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Abstract 

We consider a scenario in which the minimal supersymmetric standard model (MSSM) 
is valid up to  an energy scale of N 10l6 GeV, but that above this scale the theory is 
supplemented by extra vector-like representations of the gauge group, plus a gauged 
U(l)x family symmetry. In our approach the extra heavy matter above the scale - 10l6 GeV is used in two different ways: (1) to allow (two-loop) gauge coupling 
unification at the string scale; (2) to mix with quarks, leptons and Higgs fields via 
spaghetti diagrams and so lead to phenomenologically acceptable Yukawa textures. 
We determine the most economical models in which the extra matter can satisfy both 
constraints simultaneously. We then give a general discussion of the infra-red fixed 
points of such models, pointing out the conditions for infra-red stability, then discuss 
two semi-realistic examples: a Higgs mixing model, and a quark mixing model. 



1 Introduction 

The apparent unification of the gauge couplings at a scale M G ~ T  N 10l6 GeV [l] is 
an encouraging feature of the MSSM, whose direct experimental verification so far 
remains out of reach. Nevertheless this conceptual triumph leads naturally to the 
question of the nature of the new physics beyond the MSSM. It  is unlikely that the 
MSSM can survive unchanged above MG~T  N 10L6 GeV since the gauge couplings 
which converge on this scale begin to diverge above it, and are quite unequal at the 
string scale Mx N 5 x 1017 GeV, even taking into account higher Kac-Moody levels 
and string threshold effects [2]. The traditional approach is to embed the MSSM 
in some supersymmetric grand unified theory (SUSY GUT) but such an approach 
presents many theoretical and phenomenological challenges [3, 4, 51, and we shall not 
consider it further here. 

In string gauge unification the three gauge couplings of the MSSM are directly 
related to each other at the string scale MX [6]. String theories give the relation [7] 

MX = 5.27 x 1017gx GeV, 

where gx is the unified gauge coupling at the string scale Mx. If the MSSM (and 
nothing else) persists right up to the string scale Mx such theories do not appear to be 
viable since we know that the gauge couplings cross at N 10l6 GeV, and significantly 
diverge at the string scale N 5 x 1017 GeV. However the situation is in fact not so clear 
cut since the U( 1)y hypercharge gauge coupling has an undetermined normalisation 
factor Icl 2 1 (where for example Icl = 5/3 is the usual GUT normalisation) which may 
be set to be a phenomenologically desired value [8] by the choice of a particular string 
model. However the simplest string theories (e.g. heterotic string with any standard 
compactification) predict equal gauge couplings for the other two observable sector 
gauge groups 9 2  = g3 at the string scale Mx, which would require a rather large 
correction in order to account for a,(mZ) [7, 91. In fact, a recent analysis [2, 101 
concludes that string threshold effects are insufficient by themselves to resolve the 
experimental discrepancy. The analysis also concludes that light SUSY thresholds 
and two-loop corrections cannot resolve the problem, even when acting together. In 
order to allow the gauge couplings to unify at the string scale it has been suggested 
[ll] that additional heavy exotic matter in vector-like representations should be added 
to the MSSM at some intermediate scale or scales MI < Mx, leading to the so called 
MSSM+X models. A detailed unification analysis of such models was performed by 
Martin and Ramond (MR) [12] for example. 

In a previous paper [13] we performed a general unification analysis of MSSM+X 
models, focusing on the infra-red fixed point properties of the top quark mass predic- 
tion, using similar techniques to those proposed for the MSSM and GUTS [14, 15,161. 
The main result was that the top quark mass tends to be heavier than in the MSSM, 
and closer to its quasi-fixed point in these models. In the present paper we consider 
a scenario in which the MSSM is valid up to an energy scale of MI N 10f6 GeV. 
Above this scale the theory is supplemented by extra vector-like representations of 
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the gauge group, plus a gauged U(l)x family symmetry. The basic idea of our ap- 
proach is that the extra heavy matter above the scale N 10l6 GeV may be used in 
two different ways: (1) to allow (two-loop) gauge coupling unification at the string 
scale; (2) to mix with quarks, leptons and Higgs fields via spaghetti diagrams and 
so lead to phenomenologically acceptable Yukawa textures. We emphasise that in 
this approach the operators required for Yukawa textures are generated from the 
dynamics of the effective field theory beneath the string scale rather than from the 
string theory itself. The overall philosophy of the approach so far is just to explain 
the data on fermion masses and mixing angles qualitatively. Unfortunately, once the 
extra fields have been added there are many extra free parameters than data points. 
It was pointed out by Ross [17] that if there were an infra-red stable fixed point 
in the renormalisation group flow of these models, it might be possible to constrain 
all of the parameters of the model at some high scale (but below the string scale). 
This would make the model quantitative and predictive (and therefore testable). If 
properly realised, this approach has the potential to predict all of the masses and 
mixings in terms of about two free parameters. Ross provided an example of such 
a model with extra heavy Higgs-type multiplets and showed that (under a certain 
approximation) the model did indeed possess an infra-red stable fixed point. Our 
work differs from that of Ross [17] in that we perform a detailed analysis of string 
gauge unification, and in addition we allow more general mixing possibilities along 
the Higgs, quark and lepton lines of the spaghetti diagrams. In our approach these 
two questions are related since the extra states required for unification are also used 
for spaghetti mixing. This economical double use of the extra heavy matter is the 
main new idea of the present paper. We also give a general discussion of the fixed 
points of such models, pointing out the conditions for infra-red stability. 

