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ABSTRACT 
Most of the current techniques for the direct solution of linear equations are based on 
supernodal or multifrontal approaches. An important feature of these methods is that 
arithmetic is performed on dense submatrices and Level 2 and Level 3 BLAS (matrix- 
vector and matrix-matrix kernels) can be used. Both sparse LU and Q R  factorizations 
can be implemented within this framework. 
Partitioning and ordering techniques have seen major activity in recent years. We discuss 
bisection and multisection techniques, extensions to  orderings to block triangular form, and 
recent improvements and modifications to  standard orderings such as minimum degree. 
We also study advances in the solution of indefinite systems and sparse least-squares 
problems. 
The desire to exploit parallelism has been responsible for many of  the developments 
in direct methods for sparse matrices over the last ten years. We examine this aspect 
in some detail, illustrating how current techniques have been developed or extended to  
accommodate parallel computation. 
Preconditioning can be viewed as a way of extending direct methods or of accelerating 
iterative ones. We will view it in the former way in this talk and leave the other perspective 
to  the talk on iterative methods. 
Finally, we will briefly comment on recent attempts to  develop tools and platforms towards 
a sparse problem solving environment. 
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1 Introduction 

In common with many of my co-authors in this volume, my starting point was to  read 
the review on this subject given at the last State of the Art meeting in Birmingham. The 
article “Sparse Matrices” was authored by John Reid, and it is perhaps significant that it 
covered both iterative and direct methods, the subject of two talks at this meeting. Indeed, 
although I have been working in this field for about twenty five years, I find it amazing 
how many advances have occurred in the last ten, necessitating the dual lectures of this 
meeting. Although this paper is primarily on direct methods, I also include a section on 
preconditioning techniques for use with iterative methods. The viewpoint of this discussion 
will be quite different from that presented in the chapter on Iterative Methods since I will 
look at the construction of preconditioners as being an alternative to direct methods when, 
for one reason or another (usually storage), direct methods are infeasible. Moreover, in 
common with proponents of iterative methods, I feel strongly that the only way of  solving 
really challenging linear algebra problems is by combining direct and iterative methods 
through either conventional or novel preconditioning. 

Although I intend this paper to be a general State of the Art survey, I wish to  emphasize 
what I consider to  be the most important developments of the last ten years. Accordingly, I 
have structured the text to  highlight: implementations that use higher level BLAS kernels, 
advances in ordering strategies particularly for symmetric problems, the exploitation of 
parallelism, and the use of direct techniques as preconditioners for iterative methods. 

Undoubtedly, the kernel that gets closest to  peak performance on modern computers 
is a dense matrix-matrix multiply. A standard version of this kernel is provided by 
subroutine -GEMM in the Level 3 Basic Linear Algebra Subprograms or BLAS (Dongarra, 
Du Croz, Duff and Hammarling 1990) and is supported by many vendors of high 
performance computers. Most sparse direct codes use this and allied kernels to achieve 
high performance, and we discuss how they are able to do this in Section 2. 

Ten years ago, one might have been forgiven for thinking that the problem of ordering a 
symmetric system for subsequent Gaussian elimination was resolved in favour of minimum 
degree, one of the earliest proposed orderings. However, quite recently there has been 
significant work on developing other classes of orderings, related to  dissection methods, 
which are showing great promise of overhauling this perceived wisdom. Additionally, there 
has been further understanding of the minimum degree ordering and attempts to  make 
it more efficient and to  adapt it for orderings more suited to  parallel computation. We 
discuss orderings for symmetric systems in Section 3. 

In 1986, there was little software for unsymmetric sparse problems. Early examples 
included NSPIV by Sherman (1978), Y12M by Zlatev, Wahiewski and Schaumburg 
(1981), MA28, MA32, and MA37 from the Harwell Subroutine Library (HSL) and a 
surrogate MA28 in the NAG Library (FOlBRF/FOlBSF/FO4AXF). The development and 
production of sparse unsymmetric solvers has now become a veritable growth industry. 
The multifrontal and supernodal techniques, so powerful in the symmetric case, have been 
extended to  unsymmetric systems. In other approaches, various decompositional and 
preordering techniques are used to  facilitate later factorization, particularly on parallel 
computers. We consider these issues in Section 4. We discuss the case of  sparse symmetric 
indefinite systems in Section 5 and the solution of sparse least-squares problems in 
Section 6. 

A major impetus for the development of algorithms and software in all linear algebra 
has been the availability of parallel architectures of various shapes and forms. Although the 
ICL DAP was originally produced in the 1970s, it was a bit-oriented SIMD architecture, 
and really the first commercially available parallel machines were the Denelcor HEP in 
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1984 and the Alliant FX/8 in 1985. Thus any practical implementations of techniques for 
exploiting parallelism belong strongly to  the last decade. Although we have considered 
issues related to parallelism in previous sections, we study this in more depth in Section 7.  

In Section 8, we discuss the use of direct methods to obtain preconditioners for iterative 
methods. As we mentioned earlier, it is this route that we believe to be the most important 
for the solution of really large problems from, say, three dimensional partial differential 
equations. 

We briefly review tools for sparse matrix manipulation and computation in Section 9. 
These include consideration of some tentative first steps towards a problem solving 
environment for sparse problems. 

It is not the intention of this talk or this meeting to  perform any crystal-ball gazing, 
but we indulge in a little of this in our concluding section. 

Before continuing with the main paper, it is useful to define a few terms that will 
be used extensively in the following sections. The solution of a sparse system is usually 
divided into several phases: 

1. Analysis of  the sparsity structure to  determine a pivot ordering. 

2. Symbolic factorization to  generate a structure for the factors. 

3. Numerical factorization. 

4. Solution o f  set(s) of equations. 

In some cases, particularly when it is important to  consider numerical values when 
choosing pivots, the first three phases are combined into an analyse-factorize phase. 
Additionally, there may be some partitioning scheme prior to all these phases, which are 
then executed on submatrices from the partition. The relative speeds of the four phases are 
very dependent on the details of the algorithm and implementation, the problem being 
solved, and the machine being used. However, one reason for separating the first two 
phases from the third is that it is usually much faster to  perform an analysis and symbolic 
factorization without reference to  numerical values. This does mean that there must be 
some way of incorporating subsequent numerical pivoting in the numerical factorization if 
general problems are to be solved. 

Most of the algorithms we consider are based on matrix factorization methods like 
Gaussian elimination, and part-way through the matrix factorization, when we have 
calculated some of the factors, the remaining matrix (which need not be held explicitly) 
is composed of original matrix entries and fill-in from the earlier stages. We refer to this 
matrix as the reduced matrix. 

Finally, the relationship between graphs and sparse matrices is ubiquitous in sparse 
matrix work. We do not make heavy use of graphs in the ensuing discussion, but it is 
important to define the main graphs associated with sparse matrices. With a symmetric 
sparse matrix of order n, we associate a graph with n vertices, and an edge ( i , j )  between 
vertices i and j ,  if and only if entry a;j # 0. A clique is a complete subgraph, that is all 
vertices of the subgraph are pairwise connected by edges in the graph. For an unsymmetric 
matrix, we associate a directed graph where the edges are now directed. A bipartite graph 
is sometimes associated with an unsymmetric (even non-square) matrix. This has two 
sets of disjoint vertices identified with rows and columns of the matrix respectively. An 
edge ( i , j )  exists from the row vertices to  the column vertices if  and only if  entry aij # 0. 
The elimination tree is defined by the Cholesky factors of  a symmetric matrix and has an 
edge ( i , j )  if the first nonzero entry below the diagonal in column j of the lower triangular 
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Cholesky factor is in row i .  Elimination trees were used by Duff (1981) and Schreiber 
(1982) and are surveyed in depth by Liu (1990). 

As a postscript to this section, I should stress that, although error analysis is not 
discussed, I am concerned throughout that the solution methods will give good answers, 
often in the sense of providing the solution to  a nearby problem. It is worth mentioning 
that this notion of backward error can be developed to  include only perturbations that 
preserve the sparsity structure (Arioli, Demmel and Duff 1989~).  

Finally, lest I tread on too many toes, let me say that I have not been entirely consistent 
in quoting the original source of an idea but sometimes favour an overview or more recent 
report that itself includes further references and original attributions. I did consult widely 
to  avoid the worst abuses of this (see Acknowledgement Section). O f  course, in such a 
rapidly developing field, many ideas are simultaneously “discovered”. Although you might 
think that there are too many references in this paper, I can assure you that I have been 
quite selective! 

