour H2O f1 f2 f3

H 0.496 0.453 0.477

O 0.008 0.093 0.045

Table 4.3: The kinetic energy fractions relative to the internal vibrations of a water molecule

in the case of the ice Ih, liquid and vapour phases evaluated within the present model.
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Chapter 5

The Melting of Light Water

I have analysed new INS experiments and re-analysed some published NCS measure-

ments using anisotropic momentum distributions. The INS results are used to build

the kinetic energy contributions through our harmonic model described in Chapter 4

and compared with the observed contributions of the multivariate Compton profiles.

From the comparison, conclusions on the anharmonic contributions to the hydrogen

dynamics are drawn.

5.1 Looking for anharmonicity

A detailed description of the structure and dynamics of the HB network in water is essential

to reach a thorough understanding of the unique properties of this liquid, necessary both for

the evolution of life and its continuance. Water properties are brought about by the hydro-

gen bonded environment, in a picture where each molecule is involved in about four HBs with

strengths considerably less than covalent bonds but considerably greater than the natural ther-

mal energy. Evidence of the particular uniqueness of liquid water are in its many physical and

chemical properties which occur for instance when low density structuring naturally occurs at

low and supercooled temperatures.

The dynamics of the proton that participates in hydrogen bonding is a subject of great inter-

est and the quantum effects associated with protons have a significant impact on the behavior

of HB networks. Quantum effects influence the vibrational dynamics probed in INS, i.e., the

protons participating in HBs, as well as the static properties of ice and water, with the quantum

behaviour originating from zero-point motion. It has been recently suggested that a detailed

description of the strength of the HB is a prerequisite to elucidate the influence of quantum

59



nuclear effects on the hydrogen bonding [8]. The picture proposed is that this effect arises from

a competition between anharmonic quantum fluctuations of intermolecular bond bending and

intramolecular covalent bond stretching, where the latter fluctuations tend to strengthen HBs

whereas the former to weaken them.

Quantum effects, such as those associated with the breaking and distortion of HBs are

uniquely revealed by measuring the proton momentum distributions, n(p), and mean kinetic

energy, 〈EK〉, using NCS [40, 46, 54] and by computer simulations using open Path Integral

Molecular Dynamics (PIMD) [55, 56]. Indeed in recent years several NCS and PIMD studies

have been devoted to study these both physical quantities in ice and water in a wide temperature

range 269 K < T < 673 K [14,27,40,56–67]. The knowledge of the n(p) provides a unique insight

of the effective potential the proton experiences in its local environment [40].

The dynamic structure factor S(q, ω) accessed through INS is directly related to the density

of vibrational states g(E) weighted by the squared amplitudes of the atomic oscillations [68–70].

Values of proton mean kinetic energy and momentum distributions can also be calculated

using empirical models [52]. In this case, the frequencies of a set of quantum harmonic oscillators

are derived from optical data and hydrogen-projected vibrational neutron spectra, under the

assumptions of decoupling amongst internal and external modes. This procedure has been

already employed in solid and liquid H2S [71] and in SCW [72].

Sample T xxωx xxωy xxωz 〈EK〉x 〈EK〉y 〈EK〉z 〈EK〉
[K] [meV] [meV] [meV] [meV] [meV] [meV] [meV]

Ice 271 114±10 152±13 347±11 28.9±2 38.1±3 x86.7±3 153.7±2

Water 285 x63±x9 207±17 335±10 18.3±2 51.8±4 x83.8±2 153.9±3

673 x69±13 193±20 368±17 32.3±4 51.8±5 x92.5±4 176.6±4

(Ref [65]) 673 178.0±4

(Ref [57]) 673 178.0± 11

Table 5.1: Total kinetic energy 〈EK〉 and its three directional contributions, 〈EK〉α from the

NCS data. The three effective frequencies, ~ωα are defined through Eq. 5.1. The last two values

for the 〈EK〉 were obtained in Refs. [57, 65] through the fit of a Gauss - Hermite NCP.
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Figure 5.1: Top. A slice of the dynamical structure factors from INS experiments as seen from a

detector bank at θ = 20 degrees, for ice Ih at T = 271 K (left) and water at T = 285 K (right).

Experimental data are reported as black points while the total fit is reported as green line.

Individual Gaussian contributions to the fit, together with their central values, are reported

as red lines for ice and blue lines for water. Bottom. The same individual fits as above, but

superposed in order to highlight the red- and blue-shifts in the phase transition from water to

ice.
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5.2 INS and NCS experiments and data analysis

Recent NCS experiments have been performed on the VESUVIO spectrometer on ice Ih at T

= 271 K [63], water at T = 285 K [27] and T = 673 K [65]. The corresponding data have been

fitted anew, using the angular average of the multivariate Gaussian distribution (Eq. 3.21).

The new analysis of these data was motivated by the update of the fitting routines according

to the discussion in Chapter 3. The variances σ2
α, the corresponding directional contributions

〈EK〉α, the total mean kinetic energy 〈EK〉 are reported in Table 5.1. In the same Table, the

values of the frequencies ~ωα, defined through

~2σ2
α

2M
= 〈EK〉α =

~ωα
4

coth

(
~ωα

2kBT

)
(5.1)

are also reported. A comparison is made reporting the values for two other measurements at

T = 673 K of Refs. [57,65], where the results for the kinetic energy were obtained through the

isotropic-anharmonic momentum distribution of Eq. 3.14.

In addition to the NCS measurements, INS experiments have been performed on the SEQUOIA

spectrometer on ice Ih at T = 271 K and water at T = 285 K [17] using an incident neutron

energy Ei= 600 meV. In Figure 5.1, a slice of the dynamic structure factor S(q, ω) measured

through INS by a detector in the angular position θ = 20 degrees is reported (top). The data

correspond to ice (left panel) and water at T = 285 K (right panel).

In Ref. [17], the S(q, ω) was reduced in order to obtain the H-projected density of states

g(E) through a procedure that will be discussed in Chapter 7. From the stretching component,

one can derive the stretching contribution to the H mean kinetic energy

〈EK〉str =
3

4

∫ EM

Em

g(E)str E dE (5.2)

with Em and EM the minimum and maximum values defining the stretching region. In principle,

for a one-phonon density of states the Em value should lie where the minimum between bending

and stretching components can be found, while the value for EM can go up to infinity. In order to

maximize the signal-to-noise ratio, we set the two values to 355 meV and 480 meV respectively.

Values for 〈EK〉str in the case of ice and water from Eq. (5.2) are reported in Table 5.2. For

water at T = 673 K, the value of 〈EK〉str has been derived using the g(E)str line shape from

Figure 4 of Ref [73]. The corresponding value 〈EK〉str = 115± 5 meV is reported in the same

Table.

Within the assumption of decoupled quantum librational and vibrational harmonic oscilla-

tions, the main peaks in the experimental S(q, ω) are fitted with Gaussian line-shapes. Frequen-
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cies are derived for librational, bending and stretching modes, namely ωlib, ωben and ωstr. These

fits are reported in Figure 5.1 (top) over the aforementioned experimental data. In the same

Figure, the individual Gaussian line-shapes are reported as well, together with vertical lines

defining their central values. A broad Gaussian contribution is found around 300 meV, where

an overtone is expected for the combination of libtation and bending modes. In the lower panel,

the fitted contribution for ice and water at T = 285 K are superposed, in order to highlight the

red-shift of the stretching and bending bands, i.e., ∆~ωstr = 12 meV and ∆~ωben = 3 meV, and

the blue-shift of the librational band, i.e., ∆~ωlib = 12 meV. The values of these frequencies

can be rearranged in order to define three molecular frequencies, ωα, according to [63,64]:

ωx = ωlib

ωy = 1
2 (ωlib + ωben)

ωz = ωstr

(5.3)

The values of ωα for ice and water at T = 285 K, together with the value of 〈EK〉z derived from

ωz using Eq. 5.1, are reported in Table 5.2. In the case of water at T = 673 K, the values of

ωα listed in the Table 5.2 are obtained from the Raman spectroscopic data of Ref. [73], and for

the librational mode, a simple average of the three librational frequencies has been considered.

This procedure yields quantities directly comparable to those obtained from the NCS data, but

independently derived from INS.

Tx xx~ωx xx~ωy xx~ωz 〈EK〉zx 〈EK〉str
[K] [meV] [meV] [meV] [meV]z [meV]

Ice 271 INS 183 ± x2 143 ± x5 417± x5 104 ± 1.2 x98 ± 4

Water 285 INS 172 ± x3 139± x8 429± x6 107 ± 1.5 100 ± 4

673 Raman 159 130 445 113xxxxx 115 ± 5

Table 5.2: Values of ~ωα obtained applying Eq. 5.3 to the librational, bending and stretching

frequencies obtained from the INS data. The component 〈EK〉z corresponding to the frequency

~ωz is obtained using Eq. 5.4, while the values for 〈EK〉str are from Ref. [17] and [73] (see text).

It must be noticed that a linear combination of frequencies, such as the one proposed in

Eq. 5.3, is only possible in the limit of infinite mass for the oxygen atom, and in the limit of

~ωi >> 2kBT , where i = lib, ben and str. An evolution of this procedure is represented by the

harmonic model of Chapter 4, here applied to the INS observed frequencies in order to define a

63



set of kinetic energies 〈EK〉α. In particular,

〈EK〉x = ρ~ωlib
4 coth

(
~ωlib
2kBT

)
+ τ 1

2kBT

〈EK〉y = ρ~ωlib
4 coth

(
~ωlib
2kBT

)
+ f2

~ωben
4 coth

(
~ωben
2kBT

)
+ τ 1

2kBT

〈EK〉z = (f1 + f3)~ωstr4 coth
(

~ωstr
2kBT

)
+ τ 1

2kBT

(5.4)

The calculated values for 〈EK〉α and the total mean kinetic energy 〈EK〉 are reported in

Table 5.3, together with the corresponding values of 〈EK〉α and 〈EK〉 from NCS.

5.3 Results and discussion

The values reported in Table 5.1, here obtained re-analysing experimental NCP of Refs. [27,

63, 65], are in full agreement with the previous values of 〈EK〉 and give new results for the

directional contributions 〈EK〉α.

The opposite shifts reported in the lower panel of Figure 5.1 suggest that large changes in

the single-particle dynamics in the water molecule are partially cancelled when the total mean

kinetic energy is considered. This is confirmed by the small difference in the 〈EK〉 values for ice

and water at T = 285 K in Table 5.1. Moreover, as an inset in the same Figure 5.1 and looking

at the data in Table 5.2, INS can be used to access the anisotropy of the momentum distribution,

applying Eq. 5.3 or 5.4. As mentioned, the application of Eq. 5.3 requires that the O is not

moving at all. The implication that all the vibrational energy is taken by the H is reflected in

the larger value of 〈EK〉z against that of 〈EK〉str in Table 5.2. Anyway, when the O motion is

enabled, through Eqs. 5.4, values of 〈EK〉z in Table 5.3 are found in good agreement with those

of 〈EK〉str in Table 5.2. There are two comments on this. First, it is fundamental to take into

account the motion of the oxygen in order to avoid an overestimate of H stretching energy of

5-10%. Second, the simple hypothesis of a stretching line-shape symmetric with respect to the

maximum value gives a good result in the evaluation of 〈EK〉str. In particular, only a symmetric

line-shape, here defined as a Gaussian in Figure 5.1, allows to avoid the integration in Eq. 5.2

(ore equivalently replace g(ω)→ δ(ω − ωstr)), and enables the use of Eqs. 5.4.

Moreover, the anisotropic momentum distribution that one can define from INS observables

when the 〈EK〉 values are obtained are reported in Figure 5.2. Here, the experimental NCS

data are reported in the form of the radial momentum distribution 4πp2n(p) together with the

experimental error for ice, water at T = 285 K and T = 673 K (from top to bottom). Each
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T 〈EK〉x 〈EK〉x 〈EK〉y 〈EK〉y 〈EK〉z 〈EK〉z 〈EK〉 〈EK〉
[K] [meV] [meV] [meV] [meV] [meV] [meV] [meV] [meV]

ice 271 28.9±2 21.6±1 38.1±3 34.4±1 86.7±3 98.8±1 153.7±2 154.8±1

water 285 18.3±2 19.4±1 51.8±4 33.5±2 83.8±2 101.7±2 153.9±3 154.6±1

water 673 32.3±4 31.4 51.8±5 39.4 92.5±4 107.9 176.6±4.1 178.7

Table 5.3: Comparison between experimental NCS 〈EK〉 and 〈EK〉α from Table 5.1 and the

harmonic values 〈EK〉α and 〈EK〉 obtained through Eq. 5.4.

panel presents the radial momentum distribution obtained from the values 〈EK〉α in Table 5.3

as a green dashed line, and the difference between this function and the NCS experimental

function as a red line. These figures show a qualitatively agreement of the NCS and INS

line-shapes, resulting in a good agreement of the total mean kinetic energies 〈EK〉 and 〈EK〉.
The differences in the components 〈EK〉α and 〈EK〉alpha should be related to anharmonic

contributions, measured by NCS but not considered in the INS harmonic model, resulting in a

strong couplings of librational, bending and stretching modes.