The layout of the remainder of this paper is as follows. In section 2 we show how 
Yukawa textures may be generated from a broken U(l)x gauged family symmetry 
where the desired operators are generated from the effective field theory beneath the 
string scale via spaghetti diagrams. In section 3 we discuss a two-loop analysis of 
string gauge unification, where the extra states are consistent with the requirements 
of the previous section. In section 4 we give a general discussion of the infra-red 
fixed point nature of such models, then discuss two semi-realistic examples. Section 5 
concludes the paper. Appendix 1 summarises the running of the gauge couplings to 
two loops in models with matter additional to the MSSM, appendix 2 lists the wave- 
function renormalisations for the general model discussed in section 4, appendix 3 
details the infra-red fixed point of the Higgs mixing model, and appendix 4 details 
the infra-red fixed point of a quark-line mixing model. 
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2 Yukawa Textures from U(1)x Family Symmetry, 
Vector Representations and Spaghetti Diagrams 

Some time ago, Ibanez and Ross (IR) [18] showed how the introduction of a gauged 
U(1)x family symmetry to the MSSM could be used to provide an explanation of 
successful quark and lepton Yukawa textures. The idea is that the U(l)x family 
symmetry only allows the third family to receive a renormalisable Yukawa coupling 
but when the family symmetry is broken at a scale not far below the string scale 
other families receive suppressed effective Yukawa couplings. The suppression factors 
are essentially powers of the vacuum expectation values (VEVs) of 8 fields which are 
MSSM singlets but carry U(l)x charges and are responsible for breaking the family 
symmetry. The relevant operators that give the small effective Yukawa couplings 
are scaled by heavier mass scales M identified as the masses of new heavy vector 
representations which also carry U( l)x charges. IR envisaged a series of heavy Higgs 
doublets of mass M with differing U(l)x charges which couple to the lighter families 
via sizable Yukawa couplings that respect the family symmetry. The heavy Higgs 
doublets also couple to the MSSM Higgs doublets via 8 fields and this results in 
suppressed effective Yukawa couplings when the family symmetry is broken. 

More recently Ross [17] has combined the idea of a gauged U( 1)x family symmetry 
with a previous discussion of infra-red fixed points. The idea behind this approach 
is that since there are no small Yukawa couplings one may hope to determine all the 
Yukawa couplings by the use of infra-red fixed points along similar lines to the top 
quark Yukawa coupling determination. This attractive idea thus allows the determi- 
nation of otherwise unknown parameters in the model, simply by the dynamics of 
the renormalisation group (RG) flow of the model. An explicit model was discussed 
in detail [17], based on the MSSM gauge group enhanced by U(1)x. The question 
of gauge coupling unification was addressed [17] by adding complete SU(5) 5 G3 6 
representations (which contain the additional Higgs states required for the mixings) 
to the MSSM theory with masses just below the unification scale. These have no 
relative effect on the running of the three gauge couplings to one loop order, however 
at two-loop order it was claimed that the unification scale is raised. However we find 
that such a mechanism is not completely viable, and we replace it (in the next sec- 
tion) by a general two-loop analysis of the string gauge unification, where the heavy 
exotic matter has a mass close enough to the string scale to allow it  to be also used 
for the generation of Yukawa textures, as we explain later in this section. 

Following IR [18] we introduce a gauged U( l ) ~  family symmetry into the MSSM. 
The way this is achieved is well documented and here we only sketch the main results. 
The quark and lepton multiplets are assigned family dependent (FD) charges as shown 
in Table 1. 

The need to preserve SU(2)L invariance requires left-handed up and down quarks 
(leptons) to have the same charge. This, plus the additional requirement of symmet- 
ric matrices, indicates that all quarks (leptons) of the same i-th generation transform 
with the same charge ai, It is further assumed that quarks and leptons of the same 
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Table 1: U ( ~ ) F D  charges assuming symmetric textures. 

family have the same charge (this additional assumption was made by Ross [17]). 
The full anomaly free Abelian group involves an additional family independent com- 
ponent, U ( l ) ~ r ,  and with this freedom U(l),o is made traceless without any loss of 
generality'. Thus we set a1 = -(a2 + a3). 

Making the above assumptions all charge and mass matrices have the same struc- 
ture under the U ( ~ ) F D  symmetry. The FD charge matrix involving two quark or 
lepton fields and a Higgs is of the form 

-2a2 - 4a3 -3a3 -a2 - 2a3 
-3a3 2(a2-a3) Q 2  - Q 3  

-a2 - 2a3 a2 - a3 0 

Acceptable textures are obtained for 

= 1  a3 
Q2 - Q3 

or 
a2 = 2a3 

(3) 

(4) 

However these are only the family dependent charges. The total U(l)x charges 
are given by 

U(1)X = U(1)FD -k U ( 1 ) F Z  ( 5 )  

where the corresponding FI charges are denoted by t , f  and the resulting U(1)x 
charges are given in Table 2. 

Table 2: U( l)x charges assuming symmetric textures. 