2 High performance sparse factorization 

It is a truism that really large problems need large computers to  solve them, and it is 
equally true that at the heart of most large-scale computations lies the solution of a large 
sparse set of linear equations. Currently, high performance computers come in various 
guises although nearly all are either vector processors or RISC processors, sometimes as 
many as a few hundred of them but more commonly only about two or four! In this 
section, we concentrate more on the uniprocessor performance and leave the discussion of 
parallelism until Section 7. 

On some of these machines, the performance of a general code can be much less than the 
peak performance, usually because of delays in getting data to  the arithmetic processors. 
The kernel that gets closest to  the peak is the matrix-matrix multiply routine, -GEMM 
in the Level 3 Basic Linear Algebra Subprograms (Dongarra et al. 1990), which on most 
machines will achieve over 90% of peak on matrices of order only a few hundred. Recently 
Kiigstrom, Ling and Van Loan (1993) and DaydC, Duff and Petitet (1994) have expressed 
all the Level 3 BLAS kernels as calls to  -GEMM (and trivial calls to -TRSM) and so all 
can execute at high speed. Many years ago, before the Level 3 BLAS were established, 
Duff (1981) extolled the virtues of using dense matrix kernels within sparse direct codes 
and gave some examples of techniques that used such kernels. It is now true to  say that 
nearly all sparse direct codes use dense matrix kernels in their inner loops and, by doing 
so, achieve high performance over a wide range of  architectures and problems. Indeed, it is 
on machines with caches or a hierarchical memory structure that the Level 3 BLAS realize 
their full potential. Rothberg and Gupta (1991) and Ng and Peyton (19934 illustrate the 
importance of using Level 3 BLAS in sparse factorizations for efficiency on cache-based 
machines. 

An easy way to use such kernels is to recognize that, as the elimination progresses, 
the reduced matrix in sparse Gaussian elimination becomes denser and at some point it is 
more efficient to  switch to  dense code. The point at which to  do this depends on the matrix 
structure and machine, but recent experience indicates that it can be beneficial to  switch 
when the density is as low as 10%. Switching to  dense code was discussed by Dembart and 
Erisman (1973) and was incorporated in an experimental version of the Harwell Subroutine 
Library (HSL 1996) code MA28 (Duff 1977). However, a switch to  dense matrix processing 
was only included in the analyse-factorize phase. A switch to  dense matrix processing in 
the other phases was introduced in the HSL code MA48 (Duff and Reid 1993, Duff and 
Reid 1996a). However, although such a switch is clearly beneficial, it only addresses the 
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computations towards the end of  the factorization. There are two main approaches that 
can reap the benefit of higher level BLAS working throughout the entire factorization. 
These are the frontal methods and the supernodal approach. 

Since the basic frontal method and many of its advantages have been known for some 
time and are described in John Reid’s 1986 State of the Art paper, we will not discuss 
them in detail here but rather concentrate on new developments in these methods over the 
last decade. The important aspect of these methods is that arithmetic is performed within 
a dense fmntal matrix, and pivots can be chosen from anywhere within a submatrix of  
this frontal matrix. In a frontal scheme, when all possible pivots have been chosen and the 
elimination operations performed, further data from the problem is assembled or summed 
into the frontal matrix and more pivots are chosen. This scheme has the merits of fairly 
simple storage management but can suffer significant fill-in for general problems and has 
restricted possibilities for exploiting pardelism. These two concerns are addressed by 
the multifrontal methods (Speelpenning 1978, Duff and Reid 1983, Liu 1992), which were 
again discussed by Reid (1987). Three principal problems with multifrontal methods, as 
practised in the 1980s, were that 

0 there could be significant overheads for data movement, 

0 they assumed structural symmetry, and 

0 the analyse phase assumed that any diagonal entry could be chosen as pivot. 

We now consider how these concerns have been addressed. Other recent work on 
developing parallel versions of multifrontal methods is considered in Section 7. In the 
first case, data movement can be reduced by continuing with one frontal matrix rather 
than stacking it and starting another. Taken to  its extreme, this strategy would give a 
(uni-)frontal scheme. Davis and Duff (1995) discuss the effect of this technique and have 
incorporated it in the HSL code MA38. Although one of the early multifrontal codes 
MA37 (Duff and Reid 1984) solved sets of unsymmetric equations, the analyse phase 
was performed on the pattern of the matrix with entries a;j if  either a;j or aj; were an 
entry in the original matrix. This is clearly fine if the matrix is symmetric in structure but 
surprisingly can perform quite well for unsymmetric matrices, although it can be inefficient 
when the matrix is markedly unsymmetric. For unsymmetric systems, a preordering to 
place nonzeros on the diagonal is often very helpful and is an option in the HSL code MA41, 
which is designed for shared memory computers and makes much more use of higher level 
BLAS than its precursor MA37. Davis and Duff (1993) have extended the multifrontal 
scheme to  general unsymmetric matrices, using rectangular fronts and directed acyclic 
graphs (Gilbert and Liu 1993). This extension works well on most highly unsymmetric 
systems but can be poorer than MA41 when the matrix is not highly unsymmetric. We 
discuss both approaches further in Section 4. The third problem is more difficult and is 
present for any technique that performs an analyse phase separate from the numerical 
factorization. Clearly, one way to resolve this is to  combine the analyse and factorize 
phases but then many of the benefits of the fast analyse phase are lost. A certain amount 
of numerical or additional structural information can be supplied to the analyse phase, 
and we consider an example of this when we study the use of structured 2 x 2 pivots in 
Section 5. 

The other main approach to  using higher level BLAS in sparse direct solvers is a 
generalization of a sparse column factorization. These can either be left-looking (or fan- 
in) algorithms, where updates are performed on each column in turn by all the previous 
columns that contribute to  it ,  then the pivot is chosen in that column and the,multipliers 
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calculated; or a right-looking (or fan-out) algorithm where, as soon as the pivot’is selected 
and multipliers calculated, that column is immediately used to update all future columns 
that it modifies. Higher level BLAS can be used if  columns with a common sparsity 
pattern are considered together as a single block or supernode and algorithms are termed 
column-supernode, supernode-column, and supernode-supernode depending on whether 
target, source, or both are supernodes. 

Several authors have experimented with these different algorithms (right-looking, left- 
looking, and multifrontal) and different blockings. Ng and Peyton (1993a) favour the 
left-looking approach and Amestoy and Duff (1989) show the benefits of Level 3 BLAS 
within a multifrontal code on vector processors. Rothberg and Gupta (1991) find that on 
cache-based machines it is the blocking that affects the efficiency (by a factor of  2 to  3) and 
the algorithm that is used has a much less significant effect. Demmel, Eisenstat, Gilbert, Li 
and Liu (1995) have extended the supernodal concept to  unsymmetric systems although, 
for irregular problems, they cannot use regular supernodes for the target columns and so 
they resort to  Level 2.5 BLAS. B y  doing this, the source supernode can be held in cache 
and applied to the target columns or blocks of columns of the “irregular” supernode, thus 
getting a high degree of reuse of data and a performance similar to  the Level 3 BLAS. 

The multifrontal and supernodal methods form the basis for some of the approaches 
that exploit parallelism, and we consider this aspect further in Section 7. 

Although we have stressed the importance of using higher level BLAS to  obtain high 
performance, we should be aware that, if  the matrix is very sparse and the factors are 
also, there will normally be no benefit in using BLAS kernels. It is, however, quite likely 
that there will be much parallelism in both factorization and solution. The extreme case 
of this is a diagonal matrix or a permutation thereof. 

3 Orderings for symmetric problems 

Although predated by some ten years by the paper of  Markowitz (1957) on unsymmetric 
orderings, scheme S2 in the paper by Tinney and Walker (1967) established the main 
ordering for symmetric problems that has remained almost unchallenged until this present 
day. Scheme S2 is commonly termed the minimum degree ordering because, at each 
stage, the pivot chosen corresponds to  a node of minimum degree in the undirected graph 
associated with the reduced matrix. In matrix terms, this corresponds to  choosing the 
entry from the diagonal that has the least number of entries in its row within the reduced 
matrix. This ordering algorithm has proved remarkably resistant to competitors and, 
although based only on a local criterion, does an excellent job of keeping subsequent work 
and fill-in low over a wide range of problems. The evolution of the minimum degree 
ordering is studied by George and Liu (1989). 

