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Abstract 

We present calculations of structure functions using a renormalization scheme consistent ex- 
pansion which is leading order in both In(l/z) and a,(Q2). There is no factorization scheme 
dependence, and the “physical anomalous dimensions” of Catani naturally appear. A relationship 

between the small z forms of the inputs F2(z,Qi) and Fh(z,Qi) is predicted. Analysis of a very 

wide range of data for F2(2, Q2) is performed, and a very good global fit obtained. The prediction 

for FL(z, Q2) produced using this method is smaller than the usual NLO in a,(Q2) predictions for 

FL(z, Q2), and Merent in shape. 
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1. Introduction 

The recent measurements of F2(2, Q') at HERA have provided data on a structure function 
at far lower values of z than any previous experiments, and show that there is a marked rise in 
F2(2, Q') at very small z down to rather low values of &' [1][2]. Indeed, the most recent measure- 
ments demonstrate that the rise persists for values of &' as low as 1.5 GeV'. These measurements 

have led to a great deal of interest in how one should best calculate structure functions. 
The particular interest in the small z region comes about because it has long been known that 

there is potential small z enhancement of the structure functions at high orders in the strong cou- 
pling constant [3] which is known as BFKL physics: i.e. the effective splitting function governing the 
growth of the gluon Green's function at small z is of the form P(z) = E,"==, a,,,z-'ar In"-' (l/z) 
[4], where the a, are such that an asymptotic growth 2-1-&*41n2 was predicted (6, = 3a,/r). 
This implies that one needs more than the normal fixed order in a, expansion in order to describe 
physics at small 2. Qualitative studies incorporating these ideas to obtain the structure functions 
(rather than just the gluon Green's function) were in reasonable qualitative agreement with early 
HERA data [5]. 

However, it was shown to be possible to obtain very good fits to the same data whilst ignoring 
these leading In(l/z) terms. Using the Altarelli-Parisi evolution equations at next to leading 

( n o )  order, or even leading order (LO) in a, and starting with flat [6], or even valence-like 
inputs [7], predicted a steep (though not powerlike) rise in the small z structure functions at 
scales reasonably far above the starting scale Qi, and gave a good fit as long as &: was chosen 
to be low. This countered the BFKL approach which, after all, was derived using a less well- 
defined theoretical framework than the renormalizationgroup approach based on the factorization of 
collinear singularities and ignored everything but the leading ln(l/z) terms. An approach somewhat 
intermediate between these extremes is also used, i.e. the fixed order evolution beginning from 
inputs for the parton distributions of the form z-'-' at small 2, with X N 0.2, partially justifying 
the relatively steep input (significantly steeper than that expected from non-perturbative physics, 
if somewhat less than &,4ln2) from BFKL physics, e.g. (81. 

Recently, due to the work of Catani and Hautmann [9], it is possible to use the leading in 
In(l/z) expressions for the anomalous dimensions and coefficient functions within the well-defined 
renormalization group approach. Using the kT-factorization theorem [10][11][9] they verified the 
form of the gluon anomalous dimensions 7:8( N, a,) and 7;& N, a,) (where 7(  N) = Jo 1 N  2 P( z)d z) 

and derived expressions for 7 i , ( N ,  a,(&')) and 7 i 8 ( N ,  a,(&')) in certain factorization schemes 
(since 7;,(8) (N,a,(Q2)) = 0 the quark anomalous dimensions are a power of N-' down on those 
of the gluon). They also derived expressions for the co&cient functions Cill(N, Q'), Ci,l(N, Q'), 
C&(N,Q2 )  and C{,,(N,Q') (all zeroth order quantities being zero except C{lo, which is unity). 
This facilitated calculations of structure functions within the normal renormalization group frame- 
work whilst including the leading In(l/z) terms. Calculations were performed using these terms 
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[12]-[14] and comparisons with data made. The calculations used Merent methods of solution, 
made rather different assumptions and used (Merent) ansatze for unknown terms. Consequently, 
differing results were obtained. The conclusions which could be drawn regarding the inclusion of 
the leading ln(l/z) terms depended very much on which approach was taken. However, including 

these terms did not seem to improve the best fits for the small 2 data using one- or two-loop 
evolution [12][14]. Indeed, many ways of inclusion significantly worsened the fits, particularly if 
they were more global, i.e. constrained by large E data [12]. Also, there seemed to be a very strong 
dependence on the factorization scheme used in the calculations when including the leading In( 1/0) 