The choice of FI charges in Table 2 is the most general choice consistent with 
anomaly cancellation amongst the quarks and leptons via the Green-Schwarz mech- 
anism [18] which is based on assigning SU(5) multiplets equal charges. The Higgs 
charges are chosen to  as to  allow a renormalisable coupling to  the third family and 
so the charge matrix in Eq.2 applies equally well to the U(l)x charges. In order to  

'Since we assume that the 33 operator is renormalisable, the relaxation of the tracelessness 
condition does not change the charge matrix since any additional FI charges can always be absorbed 
into the Higgs charges H ~ J .  
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allow anomaly cancellation amongst the Higgs doublets, and permit a renormalisable 
p mass term between the Higgs doublets we must arrange that the Higgs carry zero 
X charge, which in turn implies that  the third family has zero X charge, and this is 
accomplished by choosing: 

f = t = - 0 3 ,  

Putting 0 3  = 1, where the U(1)x symmetry is broken by the VEVs of MSSM singlet 
fields 8 and e with U( l )x  charges -1 and +1 respectively implies the following simple 
X charges for the three families: 

(7)  

ISt  family: X = -4 

Yd family: X = O 
Yd family: X = +I . (8) 

Since the Higgs charges are zero the charge matrix is simply the matrix given by the 
sum of the quark (or lepton) charges from each family: 

-8 -3 -4 

(1; =1 'b) 
In any mass term, the sum of the charge of the fields in that term must be zero to 
preserve U(1)X.  Thus from Eq.9, the operators that  could possibly generate the U 
quark mass matrix are: 

Q3 G H 2 ,  Q3 QH2 (e), Q2 U3CH2 (e),  
Q2U2CH2 (8) 2, Q3 U:H2 (e)', Q1 U;H2 ( 0)" 
QI U,"H2 (8)" Q2 ( e)3, QI U p 2  (8) 3. (10) 

Because each 8 or 8 field corresponds to  a suppression factor of E (where E =< 8 > 
/MI =< 8 > /MI ) the corresponding texture is of order 

(; ; C). 
We now turn to the question of the origin of the non-renormalisable 

(11) 

operators 
in Eq.10. A natural answer to this question was provided early on by Fkoggatt and 
Nielsen (FN) [19]. The basic idea involves some new heavy matter of mass2 M, which 
are in vector representations of the MSSM gauge group and which carry charges 
under the family group U(1)x. The vector-like matter couples to ordinary matter 
(quarks, leptons, Higgs) via the MSSM singlet fields 8 and e leading to "spaghetti-like" 
tree-level diagrams. The spaghetti diagrams yield the effective non-renormalisable 
operators in Eq.10. 

~ 

We will identify the new heavy matter required to generate the non-renormalisable operators 
with the new heavy matter required to ensure string gauge unification so we take the mass scale to 
be MI. 
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Q I"' U :p' 
Figure 1: Renormalisable 33 operator. 

An explicit realisation of this mechanism was discussed by IR[18] and subsequently 
by Ross [17], based on the heavy vector-like matter corresponding to  additional Higgs 
doublets which could mix with the MSSM doublets H I ,  H2 via the spaghetti diagrams. 
Thus the following Higgs were introduced [17], 

where the U ( l ) x  charges are given in parentheses, and Hi; have hypercharges Y/2 = 
-1/2,1/2, and I?!;+) have hypercharges Y/2 = 1/2, -1/2, respectively. The idea is 
that the Higgs Hi; have direct couplings to the lighter families and mix with the 
MSSM Higgs H1,2 via singlet 8 fields. Thus the renormalisable Higgs terms (where 
we have neglected the Yukawa couplings) are : 

For example, the renormalisable 33 operator is depicted in Fig.1. 

Such direct Higgs couplings, allowed by the U( l )x  symmetry, combined with Higgs 
mixing via singlet field insertions, lead to the effective non-renormalisable operators 
in Eq.9. For example the spaghetti diagram responsible for the 32 quark mixing 
term is illustrated in Fig.2. It is clear 'that such diagrams generate all the operators 
in Eq.10. By drawing such diagrams it becomes clear that additional heavy vector 
Higgs are required beyond those in the direct coupling matrix in Eq.13. It is easy to 
see that all Higgs charges in integer steps between 8 and -2 are required if all elements 
of the mixing matrix are to be non-zero. For example Cabibbo mixing requires the 
additional Higgs with charges 2 and 1 (plus their conjugates) so that the Higgs of 
charge 3 can step down to the ,Higgs of zero charge via three 8 field insertions as 
shown in Fig.3. 
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Figure 2: Spaghetti diagram for 32 mixing 

The full list of Higgs required for this scenario is larger than assumed in Eq.12 
and is displayed below: 

Since complete Higgs mixing requires 20 Higgs vector representations, rather than 
10 as assumed on the basis of the direct Higgs couplings, i t  is natural to try and 
look for a more economical alternative. This provides a motivation to study quark 
and lepton mixing in addition to  Higgs mixing, as a means of generating the desired 
non-renormalisable operators. For example in Fig.4 we show a spaghetti diagram 
which can generate 32 mixing along the U" line. Notice that we have added an 
intermediate quark U(O) with the same quantum numbers under the gauge symmetry 
of the model as U:. In general, both will mix with U(') through a heavy mass term 
and we may always rotate the definition of the fields such that one of the linear 
combinations is massless. We identify this combination with the (conjugate) right 
handed top superfield of the MSSM and the other with the heavy field involved in 
the mass suppression of the spaghetti diagrams3. This means that vector quark and 
lepton states must be added, one chiral partner of which has the same X charge as a 
MSSM state. In Fig.5 we show how 32 mixing can be generated by mixing along the 
Q line. 

3Wherever two fields with identical quantum numbers are present, one of which is a state of 
the MSSM, we will assume that this mixing has already been accounted for. The states labeled as 
MSSM states will thefore be defined as the massless linear combination. 
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Figure 3: Spaghetti diagram for Cabibbo (12) mixing 
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Figure 4: Spaghetti diagram for 32 mixing along the U line 

Figure 5: Spaghetti diagram for 32 mixing along the Q line 
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Similar diagrams can be drawn for the other mixings, and by consideration of such 
diagrams we can see that vector fields with X charges from -4 to 4 in integer steps 
are required. For example complete mixing along the Q line requires: 

corresponding to 9 vector Q + Q representations. Also, mixing along the U" line 
requires 9 vector U" + UC representations; mixing along the D" line requires 9 vector 
D" + D c  representations; mixing along the L line requires 9 vector L + represen- 
tations; and mixing along the E' line requires 9 vector E" + I?" representations. In 
each case the X charges run from -4 to +4 in integer steps (plus the opposite charges 
for the conjugate states), as in Eq.15. 