George (1973) proposed a different class of  orderings based on a non-local strategy 
of dissection. In his nested dissection approach, a set of  nodes is selected to  partition 
the graph, and this set is placed at the end of the pivotal sequence. The subgraphs 
corresponding to  the partitions are themselves similarly partitioned and this process is 
nested with pivots being identified in reverse order. Minimum degree, nested dissection 
and several other symmetric orderings were included in the SPARSPAK package (George 
and Liu 1979, George, Liu and Ng 1980). Many experiments were performed using the 
orderings in SPARSPAK and elsewhere, and the empirical experience at the beginning 
of the 90s indicated that minimum degree was the best ordering method for general or 
unstructured problems. 

A major problem with the minimum degree ordering is that it is not susceptible to  
analysis, in the sense of computing the complexity of the resulting factorization on a regular 
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grid problem. Part of the problem in analysing minimum degree is caused by tie-breaking; 
that is,’ choosing which node of minimum degree to  use as pivot when, as is usually the case, 
there are many to  choose from. Tie-breaking strategies have become a study in their own 
right (for example, Cavers 1989) and significantly complicate the algorithm while still not 
guaranteeing a better ordering nor allowing a theoretical analysis. Additionally, various 
studies have shown that tie-breaking can have a profound effect on the amount of  fill-in 
(Duff, Erisman and Reid 1976, Berman and Schnitger 1990). In contrast, George (1973) 
showed that the nested dissection ordering algorithm could be analysed for regular grid 
problems and, furthermore, Hoffman, Martin and Rose (1973) proved that the amount 
of fill-in and work for such an ordering was of the lowest order (in terms of the grid 
size) that could be obtained by a direct method. This led to  the hope that a dissection 
ordering could be found that was both theoretically and practically superior to  minimum 
degree. Many attempts were made to  do this but, although the analysis was extended to 
planar graphs (Lipton, Rose and Tarjan 1979), it was difficult to  do for general matrices 
and practical implementations were superior to minimum degree for only fairly restricted 
classes of problems, usually arising from regular grids. Analysis has shown that nested 
dissection is close to optimal on graphs of bounded degree, although the proofs are not 
constructive (Gilbert 1988, Bodlaender, Gilbert, Hafsteinsson and Kloks 1995). 

We now consider recent advances in ordering strategies: first to the minimum degree 
orderings and then to  methods based on dissection. 

Although the minimum degree ordering is simple enough to  describe, it is not quite so 
simple to  implement efficiently. There are three main issues: 

0 selection of pivot, 

0 update of reduced matrix after selection of pivot, and 

0 update of degree counts. 

For the first, it is easy to keep a list of nodes in order of increasing degree and to choose 
the node at the head of that list each time. There are two ways in which this task can 
be made significantly more efficient. The first is to  observe that, once a node is selected, 
all nodes that were in a complete subgraph (or clique) containing that node, have degree 
one less and so can immediately be eliminated without any extra fill-in, and subsequently 
all nodes in the clique can be eliminated. This is usually termed mass node elimination 
and was included in some early minimum degree codes. Since there is no fill-in within 
the clique, a better measure of the “damage” done to the matrix by a potential pivot can 
be obtained not from its degree but rather from its ezternal degree, which corresponds to 
the number of edges to nodes outside its clique. It is quite natural, in a finite-element 
application, to  perform the minimum degree ordering on a graph where nodes in the same 
clique are treated as a single node, and this was done by the minimum degree ordering 
algorithm in the HSL code MA47 (Duff and Reid 1995). Ashcraft (1995) has performed an 
exhaustive study of this and obtains speed-ups of over 5 for some standard test matrices. 
The second improvement to  pivot selection stems from the observation that, if  two nodes 
of the same degree are not adjacent in the graph, they can be eliminated simultaneously. 
This clearly has implications for parallelism and for the degree and graph update phases 
and is termed multiple elimination (Liu 1985). We will revisit this multiple selection of 
pivots in Section 7 when we consider parallel computing. 

The resolution of the second issue, graph update, was the main reason why minimum 
degree codes improved by several orders of magnitude over the decade 1976-1986. The 
principal saving was made by using the clique structure of the reduced matrix and updating 
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this rather than individual edges of the graph. This was discussed in the review by. Reid 
(1987). 

We thus come to the final issue, that of updating the degree counts. There are two main 
approaches here. One is to have a threshold and compute the new degrees only if  they could 
fall below this threshold. The threshold must, of course, be changed dynamically, at which 
point some recalculation of degrees is necessary. The second is to  replace the minimum 
degree count by an approximate degree count that is easier to  compute. There have been 
several attempts at this, for example Gilbert, Moler and Schreiber (1992), but most give 
worse orderings than full minimum degree. Recently, however, Amestoy, Davis and Duff 
(1995) have designed an approximate minimum degree ordering (AMD) where the bound 
is equal to  the degree in many cases. They have found that their AMD ordering is almost 
indistinguishable from the minimum degree ordering in quality but is very much faster to  
compute. An interesting twist to this is given by the work of Rothberg (19963) who shows 
surprising promise with a similarly conceived implementation of an approximate minimum 
fill-in algorithm. 

One problem with the minimum degree ordering is that it tends to  give elimination 
trees that are not well balanced and so not ideal for using as a computational graph 
for driving a parallel algorithm. Liu (1989) has developed a technique for massaging 
the elimination tree so that it is more suitable for parallel computation but the effect 
of  this is fairly limited for general matrices. Duff, Gould, Lescrenier and Reid (1990) 
propose modifications to  the minimum degree criterion to directly enhance parallelism 
but have only compared their algorithms using fairly crude models of parallelism. The use 
of dissection techniques would appear to  offer the promise of much better balanced trees, 
although the inferior performance of the early dissection codes needs to  be addressed for 
them to  be viable. We now discuss recent advances in dissection techniques. 

It is only within the last year or so that the supremacy of minimum degree has been 
challenged (by dissection orderings, as may have been expected). The beauty of  dissection 
orderings is that they take a global view of the problem; their difficulty until recently 
has been the problem of extending them to  unstructured problems. Recently, there have 
been several tools and approaches that make this extension more realistic. The essence 
of a dissection technique is a bisection algorithm that divides the graph of the matrix 
into two partitions. If node separators are used, a third set will correspond to  the node 
separators. Such a bisection is then repeated in a nested fashion to  obtain an ordering 
for the matrix. Perhaps the bisection technique that has achieved the most fame has 
been spectral bisection. In this approach, use is made of  the Laplacian matrix that 
is defined as a symmetric matrix whose diagonal entries are the degrees of  the nodes 
and whose off-diagonals are - 1  if and only i f  the corresponding entry in the matrix is 
nonzero. This matrix is singular because its row sums are all zero, but if  the matrix 
is irreducible, it is positive semidefinite with only one zero eigenvalue. We can use this 
matrix to define a bisection by constructing a vector x that has components x;  equal to  
+ or -1 ,  according to  which partition node i lies in. Then the quantity xTAx is 4 times 
the number of edges between the two halves of the bisection. We can thus obtain an 
“optimal” bisection by minimizing xTAx subject to C ; x ;  = 0 with x ;  = f l .  Since the 
first constraint corresponds to  finding a vector orthogonal to  the vector of  all ones, which 
is the eigenvector for the zero eigenvalue, in the corresponding continuous problem it is the 
eigenvector corresponding to  the smallest nonzero eigenvalue (called the Fiedler vector) 
that is of interest. Normally some variant of  the Lanczos algorithm is used to  compute 
this (Pothen, Simon and Liou 1990, Pothen, Simon, Wang and Barnard 1992, Barnard, 
Pothen and Simon 1995, Barnard and Simon 1993). The graph is then bisected according 
to  the components of this eigenvector. If a balanced bisection is desired, commonly all 
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components greater than the median are put in one partition and those lower than the 
median in the other. 

There 
are clearly two sometimes conflicting goals: balancing the bisection and minimizing the 
number of edges joining each set (or if a node separator is used, minimizing the number of 
nodes in the separator). Rothberg (19964 has experimented with various criteria and has 
found that minimizing the quantity ISl/(lCl x [Ill), where IS1 is the number of nodes in the 
separator set, and ICl and (Ill are the number of nodes in each partition, was the best of 
the criteria he examined in terms of floating-point operations for a Cholesky factorization 
with a nested dissection ordering. Another measure that has been used by Ashcraft and 
Liu (1995) is the quantity IS1 (1 + a . m i ) ,  although it is somewhat sensitive to  the 
choice of the parameter cr. 