The high precision of the most recent HERA data constrains theory far more than previously. 
The best recent global fits seem to come from those intermediate approaches which use NLO 
perturbation theory with a quite steep (unexplained) input for the singlet quark with X N 0.2 and 
a similar form of small 2 input for the gluon [16] (unless Qi is less than N 4GeV2, in which case 
it must be flatter or even valence-like). Fixed order perturbation theory with flat or valence-like 
inputs and low Qi fails at the lowest 2 values, and for fits to the small 2 data alone relatively 

steep inputs for the singlet quark, i.e. X 2 0.2, seem to be required [17]. Approaches including the 
resummed terms now seem to fail [18] in practically all factorization schemes. 

In this paper we will demonstrate that the apparent failure of approaches using the leading 
In(l/z) terms, and certainly the factorization scheme dependence, is due to incorrect methods of 
incorporating these terms. The correct leading order renormalization scheme consistent (RSC) 
calculation naturally includes leading ln(l/z) terms in a form which has already been derived by 
Catani and called “physical anomalous dimensions” [19]. It also provides some limited predictive 
power at small 2. We will discuss this method of calculation, then make detailed comparisons to 
data, and with the aid of the new HERA data demonstrate that this calculation leads to a very 
good global fit to all F2(2,Q2) data. Indeed, the complete RSC calculation, including leading 
ln(l/z) terms, is clearly preferred by the latest data. 

term8 [ 121 [ 141 [ 151. 

2. The Renormalization Scheme Consistent Expansion. 

For simplicity we work in moment space in this paper, i.e. define the moment space structure 
functions by the Mellin transformation, 

1 
F(N,  Q2) = zN - ’ 3 ( 2 ,  Q2)d2. 

and similarly for the coefficient function. As with the anomalous dimension we define the moment 
space parton distribution as the Mellin transformation of a rescaled parton density i.e 

Jo 
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The moment space expression for a structure function is then 

and the parton distributions evolve according to the perturbative renormalization group equation 

where we choose both the factorization and renormalization scale to be equal to Q2. The coefficient 

functions and anomalous dimensions are factorization scheme dependent, of course. 

singlet and nonsinglet contributions. In general we may write 

There are two independent structure functions F2(N,Q2) and FL(N,Q’ )  which have both 

where in terms of coefficient functions and parton densities 

j= 1 

Nj is the number of active quark flavours (we only consider massless quarks),.and f ’ ( N ,Q2 )  and 

ft”( N ,  Q2 )  are the singlet and nonsinglet quark distribution functions respectively. 

In order to devise an expansion scheme for the calculation of these structure functions which 

is useful at both large and small z, we would U priori expect that we would need to use the known 

anomalous dimensions and coefficient functions at low orders in both a, and in the leading In( l/z) 
expansion. There have already been some methods along these lines; however, these have suffered 
from scheme dependence. This is clearly incorrect since we do not expect factorization scheme 
dependence in a well ordered calculation of a physical quantity. 

As already mentioned, Catani has shown how one may obtain factorization scheme independent 

results, even at small z,  by the use of factorization scheme independent, or physical, anomalous 

dimensions. We refer to his papers [19], or for a slightly Merent presentation [20], for details. 

Very briefly, using (2.3) one writes parton distributions in terms of structure functions and coeffi- 

cient functions, and substituting into (2.4) leads to evolution equations for the structure functions 

themselves in terms of physical anomalous dimensions r22(N, a,), rt&(N,  a,), etc. These can be 

expressed in terms of coeflicient functions and anomalous dimensions in any factorization scheme, 

but in scheme independent combinations. In order to perform our calculation of structure functions 
we do not work with these physical anomalous dimensions from the outset. Rather we will simply 
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demand a complete leading order, renormalization scheme consistent (RSC) calculation. This leads 
to expressions which are unique, up to nonperturbative inputs, and which naturally contain the 
physical anomalous dimensions. 

