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1 Introduction: the problem and ,the algorithm 

1.1 The problem 

In this paper, we consider algorithms for solving general (ie, non-convex), linearly constrained, 
differentiable optimization problems. We shall distinguish between simple bounds and general lin- 
ear constraints, and find it convenient to reformulate inequalities as. equalities via slack variables. 
We thus consider the problem 

minimize f ( x )  
AX = b ' (1.1) 

s.t. x 2 0  

where f(.) is a real valued function on R", x is a vector in R", A is an m x n matrix and b is a 
vector of Rm. 

In part, we are motivated to consider the above problem because of our experiences with the 
general large-scale nonlinear programming package LANCELOT (Conn, Gould and Toint, 1992). 
In this package, simple bounds are treated explicitly and all other constraints are converted to 
equations and incorporated into an augmented Lagrangian merit function. While this proves to 
be a robust approach (Conn, Gould and Toint, 1996), it has a number of obvious drawbacks. 
One of these is that augmentation may not be the ideal way to treat linear constraints, and a 
more attractive approach is to handle all linear constraints explicitly (Conn, Gould, Sartenaer 
and Toint, 1996). We note that there has been a relatively long history of methods that use 
linearly constrained subproblems at their heart. References include the methods of Rosen and 
Kreuser (1972), Robinson (1972), and Murtagh and Saunders (1978), the latter being the basis 
of the well-known large-scale nonlinear programming package MINOS. 

Another drawback with the LANCELOT approach is the use of the simple bounds that are 
active at the generalized Cauchy point to predict those which will be active at the solution (see the 
trust region based kernel algorithm SBMIN, Conn, Gould and Toint, 1988). Unfortunately this 
approach does not appear to be very effective when the problem is either degenerate or close to 
degenerate. On the other hand interior point methods, particularly primal-dud approaches, have 
enjoyed much success in linear programming and it is generally accepted that any state-of-the- 
art library for linear programming should include both interior point and simplex methods (for 
example OSL from IBM, 1990, and CPLEX, 1995). It is usually acknowledged that interior point 
methods are less sensitive to degeneracy than active set methods, see for example Shanno (1994). 
Thus we were motivated to consider an interior point method in which linear constraints Ax = b 
are handled explicitly and simple bounds are handled via a logarithmic barrier term. For the 
record, we still expect to handle general nonlinear constraints using the augmented Lagrangian. 
However, we do want to retain the flexibility of not necessarily satisfy the linear constraints 
during the earlier iterations. 

In addition, since the linear programming problem is a convex linear problem, it is the case 
that the first order conditions are sufficient to characterize a solution and thus it is possible to 
dispense with a merit function entirely. In the non-convex case, the merit function is an essential 
ingredient of any successful algorithm and the choice of merit function was a considerable concern 
in the present paper. 

However noble one may believe these goals, there are some sigmficant difficulties in an in- 
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terior point approach. Besides those already mentioned there is an additional discussion in the 
conclusions of this paper. Although we are not successful in addressing all these issues, and in- 
deed some of the most important practical issues will depend upon much more extensive testing, 
what we do hope we have achieved in the present paper is a consistent method with a single 
merit function and a guaranteed descent direction that either is the primal dual direction or a 
very closely related Newton direction. In addition, linear equalities are treated explicitly without 
requiring primal feasibility initially. 

Considering the vast literature on primal-dual methods for convex problems, there has been 
remarkably little work on extending these methods to the non-convex case. This may be because 
dual variables are not globally meaningful for non-convex problems, but one is tempted to be- 
lieve that in the neighbourhood of a minimizer some sort of local convexity may be amenable to 
a primal-dual approach. Indeed, Simantiraki and Shanno (1995) analyse such a local method. 
Globally, of course, one would expect to require a merit function to force convergence, and Fors- 
gren and Gill (1996) provide just such a function for primal-dual methods. A complete analysis 
of an interior-point algorithm for non-convex linearly constrained optimization is provided by 
Bonnans and Pola (1993), but this algorithm appears to require both a strictly interior starting 
point and a convex model of the objective. 

Although the emphasis here is on theoretical issues, we do include preliminary results on 
a non-trivial set of general quadratic programming problems from the the CUTE test set (see, 
Bongartz, Conn, Gould and Toint, 1995) which we compare with a state-of-the-art active set 
method designed for solving quadratic programs. Before going into further details of the proposed 
algorithm we include some additional notation and our assumptions. 

If we denote the Euclidean inner product by ( e ,  a )  and let e be the vector of all ones, we assume 
that 

AS1. f (-) is a twice continuously differentiable, 

AS2. the function f(z) - p(log(z), e )  is bounded below on the positive orthant for every p > 0, 

AS3. the gradient and Hessian of f(z) are uniformly bounded in norm over the positive orthant, 

AS4. A has full rank, and 

AS5. there exists a point za strictly interior to the positive orthant such that Aza = b. 

1.2 The primal-dual search direction 

The first order criticality conditions for problem (1.1) may be written as 

g(z) + ATy - z = 0 
Ax = b 

XZe = 0, 
(VI L 0, 

where z is a vector of Rn, g(z) gf V,f(z) and 

X = diag(z1,. . . , z,) and .Z = diag(z1,. . . , z,). 

(1.2) 
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In order to build our algorithm, we consider a perturbed version of this system of equations given 
bY 

S ( X )  + ATy - I = 0 
Ax = b 

XZe = pe, (1.4) 

(X,Z2> 2 0, 
where 

(1.5) 

for some given CT E (0 , l ) .  Our algorithm moves from the current estimate ( Z k ,  Zk) > 0 of the 
solution of (1.1) to a new estimate (Xk+l ,Zk+l )  > 0 given by 

(1.6) (2) (2) x k + l  = x k  -k (Yk A X k  and zk+l = z k  -k (Yk A Z k ,  

for some scalar stepsizes &I, a t )  E (0,1], where A x k  and A z k  may, for instance, be chosen as 
AsiD and Az;” which solve the system 

H k A X i ”  + AT$:, - AzLD = -gk  -I- Zk, 

AAxiD = b -  A X k  (1.7) 
Z k h X i ”  -k X k h Z L D  = p k e  - X k Z k e ,  

def def def where H k  = H ( X k )  = V x s f ( X k )  and where gk = g ( Z k ) .  This system is a linearization, at 
( Z k , Z k ) ,  of (1.4), in which yk+l  is considered as an auxiliary variable. Eliminating AzLD, and 
defining 

we obtain that 

rk = A x k  - b, (1.8) 

and 

Note that (1.9) fully defines hiD,  and yi:l provided the matrix H k + x i l z k  def G k  is nonsingular 
in the nullspace of A. This is obviously the case if f ( x )  is strictly convex, but may not be true 
in general. We discuss below how G k  might be modified or how AxiD may be defined in more 
general situations. Observe also that, if this quantity is well defined, AZ;” is in turn well defined 
by (1.10). The strict positivity of Zk+l  and Zk+1 is ensured by suitably restricting the stepsizes 
a t )  and a?), as is detailed below. Thus, if at the solution x *  or z* have zero components, these 
can only be attained in the limit. 

AzLD = -Zk - X F ’ z k A X ; ”  + j&XF1e. (1.10) 

Observe that 
defined by 

which is possible 
artificial variable 
correct ion 

we may now introduce an artificial variable [ in the system (1.9), which is 

AX - b = <TO, 

for a scalar variable because of the second equation of (1.7). If TO # 0, this 
is initially one; at each iteration, we augment the primal-dual step with the 

(1.11) 

At:” = -& (1.12) 
to &. Thus if a unit step is ever taken, the linear equality constraints will be satisfied exactly : 

from then on. We will use the notation IJ = (x ,e)  to denote points in the (x,t)-space. 
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1.3 An alternative search direction 

When < > 0, we may now consider the alternative problem of minimizing the shifted penalty 
function 

f ( 4  + sP(< + (1.13) 
1 

subject to the constraints (1.11) and 
x 2 0. (1.14) 

In this formulation, the shifted penalty terms drives the variable < below zero for sufficiently 
large p. We then intend to stop the minimization prematurely as soon as 5 attains the value zero. 
Writing the first order optimality conditions for this modified problem, we obtain that 

S ( X )  + ATy - z = 0, 
-(To,T/) +P(5+1) = 0, 

( x , 4  1 0. 