Now that we have allowed quark and lepton mixing (along the doublet and/or 
singlet lines) as well as Higgs mixing, many possibilities present themselves, corre- 
sponding to different combinations of each type of mixing. In the next section we 
shall use the constraint of string gauge unification to help to discriminate between 
the different possibilities. Here we shall make some general observations about the 
model building. 

Let us begin with the U mass matrix. T We can envisage a scenario in which we 
have the 9 Q + Q fields listed' in Eq.15, plus 9 vector U" + representations. In 
addition to these we also have the three chiral families with the X charges -4,1,0 as 
discussed above. To be more general we must also consider additional Higgs vector 
representations. We have seen that a possible Higgs mixing scenario requires 10 
H2 + H 2  plus 10 Hl + extra Higgs with H charges from 8 to -2. However we 
may also wish to consider Higgs which couple any vector quark field to any other 
vector quark field, in which case the Higgs charges must range from 8 to -8. If for 
the moment we ignore the MSSM fields, but include all of the extra vector fields 
mentioned above then we have a 9 x 9 matrix of Higgs couplings to quark fields: 

U(-4) U(-3) u(-1) u(0) U(1) u(2) u ( 3 )  U(4) 
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where the family index is indicated by a subscript and the X charge is indicated by a 
superscript. The matrix now becomes a 12 x 12 matrix, and the Higgs content stays 
the same. We can now consider all possible ways in which mass mixing between the 
MSSM quarks can occur. In general for ij mixing we require a spaghetti diagram 
with the external lines consisting of Qi, Uj,  HP'. In addition we are allowed to hang 
any amount of 8 and e spaghetti along any of the three lines Q, U, H2 in order to 
achieve the mixing where the minimum amount of spaghetti corresponds to the lead- 
ing non-renormalisable operator. To take a trivial example the 33 operator Q3U3Hr' 
is achieved directly at tree level without any spaghetti. At the other extreme the 11 
operator Q',-"Uv,'-"HF) is clearly forbidden at tree level by the X symmetry, with 
the allowed non-renormalisable operator being Q\-4)U~-4)HP)(8(1))8. The required 8 
pieces of 8 spaghetti can be hung along any of the three lines Q, U, H2 depending on 
the vector fields and charges which are assumed. For example in the Higgs mixing 
scenario of IR there is a tree level Higgs coupling Q\-"U!-"HP) and the MSSM Higgs 
HF) is achieved by stepping down the Higgs charge along the first row of the matrix 
in Eq.16 with the Higgs charge decreasing by one unit after each 8 field insertion: 

with all the spaghetti mixing along the Higgs line. With the additional vector Q and 
U" fields considered above there are alternative ways in which the spaghetti mixing 
can take place. For example we could begin from the non-renormalisable operator 
Q\-4)U(4)Hi0) and step down the the U line to reach the desired U!-4) field: 

The resulting spaghetti diagram now has all the mixing along the U line, but is of 
the same order as the previous diagram. We could repeat this starting instead from 

the desired Q\-4) field: 

the non-renormalisable operator Q(4)U!- 4) H2 (0) and step down the the Q line to reach 

The resulting spaghetti diagram now has all the mixing along the Q line, but is of 
the same order as the previous diagram. There are of course many other possibilities 
which involve a combination of the three types of mixing, and all these possibilities 
will lead to non-renormalisable operators of the same order. For example suppose we 
again wish to generate the 11 operator Q(1-4)U!-4)H.f))(B(1))8 starting from the tree 
level operator Q(-z)U(-2)H44). Now in order to achieve this we must have all three 
types of mixing simultaneously: 

\ 
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Again the 11 operator is eighth order, but now there are four pieces of spaghetti 
from the Higgs line, two from the U line and two from the Q line. There are clearly 
many other possible ways of achieving 11 U mixing. The discussion of the other U 
mixings is similar. Finally the discussion of the D and E mixing matrices follows a 
similar pattern. The most general model clearly involves 9 vector copies of each of 
(Q + Q), (U + U), (D  + D) ,  (L  + E) ,  (E + E),  where we denote the number of vector 
copies as nQ,nU,nD,nL,nE respectively, plus 16 vector copies of each of the Higgs 
fields (Hz + R2), (HI + RI), where we denote the number of vector copies as nH, , nH,, 
respectively. 

This is clearly not the most economical model. For example the Ross[l7] model 
is based on no extra vector quarks and leptons and 10 vector copies of each of (H2 + 
R2), (HI + HI). In the next section we shall impose the constraint of string gauge 
unification in order to try to determine a more economical model. However it is clear 
from the discussion of this section, that if too few extra vector states are allowed, then 
the required mass mixing will not be achievable. Therefore we seek the minimal model 
which is consistent with the constraints of spaghetti mixing discussed here, and string 
gauge unification. Since mixing can be achieved by a combination of mixing along 
the three different lines of the spaghetti diagram, in the next section we shall impose 
the following conservative lower limits on the minimal numbers of vector copies of 
fields. From U mixing we require: 

n ~ + n 2 + n ~ 2 8 .  (24) 

From D mixing we require: 

From E mixing we require: 

where for convenience we have defined the total number of doublets as 

n~ + 122 + n~ 2 8. 

722 + nE 2 8.  