To begin, let us consider what we normally mean by “consistency with renormalisation scheme 
dependence”. In the loop expansion the order of a term is determined simply by its order in 
a,, and in the leading In(l/z) expansion (In(l/z))-l is put on an equal footing to a,. In both 
forms of expansion one demands that, once we choose a particular renormalization scheme and 
work to a particular order in this renormalization scheme, we include all terms in our expressions 
for the structure function which are of greater order than the uncertainty due to the freedom of 

choice of renormalization scheme (i.e. the uncertainty in the definition of the coupling constant), 
and no 0thers.l If working with the n-loop coupling constant, the ambiguity in its defintion due 
to renormalization scheme uncertainty is of order a:+L. Thus, the uncertainty when working 

to n-th order is the change in the leading order expression under the change of coupling a, + 

a,(l + ea:). Hence, the uncertainty in the whole structure function is of the order of the change 
of the leading order part under such a change in the coupling, and the n-th order renormalization 
scheme independent expression includes all complete terms of lower order than this change. 

This definition gives a well-defined way of building up a solution to the structure functions, 
but relies upon the definition of a given expansion scheme. It leaves an ambiguity about how we 
define leading order expressions and about how we define the order of terms compared to this 
leading order. The loop expansion and leading In(l/z) expansion are just the two most commonly 
used examples. Both have potential problems: in the former one does not worry about the fact 
that the large In( 1/z) terms can cause enhancement of terms which are higher order in a, at small 
2, and in the latter one does not worry about the fact that at large z, especially as Q2 increases, 

it is the terms that are of lowest order in a, which are most important. Hence, one would think 
that both have limited regions of validity. 

The shortcomings of these two expansion methods come about because even though a given 
order contains no terms which are inconsistent with working to this order in a particular renormal- 
ization scheme, in neither does it include every one of the terms which are consistent with working 
to a given order in the renormalization scheme. In each expansion scheme some of the terms ap- 
pearing at what we call higher orders are not actually subleading in a, to any terms which have 
already appeared. Thus, although (for a given expansion method) these terms are formally of the 
same order as uncertainties due to the choice of renormalization scheme, they are not terms which 

are actually generated by changes in renormalization scheme.2 

Following this prescription one automatically obtains factorization scheme independent expressions in 
both the above expansion schemes. This is well known in the loop expansion, see [20] for a discussion of 
this and the more complicated case of the leading In(l/z) expansion. 

Similarly, they are not generated by changes in renormalization scale. 
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In order to demonstrate this point more clearly we consider a simple toy model. Let us imagine 
some hypothetical physical quantity which can be expressed in the form 

The first way of writing H(N, a,(Q2)) as a power series corresponds to the loop expansion, where 

we work order by order in m, out to m = k, and use the k-loop coupling. The second-corresponds to 

the leading l.n(l/z) expansion, where we work order by order in i ,  out to i = 1, and use the (I + 1)- 
loop coupling. Let us, for a moment, consider the leading order expression in the loop expansion, 

a,(Q2) E,"==_, a1,N". The coupling is'uncertain by O(aS(Q2)) and hence the uncertainty of the 

leading order expression (i.e. the change due to a change of the coupling) is N a:(&') blnN".  

We see that there is no change of any sort with a power of N less than -1, and hence any such term 

is not really subleading. Similarly, the uncertainty of the leading order expression in the leading 

l.n(l/z) expansion contains no terms at first order in a, (or with positive powers of N), and such 
terms are not really subleading either. The full set of terms in the combination of both leading 
order expressions is genuinely leading order, and renormalization scheme independent by definition. 