AX -<TO = b, 
XZe = 0,  

(1.15) 

We perturb the system in the same manner as above and write the corresponding Newton's 
iteration, which yields that 

HkAX,N + AT$+, - A$ 
A A x ~  - A[;To 

-(TO, '$+I> PkA<; 
Zkh$ + XkAZ; 

As before, we may eliminate Az?, and obtain that 

1.4 The merit function 

We now introduce, for given p, p > 0, the logarithmic penalty function defined by 

1 
+(U, P, P) = f ( 4  + zP(< + - Cl(log(xc), 4. 

Examining now the derivative of this function, we find that 

VZ+(% P, P)  = 9 ( 4  - @-'e and v&J, P,P> = P(< + 1). 

We first consider the slope of this function at a given iterate wf along the step 

AV," = ( ( A x ~ ) ~ ,  A<;) 

(1.16) 

(1.17) 

(1.18) 

(1.19) 

(1.20) 

(1.21) 
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defined by (1.16) (or, equivalently, (1.17)), and we obtain that 

AT 0 
(Vudk, AV;) = - ((A%) N T  ( Y k + l I T G )  N (1.22) 

where we have defined $k = c$(wk,pk,pk). Using the second equation of (1.17), (1.22) gives that 

On the other hand, the direction 

(1.24) 

defined by (1.7) (or, equivalently, (1.9)) and (1.12), yields the slope 

where we have used (1.7), the definition of < and (1.12). 
We now examine under which conditions the slopes given by (1.23) and (1.25) are negative. To 

this aim, we introduce the following definition: the matrix G is said to be second-order suficient 
with respect to A if and only if the augmented matrix 

G AT 
. = ( A  0 )  

(1.26) 

is nonsingular and has precisely rn negative eigenvalues. This is equivalent to requiring that 
(y, Gy) > 0 for all nonzero y satisfying Ay = 0, or to the reduced matrix f l G N  being positive 
definite, where the columns of N span the nullspace of A (see, for instance, Gould, 1985). The 
matrix is second-order necessary if we drop the requirement that K be nonsingular; this is then 
equivalent to requiring that (y,Gy) 2 0 for all y satisfying Ay = 0 or to the reduced matrix 
NTGN being positive semidefinite. Thus, returning to (1.23), we see that we have descent with 
the Newton direction if we insist that Gk be second-order sufficient. 

If <k = 0 then the identity 
<krO = r k  (1.27) 

and (1.9) gives that AAxk = 0. Thus, if the matrix Gk is second-order sufficient with respect to 
A ,  we may deduce that 

(Vu&, AwID) = GkAzED) < 0 (1.28) . 

If we now consider the case where Gk is second-order sufficient with respect to A but <k # 0, 
it turns out that we can still show that the slope (1.25) is negative provided we choose pk large 
enough. This result from the two following lemmas. 

Lemma 1 Assume that the matrix G is second-order suficient with respect to A and that the 
columns of N are orthogonal. Then the smallest eigenvalue of f l G N  is at least equal to the 
smallest positive eigenvalue of K ,  where K is defined by (1.26). 
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Proof. If G is second-order sufficient with respect to A and N is orthogonal, we have that 
the minimum eigenvalue of NTGN, which we denote by E > 0, is the solution of the minimization 
problem 

min{(s,Gs) I As = 0 and llsll = 1). (1.29) 

(Here and below, the symbol 11 11 denotes the Euclidean norm.) The minimizer of this problem 
satisfies the first-order optimality conditions 

5 

,Gs+ATu = ES 

AS = o  (1.30) 

and e = (s ,Gs) .  Adding eu on both sides of the second equation, we see that (1.30) yields that 

G AT 
( A  d)(:)='(:)' 

and thus E is an eigenvalue of the matrix 

(1.31) 

(1.32) 

Now, we can view the matrix K defined in (1.26) as a symmetric perturbation of (1.32), and 
deduce from Wilkinson (1965, Section 44, p. lOl), that K has an eigenvalue in the range [O,e]. 
Since K is nonsingular, this eigenvalue must be in the interval (0, E], which proves the result. 0 

Lemma 2 Assume that the matrix G as second-order suficient with respect to A, and that 
the smallest strictly positive eigenvalue of K i s  X > 0. Then, if one chooses an arbitrary m- 
dimensional vector r and if 

(1.33) 
2 

P 1 + xllr1I2, 
the matrix 

G = ( ;  ;) (1.34) 

'It is interesting to note that Lemma 2 does not hold if second-order sufficiency is replaced by second-order 
necessity. For, suppose that 

G = ( H  p i), A = ( O  0 l ) a n d r = - l .  

Then the columns of the matrix 
1 0 0 0  

.=(: ; ; ;) 
form a basis of the nullspace of (A r), and the resulting "reduced matrix" is 

Unfortunately, this latter matrix has a negative eigenvalue for all p. 
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is second-order suficaent with respect to (A r )  and 

1 (44 2 ~ 4 1 V l 1 2  

for v = (z,<) in the nullspace of (A r ) .  

Proof. Consider the matrix 

G 0 AT 

Pivoting on the 2-2 block and using Sylvester’s law of inertia, we obtain that 

(1.35) 

(1.36) 

In(K1) = (1,0,0) + In(K(p)), where K(p) = ) . (1.37) 

As, by assumption, K is nonsingular and has exactly rn negative eigenvalues, Wilkinson (1965, 
Section 40, p. 97) implies that the smallest positive eigenvalue of K(p)  is at least $A provided 
that 

(1.38) 

i.e., provided p satisfies (1.33). The continuity of the eigenvalues of K(p)  then implies that both 
K ( p ) ,  and, in view of (1.37), K1, also have precisely rn negative eigenvalues for all p satisfying 
(1.33). Thus NTG1R is positive definite, where G1 = diag(G,p - A) and where the columns of 
ff span the nullspace of (A r ) .  As a consequence, 

(1.39) -T - NTGN = N (G1 + diag(0, X))N 

is also positive definite, which proves the first part of the lemma. 
To prove the second part, observe that 

G O  AT 
0 

A 0 - r r T / ( p -  A) 
K = ( O  X ) +& ( p : X )  ( 0  p - X  rT )2fK1+K2. (1.40) 

But the eigenvalues of K1 are X and those of K(p) :  the smallest positive eigenvalue of K1 is thus 
at least $ A  so long as (1.33) holds. Moreover, K2 is a positive rank-one term, which implies that 
the eigenvalues of I? are not smaller than those of K1. Recalling that K has exactly rn negative 
eigenvalues if (1.33) holds, we se13 that its smallest positive eigenvalue is at least fX. Applying 
now Lemma 1 gives (1.35). 0 

Returning to the sign of the slopes of (1.23) and (1.25) in the case where Gk is second-order 
sufficient with respect to A and & # 0, we see immediately, from (1.23), Lemma 2 and the 
requirement AA$ - A@, = 0, that 

(1.41) 

(1.42) 
so long as 
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where X is the smallest eigenvalue of NTGkN. We also see that the second equation of (1.9) can 
be rewritten as 

AAxiD - A&ro = 0, (1.43) 

and thus may deduce from (1.25), Lemma 2, (1.12), and (1.43) that 

(1.44) PD 2 PD 2 1 
(Vv4k,WD) I -5X(llAX, I1 + ( A b  ) 1. 

(1.45) 

Observe that condition (1.45) depends on the size of (ro,yLyl). The penalty parameter pk may 
thus become too large because of  this latter quantity, in which case we might prefer to use 
the alternative formulation using the shifted quadratic penalty term for which descent is always 
obtained (see (1.41)) if Gk is second order sufficient with respect to A (see (1.23)). Our algorithm 
takes advantage of this observation. 

1.5 Modifications 

If Gk is not second-order sufficient with respect to A, we may add a positive semidefinite mod- 
ification AGk to Gk, so that GI, + AGk is uniformly second-order sufficient with respect to A ,  
meaning that the minimum eigenvalue of NT(Gk + AGk)N is larger than some X > 0 indepen- 
dent of k. This in turn yields well defined AxgD and yiyl, and ensures (1.28). The smallest such 
modification may need to be as large as llNTGkNll + A, but here we merely require that 

IlAGkII I 621IGkll + (1.46) 

for some IC;! 2 1. The modification AGk to make NTGkN positive definite may be much smaller 
than that required to make Gk itself positive definite. 

The technique of ensuring the second-order sufficiency of Gk with respect to A is not the only 
one which can be considered to make the slope (1.25) negative. One could also modify AxgD to 
include a sufficient contribution of a direction of negative curvature, provided the second equation 
of  (1.9) remains satisfied. 