The spectral method requires much computing time, does not always yield optimal 
bisections, and naturally produces edge separators, requiring some postprocessing to 
obtain a node separator set. For these reasons, this technique is not now so strongly 
favoured, and there has been much current research on alternatives that we now describe. 

Gilbert, Miller and Teng (1995) have developed a geometric partitioning scheme, and 
Chan, Gilbert and Teng (1994) have proposed a hybrid of geometric and spectral methods. 
Ashcraft and Liu (Ashcraft and Liu 19943, Ashcraft and Liu 1994a, Ashcraft and Liu 
1995, Ashcraft and Liu 1996) have explored a different approach to obtaining separators 
for graph bisection. They base their method on a domain decomposition approach, defining 
a multisection by the nodes on the boundaries of the domains and using these to dissect 
or bisect the graph. The resulting vertex separator can then be refined using variants of 
methods like that of Fiduccia and Mattheyses (1982). The other main approach to graph 
bisection is to perform graph reductions, compute a partition cheaply on the resulting 
coarse graph, and from this construct a partition of the original graph, using some kind 
of iterative improvement on the projection of this coarse partition on the finer graph 
(for example, Kernighan and Lin 1970, Fiduccia and Mattheyses 1982). This approach 
is nested and is termed a multilevel scheme (Bui and Jones 1993). Multilevel schemes 
have been used by Hendrickson and Leland (1993), Karypis and Kumar (1995a), and 
Hendrickson and Rothberg (1996), inter alios. 

In most of these approaches, the dissection technique is only used for the top levels 
and the resulting subgraphs are ordered by a minimum degree scheme. This hybrid 
technique was used many years ago by George, Poole and Voigt (1978) and is included 
in many current implementations (for example, Ashcraft and Liu 1996 and Hendrickson 
and Rothberg 1996). As can be seen by the dates on the references, these new schemes 
are all very recent, but current empirical evidence would suggest that they are at least 
competitive with minimum degree on some large problems from structural analysis. They 
also perform far better than a minimum degree ordering on some matrices from financial 
modelling where Berger, Mulvey, Rothberg and Vanderbei (1995) have found practical 
problems that exhibit similar behaviour to the pathological examples of Rose (1973) that 
give an arbitrarily poor performance for minimum degree. In several studies on problems 
from structural analysis, Rothberg (1996~) and Ashcraft and Liu (1996) have shown that 
dissection techniques can outperform minimum degree by on average about 15% in terms of 
floating-point operations for Cholesky factorization using the resulting ordering, although 
Ashcraft and Liu (1996) report that the cost of these orderings is several times that of 
minimum degree. 

Of course, dissection techniques are important for purposes other than generating an 
ordering for a Cholesky factorization. They can be used to  partition an underlying grid 
for domain decomposition and are equally useful for the parallel implementation of many 

In saying this, of course, one must establish a criterion for “optimality”. 
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iterative methods. Two of the major software efforts for developing graph partitioning 
based on some of the above techniques are CHACO (Hendrickson and Leland 1994) and 
METIS (Karypis and Kumar 1995b). 

4 Solution of sets of sparse unsymmetric equations 

The same revolution that was just discussed for symmetric orderings has not happened in 
the case of unsymmetric systems, where usually a Markowitz ordering (Markowitz 1957) or 
a column ordering based on minimum degree on the normal equations is used together with 
a threshold criterion for numerical pivoting. The main recent activities for unsymmetric 
systems have been the development of methods based on partitioning and the production 
of efficient codes using higher level BLAS operations. 

A decade ago, the only widespread use of partitioning was to  preorder the matrix 
to  block triangular form prior to  performing the analyse-factorize phase on the blocks 
on the diagonal of that form. Although there were applications where such matrices 
arose naturally (for example, chemical engineering), this technique did not apply to  most 
systems, and it was common that the largest irreducible block was close to  the order of 
the original matrix. Arioli and Duff (1990) tried to  extend block triangularization ideas 
by using tearing techniques that yield a bordered block triangular form. They found that 
usually there were too many columns in the border and the amount of arithmetic was much 
greater than using a standard sparse code on the whole system. Geschiere and Wijshoff 
(1995) have pursued the use of tearing further and developed a package called MCSPARSE. 
Gallivan, Hansen, Ostromsky and Zlatev (1995) propose a partitioning similar to a block 
triangular form for exploitation of parallelism and gain some more advantage through 
allowing the blocks on the diagonal to  be rectangular. We consider these techniques 
further in Section 7. A major problem with this approach is that the partitioning does 
not guarantee that the diagonal blocks are well conditioned, or even nonsingular. Thus 
some a posteriori measures must be taken to  improve the stability of the factorization. 
This issue of stability was discussed by Erisman, Grimes, Lewis and Poole (1985) and 
Arioli, Duff, Gould and Reid (1990) and, more recently, methods for maintaining stability 
have been developed by Hansen, Ostromsky and Zlatev (1994) and van Duin, Hansen, 
Ostromsky, Wijshoff and Zlatev (1995). 

A related approach, which I find very appealing, is to  expand the matrix, perhaps 
artificially, in order to  obtain a system that is larger and sparser. Normally, there is a 
choice of  pivots for this system that would reduce it to the original system. The logic is 
that we might be able to  do better by using the extra degree of freedom on the expanded 
system. A simple example of this matrix stretching technique (Grcar 1990, Vanderbei 
1991) is the augmented system discussed in Section 5.  

A major tool in the efficient implementation of  codes for unsymmetric systems has 
been the observation of Gilbert and Peierls (1988) that partial pivoting can be performed 
in time proportional to  the number of arithmetic operations, so avoiding any potentially 
costly sorting operations. A nice refinement of their technique was provided by Eisenstat 
and Liu (1992), who suggested ways of pruning a search tree to  reduce work in the symbolic 
phase. Variants of this technique are used in nearly all sparse partial pivoting codes, for 
example Duff and Reid (1993) and Demmel et al. (1995). 

Frontal, multifrontal, and supernodal approaches for the solution of  unsymmetric 
problems have all seen significant recent developments and were discussed in Section 2 
with respect to their use of higher level BLAS. The HSL frontal code MA42, which solves 
unsymmetric systems, was redesigned to use standard Level 2 and Level 3 BLAS and can 
accommodate entry by both equations and elements (Duff and Scott 1993, Duff and Scott 
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1996). If the matrix is close to  symmetric in structure in the sense that a;; is usually 
nonzero when aj; is, then' methods adapted from symmetric multifrontal approaches can 
be used, with the analyse phase performed on the pattern of A + AT (Duff and Reid 
1984, Amestoy and Duff 1989). This approach can work well even if the matrix is 
unsymmetric, although for highly unsymmetric cases, as we discussed in Section 2 ,  the 
approach of Davis and Duff (1993) that uses unsymmetric fronts and a directed acyclic 
graph may be preferable. The main problem with generalizing supernodal techniques to  
unsymmetric systems is that some regularity in the pattern of the factors is lost and it is 
not possible to make efficient use of the Level 3 BLAS. Demmel et al. (1995) have overcome 
this difficulty by using Level 2.5 BLAS, as discussed in Section 2. Liu (1992) has surveyed 
the use of multifrontal techniques, and recent surveys of frontal and multifrontal methods 
that include more discussion of the unsymmetric case can be found in Duff (1996) and 
Dongarra, Duff, Sorensen and van der Vorst (1991). A further strength of the methods 
considered in this paragraph is that they can be easily developed to exploit parallelism, 
as we discuss further in Section 7. 

5 Solution of indefinite symmetric systems 

During the last ten years, the solution of indefinite symmetric systems has been pursued 
with some vigour. A major impetus for this interest has come from the solution of sparse 
least-squares problems as a subproblem in the solution of interior-point problems. See 
Andersen, Gondzio, MCsziros and Xu (1996) for an extensive list of references in this area. 
The problem with indefinite systems is that numerical pivoting is required and it may not 
be possible to  form a Cholesky factorization. The standard approach is to  generalize the 
2 x 2 pivoting technique of Bunch and Parlett (1971) and form the factorization LDLT 
where L is lower triangular and D is block diagonal with blocks of order 1 or 2. Although 
the HSL code MA27 (Duff and Reid 1983), which implements such a strategy, has been 
widely used for some time to  solve indefinite problems, it has recently become apparent 
that it has severe limitations if the problem is significantly indefinite. This is because it 
uses an ordering based on structure alone on the assumption that any diagonal entry is 
numerically suitable for a pivot in the subsequent numerical factorization. An extreme 
example of this is the solution of the ubiquitous augmented system 

(.". t )  (;) = ( e ) ,  
where the (2,2) block of zeros can mean that the initial analyse phase gives a pivot sequence 
where many prospective pivots are zero. Additionally, as shown by Duff, Gould, Reid, 

Scott and Turner (1991), judicious selection of structured pivots of the form 

or ( 
Another common application that gives rise to sparse indefinite systems, usually of 

more general structure than in (5.1), is the shift and invert strategy for obtaining interior 
eigenvalues of large sparse matrices. 