Perhaps the best way in which to write our expression for H(N, a,(Q2)) in order to appreciate 
these points is 

m=-1 n=l m=2 n=m 

i.e. as an infinite number of power series in a,(Q2), one for each power of N. Each of these series in 

a,(Q2) is independent of the others, and the lowest order in a,(Q2) of each is therefore renormal- 

ization scheme independent and part of the complete leading order expression for H(N, a,(Q2)). 
The full leading order expression for H(N, a,(Q2)) is therefore 

Hence, the combined set of terms considered to be leading order in both the previous expansion 
schemes comprise the full set of renormalization scheme invariant, and thus truely leading order, 

terms. By considering H(N, a,(Q2)) written as (2.8), and considering a redefinition of the coupling 

constant, a,(Q2) + a,(Q2) + O(ar (Q2 ) ) ,  we see that the n-th order expression for H(N, a,(Q2)), 
which should be used with the n-loop coupling constant, is the sum of the fist n terms in each of 
the power series in a,(Q2). 
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Similar arguments have already been applied to the anomalous dimensions and coefficient 
functions ([lO] and particularly [12]). Here we take a strong viewpoint and insist that the complete 
renormalization scheme consistent expressions, with no artificial supression of leading ln( l/z) terms, 
must be used. Futhermore, the expressions must be those for the physical structure functions, not 
for the factorization and renormalization scheme dependent coefficient functions and anomalous 
dimensions. 

When considering the real structure functions the situation is a great deal more complicated 
technically than the toy model, but the principle is the same. One complication is that the structure 
functions are combinations of perturbative evolution parts and input parts (which are perturbative 
withnonperturbative factors), rather than one simple power series in a.(Q2). However, the physical 
consequence of the factorization theorem is that there is some fixed nonperturbative factor for 
the structure functions which we cannot calculate in perturbation theory, but we can predict the 
perturbative evolution of the structure functions in terms of this factor. Thus, we choose two 
independent variables for each structure function, the input at some starting scale Si, and the 
evolution away from this starting scale. We calculate the lowest order RSC expression for each of 
these, and combine to give the full LO expression. In this paper we only do this for the singlet 
structure function, since this is hugely dominant at small 2. The procedure is also complicated 
here because the evolution of Ft and Fi is coupled, but the expression for each is a sum of terms 
consisting of input and evolution parts, and for each term we take the LO expression for the input 
and for the evolution. 

Using the above prescription it is relatively straightforward, but rather involved to calculate 
the full leading order RSC expressions. The full details appear in [20], here we just present the 
results. In order to do this most succinctly we express the result in terms of physical quantities. 
Hence, in order to explain notation (which is similar to that in [19]), and also slightly elucidate the 
form of the final expressions we consider the solution to the l-loop renormalization group equation 
first (this being part of the full solutions). Using boundary conditions @'(NI Qi) = ~ L ( N )  and 
$'*'(N, Qi) = F2(N), where F ! ( N )  are nonperturbative inputs, and the superscript 0, I denotes 
one-loop quantities, we may write the solution for the longitudinal structure function as 

where #L(N, Q a )  = FL(N, Q2)/(a,(Q2)/27r), foi'e+(-)(N) are the two eigenvalues of the O(a,) 
physical anomalous dimension matrix, which me the same as those of the O(a,) parton anomalous 
dimension matrix, divided by boa,(Q2). (The superscript S is dropped for the rest of this section.) 
Having chosen to write the solution for @'(N, Q2) in this way we may then write Fi"(N, Q2) as 
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where e+ (N )@"+ (N )  + e - ( N ) c 8 ' 8 - ( N )  = F2(N). The e+( - ) (N)  come from the eigenvectors 

of the O(a,) parton anomdous dimension and the O(a,) longitudinal coefficient f;nctions. In 
practice 

F2(N) + O ( N ) ,  
36 - 8Nj 36 - 8Nj 

F2(N) + O ( N ) ,  j y - ( N )  = 27 27 
E"'+(N) = &(N) - 

(2.12) 

where e''*+(-)( N) = e+(-)( N)E" '+ ( - ) (  N). 

Explicitly we obtain 

Taking into account the leading In( l/z) terms as well, the expressions acquire additional terms. 