The fact that the directional derivative (1.28) is negative ensures that the (possibly modified) 
primal-dual step AvLD is a descent direction for &, when vk is not a minimizer. We may thus 
consider using this function as a “merit function” associated with this step, that is with the 
linearization of conditions (1.4). 

The viability of such approaches are discussed further, with additional references in Forsgren 
and Murray (1993), Gould (1995) and Higham and Cheng (1996). 

1.6 The step 

We now turn to the question of determining the stepsizes in (1.6). A first and crucial constraint 
on the stepsizes is induced by our decision to maintain both xk+1 and zk+l strictly positive. We 
thus have to specify some bounds on c$) and a t )  that will guarantee that the iterates remains 
“sufficiently” iniiide the positive orthant of the (2, 2)-space. When both stepsizes are chosen equal 
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(i.e. a t )  = at)),  a set of suitable conditions (see Simantiraki and Shanno (1995) or Zhang and 
Zhang (1994)) on the (unique) stepsize is given by the inequalities 

and 
h + l ,  Z k + d  2 Tll!Jk+l + ATYk+ l  - Zk+lll, (1.48) 

where y E (0,l). We observe that conditions (1.47) and (1.48) clearly ensure that z k + l  and zk+l 

both have all components strictly positive so long as the conditions 

are violated. On the other hand, condition (1.47) and (1.48) appear to be somewhat restrictive 
in practice because (1.47) often restricts the step in z more than necessary. We might thus prefer 
to keep independent stepsizes in z and z and require, instead of (1.47), that 

where w(pk) E (0,l) is a small parameter possibly dependent on the value of pk. Note that the 
largest stepsize ensuring (1.50) is given by 

(1.51) 

where [w]i denotes the i-th component of the vector w. However, if this maximum stepsize is 
adequate for the primal-dual step AwLD in that (1.12) ensures that 

<k + &t'At,'" 2 0, (1.52) 

this may not be the case for the Newton step AV; because A(; is now defined from the solution 
of (1.16). Indeed, for pk large enough, we would expect & to tend to -1. We thus have to limit 
the stepsize to maintain &+I non-negative: the largest stepsize in t is now given by 

(1.53) 

(Note that a zero value of t k  is desirable, as it implies primal feasibility of the iterates.) Combining 
these bounds, we obtain that the maximum stepsize in the v = (z,() space is given by 

We may then calculate the actual stepsize 

(1.54) 

(1.55) 

by a classical Armijo linesearch procedure, that is by determining the smallest nonnegative integer 
j k  such that 

4 ( V k  + P j k @ ) A V k ,  P k ,  P k )  s 4 k  + T?Pj"t)(VtJ4k, Auk) (1.56) 

for some p E (0,l). 
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1.7 The algorithm 

We are now in position to formally state our algorithm. 

4lgorit hm 
3tep 0: Set k = 0. The starting iterate (ZO, 1 ,  ZO) is given, such that 20, zo > 0, as well as the 

initial barrier parameter po > 0 and the constants 0 < p, A, 7, v1, 0, ij < 1 ,  ODF, OpF > 0, 
6, vz > l , O c  E ( l , l / a ) ,  and po 2 pmjn def A+2llroll/A. Define t o  = 1 and set w(p0) E ( O , i j ] .  

3tep 1: Compute the primal-dual step AvLD and yiyl from (1.9) and (1.12), modifying Gk 
if necessary to ensure that it is uniformly second-order sufficient with respect to A (with 
constant A). 

3tep 2: If either & = 0 or (1.44) holds, define Avk = AviD and yk+l = y&. Otherwise, 
compute the Newton step AV: and y;+l from (1.17) and set Awk = Av: and yk+l = y,N+,. 

Compute a t )  from (1.55) and (1.56). Then set 3tep 3: 

(1.58) 

If zk + Azk lies (componentwise) in the interval 

[vi min(e, zk7pkxi:1e), max(v2e, 4, w i l e ,  y2pkx~:~e)l , (1.59) 

then set zk+l = zk + Azk; otherwise choose any q+l  in the interval (1.59). 

3tep 5: Set pk+l = pk .  If 
(1.60) T 

Ibk+l  - A Yk+l - Zk+lII 6 ODFPk 

and 
(Zk+l 9 zk+1) 5 necpk , (1.61) 

then test whether 
&+l 5 OPFPk. (1.62) 

If all of these inequalities hold, define 

and possibly redefine pk+l 2 ~ m j n 7  u(pk+l) E ( O , i j ] .  

If (1.60) and (1.61) hold, but (1.62) fails, set pk+l  = pk, and redefine pk+l = bpk if 

(1.64) 

If either of (1.60) or (1.61) fails, set pk+l = p k .  

In all cases, increment k by one and go back to Step 1. 
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1.8 Comments on the algorithm 

This algorithm suggests a few comments. 

1. The requirement that zk+l belongs to the interval (1.59) appears somewhat complex, but 
it is designed for maximum flexibility in the choice in zk+l. The theory below only requires 
that the components of zk+l are bounded above and away from zero while pc: is not updated, 
and that the choice zk+l = p k X & e  is asymptotically acceptable when Axk tends to zero. 
This is similar to the conditions of Gill, Murray, Ponceleon and Saunders (1995), where 
these bounds are fixed a priori. Note that zk+l = zk is always a feasible choice when 
zk + Azk does not belong to the interval (1.59), and that then the nonnegativity of zk+1 is 
always guaranteed. 

There are many algorithmic possibilities for computing a suitable zk+l when zk + Azk does 
not belong to the interval (1.59). One could, for instance, use a backtracking strategy 
starting from zk + Azk, or choose zk+l to minimize 11&+1&+1e - pkell subject to being in 
the desired interval. 

Also note that the condition that zk+Ak must belong to the interval (1.59) does not restrict 
the step in 2. 

2. The tests of Step 5 aim to allow for frequent updating of pk, and hence for the rapid 
progress of the algorithm. We will say that iteration k is p-cr4tacaZ whenever conditions 
(1.60), (1.61) and (1.62) hold. Condition (1.60) may be viewed as ensuring sufficient dual 
feasibility (hence BDF), (1.62) as ensuring sufficient primal feasibility (hence BpF) and (1.61) 
as ensuring a sufficient decrease in the value of the complementarity (hence Bc). This 
latter condition is inspired by the literature on primal-dual algorithms (see Simantiraki and 
Shanno (1995), Zhang and Zhang (1994)) or Carpenter, Lustig, Mulvey and Shanno (1993), 
for instance). 

The conditions (1.64) are intended to allow pk to increase when the value of this latter 
penalty parameter is not large enough to ensure primal feasibility, that is to ensure that 
the minimum of the merit function lies sufficiently close to the line < = 0. This is of concern 
only when a Newton step is used, as the primal-dual step always ensure improved primal 
feasibility. Hence the first condition. The second guarantees that a sigruficant contribution 
to the minimization of the merit function is derived from the change in <. 

3. The dependence of the parameters w(pk) on pk is introduced with the aim of ensuring 
that, if pk is decreasing rapidly because of (1.63), the linesearch bound (1.50) should not 
prevent fast convergence by unduly restricting the stepsize. The threshold w(pk) may thus 
be adapted to avoid this effect. For instance, one might want to choose w(pk) to be of 
the order of pk, but the design of a truly efficient strategy will require much more detailed 
numerical experiments. 

4. Suitable values for the constants might be, for instance, 

q = 0.0001, d = Vl = a = = 0.01, (1.65) 

eDF = epF = 1, p = 0.5, 6 = 10 ec = 99 and u2 = 100, (1.66) 

but this remains to be confirmed by numerical experiences. 
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5.  Observe that the algorithm does not update the value of y k  from iteration to iteration. This 
is possible because (1.9) and (1.17) directly compute yLT1 and Y ; + ~ .  Thus, although we 
expect Yk+l to converge to the Lagrange multipliers at the solution, these multipliers are 
recomputed afresh at each iteration. 

The fact that Yk is not recurred explicitly has the further advantage that we may modify 
A x k  when G k  is not second-order sufficient with respect to A without considering any 
implied change in v k .  

6. If primal feasibility is obtained during the course of the calculation, that is if & = 0 for 
some k, the algorithm reduces to a purely (feasible) primal-dual framework. 

7. The Newton step AV; can be obtained at low cost from the factorization used to compute 
A v L D .  Indeed, the system (1.17) is a rank one perturbation of (1.9). 