Duff and Reid (19966) have developed a code, called MA47 in the Harwell Subroutine 
Library, based on the work of Duff et al. (1991), but have found that, although it sometimes 
performs far better than MA27, it can sometimes be significantly worse. This is in part 
because of the added complications in the code and in part because even the extension 
to encourage the use of structured pivots can fare badly when numerical considerations 

(; ;) 
) can preserve much of the structure of the original matrix. 
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cause initial pivot choices to  be unsuitable. As in the case of unsymmetric systems, it 
would appear that to  obtain a robust code it is necessary to  combine the analyse and 
factorization phases so that the numerical values of  entries are considered when the initial 
pivot selection is made. This is done by Fourer and Mehrotra (1993), who show some 
convincing results in their use of  structured pivots when solving problems from interior- 
point methods. Ashcraft, Grimes and Lewis (1995) have studied and analysed various 
aspects of the extension of  threshold pivoting to  the case of 2 x 2 pivots and show that 
the particular implementation can have quite different numerical properties. They extend 
their investigation to  larger pivot blocks in a attempt to  gain performance through the 
use of higher level BLAS, but the jury is still out on the benefits of using larger blocks. 

6 Sparse least-squares 

It is possibly fair to  say that one of the major growth areas in sparse matrix computations 
over the last decade has been the solution of sparse least-squares problems. At least 
part of the reason for this has been the popularity and success of interior-point methods 
in optimization (see the paper in this volume by Shanno and Simantiraki 1996), where 
the central and most costly part of  the calculation is the solution of a heavily weighted 
linear least-squares problem. Three main techniques are used t o  solve these least-squares 
problems: normal equations, augmented systems, and QR factorization. For a recent 
excellent review of this area, the book by Bjorck (1996) is strongly recommended. We 
discuss each approach in turn. 

The attraction of normal equations is that there are several efficient and readily 
available codes for the solution of sparse symmetric positive definite equations. The 
problem with this approach is that, because of the scaling, the systems can be very 
ill-conditioned. However, experience has shown (Wright 1992, Saunders 1994) that the 
stability of these methods is better than one would expect or deserve, a phenomenon 
that is discussed in more detail by Shanno and Simantiraki (1996). A further problem 
with using the normal equations is that a single dense row in A would result in the 
normal equations being completely dense. This problem was recognized some time ago 
(George and Heath 1980, George, Heath and Ng 1983) and is avoided by partitioning the 
system and treating the dense rows by an updating scheme. The selection of which rows 
to  include in the dense part is still an open question (for example, Sun 1995). There 
is difficulty in selecting rows so that the remaining problem remains sparse and is not 
singular or seriously ill-conditioned. Saunders (1994) gives a handy list of  alternatives 
to  using Cholesky factorization, while Rothberg and Hendrickson (1996) have explored 
the performance of various sparse ordering techniques on normal equations matrices from 
interior-point methods. 

We have already discussed the solution of augmented systems in the previous section. 
For the solution of least-squares problems, the matrix H is diagonal and the vector c on the 
right-hand side of  (5.1) is zero. The beauty here is that, by suitable choice of 2 x 2 pivots, 
small entries on the diagonal of the ( 1 , l )  block in (5.1) do not cause stability problems. 
Arioli, Duff and de Rijk (19893) have used the analysis of Arioli et al. (1989a) and have 
conducted several experiments to  support the viability of  using 2 x 2 pivots. Bjorck (1992) 
provides a detailed error analysis for this approach. Further computational experience in 
using a scaling on the ( 1 , l )  block is presented in Duff (1994). 

At first glance, QR methods do not seem very attractive because of  the fill-in to  the 
factor Q. Additionally, dense rows in A will cause the factor R to be full. The storage of  
the denser Q can be avoided, at the cost of possible instability, by using the semi-normal 

L. 
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equations (SNE) 
RTR = ATb. 

Moreover, analysis by Bjorck (1987) has shown that, in most cases, numerically satisfactory 
results can be obtained by using the corrected semi-normal equations (CSNE), where 
one step of iterative refinement is used. Sparse Q R  factorization uses the observation 
exploited by George and Heath (1980) that the factor R is the same as the Cholesky 
factor of the normal equations matrix. Although this is true in exact arithmetic, the 
difficulty in recognizing numerical cancellation means that the computed structure of 
the Cholesky factor can overestimate the structure of R. However, in many cases, this 
structure accurately predicts that of the factor R (Coleman, Edenbrandt and Gilbert 
1986), particularly if the original matrix is first permuted to block triangular form (Pothen 
and Fan 1990). A column ordering of the rectangular matrix A is obtained using a 
symmetric ordering on the structure of the normal equations, although the ordering can 
be obtained from A without requiring the formation of ATA (Gilbert et al. 1992). The 
column ordering can then be used to  construct a computational tree to  drive the numerical 
factorization, which is performed using a Q R  factorization (for example, Raghavan 1995a, 
Amestoy, Duff and Puglisi 1996, Matstoms 1995). This can be implemented using a 
supernodal or multifrontal approach that can borrow extensively from the techniques 
used for sparse LU factorization. These methods are amenable to parallelization (see 
Section 7). It is also possible to develop rank revealing factorizations by delaying pivoting 
on columns that are deemed linearly independent. This can be incorporated economically 
within a multifrontal factorization scheme (Bischof, Lewis and Pierce 1990, Pierce and 
Lewis 1995). For cases that are particularly badly scaled, the factor Q can be stored and 
used in a conventional QR solution scheme (Amestoy et al. 1996). Lu and Barlow (1994) 
show that, for regular problems, the storage of the factor Q for a multifrontal scheme 
need be no more than that for the factor R, and Gilbert, Ng and Peyton (1993) consider 

_ _ _ ~ ~  -~ structure prediction techniques for the factor Q. 

7 Parallel computing 

In spite of  the demise of many vendors of parallel machines, there are still several 
different parallel architectures and the methods for exploiting them differ accordingly. In 
this review, we will distinguish only the two main classes of machine: shared memory 
multiprocessors (SMP), including virtual shared memory machines, and distributed 
memory computers that require some form of message passing to communicate data 
between processors. The extreme case of the latter, termed network computing, is 
currently very fashionable but we will consider it only as a form of distributed computing. 

There are three levels at which parallelism can be exploited in the solution of sparse 
linear systems by direct methods. As we discussed in Section 2,  many codes use higher 
level BLAS to perform most or all of the floating-point operations. Many vendors of shared 
memory computers offer parallel versions of the BLAS and so at this level parallelization 
is trivial. Given an appropriate distribution of the matrix, parallel versions of the higher 
level BLAS for distributed memory machines can be constructed, possibly using tools like 
the BLACS (Basic Linear Algebra Communications Routines) (Whaley 1994). 

At the coarsest level, techniques that we introduced in Section 4 for partitioning 
the matrix are often designed for parallel computing and are especially appropriate for 
distributed memory computers. Indeed these methods are often only competitive when 
parallelism is considered. Pothen and Fan (1990) have developed a partitioning, based 
on the Dulmage and Mendelsohn canonical decomposition of a bipartite graph, that 

12 



generalizes the block triangular form to  rectangular systems. This has been used by 
Amestoy et al. (1996) in the QR factorization of  sparse rectangular matrices. Zlatev, 
Wainiewski and Schaumburg (1993) and Zlatev, Wainiewski, Hansen and Ostromsky 
(1995) have developed a package, PARASPAR, for parallel solution that uses a preordering 
to  partition the original problem. The MCSPARSE package (Geschiere and Wijshoff 
1995, Gallivan, Marsolf and Wijshoff 1996) similarly uses a coarse matrix decomposition 
to  obtain an ordering to  bordered block triangular form. 