(2.13) 

for the longitudinal structure function, and 

and 

(2.15) 

for F2(N, Q2) .  
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We should explain the terms in these expressions. riL( N, a,) is the gluon anomalous dimension 

at leading order in ln(l/z), which it turns out governs the small z evolution of FL(N, Q2 ) ,  as seen 

in (2.13). It is also identical to the physical anomalous dimension, hence the notation. I ' iL (N,  a,) 

is I'i,(N,a,) minus its one-loop component, which appears in I"* ' ,+ (N).  a&(N,a,) is the 

leading order in In(l/z) term governing the evolution of F2(N,Q2) in terms of F L ( N , Q ~ ) .  It is 

a power of a, up on r tL (N ,a , ) ,  but is sufficiently leading (i.e. is not subleading to any other 

contributions) to make an appearance in the input terms in (2.14) and (2.15). It is given by 

(2.16) 

and thus is equal again to one of the physical anomalous dimensions in [19]. (I'if(N) is the one- 

loop contribution to I'f,(N,a,), and must be subtracted in some places in (2.14) and (2.15) in 
order to avoid double counting.) However, once again we stress that these anomalous dimensions 

are not needed to derive these expressions, but that they naturally appear in the end results. 

The term exp[ln(Qi/AI;L)rtL(N, a, (Qi ) ) ]  appears in some of the input parts in our expres- 

sions. This leading In(l/z) contribution to the inputs is derived by demanding that the form of 

our expressions is invariant under changes in the arbitrary starting scale Qi at the order at which 

they are calculated, i.e. the expression for the structure functions as a whole is genuinely of leading 

order. It is easy to see that the variation of this input term under a change in Qi cancels the leading 

order change in the leading In(l/2) evolution. This procedure leaves us with an unknown scale 

ALL, but at this scale the inputs become the nonpertubative inputs, and we would therefore expect 

ALL to be the sort of scale where perturbation theory starts to break down. The other terms in 

(2.15) proportional to I ~ ( Q ~ / A L L )  are likewise required to make the full expression invariant under 
changes in Qi at leading order. 

Having obtained the full leading order RSC expressions for (dF2(N,Q2)/dInQ2) and 

Fz(N,Qi) we integrate (dF2(N,Q2)/dlnQ2)~sc,o from Qi to Q2 and add to the input 
F2,RscIO(N,Qi) in order to get our expression for F2(N,Q2). This is essentially because it is 

the-derivative of F2(N, Q2 )  that begins at f ist  order in a, and thus is a truly perturbative quan- 

tity. The difference between using this prescription and using the leading order F2(N, Q 2 )  directly 

is small. 

It is easy to check that under a change in the coupling, a, + a, t Sat the change of each of 

our expressions is of higher order in a, than any terms appearing. Thus, we have full leading order, 

including leading In( l/z) terms, renormalization scheme consistent expressions for the structure 

functions. These are significantly different from both the one-loop expressions and the leading 
ln(l/z) expressions, although they clearly reduce to them in the appropriate limits. All terms in the 

expressions (2.13)-(2.15) are renormalization scheme as well as factorization scheme independent, 
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as we would hope, and they are the appropriate full expressions to use with the one-loop coupling 

constant. 

Finally, we notice that this method of solution leads to a certain amount of predictive power. 

We know the precise form of the structure function inputs in terms of the nonperturbative inputs 

(which we imagine should be quite flat at small 2). Thus, up to the absolute normahation and 

the scale ALL, we have predictions for the small z form of the inputs for FL(N, Q') and F2(N, Q') 
(as well as for (dF2(N,Q2)/dlnQ2)). The normalization is fairly well set by L the large z data, 

and we would expect ALL lGeV', so there is an estimate for the small z form of each input. 

Moreover, the unknown elements are the same for each input, so there is a strong prediction for 

the relationships between the small z inputs. However, the scale QX which should be chosen is 

not determined. Nevertheless, it is a considerable consistency requirement that the relationships 

should be true for any choice of QX, and hopefully they can be well satisfied over a wide range of 

Qi. In order for this to be true, a,(&;) cannot be too sensitive to QX, so we would not expect QX 
to be particularly low. Also, since we can largely choose our structure functions at Q;, but then 

have no freedom in how we 'evolve up and down in Q2, we would imagine that when performing a 

fit it is advantageous if QX is near the centre of the range of our data. 