8. As the iterates approach a constrained minimum, we may expect G k  to become second- 
order necessary with respect to A, which implies that no modification of the primal-dual step 
should be necessary asymptotically, if the threshold value X is chosen small enough. (This 
is expected because the problem becomes convex in a neighbourhood of such a minimum.) 
This property would not hold if we had chosen to make G k  positive definite, instead of 
N T G k N ,  possibly resulting in slower asymptotic convergence. 

9. Observe that the penalty parameter Pk may be updated whenever the barrier parameter 
p k  is reduced. This update may be an increase or a decrease. It provides the possibility 
of dynamically adapting P k  as the algorithm proceeds, without restricting the sequence of 
penalty parameters to be monotonically increasing. 

1.9 Properties of the algorithm 

Before proceeding further, we state, for future reference, some useful properties of the algorithm. 

Lemma 3 Let { ( Z k , t k , % k ) }  be a sequence of iterates generated by the algorithm. Then, 

(4) the sequence { p k }  is non-increasing and 

(ii) one has that, for all k ,  
Pk 2 Pmin, A A x k  = A t k  f 0 ,  (1.68) 

( V & k , A V k )  5 - , j x ( / l A v k 1 1 2  + (1.69) 

Furthermore, if p k  = p and p k  = /s for some p,/s > 0 and all k 2 0, then there exists a 
constant ~1 > 0 such that 

0 5 t k  5 K l  (1.70) 

1 
and 

for all k. 
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Proof. The non-increasing nature of the sequence {pk} and (1.67) immediately follow from 
(1.63), condition (1.61) and the inequality aOc < 1. The first bound of (1.68) results from the 
initial value po 2 Pmin and the fact that pk 2 pmin for all k, because of the mechanism of Step 5. 
The second equation of (1.68) is a consequence of the mechanism of Steps 2 and 3, (1.43) and 
the second equation of (1.16). The inequality (1.69) then follows from (1.23), Lemma 2, the first 
bound of (1.68) and (1.44). 

We conclude our proof by showing that, if pk and P k  are fixed at p and p, respectively, then 
& remains bounded. First notice that the mechanism of Step 2 and Step 3 imposes that, for all 

44% P ,  PI I 44Vk-1, P ,  PI I +(WO, P ,  P) (1.71) 
k, 

and thus that 

(1.72) 
2 
P 

( J k  + 5 ( t o  + + =[f(.o) - P(log(zo), 4 - ( f ( 4  - P(log(zk), e))]. 

Now, if 
(tk + I ( t o  + q2,  

then one obtains that 
t k  I t o -  

(1.73) 

(1.74) 

On the other hand, if (1.73) does not hold, then the expression within brackets in the right-hand 
side of (1.72) is positive, and thus 

(1.75) 

where n3 = min,>o[f(z) - - p(log(z), e)] is finite because of (AS2). The bounds (1.74) and (1.75) 
and the fact that Jk 2 0 because of (1.53) then yield (1.70), completing the proof 0 

2 Global convergence 

We now intend to prove that our algorithm is globally convergent. More precisely, we wish to 
show that all limit points of a well-defined subsequence2 of iterates are critical points for problem 
(l.l), for every choice of the starting iterate (zo, 1, ZO) for which (ZO, ZO) is strictly interior to the 
positive orthant in the (z, z)-space. 

The convergence theory uses an argument by contradiction. We will assume that convergence 
does not occur in that the barrier parameter pk stays bounded away from zero, and distinguish 
two cases. In the first, we assume that the penalty parameter pk stays bounded; we will then 
show that a p-critical iterate is eventually found if the primal-dud step is used, while (1.62) may 
not be obtained if Newton’s step is used. In this latter case, we show that the penalty parameter 
has to increase. If, on the other hand, pk tends to infinity, this can only happen for Newton 
steps, in which case we will prove that p-criticality again eventually hold. This then implies that 
the barrier parameter is reduced contradicting our initial assumption, and convergence is thus 
obtained. 

‘They are, in fact, the “major” iterations of the algorithm, if expressed as a twdevel procedure. 
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First note that assumption (AS3) implies that there exists a constant 6 8  > 0 such that, for 
all k,  

119kII 5 K 6  and IlHkll 5 K 8 .  (2.1) 

We next prove a technical result showing under what conditions the primal-dual and Newton 
steps are bounded when p and p are fixed. 

Lemma 4 Assume that p k  = i2 and Pk = p for some p , p  > 0 and all k 2 0. Assume furthermore 
that there exasts a ~4 > 0 such that, for all k,  

Then, there exist a positave constant 6 5  > 0 such that, for all k,  

Proof. Consider the primal-dual step first. Writing 

we obtain from the second equation of (1.9) that 

which implies, since A has full rank (AS4), that 

where we have used (1.70) and (1.27) to deduce the last inequality. On the other hand, the first 
equation of (1.9) gives that 

NTGkNAzp)  = -NT(gk - pkxk 'e)  - NTGkATAxp) (2.8) 

The second-order sufficiency of Gk (possibly modified) with respect to A, (2.2), (2.7) and (2.8) 
then ensure that 

XllAzt'II I K4(1 + K6)llNII, (2.9) 

where X is the smallest eigenvalue of the (possibly modified) GI, restricted to the nullspace of A. 
Combining (2.5), (2.7) and (2.9), we deduce that 

Similarly, we obtain from the first equation of (1.9) that 

A A  T yk+l PD - - -A(gk  - PkXk'e) - AGkAX,PD, 

which yields, using (2.2) and (2.10), that 

T -1 IlVi:lll 5 K4(1 + ~7>11All IKAA 1 II. 

(2.10) 

(2.11) 

(2.12) 
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Finally, from (1.12) and (1.70), 
lA<k‘”I = l<kl I Kl. 

Together, the bounds (2.10), (2.12) and (2.13) prove (2.3) with 

(2.13) 

and thus, using again (2.2), (2.17) and the inequality IlAhzilI I llAv,”ll, that 

Combining (2.17), (2.19) and [A<,”[ 5 IlAvtII, we obtain (2.4) with 

(2.19) 

(2.20) 

The complete result then follows by taking 6 5  = max[KED, K:]. 0 
We next examine the behaviour of a sequence of iterates for fixed p and p. 

Lemma 5 Let { (zk,<k, Zk)} be a sequence of iterates generated by the algorithm and assume that 

pk = fi and pk = (2.21) 

for call k. Then, we have that 
lim IlAzkII = 0, 

lim A<k = 0, 

lim Xk+lZk+le = fie, 

lim I)gk+l + ATyk+l - pX&!lell = 0. 

k+m 

k- tw 

k+w 

k-tm 

(2.22) 

(2.23) 

(2.24) 

(2.25) 
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Proof. We start our proof by noting that, for fixed ji and fs, the iteration then reduces to 
minimizing the function r#(v,p,fs). Moreover, as a consequence of (2.21), and because the level 
set 

Lo = {(z, 5) E B x [O, 001 I 4(z, 5,  F, PI I dzo, 5 0 ,  F, P)) (2.26) 

is bounded away from the boundary of the positive orthant in z, we may deduce that, for all k, 

X k e  2 ~ 1 2 e  (2.27) 

for some ~ 1 2  E (0,l). On the other hand, (1.59) and (2.27) imply that 

(2.28) 

for all k. Combining now this last bound with (2.27) and the second bound of (2.1), we then 
deduce from the definition of Gk that there exists a ~ 1 3  > 0 such that 

Furthermore, we obtain from (1.46) that we may choose, for each k, a AGk ensuring that Gk+AGk 
is second-order sufficient with respect to A (with constant A), such that, using (1.46), 

and the minimum eigenvalue of Gk + AGk in the nullspace of A is at least A. If we now examine 
the gradient of the merit function with respect to z, we verify that 

(2.31) 

where we have used the first bound of (2.1) and (2.27). Combining (2.21), (2.30) and (2.31), we 
see that all the conditions of Lemma 4 are satisfied for 

(2.32) 

We may thus deduce from this lemma that (2.3) and (2.4) hold, which gives that, 

for some K14 > SO. 

successful. To this aim, we make the additional assumption that 
We now show that we can deduce a contradiction if the minimization of c#~(v,p,p) is not 

for all k E J, where J is the index set of a subsequence, and for some 615  E ( 0 , ~ 1 4 ) .  We then 
deduce from (1.69) that, for k E J, 

(2.35) 
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We now observe that (1.51), (2.27) and (2.33) give that 

(2.36) 

for all k. Furthermore, we note that the mechanism of the algorithm implies that the situation 
where 