At an intermediate level, we can use the sparsity of the matrix to  advantage. This 
could be simply using the ability to  choose several pivots simultaneously. Two matrix 
entries a;j and ass can be used as pivots simultaneously if a;, and a,j are zero. These 
pivots are termed compatible. This observation (Calahan 1973) has been the basis for 
several algorithms and parallel codes for general matrices. The central theme is to  select a 
number of compatible pivots that would give a diagonal block if ordered to  the top left of 
the matrix. The update from all these pivots is then performed in parallel. The procedure 
is then repeated on the reduced matrix. The algorithms differ in how the pivots are 
selected (clearly one must compromise the Markowitz criterion to  get a large compatible 
pivot set) and in how the update is performed. Alaghband (1995) uses compatibility tables 
to  assist in the pivot search. She uses a two-stage implementation where first pivots are 
chosen in parallel from the diagonal and then off-diagonal pivots are chosen sequentially 
to  stabilize the ordering. She sets thresholds for both sparsity and stability when choosing 
pivots. Her original experiments were performed on a Denelcor HEP. Davis and Yew 
(1990) perform their pivot selection in parallel, which results in the nondeterministic 
nature of their algorithm because the compatible set will be determined by the order 
in which potential compatible pivots are found. Their algorithm, D2, was designed for 
shared-memory machines and was tested extensively on an Alliant FX/8. The Y12M 
algorithm by Zlatev et al. (1995) extends the notion of compatible pivots by permitting 
the pivot block to  be upper triangular rather than diagonal, which allows them to  obtain 
a larger number of  pivots, although the update is more complicated. For distributed 
memory architectures, van der Stappen, Bisseling and van de Vorst (1993) distribute the 
matrix over the processors in a grid fashion, perform a parallel search for compatible 
pivots, choosing entries of low Markowitz cost that satisfy a pivot threshold, and perform 
a parallel rank-m update of the reduced matrix, where m is the number of compatible 
pivots chosen. Their code was originally written in OCCAM and run on a network of 400 
transputers, but they have since developed a version using PVM (Koster and Bisseling 
1994). 

A common structure for both visualizing and implementing parallelism is the 
elimination tree, or derivatives of it. The main property that we exploit in this tree 
is that computations corresponding to  nodes that are not ancestors or descendants of  each 
other are independent (see, for example, Duff 1986, Liu 1987). The tree can thus be 
used to  schedule parallel tasks. For shared memory machines, this can be accomplished 
through a shared pool of work with fairly simple synchronizations that can be controlled 
using locks protecting critical sections of the code (Duff 1987, Amestoy 1991). In this 
way, nearly all the approaches that we have discussed in earlier sections that use frontal, 
multifrontal, or supernodal techniques to  effect LU or Q R  factorization can be implemented 
to  exploit parallelism. A major issue for an efficient implementation on shared memory 
machines concerns the management of data, which must be organized so that book-keeping 
operations such as garbage collection do not cause too much interference with the parallel 
processing. Johnson and Davis (1992) examine aspects of a parallel buddy memory system, 
while Amestoy and Duff (1993) discuss and compare several approaches and recommend 
a hybrid scheme with different memory management in different subregions of storage. 
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The original experiments of Gilbert and Schreiber (1992) on the massively parallel 
SIMD Connection machine were a little disappointing although they did indicate the 
possibility of using massive parallelism in sparse factorization. The experiments did 
show that a grid-distributed multifrontal implementation substantially outperformed a 
“Router Cholesky” algorithm based on a fan-in approach. Conroy, Kratzer and Lucas 
(1994) used a mapping strategy that can trade work against data movement to  design 
a multifrontal algorithm for the TMC CM-5 that is competitive with codes on vector 
supercomputers. They tested their code on a MasPar MP-2. Manne and Hafsteinsson 
(1995) have implemented a supernodal fan-out algorithm on the MasPar MP-2 and use a 
graph colouring algorithm to  map the matrix to  processors. 

The earliest work on parallelizing sparse codes for distributed memory machines 
was based on column oriented Cholesky factorizations, either the fan-in or the fan-out 
algorithm. The original codes just used a column-column formulation of the algorithm as 
in the fan-in algorithm of George, Heath, Liu and Ng (1986) but it was soon apparent that 
better efficiency could be obtained as in the supernode-column fan-in approach of Ng and 
Peyton (1993b). Some of this early work on parallel algorithms for distributed memory 
computers is reviewed by Heath, Ng and Peyton (1991). For distributed memory machines, 
processors can be assigned work corresponding to  subtrees, but this requires quite balanced 
trees. Geist and Ng (1989) use a breadth-first search strategy to assign work to  processors 
using a heuristic bin packing algorithm to achieve reasonable load balancing. However, the 
results of runs on L-shape domains on an INTEL iPSC/2 comparing their strategy with 
wrap mapping and with a nested-dissection ordering and subtree-to-subcube mapping are 
rather flat, showing only a slight advantage for their heuristic. Pothen and Sun (1993) have 
adapted the heuristic of Geist and Ng (1989) to  a multifrontal scheme and have compared 
this with a generalized version of a subtree-to-subcube mapping and have found their 
algorithm to  be twice as fast on an INTEL iPSC/2. All approaches to  sparse Cholesky 
factorization have been used to  develop parallel factorization routines on hypercubes: 
George, Heath, Liu and Ng (1989) use a fan-out algorithm, Ashcraft, Eisenstat and Liu 
( 1 9 9 0 ~ )  a fan-in algorithm, and Sun ( 1 9 9 2 ~ )  uses a multifrontal approach. Ashcraft, 
Eisenstat, Liu and Sherman (1990b) have compared all three approaches but none of the 
methods shows very high performance. Sun (1992b) describes a package of subroutines 
implementing his parallel multifrontal algorithm (Sun 1 9 9 2 ~ ) .  George and Ng (1988) show 
that, even in a distributed environment, it is very beneficial if some memory is available 
as shared memory to  hold information such as mapping vectors. The first work to exploit 
parallelism at all phases of the sparse solution process was by Zmijewski (1987)) later 
developed by Gilbert and Zmijewski (1987) and Zmijewski and Gilbert (1988). More 
recently, the work of Heath and Raghavan (1994) also exploits parallelism in all phases, 
although they require that the matrix be held in Cartesian form; that is, in a two or three 
dimensional coordinate system. While this is quite natural in the context of discretized 
PDEs, it is not a convenient interface in general. 

Schreiber (1993) presents a clear discussion showing that a one-dimensional mapping of 
columns or block columns to  processors is inherently unscalable and that a two-dimensional 
mapping is needed to  obtain a scalable algorithm. Rothberg (19964  compares a block fan- 
out algorithm using two-dimensional blocking with a panel multifrontal method using one- 
dimensional blocking and favours the former, obtaining a performance of over 1.7 Gflop/s 
on 128 nodes of an Intel Paragon. He points out that the benefit of using higher level BLAS 
kernels, coupled with the then recent increases in local memory and communication speed 
of parallel processors, had at last made the solution of large sparse systems feasible on such 
architectures. The 2-D block fan-out algorithm is further investigated by Rothberg and 
Gupta (1994), and Rothberg and Schreiber (1994) propose some block mapping heuristics 
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to  improve the performance to  over 3 Gflop/s for a 3-D grid problem on a 196-node 
Intel Paragon. A similar type of 2-dimensional mapping is used by Gupta, Karypis and 
Kumar (1994) in their implementation of a multifrontal method, where much of  the high 
performance is obtained through balancing the tree near its root and using a careful and 
regular mapping of  the dense matrices near the root to  enable a high level of  parallelism 
to  be maintained when the trivial parallelism from subtree assignment is exhausted. This 
work has provided possibly the best performance for distributed memory implementation 
of a direct sparse Cholesky code. Although the headline figure of nearly 20 Gflop/s on 
the CRAY T3D was obtained on a fairly artificial and essentially dense problem, large 
sparse problems from structural analysis were factorized at between 8 and 15 Gflop/s on 
the same machine. Karypis, Gupta and Kumar (1994) have used this parallel multifrontal 
algorithm in the solution of interior-point problems, and similarly Bisseling, Doup and 
Loyens (1993) and Lustig and Rothberg (1996) have used parallel Cholesky factorizations 
to  speed up this computation (see also Shanno and Simantiraki 1996) 

Partly because of the success of fast and parallel methods for performing the numerical 
factorization, other phases of the solution are now becoming more critical on parallel 
computers. The package of Heath and Raghavan (1994) executes all phases in parallel, and 
there has been much recent work in finding parallel methods for performing the reordering. 
This has been another reason for the growth in dissection approaches (for example, see 
Karypis and Kumar 1995c, and Raghavan 1995~) .  It is possible to parallelize the triangular 
solve by using a tree, similar or identical to that for the numerical factorization. Anderson 
and Saad (1989) generate a tree given the sparsity structure of the triangular factor, 
while Amestoy et al. (1996) use the same elimination tree as for the earlier multifrontal 
factorization. However, in order to  avoid the intrinsically sequential nature of  a sparse 
triangular solve, Alvarado, Yu and Betancourt (1990) have proposed holding L-' or rather 
a partitioned form of this to avoid some of the fill-in that would be associated with 
forming the inverse explicitly. Various schemes for this partitioning have been proposed 
to  balance the parallelism (limited by number of partitions) with the fill-in (for example, 
Alvarado, Pothen and Schreiber 1993, Alvarado and Schreiber 1993, Peyton, Pothen and 
Yuan 1992). Very recently, Raghavan (19953) has proposed the selective inversion of 
submatrices produced by a multifrontal factorization algorithm. 