This study although confirms the effectiveness of the NCS techniques to provide quantitative

values of n(p) and 〈EK〉 further shows how a combined use of NCS and INS can provide

additional and unique information on the harmonic components of these physical quantities.
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Figure 5.2: Experimental radial momentum distributions for ice Ih at T = 271 K (upper panel),

water at T = 285 K (middle panel) and water at T = 673 K (lower panel). The width of these

curves represents the experimental error-bars. Radial momentum distribution defined from the

values of 〈EK〉α are reported for each temperature as green-dashed lines, while their difference

with respect to the experimental curve is reported as red line.
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Chapter 6

The melting of Heavy Water

New NCS experiments are presented showing the anisotropy in the momentum dis-

tributions of both deuterium and oxygen across the melting of heavy water. A first

comparison with ab initio simulations highlights the importance of competing quantum

effects across the phase transition. Then, a comparison with kinetic energy contribu-

tions from our harmonic model presented in Chapter 4 enables some considerations

on the action of HB as an external force spoiling the harmonic approximation for the

water molecule.

6.1 Competing Quantum Effects

Even at room temperature, quantum mechanics plays a major role in determining the quanti-

tative behaviour of light nuclei, changing significantly the values of physical properties such as

the heat capacity [74]. However, other observables appear to be only weakly affected by NQE:

for instance, the melting temperatures of light and heavy water differ by less than 4 K, and the

boiling temperatures by just 1 K. Recent theoretical work has attributed this to a competition

between intra and inter molecular NQEs, which can be separated by computing the anisotropy

of the quantum kinetic energy tensor. The principal values of this tensor change in opposite

directions when ice melts, leading to a very small net quantum mechanical effect on the melting

point.

Even though NQEs are very large – the zero-point energy content of an O–H stretching

vibration is in excess of 200 meV – it is often the case that their net effect on macroscopic

properties is relatively small. Recent theoretical analyses [75, 76] have suggested that these

small differences could stem from a partial cancellation between quantum effects in the intra

67



and inter molecular components of the hydrogen bond – so that the net effect is small even if

the individual contributions are large. In particular, the competition between quantum effects

can be seen very clearly when decomposing the changes in quantum kinetic energy of protons

and deuterons along different molecular axes [77,78].

The mechanism that underlies the competition between changes in the different components

of the quantum kinetic energy can be understood by considering as an analogy a two-level

quantum system with an environment-dependent off-diagonal coupling β. A small change in

the coupling ∆β – arising from a phase transition or some other change in the environment of

the system – will shift its eigenvalues by the same amount proportional to ∆β, but in opposite

directions. Even though this picture is clearly over-simplified, it is consistent with a diabatic

state model of the hydrogen bond, [79] it demonstrates that the notion of competing quantum

effects CQEs is nothing exotic, and explains why it returns in many circumstances in the study

of water and other hydrogen-bonded systems.

Competing quantum effects have in fact been identified in a diverse variety of simulations

[75–78], and it seems entirely plausible that they are at the root of the explanation for why many

of the properties of water depend only weakly on isotopic composition. The change of many

thermodynamic properties on isotopic substitution can be related to changes in the quantum

kinetic energy [77,80].

Let us consider the free-energy of melting at temperature T , ∆fusG(T ). The change in this

free energy upon isotope substitution (for instance substituting all the D atoms in heavy water

with H) can be related to a thermodynamic integration of the kinetic energy difference between

the liquid and the solid phases for that atomic species, as a function of the isotope mass [81–83]:

∆D→H∆fusG(T ) = −
∫ mH

mD

E
(l)
K (µ, T )− E(s)

K (µ, T )

µ
dµ. (6.1)

As discussed in Ref. [84], one can often assume that E
(s,l)
K (µ)

√
µ are nearly constant, so the

integral can be approximated as

∆D→H∆fusG(T ) ≈ 2∆fusEK(mD, T )

(√
mD

mH
− 1

)
≈ 2∆fusEK(mH, T )

(
1−

√
mH

mD

)
. (6.2)

Furthermore, elementary thermodynamic considerations imply that one can write

∆fusG(m,T ) ≈ ∆fusH (m)

(
1− T

Tfus(m)

)
≡ ∆fusS(m)(Tfus(m)− T ), (6.3)

where Tfus(m) is the melting temperature of an isotopically-pure sample with isotope mass m

and the latent heat of fusion ∆fusH(m) has been assumed to be constant in the vicinity of

Tfus(m).
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Combining Eqs. (6.2) and (6.3), one finds that the kinetic energy change upon melting per

heavy water molecule, at temperature T , reads

∆fusEK(mD, T ) ≈ ∆fusS(mH) (Tfus(mH)− T )−∆fusS(mD) (Tfus(mD)− T ) .

2
(√

mD/mH − 1
) . (6.4)

Equation (6.4) relates the change in kinetic energy between the two phases (a quantity that

would be zero if H and D nuclei did not behave as quantum particles) to macroscopic ther-

modynamic properties. Evaluating (6.4) at the melting temperatures of heavy and light water

yields the more transparent expressions

∆fusEK(mD, Tfus(mD)) ≈ ∆fusS(mH)

2
(√

mD/mH − 1
) [Tfus(mH)− Tfus(mD)]

∆fusEK(mD, Tfus(mH)) ≈ ∆fusS(mD)

2
(√

mD/mH − 1
) [Tfus(mH)− Tfus(mD)] .

(6.5)

Thus the difference in melting temperature between light and heavy water is directly propor-

tional to the change in the quantum kinetic energy of D upon melting. Moreover ∆fusEK depends

only weakly on the temperature: if we insert the measured values for the entropies of fusion

and the melting temperatures into Eqs. (6.5), we obtain ∆fusEK(mD, Tfus(mD)) ≈ −1.095 meV

per molecule of water, and ∆fusEK(mD, Tfus(mH)) ≈ −1.062 meV.

This analysis predicts the change in the quantum kinetic energy of deuterons upon melting,

∆fusEK, to be of the order of −0.5 meV per atom. This is a very small value: to put it into

perspective, it is less than 0.5% of the quantum kinetic energy of a deuteron at the melting point.

Achieving a level of accuracy sufficient to verify quantitatively this prediction in experiments

or simulations will be extremely challenging, and is well beyond the scope of the present work.

What one can do is investigate the reason why ∆fusEK is so small. As we show in the text, this

is due to a near-complete cancellation of the changes in the three principal components of the

kinetic energy of the deuterium atoms on melting.

The results from NCS experiments have stimulated the development of improved theoretical

methods for evaluating the proton momentum distribution [85–88], as well as their application

to benchmark systems, with a close interplay between theory and experiment [89,90]. One can

infer the anisotropy of the particle momentum distribution from NCS experiments even in cases

when only the spherically averaged n(p) is available. In water, this provides insight into the local

environment of the proton and can help elucidate the nature of hydrogen bonding [40, 91, 92],

the structure of hydration shells, and the effects of confinement [93,94]. Indeed this information

can be seen as the direct experimental counterpart of the decomposition of the quantum kinetic
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energy along molecular axes, which has been used so successfully to unravel competing quantum

effects in simulations [77,78,88].

The focus of NCS studies has recently broadened to consider also heavier atoms [88,95,96],

which, although challenging because of their less-pronounced quantum nature, promise a more

comprehensive picture of the underlying physics. Theoretical calculations [97, 98] demonstrate

a sizeable excess of kinetic energy for the oxygen atoms in ice, relative to the classical value.

This kinetic energy excess shows a clear dependence on the chemical environment [99], and on

the microscopic structure. A direct, accurate measurement of the kinetic energy of the oxygen

atoms could for instance shed light on recent findings that indicate an increased localisation of

the oxygen in heavy water compared to light water, as evidenced by a 10 per cent overstructuring

in the heavy water gOO(r) radial distribution function [100].

In the following, we presents the first direct experimental observation of CQEs achieved

by measuring the deuterium momentum distributions n(p) in heavy water and ice NCS and

resolving their anisotropy. Results from the experiments, supplemented by a theoretical analysis,

show that the anisotropy of the quantum kinetic energy tensor can also be captured for heavier

atoms such as oxygen.

6.2 The Experiment

The experiment was performed on a D2O sample, with a volume 6.3 x 6.3 x 0.5 cm3, contained

in Cu container equipped with Rh/Fe thermocouples, at three different temperatures: at T

= 274 K (in the solid), at T = 280 K (in the liquid) and at T = 300 K (in the liquid) at

ambient pressure. The temperatures of solid and colder liquid have been chosen respectively

three degrees below and above the heavy water melting point. The integrated proton current

for NCS data yielded I = 5800 µAh, for T = 274 K and T = 280 K and I = 5400 µAh for T =

300 K. The Cu container was chosen to ensure an optimal separation of recoil peaks from Cu

and O. Examples of t.o.f. data are reported in Fig. 6.1 and 6.2.

In Fig. 6.1, a general picture of the t.o.f. spectra for the back and forward scattering

detectors is presented. The count rate and the quality of the data is anyway better in the

forward detectors, and only these have been considered in the following data analysis of D. On

the other hand, while in forward scattering the O signal and the copper container completely

overlap, a good separation in the backward scattering detectors was found, and then the O

analysis has been carried out for these detectors only. It is indeed expected that the greater
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Figure 6.1: Experimental count rate (black) and simulated MS (red line) for a forward detector

(left) and a backward group of detectors (right). On the left, it is possible to see the D signal

centred around 280 µs, while the O signal is overlapping with the contribution from the copper

container. Because of this no information could be extracted regarding the O momentum

distribution from the forward scattering detectors. On the right, the D signal is found around

160 µs and the two signals from the O and the container are only partially overlapped.

the angle covered by a detector, the greater the q and the better the separation between two

different nuclides, being the position of the centre of their signal related to q2/2M . Data sets

at each l-th detector were corrected for γ background using a standard procedure available on

VESUVIO [101]. The red line in this figure represents the multiple scattering (MS) correction

to the data. This contribution has been simulated through a Monte Carlo routine [63] and

corresponds to the double and triple scattering occurring in a plane homogeneous slab filled

with the number of atoms composing the experimental sample and container. These routines

combine the approximate physical information, that is the NCP of each nucleus build up using

a isotropic momentum distribution of guessed variance, with the instrument geometry, that is

principal and secondary paths, angle of the detector and gold foil resonance parameters. The MS

contribution must be thought as a small peak at the left of the heavy mass signal, representing

principally double scattering from the container, and then a (more or less horizontal) line going

towards the low t.o.f. region, where the contributions from D-D and D-cell double scattering

have the same order of magnitude. The MS is simulated (together with the total scattering)

and then subtracted to the experimental data through VESUVIO routines. It must be noticed

that the difference between the actual sample and the simulated homogeneous sample is more

relevant when the container scattering power is similar to the sample one. In this case, an

effective thickness of the simulated slab is introduced.
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In Fig. 6.2 (top), a deeper analysis of the case of D is presented. The signal span a large

portion of the t.o.f. region, namely between 280 µs and 360 µs. For larger values of q the nuclear

signals are broadened and appear to lower t.o.f. (being relative to higher initial energies). In

Fig. 6.2 (bottom), the same spectra are transformed in the y variable corresponding to the D

mass. It is possible to see how all these contributions can be now summed coherently. Anyway,

it is possible to fit the copper-container contribution in the t.o.f. spectra with a Voigt line shape

and subtracted from the experimental data. The top panel in Figure 6.3 reports examples of

the experimental NCP for D F̄ (y, q) averaged over all forward detectors, after both MS and

container subtractions.