,(U) k = ak -(E) < 1 (2.37) 

can only happen for a unique k,  (k being identically zero (and thus i i f)  being identically one) for 
all subsequent iterations. Hence, if kt is the index of the iteration where (2.37) holds (defining 
kt = 00 if (2.37) never holds), we see that 

a?) < @, if k < kc, or a?) 5 1, if k > kt. (2.38) 

We therefore conclude that, for k sufficiently large, the inequality a?) 5 i i f )  does not limit the 
stepsize in the linesearch procedure (1.56) to a value strictly below one. Moreover, combining 
(1.54), (2.36) and the definition of kt, we have that 

(2;39) 

for all k E J. 
We next consider iteration k E J and distinguish two cases. The first is when 

( V U 4 ( V k  + &Auk, P, a, Auk) < r l ( V U 4 k ,  Auk) (2.40) 

for all a E (O,a(")]. In the second case, we assume that there exists a (smallest) ii E (O,a(')] 

(2.41) 

(2.42) 

(2.43) 

.: J -2 " ) . 
(2.44) P 

Observe also that (AS3), (1.51), (1.54), (1.55) and the fact that C1 5 a(u) ensure that 

llH(zk + clAzk)l( 5 617 (2.45) 

for some n17 > 0. We also deduce from (2.27), (1.51), (1.54), (1.55) and the fact that C1 5 a(') 
that the components of z k  + ClAzk are bounded below by a positive constant. This fact, (2.45) 
and (2.44) then imply that 

IIV:u4(uk + cl Auk), P ,  P)II 5 618 (2.46) 
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for some n1g > 0. Substituting this bound, (2.33) and (2.35) in (2.43) and using the Cauchy- 
Schwarz inequality, we obtain that 

(2.47) 

Thus, gathering the two cases, we conclude that, for all k E J, (2.40) holds for every a between 

(1 -q )K16  

K18K94 * 

0 and 
(2.48) 

Returning to  the function 4 ( w ,  P, p) itself, we therefore obtain that, for each a E [0, a*] and all 
k E J, 

(2.49) 4(% + aA%, P, p) = 4 k  + Q(VU4( 'uk  + C2A% F ,  P), A%) 
5 4 k  + VQ(Vv4k, A%), 

where (2 E (0, a). As a consequence, the stepsize determined by (1.56) must satisfy 

(2.50) 

finally yielding, together with (2.35), that 

4k+l = 4 ( u k  + af)Awk, F ,  5 h - 7616Kl9, (2.51) 

for all k E J sufficiently large. But (2.51) implies that the sequence {&} tends to minus infinity, 
which is impossible because (AS2) implies that q5 is bounded below in the positive orthant. Hence 
our assumption (2.34) must be false'and we obtain that (2.22) holds. This limit, (2.27) and the 
inequality a t )  5 1 in turn imply that 

But,  since 

(2.53) IIzk + Azk - PX&ell 5 llzk + A s  - FX;'ell + llill(Xil - X&)ell 
I IIXilZkll IJAxkII +PfillXil - xi:lll, 

where we have used (1.58), we also obtain from (2.22), (2.27), (2.28) and (2.52) that 

lim (lzk + Azk - pX&ell = 0. 
k-tw 

(2.54) 

But this limit and the inequalities ul < 1 and u2 > 1 give that 

U$x&e 5 Zk + AZk 5 lJ2~x~:,e (2.55) 

for k sufficiently large. Hence, from the definition of Step 4 of the algorithm, zk+l = zk + Azk 
for sufficiently large k. Thus (1.58) yields that 

Xk+lZk+le = Xk+lXil(-ZkAxk +f ie) .  (2.56) 

On the other hand, since 

(2.57) 
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we deduce from (2.22), (2.27) and a t )  E (0,1] that 

where In is the identity matrix of dimension n. The limit . 
(2.56), (2.58), (2.22) and (2.28). 

I) then 

We also note that (1.9), (1.17), (2.27), (2.28) and (2.22) give that 

lii 11gk -k ATyk+l - pxi leI I  = 0. 

(2.58) 

dlows from combining 

(2.59) 

We then use the continuity of the gradient, (2.22) and (2.52) to obtain (2.25). Finally, (2.23) 
follows from (2.22) and the second part of (1.68). 0 

The next stage in our theory is to analyze the situation where the penalty parameter Pk tends 
to infinity, and show that infeasibilities with respect to the linear equality constraints must then 
decrease. 

Lemma 6 Let { ( X k ,  & ,  Zk)} be a sequence of iterates generated by the algorithm and define I to 
be the index set of all iterations such that P k  as increased at Step 5. Assume furthermore that 

p k  = p (2.60) 

fo r  all k and that the subsequence indexed by I is infinite. Then, there ezists an anfinite subse- 
quence indexed by J C I such that, for k E J, 

<k+l 5 epF& (2.61) 

Proof. Note that the f i s t  part of (1.64) implies that AVk = AV; for all k E I. Observe 
that, for k E I, some components of &+I could be bounded in norm. Let us denote by 
the vector whose entries are those of yk+l in this (possibly empty) components' set and zero 
elsewhere, and by ~ 2 0  > 0 the associated upper bound. We thus obtain that, for k E I, 

thus defining #+l. 
We now consider two cases. The first is when the set of bounded components of yk+l is a 

proper subset of (1,. . . , m} .  In this case, there must be an infinite subsequence of I indexed by 
J and some subset 2 C (1,. . . , n}  such that 

for i E 2, where we used the fact that A has full rank (AS4), while 

for some ~ 2 1  > 0 and for i 
implies that 

2. Now, (1.60) and (2.1) hold for k E J I, which, with (2.63), 

(2.65) 
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Since Zk+l > 0, we immediately deduce from (2.63) and (2.65) that 

lim[ATyk+l]i = 00 

kE J 

( i  E 2). 
k - r m  

Furthermore, (2.65) and (2.66) yield that 

lim[zk+l]i = 00 ( i  E 2). 
k - r w  
kE J 

(2.66) 

(2.67) 

But this last limit is only possible if the last term in the upper bound of (1.59) tends itself to 
infinity, that is if 

lim[zk+l]j = 0 ( i  E 2). (2.68) 
k - r w  
kE J 

Now, for k E J, 

where z0 is given in (AS5) and where we have used (1.27), (1.8) and the identity AzG = b. 
Clearly, (2.68) gives that 

(2.70) 

for i E 2, which, together with (2.66), (2.64), (2.69) and the inequality za > 0, yields that 

(2.71) 

If we now turn to the second case, that is when all components of Yk+l are bounded by K ~ O ,  we 
then have that is identically zero and we define J = I. 

In both cases, we obtain from the Cauchy-Schwarz inequality and &+I 2 0 that 

for k E J sufficiently large, where we used (2.71) to obtain the last inequality if yf+l is nonzero. 
Now the third equation of (1.16), the bound a t )  5 1 and the second part of  (1.64) then give 
that, for k E J, 

Substituting (2.72) in (2.73) then gives that, for k E J sufficiently large, 

(2.74) 

This and the fact that pk tends to infinity ensures that (2.61) holds for k E J sufficiently large, 
as required. 0 

We are now ready to  prove our main convergence result. 
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Theorem 7 Let { ( Z k ,  & ,  Z k ) }  be a sequence of ttemtes genemted by the algorithm and define 

Then, K is infinite and we have that 

(2.75) 

(2.76) 

(2.77) 

and 

Proof. In order to prove this convergence result, we will now consider the behaviour of 
the algorithm if convergence never occurs, and later deduce that this behaviour is impossible. 
Assume therefore, for the purpose of establishing a contradiction, that, for all k, 