3. Fits to The Data. 

We use the expressions (2.13)-(2.15) to calculate the z-space singlet structure functions. The 

nonsinglet structure functions are calculated using the normal one-loop prescription. By combining 

the singlet and nonsinglet components and varying the free parameters (Qi, ALL, and the soft 

inputs for FL(z,Q') and F2(z,Q2)), we obtain the best fit for the available F' structure function 
data.3 We note that the input F:(z, QX) and the evolution dF2(2, Q2)/dlnQ2 are forced by (2.14) 

and (2.15) to be trivially related at small 2, which is not the case when working at fixed order in 

a,. The oneloop value for is chosen to be 100MeV. This precise value is not determined 

by a best fit, but a value near this is certainly favoured. The published values of F2(z,Q2) are 

altered to take account of the fact that our predictions for FL ( z ,Q~ )  are not the same as (i.e. me 

somewhat lower than) those used by H1 and ZEUS in their determination of Fz(2, 8'). Thus, the 

&(z ,  Q') values me a little lower for the largest values of Q'/z than in [l] and [2]. 

In practice a variant of the program used by MRS is used for the fit, and inputs for the gluon and 

quarks of the standard form are specified. To calculate structure functions we use an effective factorisation 
scheme which is of DIS type for &(z,Q'), where the longitudinal coefficient functions are the oneloop 

expressions, and the resummed anomalous dimensions and small z inputs are chosen to produce expressions 
for the structure functions matching (2.13)-(2.15) as closely as possible. For simple inputs where exact 

analytic expressions for the 2-space forms of (2.13)-(2.15) can be found checks are made with the results 
of the evolution program, and any discrepancies are always much smaller than the errors in the data. 
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We treat the heavy quark thresholds rather naively. Taking rn: = 3GeV2 and rnt = 20GeV2, 

we simply change the number of active quark flavours discontinuously at these values of Q2: since 

Fi(N) has a large component proportional to Nj, FL(z,&~) is discontinuous at these values of 

Q2, as is d F 2 ( z , Q 2 ) / d h ( Q 2 ) .  a,(Q2) is continuous at the thresholds, being defined by 

This treatment of quark thresholds is consistent with the decoupling theorem, in so much that it 

guarantees the correct expressions far above or below thresholds [21]. It is clearly unsatisfactory 

near the thresholds and must be improved. However, the prescription has little effect on F2(2, Q2) 
in the region of the fit: in the curves for Fz(2, Q2) the b-quark threshold is barely noticeable, while 

the kink at the c-quark threshold only really affects a handful of data points at very small 2, tending 

to hinder the fit (see fig. 1). 
The result of the best fit using the leading order, including leading h( 1/2) terms, RSC expres- 

sions (henceforth refered to as LO(x)) with Qi = 40GeV2 is compared with fits obtained using the 
standard two-loop method, where RI allows A L -  to be free (giving A!!!=' = 241MeV) and R2 
fixes Am- = 344MeV to force a better fit to the HERA data. The new NMC data [22] for 

and F:d is used with a lower Q2 cut of 2GeV2.4 The results are shown in table 1 (full references 

for the experimental data can be found in [IS]). As one can see, the LO(x) scheme independent 

fit is much better for the HERA data (even when compared to Rz), much better for the BCDMS 

data (even when compared to RI) and similar in standard for the rest of the data. The overall fit 

is N 200 better for the whole data set. The results of the fit to the small z data is shown in fig. 1. 

The leading order renormalization scheme consistent expressions clearly provide a very good 

fit to the F2(2,Q2) data. The fit shown is for the particular starting scale Qi = 40GeV2, but the 

quality of the fit is extremely insensitive to changes in this scale (where we allow ALL to be a free 

parameter for each Si), as we expect from the method of construction of the solutions. The fit is 

essentially unchanged over the range 20 - 80GeV2, and we choose 40GeV2 as the (logarithmically) 

central value. When Qi drops below 20GeV2 the fit immediately gets markedly worse because of 

the discontinuity in dFf(z, Q2)/dhQ2 at the threshold: dFf(2, Q2)/dhQ2 suddenly becomes 

too large at small 2 if Ff(z,Qi) is the correct size to fit the data. The quality of the fit gets 
continuously worse as Qi lowers further, becoming completely uncompetitive long before reaching 
m:., We expect that a correct treatment of quark thresholds would lead to a smooth falling off of 

the quality of the fit, but that it would begin to deteriorate somewhere in the region of 20GeV2, 

due to a,(Qi) becoming too large below this value. 