The O signal has been corrected by the MS contribution through the same simulation as the

D. On the other hand, in this case it was not possible to recognize the cell contribution in the

t.o.f. space for each detector separately. Both copper and O signal have been then transformed

in the O y space, and the cell contribution has been fitted together with the O one. In the

bottom panel of Figure 6.3, it is reported the average over all backward scattering detectors

corresponding to the O NCP.

When the sample is isotropic, the particle momentum distribution only depends on the

modulus of p, and the q̂ direction is immaterial, so the NCP is simply JIA(y) = 2π
∫∞
|y| pn(p)dp.

This ideal peak profile is broadened by finite-q correction terms ∆J(y, q), and by convolution

with the instrumental resolution function R(y, q), so the experimental NCP, F (y, q), is

F (y, q) = [JIA(y) + ∆J(y, q)] ? R(y, q). (6.6)

The instrumental resolution is a quantity that can be simulated through the same Monte Carlo

routines introduced for the correction of the MS, imposing that the nuclear momentum dis-

tribution has a vanishing variance. This will simulate the geometrical uncertainties related to

the finite width of the gold resonance and of the FC or DD techniques. The additive term

for the FSE has been already discussed in Chapter 3. One reasonable (and also insightful)

way to extract the physical information content from the experimental F (y, q) profile is to as-

sume that the underlying n(p) arises from the spherical average of an anisotropic Gaussian

distribution [63,71,90,97],

4πp2n(p) =
〈 δ(p− |p|)√

8π3σxσyσz
exp

(
− p2

x

2σ2
x

−
p2
y

2σ2
y

− p2
z

2σ2
z

)〉
. (6.7)

This expression involves three parameters – the variances σ2
α for α = x, y, z – which are related

to three effective principal frequencies ωα by σ2
α = mωα

2~ coth β~ωα
2 , or to the three components
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Figure 6.2: Top. Experimental spectra corresponding to four forward scattering detectors as

function of the time of flight. The experimental data have been corrected for the γ-background,

while the MS and sample container contributions are still present. Bottom. The same spectra

as functions of y variable corresponding to D mass.The experimental data have been corrected

for γ-background, while the MS and sample-container contributions are still present.
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Figure 6.3: Experimental NCS profiles for heavy ice at T = 274 K. The two panels reports the

detector-averaged NCS for D (upper panel) and O (lower panel). Best fits using multivariate

Gaussian (blue line) are reported. In the case of the O profiles, the peak at y = −40 Å−1 is due

to the contribution from the Cu sample container. The instrumental resolution is reported for

the D as a black dotted line, and the insets show examples of the raw data from two individual

detectors.
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of the quantum kinetic energy by 〈Eα〉 = ~2σ2
α/2m. In the present study, this approach has

been used to interpret NCS data acquired on heavy water in the solid at 274 K, and in the

liquid at 280 K and 300 K. The fit procedure is based on the assumption that in the y space all

spectra represent the same J(y), that is they share the same variances σα. Other parameters

are detector-dependent. For example, the amplitude of the function J(y, q) can depend on the

detector efficiency; the NCP should be centred at y = 0, while a small displacement can be

introduced as parameter to take into account the imperfect knowledge of the geometry of the

instrument. At the end the final fit for D has been done considering simultaneously all the

detectors, imposing that all should share the same values for the σα, while the parameters Al

and cl, namely the amplitude and centroid of each detector, could individually change. In the

case of O, the backscattering spectra have been summed up in groups sharing the same angular

position, and then a simultaneous fit of these grouped spectra has been done. In addition to the

previous parameters, other 4 parameter per group have been introduced in this case, to take into

account the amplitude, centroid Gaussian and Lorentzian width of the container contribution

still present in the spectra and fitted with a Voigt function.

When, according to the previous discussion, the theoretical function F thel (y, q) for the l

detector is defined, a χ2 procedure is used to find the best fit parameters, trying to minimize

the quantity

χ2 =
∑
l

∑
i

(
F expl (yi, qi)− F thel (y = yi, q = qi)

)2
Exp errori

(6.8)

with i running over the experimental data for each detector. In Figure 6.3 the best fits obtained

with an isotropic and the multivariate Gaussian ansatz for n(p) have been reported for both

D and O. Clearly, the multivariate Gaussian profile provides a better fit to the experimental

data than an isotropic Gaussian. In fact, the best fit F̄ (y, q) obtained for an isotropic model

is visibly asymmetric. This is a signature of an over-estimation of the finite-q correction term

∆J(y, q), which occurs because the fit attempts to make up for the anisotropy inherent in the

experimental data but absent in the isotropic model.

6.3 Computational methods

To complement this experimental study, we have also performed some new ab initio com-

puter simulations of heavy water and ice, using the same density functional theory frame-

work [102–105] as described in Ref. [88]. Tests with different basis sets and the inclusion of

dispersion corrections produced no qualitative changes in the results. Nuclear quantum ef-
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fects were incorporated using the PIGLET technique [88], which combines the path integral

formalism [106, 107] with a correlated-noise Langevin equation [87, 88], thereby enabling fully

converged results for room-temperature water to be obtained with as few as six path integral

beads.

The conventional way to extract the particle momentum distribution from the path in-

tegral formalism involves opening the path and is computationally very demanding [89]. A

simpler alternative is to assume that the momentum distribution can be modelled as a multi-

variate Gaussian as in (6.7), and to use the eigenvalues of the quantum kinetic energy tensor

~2 〈pαpβ〉 /2m to estimate the principal components of this distribution. The only difficulty here

lies in the fact that in the liquid the orientations of the water molecules change with time, so

one cannot simply average the centroid virial estimator to obtain the anisotropic kinetic energy

tensor.

The interaction between the atoms was modelled by explicitly solving the electronic struc-

ture problem within the density functional framework. The Becke-Lee-Parr-Yang exchange-

correlation functional [102,103] was used, together with GTH pseudopotentials [104], as imple-

mented in the CP2K software suite [105]. Wave functions were expanded in the Gaussian DZVP

basis set, while the electronic density was represented using an auxiliary plane wave basis, with

a kinetic energy cutoff of 300 Ry. We used periodic supercells containing 64 D2O molecules for

the liquid, and 96 molecules for ice, at the experimental density. Tests with the TZV2P basis

set, a smaller box of 32 waters, and the inclusion of dispersion corrections [108] did not change

the results significantly. Benchmarks performed for the more challenging case of H2O yielded

a total kinetic energy per H atom of 148.2 meV when using our basic setup (BLYP, DZVP

basis set, 6-beads PIGLET), the very same value when using the more refined TZV2P basis set,

and a very small change to 148.9 meV when using conventional PIMD with 32 beads – a tiny

difference that has an even smaller impact when one considers the differences between various

phases and/or temperatures. Simulations were performed with a time step of 0.5 fs, starting

from configurations equilibrated using an empirical force field [75], with a further 10 ps of ab

initio classical molecular dynamics and 3 ps of ab initio PIGLET equilibration. Sampling was

performed for 20 ps at each temperature in the liquid, and for 10 ps in ice, which has faster

relaxation time.

Nuclear quantum effects were modelled using a combination of path integral molecular

dynamics and a tailored correlated-noise Langevin dynamics, which allows one to obtain con-

vergence with a far smaller number of imaginary-time slices. [88] In this case, we used 6 repli-

76



0 200 400 600 800 1000

10

20

30

20

40

60

0 200 400 600 800 1000

Dt @fsD

XEΑ\ @meVD
D

O

274K, solid 300K, liquid

Figure 6.4: TAG approximation [88] to the principal components of the kinetic energy tensor

as a function of the moving average window ∆t. The left panels show the results for D2O ice at

274 K, the right panels for the liquid at 300 K. The upper panels show the results for deuterium,

the lower panels those for oxygen. The full lines are a guide for the eye, connecting the actual

data points – the statistical error is smaller than 0.1 meV. The dashed lines indicate the values

of the principal components obtained from the MSD approach.

cas, with a set of parameters designed for systems with frequencies up to ωmax such that

~ωmax < 20kBT , which can be obtained from an on-line repository [109]. This set of pa-

rameters has previously been shown to give full convergence of structural properties and the

quantum kinetic energy in the case of room-temperature liquid water. Heavy water exhibits

less pronounced quantum effects, making this setup a conservative, safe choice for the present

application.

The quantum kinetic energy tensor was evaluated using the centroid virial formula

Tαβ =
δαβ
2β

+
1

4P

P−1∑
i=0

[
(qiα − q̄α)

∂V

∂qiβ
+ (qiβ − q̄β)

∂V

∂qiα

]
. (6.9)

Here qiα is Cartesian component α of the position of the i-th replica of the atom in the ring

polymer, q̄ =
∑

i qi/P is the centroid of the ring polymer, V (q) is the physical potential and

β = 1/kBT is the inverse temperature. As discussed in the main text, we used two different

approaches to prevent the changing orientation of the molecules in the liquid from spherically
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averaging the tensor during the course of the simulation. The mean-square displacement (MSD)

alignment approach requires one to align the centroid of each instantaneous configuration of

each water molecule to a reference configuration. The same rotation matrix is then used to

transform the kinetic energy tensor into the fixed reference frame, where it is averaged before

its principal components are computed.

The transient anisotropic Gaussian (TAG) approximation, on the other hand, does not

require one to define a molecular entity or a reference structure. It instead performs a running

average of the estimator (6.9), computes the eigenvalues of the running-averaged tensor, and

averages each of these eigenvalues to evaluate the best estimate of the corresponding principal

component. Since averaging and diagonalization do not commute, the TAG estimates of 〈Eα〉
depend on the width of the time window. As shown in Figure 6.4, however, after a rapid change

for small ∆t the eigenvalues of the tensor reach plateau values, after which the TAG estimate

drifts on a much slower time scale to an isotropic tensor.

In the case of ice, the water molecules cannot change their orientation, and so the slow

relaxation time is effectively infinite. The ∆t→∞ limit of the TAG approximation corresponds

to the correct approximation to the particle momentum distribution as a multivariate Gaussian

– a quantity that could be also computed from the end-to-end distribution of an open-path

simulation, however at a much greater expense [97]. Therefore, the left hand panels of Figure 6.4

demonstrate that the MSD approximation is close to the correct estimator, despite making the

somewhat artificial assumption that the principal axes of the kinetic energy tensor are fixed

relative to the molecular axes.

In the liquid, however, one can see that the values of 〈Eα〉 drift slowly, and so one must choose

a point to evaluate the TAG approximation that consitutes an acceptable compromise between

converging the centroid virial estimator and avoiding the effect of orientational relaxation. It

can be seen that the variation of the principal components is relatively small for values of ∆t

between 50 and 500 fs, and we chose here a value of 100 fs. Even though in principle the best

value for ice would entail a very long averaging window, one must consider that in order to

compare different thermodynamic state points it is important to use the same window, so that

the effects of incomplete averaging of the estimator are comparable. Whenever it is possible to

define individual, rigid molecular entities, one should also evaluate the MSD estimator to check

that the results do not depend dramatically on ∆t or other details of the analysis, as is the case

here.

The overall kinetic energy change of D atoms in D2O upon freezing is a very small quantity,
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arising from a cancellation between contributions that vary in opposite directions. Despite this

quantity being small, we are confident that the details of our calculations are sufficiently well

converged to assess it reliably, for a given choice of density functional. We cannot however be so

confident about the accuracy of density functional theory. It is very hard for an approximate ab

initio framework such as DFT to capture quantitatively the result of the delicate cancellation,

and match the value of −0.5 meV that can be estimated based on the simple thermodynamic

arguments of section 6.1.

For this reason, it is interesting to see whether q-TIP4P/F, [75] an empirical force field

that reproduces experimental observables such as the melting temperature, the temperature of

maximum density, the red shift of the OH stretching frequency on condensation, can match the

thermodynamic value of −0.5 meV for the change in the kinetic energy of the deuterium atoms

on melting.

257K 274K 277K 280K

liquid ice liquid ice liquid ice liquid ice

〈EK〉 D 111.3 111.8 112.3 112.9 112.5 113.0 112.7 113.1

〈EK〉 O 56.0 56.6 57.8 58.2 58.1 58.5 58.4 58.9

Table 6.1: Kinetic energy of D and O atoms in D2O at different temperatures around the

melting point, as computed from a PIMD simulation using the q-TIP4P/F water model. [75].