Because Lemma 3 ensures that the sequence { p k }  is non-increasing, (2.79) implies that the 
update (1.63) is never performed for k sufficiently large. and we may thus assume, without loss 
of generality, that 

p k  = (2.80) 

for all k 2 0. 
Assume first that 

A V k  = A V ,  N (2.81) 

and 
Pk = (2.82j 

hold for all k sufficiently large. Because of equalities (2.80) and (2.82), we may then apply 
Lemma 5 and deduce that (2.22), (2.23), (2.24) and (2.25) hold. But these limits imply that 
conditions (1.60) and (1.61) are satisfied for k sufficiently large. Furthermore (1.51), (2.22) and 
(2.27) ensure that a t )  = 1 for all k sufficiently large. Moreover, as (2.80) guarantees that (1.62) 
cannot be true, (1.53) ensures that crf) = 1 for all k sufficiently large. Hence at) = 1, and 
(1.64) are satisfied for all k sufficiently large. Since Pk remains constant, the mechanism of Step 5 
then ensures that (1.62) must also be satisfied for such k. As a consequence, p k  is eventually 
reduced according to (1.63), which contradicts (2.80). Hence, if p k  remains constant and (2.81) 
holds for all sufficiently large k, Pk must tend to infinity and is increased in Step 5, for some 
infinite subsequence I. We may then apply Lemma 6 and deduce (2.61) for some subsequence 
J for which conditions (1.60), (1.61) and (1.62) hold. As above, this in turn implies that p k  is 
reduced according to (1.63), again contradicting (2.80). We therefore deduce that (2.81) cannot 
hold for all sufficiently large k if (2.80) holds. As a consequence, if this last relation holds, there 
must exist an infinite subsequence indexed by L such that 
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for k E L. Applying now Lemma 6 as above, we also conclude that, if pk is increased infinitely 
often in Step 5,  then pk must be reduced, which is impossible because of (2.80). As a consequence, 
we therefore deduce that pk remains constant (and equal to some p) for sufficiently large k. We 
may then apply Lemma 5 again, and deduce that (2.22), (2.24) and (2.25) hold for sufficiently 
large k. But the first of these limits, the third part of (1.68) and the second block of (1.9) together 
then imply that 

(2.84) 

for k E L. Once more, we see that, for k E L sufficiently large, pk must then be reduced using 
(1.63), since (2.24), (2.25) and (2.84) ensure that a p-critical iteration must occur eventually. 
This again contradicts (2.80), finally proving that this last assumption is impossible. 

Hence pk is not bounded away from zero. But (1.63) implies that p k  > 0 for all k, and thus 
that the subsequence indexed by K is infinite, and we deduce from condition (1.67) of Lemma 3 
and the inequality uBC < 1 that 

lim p k  = 0. (2.85) 
k+w 

Recalling now the definition of K, the index set of all iterations immediately following an update 
of pk using (1.63), we then see that (1.61) implies that 

(2.86) 

for k E K. But this inequality and (2.85) together yield the limit (2.76). Combining (2.76), 
(1.63), (1.60) and (1.62), one obtains (2.77) and (2.78), which concludes the proof. 0 

n 
5 (zk,z&)e = 

U 

3 Algorithmic variants and further comments 

3.1 

The link of the penalty parameter to the current average complementary slackness value (as given 
by (1.63)) can also be relaxed somewhat. Indeed, the only formal role of this choice for pk is to 
force optimality when pk tends to zero using (1.60) and to ensure that pk is decreased when it is 
updated. We can consider a variant of our algorithm where the distinct values of the sequence 
{pk} are chosen a priori as a sequence {Fk} converging to zero. In this case, Step 5 has the 
following form. 

A more general monotonic update for the penalty parameter 

Step 5: Set pk+l = pk. If the conditions (1.60) and (1.61) hold, then test if (1.62) also 
hold. If this is the case, then decrease the penalty parameter by setting pk+l to the 
value immediately following pk in the sequence {&}; otherwise set pk+l = pk and reset 

In all cases, increment k by one and go back to Step 1. 

pk+l (0) = Spk if both conditions (1.64) are satisfied. 

Whether choosing an a priori sequence {&} is better than determining the sequence of penalty 
parameter using (1.63) remains to be seen in practice. One could of course argue that an a priori 
subsequence leaves more freedom to the user, but any a priori choice is also somewhat arbitrary 
and may not reflect what is actually happening in the course of the calculation. Leaving decisions 
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to the users may also not be so desirable from their own point of view. The advantage of (1.63) is 
that it depends on the current values of the variables and may therefore set more realistic goals 
for the minimization of the merit function. The main reason to mention the variant discussed in 
this paragraph is that it makes our algorithm similar to the framework of Gill et al. (1995). 

3.2 Introducing non-monot onicity 

The monotonic character of the sequence of {&} for fixed pk and pk, and that of the sequence 
{pk} itself are not necessary. For the values of the merit function, one could think of m o w i n g  
the linesearch (1.56), as in Grippo, Lampariello and Lucidi (1986) or Toint (1996), resetting the 
process when pk is updated. One could also relax the first part of condition (1.61) to allow a 
non-monotone behaviour of the penalty parameter, replacing it by the condition 

for some integer p > 0. More sophisticated schemes (see Toint, 1996) are possible if this type of 
relaxation appears to be useful in practice. 

It may also be advisable from a practical point of view to considerably relax the conditions 
of Step 3 for the first few iterations, in order to let the algorithm choose a suitable value of the 
penalty parameter, which may result in better overall performance. Again, this has to be verified 
in numerical experiments. 

3.3 

If the primal-dual step does not give a sufficient descent, that is if (1.44) does not hold in Step 2, 
one might, in view of (1.25), think of simply increasing the penalty parameter pk at this stage. 
Although such an increase can be accepted finitely often (for each d u e  of pk), there is a danger 
that negative interaction between the barrier and the penalty term might require an infinite 
sequence of such increases, which would result in very poor numerical behaviour and also ruin 
the convergence theory presented above. This would happen if the algorithm gives too much 
weight to primal feasibility when the logarithmic singularity is active, inducing a large gradient 
V&k, resulting in an undesirable loop where the iterates approach the boundary of the positive 
orthant and p k  tends to infinity. 

Thus, increasing pk is Step 2 may be accepted, but should be monitored to avoid this dficulty. 
As already indicated, the simplest strategy is to only allow a finite increase in pk as long as the 
barrier parameter is not updated. Other more elaborate strategies may result from continued 
numerical experience with the algorithm. 

Further updating the penalty parameter pk 

3.4 

The last variant that we consider consists of relaxing even further the conditions of Step 4 on the 
update of the dual variables a. In the algorithm described above, we have enforced the choice 
zk+l = zk + Azk whenever this vector falls in the interval (1.59). This can be relaxed somewhat, 
in that our theory still holds if we only require that ak+l is any vector satisfying the bounds given 
by (1.59) with the property that 

A more general update for the dual variables 
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This implication is indeed all we need to obtain the limit (2.24) from (2.22) at the end of the 
proof of Lemma 5. 

The main interest of this slight extension is that it now covers the case where 

If the choice (3.3) is made, the algorithm reduces, for iteration k, to a pure primal method in 
that Zk is entirely eliminated from the computation: A Z k  need not be computed and (1.58) may 
thus be skipped altogether. We then obtain that 

which is exactly the Hessian of the merit function 4 ( V k , p k , P k )  in the 2-space. This may be 
attractive if one wishes to exploit directions of negative curvature for the merit function, as they 
then correspond to linear combinations of eigenvectors of G k  associated with negative eigenvalues. 
Again, the detail of these considerations is beyond the scope of the present paper and we postpone 
their presentation for future work. 

4 Preliminary numerical tests 

In order to investigate the effectiveness of the method discussed in this paper, we have written a 
prototype fortran 90 implementation of the algorithm proposed in Section 1.7 to solve quadratic 
progmms, that is for problems for which f(z) is a quadratic function. In this implementation, 
Zk+l is simply chosen as Zk + a k ) A Z k ,  where a t )  is the minimum of 1 and the largest stepsize 
such that Zk + a f ) A Z k  remains in the interval (1.59). 

The solution of linear systems of the form 

( z  :)(:)=-(:) (4.5) 

lie at the heart of the algorithm. For convenience, we have used the Harwell Subroutine Library 
(1995) package MA27 to solve such systems. The multifrontal scheme used (see, Duff and Reid, 
1983) has the additional advantages of being able to cope with large, sparse systems and of 
reporting the inertia of the relevant coefficient matrix, K. Although some authors (for instance, 
Gill, Murray, Saunders and Wright, 1990) have reported that such an approach is handicapped 
by the severe indefiniteness of K, we followed the advice of Gill, Murray, Poncelhn and Saunders 
(1991) and use a very small pivot threshold (10-6) together with iterative refinement as an 
effective means of solution. If MA27 reports that G is not second-order sufficient, we use the naive 
expedient of replacing G by G + llGllI. More sophisticated strategies are being considered (see 
Gould, 1995), but are beyond the scope of this paper. 