N -4 
MS MS Nt -4 

The MRS fits are not performed again: the xa for the new data is calculated using the same input 
parameters in. [16] (there is little indication that these would be changed much by the new data). 
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The parameter ALL, which should be a scale typical of soft physics, turns out to be 0.4GeV2 
for the fit starting at QX = 40GeV'. This decreases a little as QX increases and Oice wer~u. For 
QX = 40GeV2 the soft inputs for the fit are roughly 

pf(z) k: 2.65(1- z)', Ft(2) x (1 - z)*(l- 0.6z0*' + 7z), 

where they have been forced to be flat as z -i 0. Allowing instead an asymptotic behaviour z', 
where X & 0.08, leads to an equally good fit. The importance of the leading In(l/z) terms can be 
judged by how they affect the fit. If, after obtaining the best fit, all terms other than those in the 
one-loop expressions are set to zero, the quality of the fit is unchanged above z = 0.3, begins to 
alter slightly below this, and is clearly much worse by the time we reach 2 = 0.1. Thus, the leading 
ln(l/z) terms are important by this value of z. 

It is not yet possible to extend the RSC calculation beyond the leading order due to lack of 
knowledge of NLO in In(l/z) terms. There is hope that these will shortly become available [23], 
and when they do the NLO versions of (2.13)-(2.15) can be derived and put to use. Only then 
should the NLO coupling constant be used in any fit. As shown at leading order the In(l/z) terms 
not present in the one-loop expressions become important above z = 0.1. However, much of this 
effect is due to the terms at O(a:), so the NLO expression at fixed order in a, should be a good 
approximation to the full NLO RSC expression for z somewhat lower than 0.1, perhaps as low as 

N 0.05 - 0.01. However, until the full renormalisation scheme consistent NLO expressions become 
available, we believe that it is premature to use fits to small z structure function data to determine 
the NLO coupling constant (unless, of course, direct measurements of F L ( ~ , Q ~ )  and other less ' 

inclusive quantities at very small z turn out to verify standard two-loop predictions). The fixed 
order in a, expressions should be accurate for CCFR, BCDMS and NMC data, which after all 

are still much more precise than HERA data, and fits to these data alone will provide the best 
determination of the NLO a,(Q2). 

4. Conclusion 

In this paper we have demonstrated that it is possible to derive expressions for the structure 
functions which incorporate the leading In(l/z) terms in a way which is renormalization scheme 
consistent, and as a consequence avoids any factorization scheme dependence. We have also shown 
that these full leading order RSC expressions lead to very good fits to the data and that, futhermore, 
they are able to do so using as inputs only soft distributions for the singlet quark and gluon, i.e. all 
powerlike behaviour is generated perturbatively, and determined in terms of the nonperturbative 
flat inputs and a soft scale ALL. Hence, this approach provides an explanation for the form of 
the small z structure function rather than just a way of fitting it. Futher details of both the 
theory and fits, as well as other related issues, are presented in [20]. It is certainly true that the 
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calculations must be improved to take account of massive quark thresholds in a better manner, 
and work towards this end is in progress. Nevertheless, with the present treatment we feel that 
the quality of the fit and the degree of explanatory (if not predictive) power, not to mention the 
scheme independence, give strong justification for using this approach. 