As it is apparent from Table 6.1, q-TIP4P/F captures the sign and magnitude of the total

kinetic energy change at 277K. Furthermore, ∆fusEK(mD, T ) varies very little with temper-

ature, down to the actual melting temperature of D2O computed for this model [83]. This

insensitivity of ∆fusEK(mD, T ) to T justifies performing experiments slightly away from the

melting temperature, and suggests that our results should not be dramatically affected by the

fact that DFT calculations were performed at a temperature that is unlikely to be precisely the

melting temperature of BLYP water.

6.4 Comparison of experimental and ab-initio results

Here we compare two different ways around this difficulty. One is to perform a running average

of the kinetic energy estimator [88] – the so-called “transient anisotropic Gaussian” (TAG)

approximation. For this we used a triangular averaging window of 100 fs, which has previously

been shown to give converged results for light water. [88]. Another possibility is to assume
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that the principal axes of the kinetic energy tensor will have a fixed orientation relative to the

molecular geometry. One can then perform a mean-square displacement (MSD) alignment of

the instantaneous configuration of each water molecule to a reference structure, rotating the

kinetic energy estimator into the molecular reference frame, and computing its average and its

eigenvalues [77,78]. We will show that the two approaches give results that are consistent with

one another, and that they enable a direct comparison with the NCS experiment.

In the upper panels of Figure 6.5, we compare the experimental and theoretical n(p)s for

liquid D2O at 300 K. There is a near-perfect agreement between theory and experiment in the

case of D. The discrepancy is larger in the case of O, but still very small compared to the

deviation from a classical, Maxwell-Boltzmann distribution.

The lower panels show that the discrepancy between theory and experiment is more pro-

nounced when one focuses on the anisotropy of the distribution. The TAG and MSD approxi-

mations are consistent with each other. It is interesting that, despite the noticeable differences

in the individual values of 〈Eα〉, the theoretical and experimental n(p)s for D are almost in-

distinguishable. However, the theoretical and experimental n(p)s for O, which involve a larger

discrepancy in the total 〈EK〉 but smaller discrepancies in the individual components, show a

more evident difference. Because of the averaging in Eq. (6.7), the computed n(p) depends only

weakly on how the kinetic energy components are distributed, but in a more pronounced way

on the total kinetic energy.

The relative insensitivity of n(p) to the partitioning of 〈EK〉 into three principal components

justifies the use of either the TAG or the MSD approach to estimate the anisotropy of the kinetic

energy tensor. However, this insensitivity also means that extracting the anisotropy from the

spherically-averaged n(p) is an ill-conditioned problem. For this reason, the analysis of the

experimental data typically yields larger relative errors in the individual components of the

kinetic energy than in the total.

Bearing this in mind, let us now discuss how NCS can provide a direct verification of the

concept of competing quantum effects in water. Table 6.2 collects all of the present experimental

and theoretical results together in a compact form. The agreement between the total deuterium

kinetic energy obtained by NCS and by simulation is almost perfect. The change in kinetic

energy between the liquid at 300 K and 280 K is much smaller than the drop in classical

thermal energy, which is consistent with the deuteron being almost completely frozen in its

vibrational ground state. There is also agreement with previous experiments at T = 292 K

within their (much larger) error bar [110].
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Figure 6.5: (Color online) Comparison of the momentum distributions of O and D in liquid D2O

at 300 K, as obtained from the analysis of NCS experimental data and from two different analyses

of the ab initio PIGLET simulations. In all plots, the continuous black curve corresponds to the

experimental data, the red curve to a TAG analysis and the blue curve to a MSD analysis of

the simulation data. The dashed line corresponds to what would be expected if n(p) were just

a classical Maxwell-Boltzmann distribution. The upper panels show the spherically averaged

n(p), while the lower panels contain a graphical representation of the anisotropy. The curves

correspond to iso-surfaces of the n(p) cut along the xz and yz planes. The contour line is chosen

in such a way that the intercepts on the axes are the values of σα.
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D [exp] D [TAG/MSD] O [exp] O [TAG/MSD]

D2O, T = 300 K, liquid 〈ECOM 〉 = 42.1

〈Ex〉 20.1±1.1 19.5 / 18.9 15.8±1.7 13.6 / 13.7

〈Ey〉 36.1±2.3 26.1 / 25.6 19.5±1.3 19.4 / 20.4

〈Ez〉 55.1±2.3 64.6 / 65.7 26.3±1.5 23.4 / 22.3

〈EK〉 111.3±3 110.2 61.6±3.1 56.4

D2O, T = 280 K, liquid 〈ECOM 〉 = 39.5

〈Ex〉 18.8±1.1 19.4 / 18.9 16.0±2.3 13.6 / 13.7

〈Ey〉 38.6±2.5 25.7 / 25.2 21.0±0.6 19.2 / 20.2

〈Ez〉 54.2±2.4 63.6 / 64.6 24.1±2.1 23.2 / 22.2

〈EK〉 111.6±2 108.7 61.1±3.1 56.1

D2O, T = 274 K, liquid 〈ECOM 〉 = 38.9

〈Ex〉 19.3 / 19.0 13.4 / 13.5

〈Ey〉 25.8 / 25.3 19.1 / 20.1

〈Ez〉 63.2 / 64.1 23.1 / 22.0

〈EK〉 108.3 55.6

D2O, T = 274 K, solid 〈ECOM 〉 = 39.2

〈Ex〉 22.5±1.8 20.1 / 19.8 16.1±2.3 13.7 / 13.8

〈Ey〉 37.4±2.5 26.3 / 25.9 20.1±1.6 19.0 / 19.9

〈Ez〉 48.1±3.4 61.9 / 62.4 24.2±1.4 23.0 / 21.9

〈EK〉 108.0±2 108.3 60.4±4 55.7

Table 6.2: Comparison between theoretical and experimental components of the quantum ki-

netic energy for D and O in heavy water, at different temperatures. All values are in meV,

and the theoretical results have a statistical error bar smaller than 0.1 meV. We also report the

computed center-of-mass mean kinetic energy 〈ECOM 〉 of the D2O molecules.
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The most interesting results in Table 6.2 concern the behaviour of the momentum distribu-

tion in heavy water upon freezing. When going from the liquid to the solid, the NCS data show

substantial changes in 〈Ex〉D (associated with motion perpendicular to the plane of the water

molecule [77, 88]) and in 〈Ez〉D (associated with motion parallel to the covalent O–H bond).

However, the two components change in opposite directions, leading to a much smaller change

in the total kinetic energy, which is not statistically significant given the experimental error

bars. The increase in 〈Ex〉D is a signature of the more hindered librations in the solid phase,

while the decrease of 〈Ez〉D signals a weakening of the covalent bond, which is consistent with

the red shift of the stretching peak observed in the vibrational spectroscopy of ice [111]. These

observations therefore provide a direct experimental verification of the competition between

quantum effects resolved along different molecular axes.

Simulations predict the same qualitative effect on the different components of 〈EK〉: 〈Ez〉D
decreases on freezing, but 〈Ex〉D increases, leaving almost no change in the total kinetic energy.

Performing simulations of the liquid at 280K, and of both the liquid and the solid at 274 K,

allows us to infer that these effects are due to the phase transition and not the 6 K temperature

drop. Note that our simulations show no sign of an increase in quantum kinetic energy upon

supercooling, confirming previous theoretical results for light water [80]. The present experi-

ments were deliberately performed well into the stable solid and liquid phases of heavy water, in

order to focus on the experimental signature of competing quantum effects on melting without

interference from the more controversial effects that have been observed in NCS measurements

on supercooled water [58,110].

While experiment and theory agree on the qualitative observation of a competition between

quantum effects on melting, there are quantitative discrepancies that deserve further comment.

For one thing, our DFT results predict ∆fusEK ≈ 0, whereas simple thermodynamic arguments

predict ∆fusEK ≈ −0.5meV (see Eq. (6.5)). As discussed in the SI, a simple, empirical water

model [75] yields predictions that are in agreement with the macroscopic thermodynamic data

– which is perhaps unsurprising given that this empirical model accurately describes semi-

quantitatively the change in melting temperature upon isotopic substitution [83]. While it is

remarkable that an ab initio calculation can get so close to the correct result, it is clear that

DFT has not yet reached the level of accuracy necessary to obtain a quantitative description

of isotope effects. Neither have the NCS experiments reached the exquisite level of accuracy

that is necessary to discern such a minute change in the total kinetic energy. As we have

demonstrated, one can nevertheless gain insight into the competition of effects that leads to
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a small kinetic energy change by resolving the anisotropy of the kinetic energy tensor. The

quantitative differences between NCS and PIGLET on the individual components of the kinetic

energy, however, indicate that at present this insight is only qualitative.

Table 6.2 also presents the results for the oxygen momentum distribution. While there is

good qualitative agreement between theory and experiment, we observe a discrepancy of almost

10% in the total kinetic energy, which may stem from shortcomings of the modelling or from

the analysis of the experimental data – which is made harder by the weaker signal given by

oxygen and by the partial overlap between the F (y, q) peak of the O and that of the Cu can.

Nevertheless, the analysis captures even the comparatively weak anisotropy of the oxygen atom

kinetic energy, demonstrating how promising it is to extend NCS to heavy atoms. We anticipate

that software and instrument upgrades planned on VESUVIO in the near future will enable a

greater precision in the study of the n(p) of both light and heavy atoms, enabling one to access

quantitative as well as qualitative information on the particle momentum distribution.

6.5 A harmonic model for heavy water

Let us consider a molecule (D2O) with the N = 3 atoms in the y − z plane. For each of its

3N − 6 = 3 internal modes, one can define a symmetry-adapted coordinate system (S1, S2, S3)

as illustrated in Figure 6.6. To first order, each atom undergoes harmonic motions along the

normal coordinates Si (i = 1, 2, 3). Quantum mechanically, these motions necessarily lead to

the emergence of a zero point energy proportional to the vibrational frequency ωi. The potential

energy of the system is the result of three pair interactions with restoring forces proportional

to the displacement from the mean nuclear positions. The proportionality constant for the two

D-O pairs is given by

kOD =
mDλ3(1 + µ cos2 α)

(1 + µ sinα cosα)2
, (6.10)

where ω3 =
√
λ3 is the asymmetric stretch frequency, µ = 2mD/mO and mD and mO the

nuclear masses. Likewise, the proportionality constant for the D-D pair is given by

kDD =
mDλ2

[
kOD(1 + µ cos2 α)−mDλ2

]
2 [kOD(1 + µ) cos2 α−mDλ2]

, (6.11)

with ω2 =
√
λ2 being the bending frequency. Equations (6.10) and (6.11) are derived from the

secular equation |B − λA| = 0, with A and B being the kinetic- and potential-energy matrices

expressed in the symmetry coordinates {S1, S2, S3}, λi = ω2
i are the eigenvalues of the matrix

and | . . . | indicates the value of its determinant. The symmetry of the modes allows to express
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the dynamical 3× 3 matrix as a (2× 2)S ⊗ (1× 1)A block matrix. Since only two observables,

ω2 =
√
λ2 and ω3 =

√
λ3, are needed in order to fix the free parameters of the model, kOD and

kDD, it is possible to evaluate the third eigenvalue of the secular equation, λ1, and consider the

difference with the measured value of ω2
1 as an estimate of the accuracy of the model. In the

case of heavy water, the symmetric stretching frequency evaluated within the present model

is 20% higher than the measured one [112]. If one makes use of more than two parameters in

an attempt to improve the accuracy of the model, then no prediction can be made on known

observables and control on the accuracy of the model is lost.

The asymmetric (1×1)A block matrix has an eigenvector sA = S3 that in Cartesian coordi-

nates corresponds to a displacement vector ξA = (yD, zD, yD′ , zD′ , yO, zO) = (a, b, a,−b,−µa, 0),

with a = sinα and b = cosα, with no dependence on the stretching frequency. The symmetric

(2× 2)S block matrix has eigenvectors sS = S1 + v(λ)S2, with

v(λ) =

(
2kODµ(1 + µ cos2 α)− 4kDD −mOλµ

2
)

sin(2α)

8kDD cos2 α+ kODµ2 sin2(2α)− 2mOλµ(1 + µ sin2 α)
(6.12)

and with the limits v(λ) � 1 for λ → λ1 and v(λ) � 1 for λ → λ2. The corresponding

displacement vector ξS = (c, d,−c, d, 0,−µd) in Cartesian coordinates is defined by c = sin(α)+

v(λ) cos(α) and d = cosα − v(λ) sinα. Each i − th mode contributes to the kinetic energy of

atom j with a fraction fj,i = εj,i/
∑

j εj,i of the mode energy, with εj,i = mj(ẏ
2
j,i + ż2

j,i)/2. The

conditions imposed on the components of ξA and ξS reflect conservation of linear momentum

in the two directions y and z only when these axes are defined as shown by reference frame R1

in Figure 1. However, the quantities εj,i depend only on the modulus of the vector (yj , zj) and

then the energy fractions fj,i are invariant under axial rotation.