In addition we shall allow for exotic superfields known as “sextons” S which are colour 
triplets, electroweak singlets and have hypercharge 1/6. The sextons occur together 
with their vector conjugate (S + 3) and we denote the number of vector copies of 
sextons as ns. These superfield representations are present in the massless spectrum 
of some string models [20]. 

3 String gauge unification analysis 

We now describe the numerical constraints placed upon the models to ensure that 
they provide agreement with the low energy data, string scale gauge unification and 
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are compatible with models of fermion mass and mixing. Since we are hoping to 
eventually embed the model into a free-fermionic Kac-Moody level 1 string model, 
we must make sure that the gauge couplings obey the constraint of gauge unification 
at the string scale as in Eq.1. Another constraint comes from the agreement with the 
empirically determined values of the gauge couplings at low energy scales [21]. The 
data used is 

a(Mz)-’ = 127.90 f 0.09 
sin2 0, = 0.2315 f 0.0002 

a s ( M ~ )  = 0.118 f 0.003, 
- 

where the numbers quoted are those derived in the MS renormalisation scheme from 
experiments. In what follows, we shall assume central values for a(MZ)-’, sin2 t9w 
because their errors are comparatively small. The third constraint comes from the 
fact that we are expecting to use the intermediate matter as the heavy fields in 
a family U(l)x model of fermion masses. As previously demonstrated [18], these 
models require MI to be within a couple of orders of magnitude of Mx to make the 
GSW anomaly cancellation mechanism work consistently. After some other filtering 
of models, as described below, the condition imposed on any successful model will be 

Previous models of U( l )x  family symmetry require a GUT type normalisation of Y 
from the anomaly cancellation conditions. Therefore, our condition upon the unifica- 
tion of gauge couplings will be 

corresponding to a Kac-Moody level 1 string model with kl = 5/3. Finally, bearing 
in mind the long-term view of requiring the intermediate sector to mediate masses 
and mixings to all of the SM fermions, we impose Eqs.24-26 We then search through 
all of the models satisfying Eqs.24-26 for nQ, 722, nu, nD, nE 5 10 in order to find 
the models with less field content. 

We now describe the systematic procedure to determine the models that pass 
the constraints4 given by Eqs.24-26,28-30. Because of computer time constraints, we 
were not able to determine the predictions to two-loop order of every model satisfying 
Eqs.24-26. The following procedure was therefore adopted: the predictions for every 
different choice of intermediate field content were determined to one loop order as 
in [13] for kl = 5/3. If the one-loop predictions did not satisfy certain constraints to 
be described shortly, the models were discarded. For any models passing the previous 
“cut”, the predictions were obtained at two-loop order. 

The first one-loop filtering procedure was as follows: once a model has been se- 
lected by a a particular choice of intermediate matter, a guess (Mx ’ )  of the string 

41n fact, we will allow the prediction of as(Mz) to be within 20 of the value quoted in Eq.28. 
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unification scale was made. The condition al(Mx') = az(Mx') yields a value of MI 
consistent with unification at MX by solving the one-loop RGEs for a1 and a2 in the 
MS scheme to obtain 
- 

77 13 5 
10 30 3 27r(aT1(Mz) -a;'(Mz)) - - l n M ~ + - l n m t + - l n M ~ ~ ~ y  

56 6 
10 10 - ( 3 n ~  + n2 - - - -YT) In MX 

where YT denotes 
the hypercharge of the intermediate state i. Throughout the numerical analysis, the 
entire SUSY spectrum was assumed to be at an effective scale equal to  MsUsy. Any 
threshold effects were taken into account by a step function approximation. With MI 
and Mx' values consistent with gauge unification at a scale Mx', we could calculate 
Mx consistent with string scale unification in Eq.1 by finding 

Ci(Y,/2)2, i runs over all of the intermediate states and 

25 mt 19 MSUSY 1 MI 
127r h.32 127r mt 2lr M S U S Y  

a;'(Mx) = a,'(Mz) + -In - + -In - -1n 

and substituting it into Eq.1. To obtain values of Mx, MI consistent both with 
al(Mx) = a2(Mx) and Eq.1, we now substitute Mx' with MX and iterate the above 
procedure until Mx = Mx' is satisfied to some required accuracy. This yields a 
prediction for as(M2) by using a3(Mx) E a~ where QIG is the string scale unified 
gauge structure constant. a3 is then run to low energies using the one loop RGEs, 

23 1 2 
= QG(MX) + - In kfz - - In mt - - In Msusv - 

67r 37r 7r 
~, '(Mz) 

nu - nD In M ~ .  (33) 
2 n ~  + nu -+- n~ 3 - 2nQ - 

1nMI - 
27r 27r 

We have set Msusy = mt, which5 we take to be 166 GeV, corresponding to a top 
quark pole mass of 180 GeV for central values of as(Mz) ,  as in ref. [21]. We will 
return later to the effect of the empirical errors upon the inputs. We now require each 
model to pass the cuts as(Mz) 5 0.124 and MI/Mx L. 1/100 to be worthy of the 
two-loop analysis. Note that these constraints are purposefully less severe than the 
ones in Eqs.28,29 because we do not want to discard models in which the imprecise 
one-loop predictions do not pass the more restrictive constraints, but in which the 
two-loop predictions pass. 

Having attained a list of all models that passed the initial cuts, the two-loop pre- 
dictions were then attained. At the two-loop level, the third family Yukawa couplings 
all effect the running of the gauge couplings and therefore the predictions of gauge 
unification. To a good approximation, the other Yukawa couplings of the MSSM have 
a negligible effect upon the running. As a starting point we must then obtain the val- 
ues of these couplings at a particular scale, for a chosen value of tan@ and as(Mz). 