The actual algorithm implemented is the obvious generalization of the algorithm described 
above designed to cope with simple bounds of the form I 5 z 5 U rather than nonnegativities 
alone. All fixed variables are removed automatically and the minimization performed with respect 
to the remaining variables. A given starting point z is adjusted so that each component lies at 
least a distance ten on the feasible side of its nearest bound; if this is impossible the mid point 
between the two bounds is chosen. Similarly, the dual variable associated with each simple bound 
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is supplied by the user (we used zero in our tests) and adjusted so that it is at least a distance 10 
to the feasible side of its relevant dual bound. We use po = ( z ~ , z o ) / n  and the parameter d u e s  
suggested in (1.65)(1.66). The algorithm is halted as soon as the norm of the residual of (1.2) is 
smaller than 10-4, or more than 1000 iterations have been performed. 

To test our algorithm, we have selected all of the larger quadratic programs in the CUTE test 
set (see, Bongartz et al., 1995). Although it is desirable in practice to preprocess the problems 
(for instance, to remove redundant constraints and scale the problem, see Andersen, Gondzio, 
MCszkos and Xu, 1996), we have not done so. 

Name 
AUGZDCQP 
AUG2DQP 
AUG3DCQP 
AUG3DQP 
BLOCKQPl 
BLOCKQP2 
BLOCKQP3 
BLOWEYA 
BLOWEYB 
BLOWEYC 
CVXQPl 
CVXQP2 
CVXQP3 
DUALCl 
DUALC2 
DUALC5 
DUALC8 
GOULDQP2 
GOULDQP3 
KSIP 
MOSARQPl 
MOSARQP2 
NCVXQPl 
NCVXQP2 
NCVXQP3 
NCVXQP4 
NCVXQP5 
NCVXQP6 
NCVXQP8 
NCVXQP7 
NCVXQP9 

n 
3280 
3280 
3873 
3873 
2006 
2006 
2006 
2002 
2002 
2002 
1000 
1000 
1000 
223 
235 
285 
510 
699 
699 

1021 
1500 
1500 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 

m type 
1600 C 
1600 C 
1000 c 
1000 c 
1001 NC 
1001 NC 
1001 NC 
1002 c 
1002 c 
1002 c 
500 C 
250 C 
750 C 
215 C 
229 C 
278 C 
503 C 
349 c 
349 c 

1001 c 
600 C 
600 C 
500 NC 
500 NC 
500 NC 
250 NC 
250 NC 
250 NC 
750 NC 
750 NC 
750 NC 

its Nwtn mods time 
21 
21 
16 
16 
26 
10 

> 1000 
9 
7 

10 
30 
32 
31 
44 
37 
12 
20 
4 
7 

30 
16 
13 

956 
> 1000 

481 
> 1000 
> 1000 

332 
> 1000 
> 1000 

322 

5 
3 
0 
0 
0 
0 

1 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

297 

0 

0 

0 

0 
0 
0 
0 

18 
3 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

927 

470 

319 

288 

4.86 
4.72 
5.00 
6.26 
6.34 
2.92 

1;60 
1.29 
1.72 

44.44 
19.15 

132.40 
1.17 
0.83 
0.37 
1.05 
0.19 
0.35 
6.38 
2.01 
1.60 

3762.58 

1913.23 

459.49 

2862.79 

Table 1: Preliminary numerical results (1) 

VEO9-its VEO9-time 
3112 133.15 
3019 
3056 
2097 
1006 
1006 
1006 
1597 
1497 
1697 
861 
370 

1389 
12 
14 
10 
11 

251 
463 

1388 
5859 
1679 
1561 
1840 

127.71 
106.58 
71.44 
28.76 
40.42 
28.80 
68.96 
67.86 
53.97 
70.92 
13.50 

107.11 
0.23 
0.25 
0.37 
0.94 
1 .&I 
2.52 

36.42 
91.63 
27.73 
51.04 
61.50 

too ill-cond. basis 
649 2.97 
565 2.78 
532 3.53 

1901 141.70 
1567 120.56 

too ill-cond. basis 

In Tables 1 and 2, we give the results of our preliminary tests. They were performed in 
double precision on an IBM RISC System/6000 3BT workstation with 64 Megabytes of RAM, 
using the a 0  compiler and optimization level -03 .  For each example, we report its name along 
with its dimensions (n is the number of variables, rn the number of constraints), the problem 

25 



type (C for convex, SOS for second-order sufficient and NC for non-convex and not second-order 
sufficient), the number of iterations performed (its), the number of these which were Newton 
(1.17) iterations (Nwtn) and the number for which G was modified (mods), and the time taken in 
seconds (time). For comparison, the tables also show the number of iterations and time taken by 
a fortran-90 version of VE09, a quadratic programming subroutine from the Harwell Subroutine 
Library (VEO9-its and VEO9-time, respectively). This latter algorithm is designed to handle non- 
convex problems and is of the active-set type, each of its iterations corresponding to a pivoting 
operation. The reader is referred to Gould (1991) for further details on this method. We also ran 
tests using MINOS of Murtagh and Saunders (1993) which we do not report here because they 
are quantitatively similar to those obtained with VE09. 

Name n m  
PRIMALCl 239 9 
PRIMALC2 238 7 
PRIMALC5 295 8 
PRIMALC8 528 8 
PRIMAL1 410 85 
PRIMAL2 745 96 
PRIMAL3 856 111 
PRIMAL4 1564 75 
QPCBOEIl 726 351 
QPCBOEI2 305 166 
QPCSTAIR 614 356 
QPNBOEIl 726 351 
QPNBOEI2 305 166 
QPNSTAIR 614 356 
SOSQPl 2000 1001 
STCQPl 4097 2052 
STCQP2 4097 2052 
STNQPl 4097 2052 
STNQP2 4097 2052 
UBHl 909 600 
YAO 1002 500 

type its Nwtn mods time 
C 83 40 0 2.62 
C 61 4 0 1.69 
C 16 1 0 0.43 
C 16 1 0 0.76 
C 17 0 0 3.13 
C 11 0 0 3.02 
C 13 0 0 14.22 
C 11 0 0 6.51 
C 113 11 0 8.45 
C 109 4 0 3.38 
C 174 8 0 13.26 

NC > 1000 
NC 652 1 639 61.88 
NC 226 13 207 30.39 
SOS 5 0 0 0.73 
NC A rank deficient 
NC 11 0 4 51.09 
NC A rank deficient 
NC 24 0 15 201.12 
C 5 1 0 0.29 
C 847 7 0 38.34 

Table 2: Preliminary numerical results (2) 

VEO9-its VEO9-time 
20 0.17 
4 0.14 

14 0.23 
20 0.71 

361 4.12 
677 12.25 
798 35.49 

1515 40.16 
823 6.41 
303 1.14 
987 16.05 
736 5.66 
299 1.14 
993 15.61 
996 14.49 

2845 67.81 
2040 98.22 
3158 68.01 
1408 39.11 
315 5.12 

3 2.06 

We immediately note that the primal-dual algorithm performs well on convex problems (C 
and SOS), with the possible exception of YAO. On the other hand, its performance on the non- 
convex (NC) ones is somewhat disappointing. A closer examination of these runs indicates that 
our naive matrix modification technique is really too naive; when the Hessian involves many 
negative eigenvalues, these appear to be removed one at a time, resulting in a large number 
of iterations before second-order sufficiency is achieved. A more sophisticated way of treating 
negative curvature directions is therefore highly desirable. Generally however, given the crude 
nature of the present preliminary implementation, the new primal-dual method definitely shows 
some potential. 
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5 Conclusion 

We have presented a primal-dual algorithmic framework whose merit function is adapted to prob- 
lems with non-convex objective functions. We also proved global convergence for this framework 
under standard assumptions. Finally some preliminary numerical results have been given and 
discussed, indicating a clear potential for further research. 

In particular, the use of negative curvature directions appears to require more sophistication. 
Although the current method works in its current naive form, it converges slowly for problems 
involving massive indefiniteness. Less naive strategies are thus needed and are the object of 
current investigations. Other potentially promising developments have been outlined in Section 3. 

Unsurprisingly there are disadvantages to the approach we have taken. The primary numerical 
linear algebraic computation is essentially a calculation involving the Karush-Kuhn-Tucker matrix 

which is inherently non-trivial to handle because one expects small components in zk without 
corresponding small components in zk. The analogous matrix in the case of linear programming 
is the matrix 

The fact that in this case the upper left-hand block is diagonal (and for non-degenerate problems 
this matrix is asymptotically non-singular) makes this form of ill-conditioning easier to handle, 
(see for example, Wright (1992)). However, Poncele6n (1990) and Forsgren, Gill and Shinnerl 
(1996) show how one can treat the general case. 