Following the previous discussion, one can numerically evaluate the parameters fj,i through

Eqs. (6.10), (6.11) and (6.12) and the definition of ξS and ξA. The calculation can be readily

implemented in a computer routine and applied to any triatomic molecule. The sequential char-

acter of this procedure distinguishes the present model from others based on three independent

force constants, the latter leading to a hard-to-solve system of coupled nonlinear equations.

Assuming an average frequency ωτ corresponding to the translational modes, we can define

τj = mj/
∑

jmj . This parameter dictates the amount of energy that the j−th atom draws from

this particular vibration. Similar considerations apply to the rotational modes of frequency

ωρ, whose contribution to the kinetic energy is defined by the ratio of moments of inertia

ρj = Īj/
∑

j Īj . The quantity Ī corresponds to the spatial average of moments of inertia. With
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Figure 6.6: Definition of the symmetry coordinates for an isolated water molecule as used in

the derivation of the coefficients fi. The molecule lies in the y − z plane and each axis may be

oriented according to the reference frames R1, R2 and R3 (see text).

these definitions, the total mean kinetic energy of one atom (D or O) can be written as

〈EK〉 = 3τ〈E〉τ + 3ρ〈E〉ρ +
3∑
i=1

fi〈E〉i, (6.13)

that is, as the sum of three translations, three rotations and three vibrations, each one with

energy 〈E〉s = ~ωs
4 coth ~ωs

2kBT
, where s = τ, ρ, 1, 2, 3. Let us now consider a reference frame

x,y,z (with the x axis perpendicular to the molecular plane) centred at the average position

of each nucleus, representing the three principal axes of an anisotropic n(p). The following

interpretation of the NCS observables is based on the definition of a particular orientation of

(y, z) for each atom. In the case of the D (Fig 1, R2), the z axis is taken in the direction of

the stretching mode, i .e., the mode that mostly contributes to the kinetic energy, the y axis in

the direction of the bending mode and the rotation mode around the x axis. Rotations around

y and z will contribute to the kinetic energy in the x direction. By considering an additional

translational contribution along each direction, one can define for the D atom

〈EK〉x = τ〈E〉τ + 2ρ〈E〉ρ; 〈EK〉y = τ〈E〉τ + ρ〈E〉ρ + f2〈E〉2; 〈EK〉z = τ〈E〉τ + f1〈E〉1 + f3〈E〉3.
(6.14)

In the case of O, the most relevant contribution to the kinetic energy arises along the

direction of the bending and the symmetric stretching modes (see Fig 1). Consequently, we take

the z axis along this direction, while the y axis remains orthogonal and along the asymmetric

stretching and the rotation around the x axis. For O one can then define

〈EK〉x = τ〈E〉τ +ρ〈E〉ρ; 〈EK〉y = τ〈E〉τ +f3〈E〉3; 〈EK〉z = τ〈E〉τ +f1〈E〉1 +f2〈E〉2. (6.15)
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τ ωτ ρ ωρ f1 ω1 f2 ω2 f3 ω3

[meV] [meV] [meV] [meV] [meV]

Ice D 0.1 17.7 0.456 52.7 0.479 278 0.405 151 0.460 294

O 0.8 0.088 0.042 0.190 0.079

Water D 0.1 15.1 0.457 46.9 0.499 296 0.410 150 0.458 310

O 0.8 0.086 0.001 0.180 0.084

Table 6.3: Optical frequencies and D̂OD angles taken from Refs. [112–116], along with calcu-

lated values for τ, ρ, fi using our model. The value for D̂OD angle is 2α = 108.4 degrees for ice

and 2α = 106.0 degrees for water.

These contributions are calculated using frequencies from optical spectroscopy [112–116] as

shown in Table 1. The corresponding 〈EK〉 and 〈EK〉α are reported in Table 2. The values for

the energy fractions τ, ρ, fi have also been evaluated within the present model. These results

are in good agreement with those reported in the literature [52,53].

6.6 Comparison of experimental and harmonic results

We compare calculated values for 〈EK〉 and 〈EK〉α with the results of NCS measurements on D2O

at T = 274 K (ice) and T = 280 K (liquid) [117], performed using the VESUVIO spectrometer.

The resulting values for 〈EK〉 and 〈EK〉α are reported in Table 2.

As far as D is concerned, our results show good agreement between 〈EK〉 and 〈EK〉. In

a recent study of liquid and solid light water [118], a similar agreement was found between

the NCS value for 〈EK〉 and 〈EK〉 derived from vibrational INS frequencies. Our model also

reproduces quantitatively changes in directional kinetic energies associated with the liquid-to-

solid phase transition, as observed by NCS. In this case, the decrease of the z−component in

this transition is caused by an increase in HB strength in the solid phase – i.e., stronger HBs

lead to a red-shifted stretching frequency. Thus, both NCS experiment and our model agree on

a small decrease by 5-6 meV of the kinetic energy along the z direction

The situation is markedly different for the component 〈EK〉z and 〈EK〉z. In this case, we

find that the discrepancy between our model and NCS measurements is of approximately 20

meV (see Table 2). More generally, the observed differences between 〈EK〉α and 〈EK〉α may be

traced back to the assumption built into our model of decoupled motions when z is along the

direction of the covalent bond (stretching mode). Moreover, intermolecular forces (neglected in
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〈EK〉x 〈EK〉x 〈EK〉y 〈EK〉y 〈EK〉z 〈EK〉z 〈EK〉 〈EK〉
[meV] [meV] [meV] [meV] [meV] [meV] [meV] [meV]

D

Liquid 18.8±1.1 15.1 38.6±2.5 22.9 54.2±2.4 73.6 112±2 112

Solid 22.5±1.8 15.9 37.4±2 23.8 48.1±3.4 68.3 108±2 108

O

Liquid 16.0±2.3 10.4 21.0±0.6 16.1 24.1±2.1 16.4 61.1±3.1 43.4

Solid 16.2±2.3 11.0 20.1±1.6 15.4 24.2±1.4 19.7 60.4±4 46.1

Table 6.4: Comparison between experimental 〈EK〉 and 〈EK〉α from Ref. [117] and our model

using the parameters in Table 1.

our model) can lead to a redefinition of normal-mode coordinates. Interestingly, we note that

much closer agreement with NCS may be achieved via a tilt of the z axis so as to maximize

the contributions of the symmetric stretching and bending modes to 〈EK〉z, resulting in a value

for this energy of ca. 50 meV. Similar considerations would also apply to the y direction, with

an associated kinetic energy of 40 meV. In summary while calculated and NCS values of 〈EK〉
and 〈EK〉 yield information on the overall magnitude of NQEs, the directional components

〈EK〉α and 〈EK〉α highlight the role of intermolecular interactions on single-particle momentum

distributions.

From Table 2, one observes that for O atom the 〈EK〉 is underestimated of about 15 meV

relative to 〈EK〉 [117]. This finding may be ascribed to the long-range order of the HB net-

work and to its effect on translational motions. It is entirely plausible that the present model

underestimates these effects: for example, in Table 1 one can see that the contribution from

translational modes dominates 〈EK〉.
In conclusion, comparison between our model and NCS shows that 〈EK〉 for D in D2O may

be determined by combining translational, rotational and vibrational frequencies from optical

spectroscopy and INS, in agreement with previous work on light water [118]. These results

suggest that a combined use of optical spectroscopy, INS and NCS measurements can give

simultaneous access to the magnitude of underlying NQEs in water, as well as both local and

intermediate-range-scale properties.

A conclusive note on these Section and Chapter regards the application of similar first-

order quantum harmonic models to future NCS experiments. The generalization to biatomic
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and linear triatomic molecules is trivial, while the generalization to more complicated molecule

is still possible. The results from Density Functional Theory and PIMD are powerful tools

and their agreement with experimental results is a test of their validity. Anyway, a (not-

always-present) agreement of experimental results with simpler harmonic models highlights the

importance of those cases where the deviations are larger, and a stronger effect of high-order

quantum contributions is present.
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Chapter 7

Phase transitions across

pseudo-critical lines

In this Chapter, I present the changes in vibrational spectra occurring in the passage

from liquid to supercritical water and from high-density to low-density amorphous ices.

The first of these measurements was performed at SNS, on the SEQUOIA spectrome-

ter, while the second was performed at ISIS, on the MARI spectrometer. I participated

in the experiments, reduced and analysed the data and interpreted them through the

conclusion that will be drawn at the end of this Chapter. The two experiments are here

discussed together since they both can be related to the idea of pseudo-critical lines.

7.1 Supercritical water

The supercritical phase of water is an interesting regime of water both in Physics and technology.

As anticipated in the Introduction, supercritical water (SCW) is a phase of water defined in the

region of temperatures higher than TC = 647 K and pressures higher than PC = 22.064 MPa.

Several recent developments have resulted in increased attention in supercritical water.

The use of SCW allows hazardous and toxic organics to be fully oxidized making them

innocuous [119, 120] and organic waste to be partially transformed into light feed-stocks [121].

Moreover, the total thermal efficiency of coal-fired power plants is increased at supercritical

pressures, where there is no liquid-vapour phase transition and there is no such phenomenon as

critical heat flux. Finally, SCW-cooled reactors are considered to be promising candidates of

advanced power reactors belonging to Generation IV reactor technology [122].
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The critical point is the final point of the line separating the vapour and liquid region.

The classical definition of the supercritical region is the region where no physical observable

can be measured enabling the distinction of a liquid from a solid. The behaviour of several

thermodynamic quantities such as the heat capacity brings to the idea that the supercritical

region should be divided into two subregions, a liquid-like one and a vapour-like one. This

difference can be explained by the fragmentation of the water molecule clusters existing in

the liquid and liquid-like region (kept together by HBs into smaller groups or into individual

molecules when they enter to the vapour-like region. The border line between the two subregions

is defined as the locus of specific heat maxima starting at the critical point and it is referred to

as the pseudo-critical line [123].

Hence, the problem of the presence of HB in SCW is of crucial importance and has been

addressed in several ways, both experimental and computational. Recent diffraction studies

[124] have suggested the disappearance of HB already at 673 K, due to the disappearance of

a fingerprint peak at 1.9 Å generally due to HB in the OH pair distribution function. On the

other hand, nuclear magnetic resonance measurements [125] have found that still a 29% of the

HB present in liquid water at room temperature can be found at the temperature of 673 K.

A huge effort on the subject has been spent through vibrational studies as Raman, infra-red

and INS, since the position of vibrational frequencies can be sensitively shifted according to the

strength and the extent of the HB network, for stretch, rotation and translation modes.

When HBs are broken, the tetrahedral structure of the condensed phases of water is lost, and

it is generally suggested that only monomers and dimers can be found. This is also confirmed

by the result that the stretching frequency in the supercritical phase approaches the value of the

isolated monomer when the temperature increases. It is clear that it is not possible to access the

solution to this mystery separately considering crystallographic or spectroscopic studies, and

that a cooperation of all these techniques is necessary in order to cease a long and controversial

debate.

7.1.1 Experiment and data analysis

The INS experiment was performed on SEQUOIA in the temperature range from 553 K to 823

K, at a fixed pressure of 25 MPa, that is from the sub-critical region (T < TC) to the SC region,

and across the pseudo-critical line. A bulk water sample in this thermodynamic region is very

aggressive and a special Ti container was designed for the experiment: water was inserted in

38 cylindrical tubes with a diameter of 1mm. The dimensions of the container were (5 cm)×(5
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cm)×(2.03 mm).