5mt denotes the running top mass in the renormalisation scheme. 
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Once we have selected these two parameters, we may determine the renormdised 
masses mt,b,T(mt) of the top, bottom and tau particles at the renormalisation scale 
mt, by running the three loop QCD 8 one loop QED RGEs through quark thresholds 
between mT and MsusV in the M S  scheme [22]. as(p < Mz) is actually run using a 
state of the art four loop QCD beta function [23]. In fact, the four loop contribution 
only changes the predictions by a few parts per thousand. This fact has a limited 
significance because the coefficient functions required to extract as(MZ) from data 
are only known to at most two loops. The three gauge couplings are also run between 
Mz and mt in the M S  scheme, assuming the particle spectrum of The Standard 
Model without the Higgs or top quark. The third-family MS Yukawa couplings may 
then be determined by [24] 

- 

- 
- 

where U = 246.22 GeV is the scale parameter of electroweak symmetry breaking. 
Above mt, we wish to use the RGEs for the MSSM contained in Appendix 1. However 
these are in the DR scheme and so at mt we match all of the quantities obtained in 
the M S  scheme to the DR scheme. A guess for the intermediate scale MI is chosen 
and the gauge couplings and third family Yukawa couplings are run to this scale. 
Above MI,  the effect of the intermediate matter is felt and the RGEs change as 
prescribed in Appendix 1. The couplings are run up in scale until either it becomes 
non-perturbative (which we take to be greater than 4) or until gl(p)  = g&). In 
the first case the value of MI chosen is abandoned and in the second a prediction 
for a3(mt) is obtained by using the gauge unification condition. This is implemented 
by setting g3(p) = gz(p) and then running all of the couplings down to mt taking 
the intermediate matter into account and integrating it out of the effective theory at 
MI. We may now iterate the above procedure using the previous predicted value of 
g3(mt) as an input each time until a3(rnt) converges and we have a value consistent 
with gauge unification with the intermediate matter at the guess value of MI. The 
above procedure is then repeated for different values of MI until a value is found in 
which the gauge couplings and unification scale satisfy Eq.1, i.e. the constraint of 
string scale gauge unification. It is a simple matter to re-convert a3(mt) back into 
the M S  scheme and run back down to determine as(MZ). Thus, for a given tanp ,  
we now have the predictions hf I ,a~ (Mz )  that come from the assumption of string 
scale gauge unification. The conditions in Eqs.28,29 are then employed to remove 
any models which do not agree with the data or fit into the type of models of fermion 
masses being considered. 

Tables 3,4 display the results of the algorithm described above for tan P = 43,5 
respectively. The constraints we impose upon the models are so tight that out of the 
tens of thousand models examined, only a few models pass the constraints in each 
case. Note that for t a n p  = 43, only two of these give as(Mz) predictions within 
10 of the central value. The minimum number of extra vector multiplets added is 

- 
- - 

- 

15 



122 nQ nu nD nE a3(MZ) MX/1Ol8 GeV M1/1017 GeV 
0 9 4 10 8 0.1173 0.5763 0.3387 
0 10 5 10 8 0.1236 0.5457 0.5416 
1 9 5 10 7 0.1172 0.5925 0.3428 
1 10 6 10 7 0.1235 0.5565 0.5466 
2 10 7 10 6 0.1234 0.5681 0.5520 
3 10 8 10 5 0.1233 0.5808 0.5579 
4 10 9 10 4 0.1232 0.5946 0.5644 
5 10 10 10 3 0.1231 0.6098 0.5716 

Table 3: Predictions of models that successfully unify the gauge couplings at MX and 
provide enough intermediate matter to build a model of fermion masses for tan p = 43. 

122 nQ nu nD nE ~ 3 ( M z )  MX/1Ol8 GeV MI/1O1' GeV 
0 9 4 10 8 0.1198 0.5700 0.3696 
1 9 5 10 7 0.1196 0.5850 .0.3737 

Table 4: Predictions of models that successfully unify the gauge couplings at Mx and 
provide enough intermediate matter to build a model of fermion masses for tan p = 5. 

32. Varying rnphYs,sin28, between their la limits can make a difference to as(Mz) 
predictions of N f0.002. The MI/Mx prediction is hardly affected by the change in 
the input parameters. Varying 01(Mz) within its la limits makes only a negligible 
change to the predictions. We note that the greatest uncertainty in our two-loop 
calculation is likely to be that due to threshold effects. Until now we have assumed 
that all of the intermediate matter lies at one scale MI. While this is in some sense 
the simplest scheme, in general there could be some splittings between the different 
types of additional matter. One may naively expect these to not span more than one 
order of magnitude, but even given this constraint there could be significant errors 
due to the non-degeneracy. Non-degeneracy of the superpartner spectrum could also 
cause errors in the predictions. If we allow the presence of sexton fields, there are 
some additional possible models that the algorithm just described will not find. These 
are models with equal one-loop beta functions above MI. In this case, the one-loop 
algorithm fails because the solution to gI(p) = gz(p) = g3(p) is not unique. Above 
MI, the gauge couplings have slopes that differ by small two-loop effects. It is a 
simple matter to demonstrate that the models 

nQ = 0,  ns = 24, 722 - nD = 20; 

nQ = 1, ns = 16, 122 - nD = 11; 
nQ = 2, ns = 8 ,  722-nD = 2 ;  

nQ = 3; ns = 0, 122 - nD = 7; (35) 
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- -w - I I I ., - - ", ' I  

I 2 0  0 0 0 0 24 0.1218 0.4979 0.2906 I 
21 0 0 1 0 24 0.1218 0.5069 0.2940 
1 1  1 0 0 0 16 0.1226 0.4529 0.2788 
12 1 0 1 0 16 0.1225 0.4593 0.2815 

Table 5: Predictions of models that successfully unify the gauge couplings at Mx and 
provide enough intermediate matter to build a model of fermion masses for tan /3 = 43. 
The models shown here belong to the special class of models that possess equal one- 
loop beta functions. 

have the property of equal one-loop beta functions above MI. Some of these models 
were investigated with an accurate version of the two-loop algorithm. Table 5 displays 
the predictions of a subset of the successful models in Eq.35. 