However, the quality of the fit alone is certainly not such a substantial improvement on more 

standard approaches that it necessarily convinces one that this approach must be correct. In order 
to obtain some degree of verification we must obtain more experimental data. So far we have only 
probed FL ( z ,Q~ )  indirectly, i.e. it is simply related to the derivative of F2(z,Q2) (as well as to 
the input F2(z,Qi) using this method). Having tied down the nonperturbative inputs and ALL 
and Qi from our fit to F2(2, Q2), we have a prediction for FL(z, Q2). The result of this prediction 
for the fit with Qi = 40GeV2 is shown in fig. 2, where it is compared to the prediction using the 
NLO in a, approach and the MRSRl fit. As one can see, it is smaller than the MRSRl FL(z, Q2), 
but becomes steeper at very small x. The prediction for F L ( z , Q ~ )  is weakly dependent on the 
value of QZ chosen: the value at Q2 = 5GeV2 and z = 10-4 varies by f 1 0 %  within our range 
of QZ (increasing with Qi), and by less than this for higher z and Q2.’ The very recent results 
on Fh(z,Q2) for 0.01 2 z 2 0.1 from NMC [22] are matched far better by the LO(x) FL than 

the MRSRl Fh (the latter being rather large). However, it is fair to say that any problems with 
the MRSRl FL can very probably be assigned to the treatment of the charm quark threshold, i.e. 
the predicted FL(Z,Q~) in the last of [7] matches the data well. Measurements of F L ( z , Q ~ )  at 
z < 10-’ would be a better discriminant between fixed order in a, calculations and those involving 
leading ln(l/z) terms. However, the sort of “determination” of FL(z, Q2) already performed by H1 
[25] is really only a consistency check for a particular fit, and is by no means a true measurement of 
FL(z, Q2). Real, direct measurements of FL(z, Q2) at HERA would be an important (and probably 
essential) way of determining the validity of the approach in this paper, and the genuine importance 

of leading ln(l/z) terms in structure functions. 
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The author has submitted two conference proceedings on the topic of the current paper [24] and should 
point out that these are both incomplete. In the former the expression (2.15) was not used for the input for 
&(a, 8’). Thus, the fit imposed far less constraint on Qi than the full procedure, and a value of 5GeV’ 
was used, which resulted in a prediction of Ft(2,Q’) that is much too small. The latter claimed that an 
input for FL(z, Q’) a little smaller than that consistent with the full set of expressions was needed for the 
best fit, even at the optimum Qi. This was due to there being no account whatever taken of the bquark 
threshold. The correction makes very little difference to phenomenological results. 
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Table 1 
Comparison of quality of fits using full leading order (including In(l/z) terms) renormalization 

scheme consistent expression, LO(x), and two-loop fits -SRI and MRSR2. For the LO(x) fit the 

H1 data is normalized by a factor of 0.995, the ZEUS data by 1.01, the BCDMS data by 0.98, the 

CCFR data by 0.95, and the rest by 1.00. 

Experiment 

H1 Flp 
ZEUS F,'p 
BCDMS Ffp 
NMC FFP 
NMC Ffd 
NMC Ffn/Ffp 
E665 Ffp 

I CCFR FrN 
CCFR FfN 

data X2 
points LO(X) R1 R2 

193 128 158 149 
204 256 326 308 
174 190 265 320 
129 124 163 135 
129 109 134 99 
85 142 136 132 
53 8 8 8 
66 51 41 56 
66 49 51 47 
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Figure Captions 

Fig. 1. The curves correspond to the value of the proton structure function F2(z,Q2) obtained 
from the leading order renormalization scheme consistent (LO(x)) calculation at 12 values 
of z appropriate for the most recent H E M  data. For clarity of display we add 0.5(12 - i )  
to the value of F2(z,Q2) each time the value of z is decreased, where i = 1 --+ 12. The 
data are assigned to the z value which is closest to the experimental z bin (for more details 
see the similar figure displaying the two-loop fits in [IS]). E665 data is also shown on the 
curves with the five largest z values. The H1 and ZEUS data are normalized by 0.995 and 
1.01 respectively in order to produce the best fit. 

Fig. 2. Comparison of predictions for FL(B, 9') using the full renormalization scheme consistent 
(LO(x)) fit and the two-loop MRSRl fit. For both sets of curves FL(z, Q 2 )  increases with 
increasing Q2 at the lowest z values. 
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