The correction of MS was treated considering a double scattering contribution with each

scattering occurring at approximately 90 degrees. This approximation holds for angles lower

than 25 degrees. For this reason, the collected data were firstly analysed as functions S(θ, ω)

instead of S(q, ω). MANTID [126] routines were used to sum the collected data from detectors

in different angular positions in groups centred at 6, 12, 18 and 24 degrees. During the same

procedure the experimentally-measured contribution from the cell was removed as a background

function. The MS approximation is defined by the Gaussian function

MS(~ω) =
A√

2πσMS

e
− (~ω−EMS)2

2σ2
MS (7.1)

where EMS = 2Ei. The MS Gaussian contribution was fitted on the experimental data in the

region 600 meV ≤ ~ω ≤ 770 meV. The fit parameters were the amplitude of the signal, AMS

and its variance, σMS , while the centre of the Gaussian was fixed at EMS = 1580 meV. As a

check, the ratio of the MS contribution with respect to the area of the corrected S(θ, ω) was

compared with the theoretical calculation by Sears [127]

δ =
1

2
Σd

(
− ln Σd+ 0.923 +

1

3
Σd

)
∼ 22% − 17% (7.2)

The corrected data at T = 553 K are presented in Fig. 7.1, and the correction process

bringing to that result is graphically reported in Fig. 7.2. Since the data statistics for the last

two temperature was poorer than the other cases, the data are presented in twice the usual

binning.

The corrected data for the S(θ, ω) were firstly transformed in the dynamic structure factor

S(q, ω) and then reduced to the hydrogen projected density of states g(E) through the equation

g(E) = lim
q2→0

S(q, E)

q2
2ME

e2W

n(E) + 1

∣∣∣∣
E=~ω

(7.3)

The approximation leading to the hydrogen projected density of states is that only H gives

a significant contribution to the neutron scattering, that is true after the cell subtraction, that

anyway would give no contribution in the stretching region, and considering that H has a cross

section about 20 times larger than O, other than a double number of atoms. Moreover, the

Bose factor, i.e., the occupation function n(E), was defined as

n(E) =
1

exp
(

E
kBT

)
+ 1

,
1

n(E) + 1
= 1− exp

(
− E

kBT

)
(7.4)
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Figure 7.1: S(θ, ω) at T = 553 K after the subtraction of the cell and the MS contribution for

the detector banks around 6 degrees.
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Figure 7.2: S(θ, ω) at T = 553 K before (black) and after (blue) the correction by MS contri-

bution (red).
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depends on the temperature of the sample. The Debye-Waller factor is here considered for a

isotropic sample in the approximation

2W = −q2〈u2〉 =
~2〈u2〉

2M〈EK〉
(7.5)

with 〈EK〉 the mean kinetic energy of the proton. This value can be defined through a NCS

measure that is in this moment ongoing and will be presented in the next future, but is here

taken from a published NCS value on SCW at a similar thermodynamic point, 〈EK〉 = 178

meV. This value provokes a mean square displacement of 3.4×10−2 Å2.

7.1.2 Discussion
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Figure 7.3: Density of states g(E) (blue) and stretching contribution gstr(E) (red) for T=280

C, 350 C, 460 C, 550 C. The main difference between the lower temperatures (top) and the

higher temperatures (bottom) is the shift, in opposite directions, of stretching and libration

contributions, while the bending is not effected.

In Figure 7.3 the densities of states for all the temperatures considered in this experiment

are presented. Three main contributions can be appreciated: a librational peak below 100 meV,

a bending peak around 200 meV and a broad stretching peak between 400 meV and 500 meV.

As a matter of fact, a strong difference in the position of the rotation and stretching maxima is

found when the pseudo-critical line is crossed. When this happens, the librational contribution
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is red-shifted while the stretching contribution is blue-shifted. These are both suggestions that

the HB interaction is decreasing in intensity when going to the SC region with both T > TC and

P > PC , i.e., increasing the HB distance as the density largely decreases from 0.77 g/cm3 to

0.10 g/cm3. The stretching signal has been isolated from the complete g(E) through a Gauss-

Hermite fit on the rising shoulder of the stretching peak, in the energy region from 400 meV to

the value for the maximum. This contribution is reported as a red line in the same figure.

From the complete density of states and the stretching contribution, it is possible to define

the total energy due to all the vibrational modes Etot and the energy due to the stretching mode

only Estr by the relation

Etot =

∫
E

4
g(E) coth

(
E

2kBT

)
Estr =

∫
E

4
gstr(E) coth

(
E

2kBT

)
(7.6)

The corresponding values are reported in the Table 7.1.

T [K] P[MPa] ρ [kg/m3] Etot [meV] Estr [meV] Etot − Estr [meV]

553 25.0 777 218 132 86

623 25.0 625 237 153 84

663 25.0 215 241 156 85

733 25.0 104 243 155 88

Table 7.1: Results from the present study. State variables defining the measured total energy

Etot and stretching energy Estr evaluated through Eq. 7.6. ωstr.

High values for the total energy and of the stretching energy are found as compared to typical

values such as those reported in Chapter 5. This discrepancy suggests that some contributions

such as multi-phonon or over-tones are still present in the broad stretching peak and have not

been correctly subtracted. As a demonstration, in Table 7.1 we evaluate the non-stretching

energy Etot − Estr as the contribution due to the translational, rotational and bending modes.

These values are in line with the measured mean kinetic energy components presented in Chapter

5, e.g., 〈EK〉x + 〈EK〉y = 83 meV for the T = 673 K. An estimate of the total energy due to all

the vibrational modes can be obtained adding to the non-stretching contribution, the quantity

E(ωstr) =
~ωstr

4
coth

(
~ωstr
2kBT

)
. (7.7)

Then, we take the raising line-shape for ω < ωstr previously defined and symmetrize it with

respect to ωstr. Then, being the stretching component a symmetric function of ω − ωstr, it can

be substitute with a Dirac delta-function δ(ω−ωstr) when the energy contribution is evaluated,

leading then to Eq. 7.7.
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Moreover, in Chapter 4 it has been pointed out that only about a 90 % of this energy is

given to the H 〈EK〉, being the rest adsorbed in the O motion. Hence, we define

〈EK〉 =
f2 + 3ρ

2
(Etot − Estr) +

f1 + f3

1
E(ωstr) +

3

2
τkBT, (7.8)

i.e., the vibrational energies weighted by the previously defined energy fractions, the values

presented in Table 7.2 are obtained. In particular, the first term is the ratio of the sum of

the fractions for 1 bending plus 3 rotations to the 4 × 1
2 classical contributions per d.o.f. that

one would have for a fixed O. The second term is the ratio of the sum of the fractions for the

symmetric and anti-symmetric modes to the 2× 1
2 for 2 classical contributions. The third term

is considered as classical at these high temperatures and ranges between 3 meV for T = 523 K

and 6 meV for T = 823 K. In the Table 7.2, these estimates for the total 〈EK〉 are compared

with some NCS results from previous experiments.

T [K] P[MPa] ρ [kg/m3] ωstr [meV] E(ωstr) [meV] 〈EK〉 [meV]

553 25.0 777 450 112 181

573 12.0 700 172

623 25.0 625 454 113 181

663 25.0 215 466 116 186

673 106.0 701 178

733 25.0 104 472 118 191

Table 7.2: The total mean kinetic energy 〈EK〉 as defined in Eq. 7.8, together with the ther-

modynamic variables T, P and density ρ and the stretching frequency ωstr and corresponding

mode energy. Previous results are marked in red.

In Figure 7.6, the comparison of all the 5 temperatures of this experiment shows a clear shift

of the stretching peak. Previously measured gstr(E) for water at T = 276 K (blue solid line)

is also reported as a comparison. It is possible to subdivide the five data in two sub-groups.

The first two temperatures, for ρ < ρC = 0.322 g/cm3 and T < TC , are in the liquid-like region

and have close values for the stretching frequency, changing of only 4 meV and within the

experimental uncertainty. On the other hand, when the pseudo-critical line is crossed a large

shift of 12 meV can be appreciated because of the passage to the gas-like phase. In the first

panel, a complete agreement between the maxima of the present data and the previous data

at T = 573 K is found. We note that the two measures have almost the same density as well.

When one looks at the third panel, a sensible discrepancy between the maxima of the present

96



data and the previous data at T = 673 K can be appreciated. The reason is that even if the

temperature is almost the same, the density largely changes since the previous experiment was

performed at 106 MPa.

7.2 Amorphous ices

In everyday life, the cooling of liquid water at temperatures lower than the melting point T =

273 K at P = 0.1 MPa causes a phase transition to ice Ih. When bulk liquid water with a small

percentage of impurities is considered, it is possible to cool it even below the melting tempera-

ture before spontaneous crystallization sets in [128]. Experimentally, the lowest temperature at

ambient pressure where liquid water can be cooled is called the homogeneous nucleation tem-

perature TH(P = 0.1 MPa) = 231 K at ambient pressure [129]. It is not possible to have liquid

water under the homogeneous nucleation temperature, but when the temperature is lower than

TA(P = 0.1 MPa) 150 K, it is possible to find solid phases that have no crystalline structure

therefore defined amorphous. The existence of two different phases of amorphous ices [130],

firstly suggested in computer simulations [131], was experimentally proven in 1980: Low Den-

sity Amorphous (LDA) and High Density Amorphous (HDA) ice [132, 133]. In addition, at

the beginning of this millennium, a new and even denser similar phase was also discovered

and named very High Density Amorphous (vHDA) ice [134]. There is no way to study liq-

uid water in the region between the temperature of homogeneous nucleations TH(P) and the

higher-temperatures boundary of the amorphous ices phases TA(P). Therefore, this region is

named no-Man’s land. Anyway, in [135] it is suggested that inside high-pressure cryo-cooled

protein crystals in the temperature range between 80 K and 170 K, super-cooled liquid water

studied through X-ray diffraction can be modelled as a linear combination of HDA and LDA

ice structures. This finding, together with other computer simulations [136], suggested a second

critical point in a region hardly accessed and a relative pseudo-critical line starting from that

point and dividing two amorphous ices thought as liquid-like phases and differing one the other

because of their density: low-density and high-density liquid.

Scientists are manifesting a spread interest in polyamorphism, i.e., the occurrence of different

amorphous forms of the same substance. In particular, while we have information on the distinct

structures of vHDA, HDA and LDA, i.e., their hydrogen-bonded O-O distances and the number

of interstitial non-hydrogen bonded water molecules, resulting in significantly different bulk

densities, their dynamical behaviour remains to be explained. For example, it is not entirely
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Figure 7.4: Stretching density gstr(E) for the experimental data of the present experiment at T

= 553 K , 623 K, 663 K, 733 K, 823 K. The data are presented together with the symmetrized

line-shape (full circles) and its central frequency (dashed line). In all the panels, a comparison

is taken with the room temperature water (blue line). In addition, data at 573 K and 673 K

from Ref. [73] are reported as black lines in the first and third panels respectively.
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clear if HDA and vHDA are indeed distinct states or perhaps members of the same energetic

basin and phase.

7.2.1 Data analysis

The experiment was performed on the MARI spectrometer at ISIS. The vHDA, HDA and LDA

were all the time at the temperature of 80 K, so that differences only due to the phase could

be studied. The usually cylindrical container more suited for the MARI detector geometry was

substituted with a flat-geometry container more suited for the small amount of sample of about

5 g. The initial energies were chosen as 600 meV in order to study internal vibrations and

rotations, and 50 meV to allow the measurement of translational motions. An example of the

experimental data is given in Figure 7.5 for LDA.

The measured cell contribution was subtracted on the measured S(q, ω) through the same

MANTID routines used for the SEQUOIA data. In the top panel of Figure 7.6 no MS raising

contribution can be seen as compared to the case of the SCW in Figure 7.2.

In the other panels of Figure 7.6, in order to maximize the signal-background ratio, an inte-

gration of S(q, ω) over the range of q where the stretching, bending, rotational or translational

signal was higher, then defining the contributions

S(ω)stretching =

∫ 15Å−1

9.0Å−1

S(q, ω) dq, (7.9)

S(ω)bending =

∫ 13.2Å−1

6.0Å−1

S(q, ω) dq, (7.10)

S(ω)rotation =

∫ 11Å−1

3.5Å−1

S(q, ω) dq, (7.11)

S(ω)translation =

∫ 7.0Å−1

3.0Å−1

S(q, ω) dq. (7.12)

The centre of each of these contribution can be fitted through a Gaussian function and the

corresponding values are listed in the Table 7.3.