8 Preconditioning 

One of the main problems with sparse LU factorization is that often the number of entries 
in the factors is substantially greater than in the original matrix so that, even if the 
original matrix can be stored, the factors cannot. If we assume that we can store the 
original matrix, then one possibility is to  start a sparse LU factorization but drop some 
fill-in entries so that the partial factors can still be stored. Algorithms for doing this are 
called incomplete LU (or ILU) factorizations and they differ depending on the criteria 
for deciding which entries to drop. At one extreme, we could hold all the factors, while 
at the other we could store no fill-ins. This partial or incomplete factorization is then 
used to  precondition the matrix for iterative solution, normally using a fairly standard 
Krylov-sequence based iterative technique like conjugate gradients in the symmetric case 
or GMRES or BiCG when the matrix is unsymmetric. 

The main criteria for deciding which entries to  include in an incomplete factorization 
are location and numerical value. The commonest location-based criterion is to  allow a 
set number of levels of fill-in, where original entries have level zero, original zeros have 
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level 00 and a fill-in in position ( i ,  j )  has level Leveli, determined by 

min 
i<k<min(i,j) 

{Leveljk t Levelk, t 1). 

In the case of simple discretizations of partial differential equations, this gives a simple 
pattern for incomplete factorizations with different levels of fill-in. For example, if  the 
matrix is from a five-point discretization of the Laplacian in two-dimensions, level 1 
fill-in will give the original pattern plus a diagonal inside the outermost band. The 
other main criterion for deciding which entries to  omit is to  drop entries less than a 
predetermined numerical value. For the regular problems just mentioned, it is interesting 
that the level fill-in and drop strategies give a somewhat similar incomplete factorization, 
because the numerical value of successive fill-in levels decreases markedly, reflecting the 
characteristic decay in the entries of the inverse matrix (see, for example, Meurant 1992). 
For general problems, however, the two strategies can be significantly different. Since it 
is usually not known a priori how many entries will be above a selected threshold, the 
dropping strategy is normally combined with restricting the number of fill-ins allowed to 
any one column (Saad 1994a). When using a threshold criterion, it is possible to  change it 
dynamically during the factorization to  attempt to achieve a target density of the factors 
(Munksgaard 1980). Tismenetsky (1991) has developed a more robust but generally denser 
incomplete factorization by only excluding entries outside a specified pattern (in which 
case the diagonal is modified) and those fill-ins that would be caused by the product of 
two small entries. Although the notation is not yet fully standardized, the nomenclature 
commonly adopted for incomplete factorizations is ILU(k), when k levels of fill-in are 
allowed and ILUT((r, f), for the threshold criterion when entries of modulus less than Q 

are dropped and the maximum number of fill-ins allowed in any column is f .  There are 
many variations on these strategies and the criteria are sometimes combined. In some 
cases, constraining the row sums of the incomplete factorization to match those of the 
matrix can help (Gustafsson 1979). Additionally, in the symmetric positive-definite case, 
steps are often taken to ensure that the resulting preconditioner is also positive definite by 
modifying the matrix being factorized (Manteuffel 1980) or adjusting diagonal entries of 
the factorization (Jennings and Malik 1977, Munksgaard 1980, Ajiz and Jennings 1984). 

The use of incomplete factorizations as preconditioners for symmetric systems has a 
long pedigree (Meijerink and van der Vorst 1977) and good results have been obtained for 
a wide range of problems. An incomplete Cholesky factorization where one level of fill-in 
is allowed (ICCG(1)) has proven to  provide a good balance between reducing the number 
of iterations and the cost of computing and using the preconditioning. Although it may 
be thought that a preordering that would result in low fill-in for a complete factorization 
(for example, minimum degree) might be advantageous for an incomplete factorization, 
Duff and Meurant (1989) and Eijkhout (1991) show that it is not true in general and that 
sometimes the number of iterations of ICCG(0) can double if a minimum degree ordering 
is used, although this effect is not apparent for ILUT preconditioners. The situation with 
symmetric systems is quite well analysed and understood. Much recent work for symmetric 
systems has been to  develop preconditioners that can be computed and used on parallel 
computers. Most of this work has, however, been applicable to highly structured problems 
from discretizations of elliptic partial differential equations in two and three dimensions, 
for example van der Vorst (1989). Heroux, Vu and Yang (1991) and Jones and Plassmann 
(1994) have experimented with unstructured matrices, with reasonable speed-ups being 
achieved in the latter paper. 

The situation for unsymmetric systems is, however, much less clear. Although there 
have been many experiments on using incomplete factorizations and there have been 
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studies of  the effect of orderings on the number of iterations (D’Azevedo, Forsyth and 
Tang 1992, Dutto 1993) that show similar behaviour t o  the symmetric case, there is very 
little theory governing the behaviour for general systems and indeed the performance of 
ILU preconditioners is very unpredictable. Allowing high levels of  fill-in can help but 
again there is no guarantee. In fact, a major problem is that the ILU factors can become 
very much more ill-conditioned than the original system and so the preconditioned system 
can perform much worse than the original matrix with respect to  convergence of  the 
iterative method. This phenomenon is analysed by Elman (1986) for the case of  an ILU(0) 
preconditioner for systems from convection-diffusion problems. 

The QR or LQ factorizations can also be used in the unsymmetric case to derive an 
incomplete factorization (Jennings and Ajiz 1984, Saad 1988~) .  Here the orthogonal factor 
need not be kept and the resulting incomplete triangular factor can be used to  precondition 
the normal equations. Preconditioners based on these factorizations are generally more 
expensive to  compute and use than ILU preconditioners but they are usually more robust. 
Saad (1988b) has examined the use of incomplete LQ factorizations as preconditioners for 
nonsymmetric and indefinite systems, and Benzi and TGma (1996) have confirmed that 
preconditionings based on incomplete orthogonalization methods can succeed where ILU 
preconditioners fail. One way of computing an incomplete orthogonal factorization is to 
use incomplete modified Gram-Schmidt (IMGS). The IMGS approach has been explored 
by Wang, Gallivan and Bramley (1996) and is described in detail in the thesis by Wang 
(1993). 

Of course, the LU and LQ factorizations are ways of  representing the inverse of  a sparse 
matrix in a way that can be economically used to  solve linear systems. The main reason 
why explicit inverses are not used is that, for irreducible matrices, the inverse will always 
be dense (because we neglect numerical cancellation, see Duff, Erisman, Gear and Reid 
1988). However, this need not be a problem if we follow the flavour of ILU factorizations 
and compute and use a sparse approximation to the inverse. Perhaps the most interesting 
technique for this is to solve the problem 

where M has some fully or partially prescribed sparsity structure. One advantage of this 
is that this problem can be split into n independent least-squares problems for each of 
the n columns of M .  Each of these least-squares problems only involves a few variables 
(corresponding to the number of entries in the column of M )  and, because they are 
independent, they can be solved in parallel. A further benefit of such techniques is that it 
is possible to  successively increase the density of the approximation to  reduce the value of  
(8.1) (Cosgrove, Diaz and Griewank 1992) and so, in principle, ensure convergence of the 
preconditioned iterative method. Cosgrove et al. (1992), Huckle and Grote (1994), and 
Gould and Scott (1995) use a (dense) QR factorization to solve the small least-squares 
problems while Chow and Saad (1994) use GMRES. Gould and Scott (1995) show that 
this technique gives almost as good a preconditioner as ILU but is much more expensive 
to  compute both in terms of time and storage, at least if  computed sequentially. One 
problem with these approaches is that, although the residual for the approximation of a 
column of A4 can be controlled (albeit perhaps at the cost of a rather dense column in M ) ,  
the nonsingularity of the matrix M is not guaranteed. Partly to  avoid this, Kolotilina and 
Yeremin (1993) have proposed approximating the triangular factors of  the inverse and, to  
this end, Benzi and Tiima (1995) generate sparse approximations to  an A-biconjugate set 
of vectors using drop tolerances. In a scalar or vector environment, it is also much cheaper 
to  generate the factors by this means than to  solve the least-squares problems for columns 
of the approximate inverse. 
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One of the main reasons for the interest in sparse approximate inverse preconditioners 
is the difficulty of  parallelizing ILU preconditioners, not only in their construction but also 
in their use, which requires a sparse triangular solution. However, although almost every 
paper on approximate inverse preconditioners states that the authors are working on a 
parallel implementation, there are relatively few such studies available. Grote and Simon 
(1993) perform limited studies when the matrix is highly structured. Gustafsson and 
Lindskog (1995), using an idea of van der Vorst (1982), have implemented a fully parallel 
preconditioner based on truncated Neumann expansions to approximate the inverse SSOR 
factors of the matrix. Their experiments on a CM-200 show a worthwhile improvement 
over a simple diagonal scaling. 