4 Infra-Red Fixed Points 

We now turn to the question of infra-red fixed points (IRFPs) of the dimensionless 
Yukawa couplings for the class of models which are consistent with the generation 
of acceptable textures via spaghetti mixing, and string gauge unification. Our dis- 
cussion follows that of the IRFPs for the Ross model of Higgs mixing [17]. The 
basic idea behind this approach is the observation that, since there are no small di- 
mensionless Yukawa couplings, it is possible that there are IRFP's analogous to the 
Pendleton-Ross fixed point [14]. Such fixed points are very welcome in this approach 
since the textures result from a large number of unknown Yukawa couplings, which 
would otherwise render this approach quite unpredictive. In addition the presence 
of a gauged family symmetry such as U(l)x is in principle quite dangerous since its 
presence can lead to large off-diagonal squark and slepton masses which can mediate 
flavour-changing processes at  low energy. In particular the D term associated with 
U(l)x  is in general only approximately flat due to lifting by soft supersymmetry 
breaking terms, and this can lead to family-dependent squark and slepton masses 
with unacceptably large mass splittings. This is a generic problem of any model with 
a gauged family symmetry, however the U( symmetry here is non-asymptotically 
free with a large beta function so that its gauge coupling rapidly becomes very small 
below the string scale, leading to small X gaugino masses. It has been suggested 
[16] that the possible infra-red structure of the theory could help by relating the soft 
scalar masses to the small gaugino masses, thereby making them naturally smaller 
than the squark and slepton masses, or by enforcing < B >=< 0 > as an infra-red 
fixed point of the theory. We refer the reader to ref.[l6] for more details. Here we 
shall only focus on the IRFPs of the dimensionless Yukawa couplings however. 
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4.1 The Top Quark Yukawa Coupling 

The first step in finding the IRFPs of the theory is to construct the RGEs of the 
dimensionless Yukawa couplings of the theory. In supersymmetric theories this task 
is made quite simple? at  least at  the one loop level, by the observation that only the 
wavefunction diagrams contribute to the RGEs. The vertex contributions vanish due 
to the non-renormalisation theorem. This allows the RGEs to be constructed in a 
very straightforward manner. To take a simple example, consider a toy theory which 
only involves the top quark Yukawa coupling in the superpotential: 

W = hQt"H2. (36) 

Defining the Yukawa and three gauge coupling parameters as 

and the scale variable as 
t = - ln(p2) 

we can write the RGE for the top quark Yukawa coupling as 

(37) 

(38) 

where Ni are the wavefunction renormalisation contributions from each of the three 
legs of the vertex. In the toy model the wavefunction diagrams are shown in Fig.6. 

The wavefunction renormalisation contributions are explicitly, 

NQ = C2Czi(Q)di - Y h  
i 

Ntc = 2C2i(tc)cii - 2Yh 
i 

(40) 
i 

where 2C2i(R) is the quadratic Casimir of the representation R under the i - th 
gauge group factor of the MSSM, arising from the gauge boson exchange corrections, 
and the multiplicity factors in front of the Y h  terms are due to doublet and colour 
counting for the particles going round the loop. Thus the RGE is explicitly 

Now let us assume that in our toy model all three gauge couplings were equal, and all 
three gauge beta functions were equal (quite unrealistic for the low energy Yukawa 
coupling, but typical of the situation near the string scale). Then the RGE may be 
written as 
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Figure 6: Contributions to  the wavefunction renormalisation of the top quark Yukawa 
coupling. 
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where we have defined 
T 2C2i(R) (43) 

i ,R 

where R runs over all fields involved in the coupling Yh.  We have written the three 
equal gauge couplings as 6. We now write the one loop gauge running as 

and define the ratio of Yukawa to gauge coupling as 

Yh Rh = 
cy 

Then the RGE for this ratio is: 

- = &Rh(r + b - 6Rh) dRh 
dt 

and the Pendleton-Ross fixed point is given by 
achieved by 

In terms of wavefunction renormalisation parameters, the RGE can be expressed as: 

= 0. This condition can be 

T + b - 6Rh T O .  (47) 

(48) 
dRh - = Rh(NQ + Ntc + N H ~  + &b). 
dt 

The fixed point condition can be expressed as6: 

4.2 The General Model 

Ross [17] applied the above techniques to find the IRFPs of the Higgs mixing model. 
We wish to extend the discussion to the more general situation of nQ, nu, no, nL, n E  

copies of the vector representations 

+ Q(-.)), (UC(Y)+ P(-Y)), ( ~ c ( Y ) +  D 4 - y ) ) )  (L(”)+ E(-”)) ) ( ~ ( d  + E4-v)) (50) 

plus nH1, n H ,  copies of the vector representations 

eIt is worth noting that an alternative fixed point has recently been proposed by Jack and Jones 
[25], in which $ = 0 is achieved by the more stringent conditi0ns:NQ = Ntc = N H2 = -$b. 
These conditions may be expressed in a more general way, and are valid to two loops. However they 
are not satisfied for our simple toy model, and they will not be of use for our more general model. 
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where we have labeled the vector fields by their X charges 2, y, z. For the special case 
of z = 0 the Higgs are identified with the two MSSM Higgs doublets, 

and do not have vector conjugates. The above fields are in addition to  the three chiral 
families of quarks and leptons which we label as: 