7.2.2 Discussion

Looking at the Table 7.3, It is possible to see a redshift of the stretching frequency in the

passage from vHDA to HDA and then to LDA. In particular, even if the difference of the

stretching frequencies for vHDA and HDA is contained in the experimental error bars, a larger

difference of 5 meV in the passage from HDA to LDA is established. As often happens in phase

transitions, the bending frequency is not appreciably changing across the three phases and

99



Workspace 18154_red_SQWdisplay

En
er

gy
 t

ra
ns

fe
r 

(m
eV

)

0

200

400

600

 

0

2

4

q (Å ¹)
0 5 10 15 20 25 30 35

 

Workspace lda_50meV_SQWdisplay

En
er

gy
 t

ra
ns

fe
r 

(m
eV

)

0

10

20

30

40

50

 

0

10

20

30

q (Å ¹)
0 2 4 6 8 10

 

Figure 7.5: Experimental dynamic structure factor as a function of q and ω for LDA obtained

with incident energies of 600 meV (top) and 50 meV (bottom).
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Frequency vHDA HDA LDA

Stretching [meV] 429 ± 2 427 ± 2 421 ± 2

Bending [meV] 207 ± 2 207 ± 2 206 ± 2

Libration [meV] 73.7 ± 1 74.5 ± 1 78.0 ± 1

Translation [meV] 9 ± 0.2 8 ± 0.2 6 ± 0.2

Kinetic energy Vhda Hda Lda

〈EK〉x [meV] 17.8 ± 0.5 17.9 ± 0.5 18.8 ± 0.5

〈EK〉y [meV] 33.0 ± 0.5 33.1 ± 0.5 33.4 ± 0.5

〈EK〉z [meV] 101 ± 1.0 100 ± 1.0 99.2 ± 1.0

〈EK〉 [meV] 152 ± 2 152 ± 2 151 ± 2

Table 7.3: Harmonic model applied to INS frequencies in order to define contributions to and

total kinetic energy

within the error bars. Also, a blue-shift of the rotational contribution can be appreciated from

vHDA to HDA (even if in the error-bars range) and above all in the passage from HDA to LDA

with a measured difference of 4 meV. Moreover, a difference in the translational frequencies,

exceeding the experimental uncertainties in the two phase transitions can be seen as a red-shift

of 1 meV when going from vHDA to HDA and of 2 meV when going from HDA to LDA.

The shifts in the stretching and rotational frequencies suggest the same phenomenon: the

lower the density, the stronger the importance of HBs. An explanation can be found in the

presence of interstitial Hs and Os in the high-density phases. An interstitial O atom in this

condition increases the distance between two HB molecules, softening the action of the bond.

One could expect that the translational frequency could be another measure of the hindered

motions in a HB system: the stronger the HB, the larger the deviation from a free-nucleus

energy of kBT/2 = 3.4 meV at T = 80 K. The higher translational energies is now found for the

high-density phases, meaning that the HB is not the main reason for the hindered translations.

The present study is a perfect testing bench for the harmonic model presented in Chapter

4 since all the vibrational frequencies have been measured in the same INS experiment and

they can then be used to define the fractions and kinetic energy contributions 〈EK〉α in the case

of the amorphous ices. The exact value for the HOH angle was not known, but considering

the weak dependence of the force constants upon the angle (discussed in the same Chapter),

a standard value for the Ih ice phase of 108 degrees has been used. The evaluated energy

contributions are presented in the lower part of Table 7.3. The total 〈EK〉 can be considered
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Figure 7.6: Dynamic structure factor integrated over q in the case of the three amorphous

phases. In the top panel, the full q-range has been used for the integration, while in the lower

panels, a q-range maximizing the signal to background ratio has been chosen in the case of

stretching, bending, rotational and translational frequencies (see text).
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all the same within the error bars. On the other hand, differences in the x and z components

(as in the case of D in Chapter 6) can be found with opposite signs (∆〈EK〉z = 1.7 meV and

∆〈EK〉x = −1.0 meV) leading to a quasi-complete cancellation. Anyway, this cancellation is

not the same phenomenon that we discussed under the name of CQEs, since the reported value

are not experimental quantities but the result of the first-order quantum harmonic model. The

translational modes increase going from LDA to vHDA, as it is expected for acoustic modes.

A universal behaviour for glasses and amorphous solids is the existence of a boson peak [137].

This is the result of anharnmonic interactions amongst low-energy modes [138, 139]. Under

critical conditions, unstable systems with separated acoustic modes collapse in stable system

with one boson peak created from the rearrangement of the interacting modes. The presence of

this peak manifest itself as a bump in the reduced vibrational density of states, g(E)/E2. The

increase in intensity for this function due to the boson peak could only be seen in comparison

with a measure on a crystalline form. Unfortunately, this measure is not available.

A NCS experiment was performed, and will be presented and discussed in future publica-

tions, able to measure the actual value for the total mean kinetic energies and the CQE upon

the two phase transitions here discussed.
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Chapter 8

An Outlook to the Presented Work

The investigation of the phase diagram of water is a challenging activity in both experimen-

tal and theoretical research. In this work, I contributed to its investigation presenting new

experimental data on the single-particle dynamics of the nuclei of this molecule.

The melting of light and heavy water discussed in Chapter 5 and 6 showed how the proton

and deuteron dynamics are largely anisotropic. This feature was accessed analysing the hydro-

gen momentum distribution in its y-space through a multivariate Gaussian function. Moreover,

the observed directional contributions derived from the anisotropic distribution were compared

to the components derived from a first-order quantum harmonic model presented in Chapter

4. The model is based on the vibrations of decoupled and harmonic internal modes, rotations

and translations. The comparison highlights some deviations enabling one to access the degree

of anharmonicity of the studied system. Anharmonicity can manifest itself because of i) of a

different definition of the symmetry modes due to a strong action of external forces, i.e., the

hydrogen bonds, or ii) anharmonic components in the single-particle potentials, such as cubic

terms. From the discussion on the heavy water components it has been suggested that taking

into account the effects of the first of these two possibilities allows a good agreement between

experimental results and the predictions from the model. Joint inelastic neutron scattering and

neutron Compton scattering experiments could then suggest the importance of the hydrogen-

bond network on the structure of water as well as measure its effect on dynamic observables.

Moreover, the presented harmonic model can be an important tool in the study of competing

quantum effects in the water phase transitions. Indeed, while the opposite red- and blue-shift

of the stretching and rotational frequencies respectively is well known, experimental deviations

measured through deep inelastic neutron scattering can be compared to the predictions of

the first-order quantum model, shedding light on the presence and importance of higher-order
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quantum contributions.

In Chapter 6, a new and innovative example of measure of kinetic energies and momentum

distribution of intermediate-weight atoms such as oxygen is given. The work of analysis invested

in the study of oxygen dynamics in heavy water has been repeated in the case of light water and

will be soon presented in order to discuss the importance of isotopic substitution on the water-

molecule dynamics. For the moment, an interesting result has been achieved measuring both

the anisotropy of the oxygen momentum distribution and its strong deviation from the centre-

of-mass dynamics, with an excess of about 50% of kinetic energy with respect to a classical

picture of the molecule.

In the same Chapter 6, a deep joint study of the competing quantum effects in the melting of

heavy water has been conducted with ab-initio molecular dynamics simulations. In particular,

Deep inelastic neutron scattering and simulation results quantitatively agreed on the total mean

kinetic energies of deuterium and qualitatively agreed on the oxygen total mean kinetic energy

as well as the directional contributions in the case of both deuterium and oxygen. In particular,

the simulation result for the oxygen mean kinetic energy is still a 10% lower than what the

experiment observed.

In Chapter 7, inelastic neutron scattering experiments on supercritical water and amorphous

ices have been discussed. In the case of supercritical water, the phase transition from liquid-

like to gas-like phase across the pseudo-critical line has been discussed as temperature changed

over about 400 K. The density of states for several temperatures has been obtained showing

the opposite red and blue shifts for the stretching and rotational components. The phase

transition manifested as a large change on the stretching frequency. Moreover, the total mean

kinetic energy for hydrogen has been obtained through the harmonic model of Chapter 4 for

all the measured temperatures. This is the first part of an investigation completed by a deep

inelastic neutron scattering experiment conducted on supercritical water at the same pressure

and temperatures, enabling a further discussion on the competing quantum effects across this

phase transition.

In the same Chapter 7, the phase transitions from very high density amorphous ice to high

density amorphous ice and then from high density amorphous ice to low density amorphous ice

have been studied through inelastic neutron scattering accessing all the vibrational fundamen-

tals. The red and blue shifts on the stretching and rotational components has been observed in

the passage from the high-density phases to the low density phase. In addition, a non-expected

red-shift for the translational frequency has been found. When all the vibrational frequencies
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had been determined, the harmonic model was applied and the total mean kinetic energy and

directional contributions were determined for the three phases. Within the error bars, the total

kinetic energies are the same meaning that competing quantum effects occur at least as a first-

order quantum cancellation. In this case, as in the case of the supercritical-water experiment,

a twin deep inelastic neutron scattering experiment has been performed to measure the kinetic

energies in the three phases and will show if and how the harmonic approximation is satisfied.

In Figure 8.1 the collection of the inelastic neutron scattering measurements on the stretching

frequency presented in this work is reported as a function of temperature (upper panel) and

density (lower panel). The experimental data are related to very different thermodynamic

regions in the phase diagram of water: in red the values for supercritical water at different

temperatures, in blue the values for the three amorphous ices and in green the values for the

phase transition across melting for ice Ih at T = 271 K and liquid water at T = 285 K. As

a function of density, the stretching mode reaches the isolated molecule value in the limit of

ρ→ 0, i.e., when the hydrogen bonds are all broken or related to large inter-molecular distances.

When the density increases and up to ice, the inter-molecular distance decreases and the effect

of hydrogen bonding on the stretching frequency is more and more important, causing a red-

shift of the vibration. This behaviour holds till the liquid T = 285 K point. From this point,

across the freezing phase transition, the reorientation of the hydrogen-bond network brings an

additional red-shift of the stretching frequency even if the density is now decreased. Moreover,

when the sample goes from low-density amorphous ice to the denser phases, the stretching

frequencies increases. Indeed, in the denser phases the water molecules are so packed together

that interstitial hydrogen atoms appear between two hydrogen-bonded molecules. The related

increase in the distance of two bonded molecules is reflected in a blue-shift of the stretching

vibration. Hence, while the dynamic features of the crossing of the pseudo-critical line are well

observed, the changes in the passage from an amorphous ice to a denser one can be explained

with changes in the structure of the sample.

In conclusion, we have used inelastic and deep inelastic neutron scattering in order study

the single particle dynamics of hydrogen and oxygen in the water molecule in a variety of

thermodynamic states. The work that has been presented can be thought as self-standing but

is at present under continuous evolution and will be soon enriched with new data collected

during the Ph.D period. Moreover, the intense academic training and research activity on

inelastic neutron scattering gave me the possibility to work at the ISIS facility on the VESUVIO

spectrometer and to develop neutron detection and-data analysis routines.
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Figure 8.1: Dependence of the stretching frequency ~ωstr temperature (top) and density (bot-

tom) as a result from the present work: SCW (red squares); LDA, HDA and vHDA ice (blue

circles); liquid water at T = 285 K and ice Ih at T = 271 K (green diamonds). In addition, the

pseudo-critical line is shown al a dashed red line, the melting line is shown as a green dashed

line and the phase rearrangement from LDA to HDA is shown as a blue dashed line.
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Omnes in philosopho continentur

The only way to reach the heart of the matter buried under the complexity of the structural and

dynamical properties of the water molecule, then continuing a work started 24 centuries ago,

is to build a stronger collaboration in experimental and theoretical activities. A great amount

of information can be unearthed when the right graph is created. The first analytic Theories

describing water disappeared with the advent of widespread calculation-power. Brute-force

numerical simulations can suggest the path to follow but is not the final destination. There is

more intuition in a slippery icosahedron than in more than a hundred computational models.
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Appendix A

Constants and Acronyms

The list of the Acronyms appearing in this work

• CQE → Competing Quantum Effects

• D → Deuterium

• DD → Double Difference

• DINS → Deep Inelastic Neutron Scattering

• d.o.f. → degree of freedom

• FC → Foil cycling

• FSE → Final State Effects

• H → Hydrogen

• HB → Hydrogen Bond

• HDA → High-Density Amorphous

• IA → Impulse Approximation

• LDA → Low-Density Amorphous

• INS → Inelastic Neutron Scattering

• MS → Multiple Scattering

• MSD → Mean-square Displacement
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• NCP → Neutron Compton Profile