Note that, because the inverse of the inverse of a sparse matrix is sparse (a fact 
not detected because we do not allow numerical cancellation), there are classes of 
dense matrices for which a sparse approximate inverse might be a very appropriate 

There is a midway house between the LU factors and the inverse and that is to use the 
explicit inverses of L and U. This has been proposed by Alvarado and Schreiber (1993) 
because such a factorization is easier to  use in parallel than an LU factorization. An 
incomplete form of this factorization for use as a preconditioner has been proposed by 
Alvarado and Dag (1994). 

Of course, it is possible to represent the inverse by a polynomial in the matrix and use 
this polynomial as a preconditioner. One approach, by Dubois, Greenbaum and Rodrigue 
(1979), is to use the low order terms of a Neumann expansion of (I-B)-' ,  where A = I- B 
and the spectral radius of B is less than 1.  They use a matrix splitting A = M - N and a 
truncated power series for M-'N when the condition on B is not satisfied. More general 
polynomial preconditioners have also been proposed (see, for example, Johnson, Micchelli 
and Paul 1983, Saad 1985, and Ashby 1991). For efficiency, low degree polynomials are 
normally used. A polynomial preconditioner is simple to use and can be parallelized, but 
the results are not generally very encouraging and have been particularly disappointing 
for unsymmetric problems. 

In the case of unassembled element problems, it is important to develop preconditioners 
that do not require assembly of the matrix. This sometimes involves the factorization 
of  the element submatrices, and hence they use a direct method in computing the 
preconditioner, albeit usually on a small dense matrix (Gustafsson and Lindskog 1986). 
Daydk, L'Excellent and Gould (1996) show that performing some subassemblies before 
computing the preconditioning can help, but the evidence suggests that any savings in 
iterations for the iterative method is about balanced by the extra work in using the 
preconditioner. 

This concludes our discussion of  incomplete factorizations or other incomplete 
representations of the inverse. Another whole class of preconditioners that use direct 
methods are those where the direct method is used to  solve a subproblem of the original 
problem. This is often used in a domain decomposition setting, where problems on 
subdomains are solved by the direct method but the interaction between the subproblems is 
handled by an iterative technique. A related example of this is the work on block projection 
methods like Block Cimmino (Arioli, Duff, Noailles and Ruiz 1992) or Block Kacmarz 
(Bramley and Sameh 1992). Block preconditioning for symmetric systems is discussed 
by Concus, Golub and Meurant (1985), and Concus and Meurant (1986) use incomplete 
factorizations within the diagonal blocks. Attempts have been made to preorder matrices 
to  put large entries into the diagonal blocks so that the inverse of the matrix would be 
well approximated by the block diagonal matrix whose block entries are the inverses of 
the diagonal blocks (Choi and Szyld 1996).' We do not expand on these techniques here 

precondi tioner . I 
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but leave further consideration to  the chapter on iterative methods. 
Multigrid techniques also often combine aspects of  both iterative and direct methods. 

These methods were originally developed for solving partial differential equations but 
developments such as algebraic multigrid extend their applicability to  more general 
systems, although. the jury is still out on how wide this range is. The basic idea is to  
use corrections on a sequence of coarser grids to  update the required solution on a fine 
grid. In our context, it is common to  use a direct method for the solution on the coarsest 
grid with one or two iterations of usually a simple iterative method on the other grids. 
Hackbusch (1985) and Wesseling (1992) are worth reading for a background to  multigrid 
methods, which are further considered in the chapter on iterative methods (Golub and 
van der Vorst 1996). 

9 Towards a sparse problem solving environment 

Often the solution of  a set of sparse linear equations is the most costly part of  the 
computation but, to the user of sparse codes, there might be as much cost in organizing 
and managing the data for the application in preparation for and after the solution step. 
A major problem is that a sparse data structure can be represented in many different 
ways. Most are very problem specific and it may not be trivial to  organize the data 
for a call. to  the linear equation solution routine. This might be even more complicated 
should parallelism be exploited. There are some tools being developed to  assist in the 
manipulation and management of sparse matrices. 

Gilbert et al. (1992) have introduced a sparse matrix structure and some sparse 
algorithms into MATLAB. Their aim has been ease of use and functionality rather than 
efficiency, although increasingly researchers are making codes available to  MATLAB users 
through M-files (for example, Matstoms 1994). Saad (1994b) has.developed, over many 
years, a tool kit called SPARSKIT for sparse matrix computations, Gupta and Rothberg 
(1994) have proposed an environment for handling sparse matrices on distributed memory 
machines, and Alvarado (1989) has designed an integrated package as a teaching and 
development tool called SMMS (Sparse Matrix Manipulation System). We have been 
keen to  stress that the important kernels are those for dense linear algebra. However, in 
the case of iterative methods and the use of preconditioning matrices, a sparse version of 
the BLAS is appropriate (Duff, Marrone, Radicati and Vittoli 1995). The provision of a 
standard set of sparse matrix test problems, the Harwell-Boeing Collection (Duff, Grimes 
and Lewis 1989, Duff, Grimes and Lewis 1992), has proven to  be very useful for the design 
and comparison of algorithms, and there is currently an effort underway to  update this 
collection and create a more friendly interface through the World Wide Web (presently at 
URL h t t p  : //math . n i s t  . gov/MatrixMarket). 

We do not feel that a software review is appropriate here and indeed a thorough 
one would require as much space and effort as this present survey. Suffice it 
to  say that there are a number of sparse direct solvers available through n e t l i b ,  
at URL h t t p  : //www . n e t l i b .  org/, and possibly the largest collection of Library . 
quality sparse direct codes is included in the Harwell Subroutine Library and in a 
subset of that Library, the Harwell Sparse Matrix Library (HSML), marketed by 
NAG. Further information on HSL and HSML can be obtained from the Web page 
h t t p  : //www . rl . ac .uk/departments/ccd/numerical/hsl/hsl . html. 
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10 Concluding remarks 

Far be it from me to try to steal the thunder of the author of the equivalent talk ten years 
from now. However, after nine sections of reflections, it might be entertaining to suggest 
where the excitement may lie in the years to  come. 

First, I believe that the iterative and direct talks will be combined at the next meeting 
as they were ten years ago. I believe this because it is already becoming clear that the huge 
(order greater than 500,000) problems of tomorrow can only be solved by combining direct 
and iterative techniques, which is why I spent a full section on preconditioning methods. 
It is not that smaller problems (order 10,000 to  100,000) do not need to  be solved but we 
essentially already have the tools to do this efficiently on serial computers, and this will 
fairly soon be routine on parallel computers also. Looking into my crystal ball, I think 
that soon the symmetric ordering problem will be resolved in favour of a class of hybrid 
methods (that is, methods involving botli dissection techniques and minimum degree) 
parameterized to  accommodate any sparse structure; the unsymmetric multifrontal and 
supernodal approaches will be available on distributed memory machines and will be so 
efficient that partitioning methods will only! be used on huge systems prior to  constructing 
a preconditioner. I think that row projection methods will be developed further and robust 
direct solvers will be used on the projected problems. Rather than developing a LAPACK 
approach to  providing software for direct solution of sparse equations, a MATLAB-like 
environment will handle everything from problem formulation to post-analysis of the 
solution. 

One thing I am sure of ... the sparse specialist will still have a job in ten years time ... 
at least I sincerely hope so!! 
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