A more direct concern is that it is inappropriate to use the normal equations when considering 
(5.6) instead of (5.7). Many authors have suggested using a direct factorization of (5.6)/(5.7) (see 
for example Duff, Gould, Reid, Scott and Turner (1991), Fourer and Mehrotra (1993), Vanderbei 
and Carpenter (1993) and Andersen et al. (1996)) which can be very successful. Other issues 
we would like to consider in future include trying to justify why a primal-dual approach should 
be more successful globally even for nonconvex problems than a primal approach, and trying to 
explain why the central path appears to be so important. Since it is also generally recommended 
that, at least in the case of interior point approaches to the linear programming problem, one 
makes use of predictor-corrector techniques to enhance performance, we remark that we wish to 
extend the methods considered here to include such improvements. 

6 Acknowledgements 

The authors are pleased to acknowledge the useful comments made by M. H. Wright. 



References 

E. D. Andersen, J. Gondzio, C. MCszQos, and X. Xu. Implementation of of interior point 
methods for large scale linear programming. In T. Terlaky, ed., ‘Interior Point Methods in 
Mathematical Programming’, pp. 189-252, Kluwer Academic Publishers, Dordrecht, 1996. 

I. Bongartz, A. R. Conn, N. I. M. Gould, and Ph. L. Toint. CUTE: Constrained and unconstrained 
testing environment. ACM Transactions on Mathematical Software, 21(  l ) ,  123-160, 1995. 

J. F. Bonnans and C. Pola. A trust region interior point algorithm for linearly constrained 
optimization. Rapport de recherche 1948, INRIA, Rocquencourt, France, 1993. 

T. J. Carpenter, I. J. Lustig, J. M. Mulvey, and D. F. Shanno. Higher-order predictor-corrector 
interior point methods with application to quadratic objectives. SIAM Journal on Opti- 
mization, 3(4), 696-725, 1993. 

A. R. Conn, N. I. M. Gould, A. Sartenaer, and Ph. L. Toint. Convergence properties of an 
augmented Lagrangian algorithms for optimization with a combination of general equality 
and linear constraints. SIAM Journal on Optimization, 6(3), 674-703, 1996. 

A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Global convergence of a class of trust region 
algorithms for optimization with simple bounds. SIAM Journal on Numerical Analysis, 
25(2), 433-460, 1988. See also same journal 26 ,  764767, 1989. 

A. R. Conn, N. I. M. Gould, and Ph: L. Toint. LANCELOT: a Fortran package for large-scale 
nonlinear optimization (Release A ) .  Number 17 in ‘Springer Series in Computational Math- 
ematics’. Springer Verlag, Heidelberg, Berlin, New York, 1992. 

A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Numerical experiments with the LANCELOT 
package (Release A) for large-scale nonlinear optimization. Mathematical Programming, 
73(1), 73-110, 1996. 

CPLEX. High-performance linear, integer and quadratic programming software Version 4.0. 
CPLEX Optimization, Inc., Incline Village, Nevada, USA, 1995. 

I. S. Duff and J. K. Reid. The multifrontal solution of indefinite sparse symmetric linear equations. 
ACM Transactions on Mathematical Software, 9(3), 302-325, 1983. 

I. S. Duff, N. I. M. Gould, J. K. Reid, J. A. Scott, and K. Turner. The factorization of sparse 
symmetric indefinite matrices. IMA Journal of Numerical Analysis, 11, 181-204, 1991. 

A. Forsgren and P. E. Gill. Primal-dual interior methods for nonconvex nonlinear program- 
ming. Technical report trita-mat-1996-0s4, Department of Mathematics, Royal Institute of 
Technology, Stockhom, Sweden, 1996. 

A. Forsgren, P. E. Gill, and J. R. Shinnerl. Stability of symmetric ill-conditioned systems arising 
in interior point methods for constrained optimization. SIAM Journal on Matrix Analysis 
and Applications, 17(1), 187-211, 1996. 

A. L. Forsgren and W. Murray. Newton methods for large-scale linear equality-constrained 
minimization. SIAM Journal on Matrix Analysis and Applications, 14(2), 560-587, 1993. 



R. Fourer and S. Mehrotra. Solving symmetrical indefinite systems in an interior-point method 
for linear programming. Mathematical Programming, 62( l), 15-39, 1993. 

P. E. Gill, W. Murray, D. B. Ponceliion, and M. A. Saunders. Solving reduced K K T  systems 
in barrier methods for linear and quadratic programming. Technical Report SOL 91-7, 
Department of Operations Research, Stanford University, Stanford, California 94305, USA, 
1991. 

P. E. Gill, W. Murray, D. B. Ponceleon, and M. A. Saunders. Primal-dual methods for linear 
programming. Mathematical Programming, 70(3) , 251-277, 1995. , 

P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright. A Schur-complement method for 
sparse quadratic programming. In M. G. Cox and S. J. Hammarling, eds, ‘Reliable Scientific 
Computation’, pp. 113-138, Oxford University Press, Oxford, 1990. 

N. I. M. Gould. On practical conditions for the existence and uniqueness of solutions to the general 
equality quadratic-programming problem. Mathematical Programming, 32( l), 90-99, 1985. 

N. I. M. Gould. An algorithm for large-scale quadratic programming. IMA Journal of Numerical 
Analysis, 11(3), 299-324, 1991. 

N. I. M. Gould. Constructing appropriate models for large-scale, linearly-constrained, nonconvex, 
nonlinear, optimization algorithms. Technical Report R A G T R  95-037, Rutherford Appleton 
Laboratory, Chilton, England, 1995. 

L. Grippo, F. Lampariello, and S. Lucidi. A nonmonotone line search technique for Newton’s 
method. SIAM Journal on Numerical Analysis, 23(4), 707-716, 1986. 

Harwell Subroutine Library. A catalogue of subroutines (mlease 12). AEA Technology, Harwell, 
Oxfordshire, England, 1995. 

N. J. Higham and S. H. Cheng. Modifying the inertia of matrices arising in optimization. Numer- 
ical Analysis Report No. 295, Manchester Centre for Computational Mathematics, Manch- 
ester, England, 1996. 

International Business Machine Corporation. Optimization Subroutine Library .- Guide and Ref- 
erence, second edn, 1990. 

B. A. Murtagh and M. A. Saunders. Large-scale linearly constrained optimization. Mathematical 
Programming, 14( l),  41-72, 1978. 

B. A. Murtagh and M. A. Saunders. MINOS 5 .4  USER’S GUIDE. Technical Report SOL83-20R, 
Department of Operations Research, Stanford University, Stanford, California 94305, USA, 
1993. 

D. B. Poncele6n. Barrier methods for large-scale quadratic programming. PhD thesis, Department 
of Computer Science, Stanford University, Stanford, California 94305, USA, 1990. 

S. M. Robinson. A quadratically convergent algorithm for general nonlinear programming prob 
lems. Mathematical Programming, 3(2), 145-156, 1972. 

29 



J. B. Rosen and J. Kreuser. A gradient projection method for nonlinear constraints. In F. A. 
Lootsma, ed., ‘Numerical Methods for Nonlinear Optimization’, pp. 297-300, Academic 
Press, London and New York, 1972. 

D. F. Shanno. Algorithms for linear programming. In E. Spedicato, ed., ‘Algorithms for continu- 
ous optimization. The state of the art’, pp. 383-414, Kluwer Academic Publishers, Dordrecht, 
1994. 

E. M. Simantiraki and D. F. Shanno. An infeasible-interior-point method for linear complemen- 
tarity problems. Research Report RRR 7-95, RUTCOR, Rutgers University, New Brunswick, 
NJ 08903, USA, 1995. 

Ph. L. Toint. An assessment of non-monotone linesearch techniques for unconstrained optimiza- 
tion. SIAM Journal on Scientific Computing, 17(3), 725-739, 1996. 

R. J. Vanderbei and T. J. Carpenter. Symmetrical indefinite systems for interior point methods. 
Mathematical Programming, 58(1), 1-32, 1993. 

J. H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford University Press, Oxford, 1965. 

M. H. Wright. Determining subspace information from the Hessan of  a barrier function. Numerical 
Analysis Manuscript 92-02, AT&T Bell Laboratories, Murray Hill, USA, 1992. 

Y. Zhang and D. T. Zhang. Superlinear convergence of  infeasible-interior-point methods for linear 
programming. Mathematical Programming, 66(3), 361-377, 1994. 

30 