• NCS → Neutron Compton Scattering

• NQE → Nuclear Quantum Effects

• O → Oxygen

• PIMD → Path Integral Molecular Dynamics

• SCW → Supercritical Water

• TAG → Transient Anisotropic Gaussian

• t.o.f. → time of flight

• vHDA → very-High-Density Amorphous

• ZPE → Zero Point Energy

The value of ~

The value of used in this work is ~ = 2.0445 (meV-a.m.u.)
1
2 /Å−1.
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Appendix B

Proof of Eq. 3.53

A multivariate Gaussian distribution function is the result of a harmonic single-particle spatial

potential of the form

V (x, y, z) =
1

2
Mω2

xx
2 +

1

2
Mω2

yy
2 +

1

2
Mω2

zz
2. (B.1)

As specified in the main text, no coupling amongst the three harmonic oscillation is consid-

ered, and the multivariate distribution presents no crossed terms. When the Laplace operator

on this potential is considered, the result is

∇2V (x, y, x) = ω2
x + ω2

y + ω2
z . (B.2)

According to Equation 3.36, the first coefficient for the FSE correction can be expressed in

this case as

A3 =
M

36~2q
∇2V (x, y, x) =

M2
(
ω2
x + ω2

y + ω2
z

)
36~2q

. (B.3)

Moreover, we can impose that the mean kinetic energy in each direction, 〈EK〉α, can be

expressed in the two forms
1

4
~ωα = 〈EK〉α =

~2σ2
α

2M
(B.4)

leading to the relation between the fitted standard deviation σα and the curvature of the

potential ωα,

ωα =
2~σ2

α

M
(B.5)

that will bring to the final result for the coefficient

A3 =
M2

36~2q

4~2
(
σ4
x + σ4

y + σ4
z

)
M2

=
σ4
x + σ4

y + σ4
z

9q
(B.6)
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The remaining part of the FSE correction term concerns the derivative

− d3

dy3
J(y) = − 1√

2πσxσyσz

∫
dΩ

d3

dy3
S2 exp

(
− y2

2S2

)
(B.7)

where we are shortening the notation S2(θφ) = S2. We have

d

dy
S2 exp

(
− y2

2S2

)
= −y exp

(
− y2

2S2

)
(B.8)

then
d2

dy2
S2 exp

(
− y2

2S2

)
=

d

dy

[
−y exp

(
− y2

2S2

)]
=

(
y2

S2
− 1

)
exp

(
− y2

2S2

)
(B.9)

and finally

d3

dy3
S2 exp

(
− y2

2S2

)
=

d

dy

(
y2

S2
− 1

)
exp

(
− y2

2S2

)
=

(
− y

3

S4
+ 3

y

S2

)
exp

(
− y2

2S2

)
. (B.10)

Combining these two results, Equation 3.53 is obtained

−A3(q)
d3

dy3
J(y) =

σ4
x + σ4

y + σ4
z

9
√

2πσxσyσzq

∫
Ω
dΩ

[
y3

S2(θ, φ)4
− 3

y

S2(θ, φ)2

]
exp

(
− y2

2S2(θ, φ)

)
(B.11)
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Appendix C

Proof of the link equations in

Chapter 3

The conspicuous number of analytical passages that led, at the end of Chapter 3, to the link

equations defining the parameters of a Gauss - Hermite expansion for the anharmonic NCP

as functions of the three variances of a multivariate Gaussian NCP are here described in more

detail.

In principle it is possible to define a relationship between a number n of the first even

moments of each of the two line-shapes (being the odd moments zero because of the parity of

the NCP). Here, we evaluate the relationships up to n = 3.

C.1 Moments of the anharmonic NCP

The general expression for the n even moment of a anharmonic and isotropic NCP is

M2n[J(y)] =

∫ ∞
−∞

y2n
exp

(
− y2

2σ2

)
√

2πσ

∑
l

c2l

l!22l
Hl

(
y√
2σ

)
dy (C.1)

with Hl the l-th Hermite polynomial. It is useful to transform the West variable y into the

expansion variable x = y/
√

2σ. The relationship between the moments for the y and x variables

is

M2n[J(y)] =
(√

2σ
)2n

∫ ∞
−∞

x2n exp(−x2)√
π

∑
l

c2l

l!22l
Hl(x)dx =

(√
2σ
)2n

M2n[J(x)]. (C.2)

The evaluation of the n-th moment goes through the sum of an (in principle infinite) number

of terms, one per Hermite polynomial, and proportional to the quantity

a2n,2l = 2n
∫ ∞
−∞

x2n exp(−x2)√
π

c2l

l!22l
Hl(x)dx (C.3)
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so that, when all the terms for the same n-th moment are summed up, the quantity

2nM2n[J(x)] =
∑
l

c2la2n,2l (C.4)

is obtained. First, we note that the property

a2n,2l = 0 for l > n (C.5)

allows to take into account only the Hermite polynomials of degree lower or equal to the order

of the considered moment, in practice avoiding a sum of an infinite number of terms. Also, the

useful relation

a2n,2n = a2n,0 = (2n− 1)!! (C.6)

guarantees some hope when some large and strange coefficients appear at the end of long

calculations. Indeed, for a NCP defined up to the degree 2l = 10 in the Hermite polynomials,

the values of the coefficients a2n,2l in matrix form are

a2n,2l =



1 0 0 0 0 0

3 0 3 0 0 0

15 0 45 15 0 0

105 0 630 420 105 0

945 0 9450 9450 4725 945


. (C.7)

In the matrix notation each column corresponds to an Hermite polynomial starting from 2l = 0

up to 2l = 10.

The n-th moment of the anharmonic NCP is expressed as

M2n[J(y)] =
(√

2σ
)2n

M2n[J(x)] = σ2n
n∑
l=0

c2la2n,2l (C.8)

and some values are

M2[J(y)] =σ2 (C.9)

M4[J(y)] =3 (1 + c4)σ4 (C.10)

M6[J(y)] =5!! (1 + 3c4 + c6)σ6 (C.11)

M8[J(y)] =7!! (1 + 6c4 + 4c6 + c8)σ8 (C.12)

M10[J(y)] =9!! (1 + 10c4 + 10c6 + 5c8 + c10)σ10. (C.13)
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C.2 Moments of the multivariate J(y)

We now want to evaluate the corresponding moments for the multivariate Gaussian NCP, namely

M2n[J(y)] = ℵ
∫ π

2

0
dφ

∫ 1

0
dt

∫ ∞
−∞

dy y2n exp

(
− y2

2S2(t, φ)

)
S2(t, φ) (C.14)

with the normalization constant ℵ = 2/(
√

(2π)πσxσyσz) and the generalized standard de-

viation

1

S2(t, φ)
= (1− t2)

(
cosφ2

σ2
x

+
sinφ2

σ2
y

)
+
t2

σ2
z

(C.15)

with t = cos θ. Of the three integration, it is useful to start with that in y. This integration

has the general result

∫ ∞
−∞

dy y2n exp

(
− y2

2S2(t, φ)

)
S2(t, φ) = (2n− 1)!!S2(t, φ)

2n+3
2 . (C.16)

The apparently complicated integration in t can be simplified writing

1

S2(t, φ)
= (1− t2)

(
cosφ2

σ2
x

+
sinφ2

σ2
y

)
+
t2

σ2
z

= Φ +

(
1

σ2
z

− Φ

)
t2 = a+ bt2 (C.17)

through the definitions Φ = cosφ2/σ2
x + sinφ2/σ2

y , a = Φ and b = 1/σ2
z −Φ We now proceed

considering the three moments one-at-the-time. For the first one, of order n = 1, one has

∫ 1

0
dt (a+ bt2)−

5
2 =

3a+ 2b

3a2(a+ b)
3
2

=
a+ 2(a+ b)

3a2σ
− 3

2
z

(C.18)

=
σz
3

Φ + 2
σ2
z

Φ2
=
σz
3

σ2
zΦ + 2

Φ2
(C.19)

after the integration in t, and subsequently integrated in φ giving

σz
3

∫ π
2

0

σ2
zΦ + 2

Φ2
dφ =

π

2
σxσyσz

(
σ2
x + σ2

y + σ2
z

)
3

(C.20)

We note that the integration in φ can be solved through the transformation tanφ → z.

Where the first factors cancel the normalization factors and the result for the second moment,

n = 1, is

M2 [J(y)] =

(
σ2
x + σ2

y + σ2
z

)
3

= σ̄2 (C.21)
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with σ̄2 the mean square standard deviation.

For the moment of order n = 2 one has

3

∫ 1

0
dt (a+ bt2)−

7
2 = 3

15a2 + 20ab+ 8b2

15a3(a+ b)
5
2

=
σ5
z

5

15a(a+ b) + 5b(a+ b) + 3b2

a3
= (C.22)

=
σz
5

15Φσ2
z + 5(1− σ2

zΦ) + 3(1− σzΦ)2

Φ3
=
σz
5

3σ4
zΦ

2 + 4σ2
zΦ + 8

Φ3
(C.23)

that can be integrated in φ

σz
5

∫ π
2

0

3σ4
zΦ

2 + 4σ2
zΦ + 8

Φ3
dφ =

π

2
σxσyσz

(
3σ2

x + 3σ2
y + 3σ2

z + 2σxσy + 2σxσz + 2σyσz
)

5
(C.24)

=
π

2
σxσyσz

(
2(σ2

x + σ2
y + σ2

z) + (σx + σy + σz)
2
)

5
=
π

2
σxσyσz

2σ̄4

5

(
σ4
x + σ4

y + σz4

σ̄4
+

9

2

)
(C.25)

giving as a final result

M4 [J(y)] =
2σ̄4

5

(
σ2
x + σ2

y + σ2
z

σ̄4
+

9

2

)
(C.26)

Finally, the last of the three moments we are concerned with, with n = 3, is expressed as

15

∫ 1

0
dt (a+ bt2)−

9
2 = 15

35a3 + 70a2b+ 56ab2 + 16b3

35a4(a+ b)
7
2

(C.27)

=
3σ7

z

7

35a(a+ b)2 + 16b2(a+ b) + 5ab2

a4
=

3σz
7

5Φ3σ6
z + 6Φ2σ4

z + 8Φσ2
z + 16

Φ4
(C.28)

and integrated in φ

3σz
7

∫ π
2

0

5Φ3σ6
z + 6Φ2σ4

z + 8Φσ2
z + 16

Φ4
dφ = (C.29)

π

2
σxσyσz

3
(
5(σ3

x + σ3
y + σ3

z) + 3(σ2
xσy + σ2

xσz + σxσ
2
y + σxσ

2
z + σ2

yσz + σyσ
2
z) + 2σ2

xσ
2
yσ

2
z

)
7

=

(C.30)

=
π

2
σxσyσz

12σ̄6

7

(
σ6
x + σ6

y + σ6
z − σ2

xσ
2
yσ

2
z

σ̄6
+

27

4

)
(C.31)

gives as a final result

M6 [J(y)] =
12σ̄6

7

(
σ6
x + σ6

y + σ6
z − σ2

xσ
2
yσ

2
z

σ̄6
+

27

4

)
(C.32)
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C.3 Link

The link definitions are then obtained imposing the equality of the moments of the two line-

shapes for n = 1, 2, 3.

The first one has the simple interpretation discussed in the main text,

σ2 =

(
σ2
x + σ2

y + σ2
z

)
3

= σ̄2. (C.33)

The second one

3 (1 + c4)σ4 =
2σ̄4

5

(
σ2
x + σ2

y + σ2
z

σ̄4
+

9

2

)
(C.34)

defines the parameter c4 as proportional to the kurtosis of the multivariate Gaussian

c4 =
2

15

(
σ2
x + σ2

y + σ2
z

σ̄4
+

9

2

)
− 1 =

2

15

(
σ2
x + σ2

y + σ2
z

σ̄4
− 3

)
(C.35)

and finally the third Hermite coefficient can be defined from

5!! (1 + 3c4 + c6)σ6 =
12σ̄6

7

(
σ6
x + σ6

y + σ6
z − σ2

xσ
2
yσ

2
z

σ̄6
+

27

4

)
(C.36)

giving as a result

c6 =
4

35

(
σ6
x + σ6

y + σ6
z − σ2

xσ
2
yσ

2
z

σ̄6
+

27

4

)
− 1− 3c4

=
4

35

(
σ6
x + σ6

y + σ6
z − σ2

xσ
2
yσ

2
z

σ̄6
− 2

)
− 3c4 (C.37)
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