Q i ,  U;, Dj", Li, E; (53) 

where we label these fields by the family index subscript i ,  j = 1, - 3, but do not 
label their X charges (for i , j  = 1 , 2 , 3  the X charges are -4,1,0, respectively, as 
discussed earlier). We introduce the X charge breaking singlet Higgs fields (8, + 
i&), (e, + &), (eD + &), (e, + &), (0, + &) plus (e, + e,), (e, + 8,) which change 
the X charge of the particular field by 1 or -1. We also introduce MSSM singlet 
Higgs with X = 0: @Q,@~,@D,@,,@E plus @,,@I whose VEVs are responsible for 
the heavy vector masses at a common scale MI. 

The most general model is then defined by the gauge group, 

with the superpotential involving the chiral quarks and leptons containing the trilinear 
terms 

In Eqs.55-56, it is to be understood that the X charges of the fields in each coupling 
must add to zero and that this decides the superscripts that are not summed over. 
This is true for all superpotentials and wave-function renormalisations listed in this 
paper. We neglect some terms in the superpotential that are not banned by the sym- 
metries we have listed so far. Some of these are undesirable in terms of reproducing 
the correct phenomenology, and so we appeal to the extra U ( l )  symmetries that tend 
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to  come with string-derived models to ban these terms. The remaining terms in the 
superpotential involving the extra vector states and Higgs are: 

w2 = ~ ( , , ) Q ( ~ ) U ~ ( Y ) H ~ )  + I~(,~)Q(~)D~(Y)H!~) 
X,Y X,Y 

where in the first two lines of Eq.56, X symmetry requires that  z = -(z+y). Since the 
fields above are being labeled by their X charges, the limits of each of the summations 
will depend on the particular model under consideration. The family indices range 
from i ,  j = 1, . - 3. However in specific models only a subset of the fields will be 
present, and consequently not all of the terms will be present. For the moment we 
prefer to  keep the values of nQ, nu, ng,  n L ,  n E  and n H 1 ,  n H ,  general, however. Also, we 
have not written the most general superpotential allowed under the gauge symmetry 
since e E  could couple to  the vector quarks, for example. It is possible that  eQ,U,D,L,E,1,2 

are identified with just one superfield and that ~ Q , U , D , L , E , H , , H ~  are also identified with 
one superfield (and similarly for the conjugate singlets). 

The one-loop RGEs for the couplings R$,R,kj,Rjj are 
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where we have assumed the gauge couplings are approximately equal so that 

The full list of wavefunction renormalisations are given in appendix 2. The fixed point 
conditions for the chiral quark and lepton couplings, Rk,Ri,R:j, are listed below: 

We also require a similar fixed point for the couplings R!(y,, Rfcy,, Ri(y), and RtZIj, 
R&)jr RtZlj, that involve a mixture of chiral and vector fields. Also we require a 
fixed point for the couplings RtZy), Rtzy), Rtzy,, involving purely vector fields. Similar 
fixed point conditions apply to the conjugate vector couplings, as well as all the sin- 
glet couplings. So every trilinear coupling will have a fixed point condition which is 
expressed in terms of the wavefunction renormalisations, similar to the above condi- 
tions. A fixed point is achieved when all the conditions are simultaneously satisfied. 
Note this assumes that none of the R t f ’  couplings are zero at the fixed point, another 
set of possibilities allowed by Eq.57. We will not consider this here since many of 
the preceding arguments relied on the dimensionless couplings being N O(l), rather 
than approximately zero. We merely note that in general there are 2” fixed points 
in this multi-dimensional system of n couplings, all but one of which involve some of 
the dimensionless couplings being zero. 

4.3 Conditions for Infra-Red Attractiveness 

We now write the RG equations as 

-- dE(t) - ii.Z&(t) (ri + b) - E SijRj(t) 
j dt 

where R, now denotes the ratio of any Yukawa coupling i to the gauge coupling 
(squared), as prescribed by Eq.45. We have written ri 2 C2(&), where the sum 
runs over simple gauge groups and the representations & under those gauge groups, 
x corresponding to the field that labels N, of R, in Eq.57. The fixed point condition 
is then satisfied when the right hand side of Eq.60 is zero for all i. First, we assume 
that none of the R, is equal to zero at the fixed point, in which case 
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where we have denoted the value of Rj at the fixed point as Rj. The problem of 
locating the fixed points becomes a straightforward problem in linear algebra, albeit 
involving a large number of dimensions, corresponding to the large number of trilinear 
Yukawa couplings. The fixed points are given in principle by inverting the matrix Sij, 

To determine the infra-red stability of the system in Eq.60, we need to Taylor expand 
it around the fixed point given in Eq.61. We can then drop all except the linear terms, 
the resulting system of which allows an algebraic solution and can thus be tested for 
infra-red stability. We therefore make a change of variables to pi ( t )  R,(t) - Ri+. 
The RGE Eq.60 then becomes 

where we have substituted the fixed point values of Rf from Eq.61. When we drop the 
quadratic term in Eq.63 and change the independent variable from t to & by Eq.44, 
we obtain the linearised system 

Eq.64 then describes the behaviour of the trajectories as they approach the fixed 
point. It has solutions 

pz(t) = xj (&(t))X' , (65) 
where xj,  X j  satisfy the eigenvalue equation 

Because the expanded RGE Eq.64 is linear, the general solution is a linear combina- 
tion of each pi in Eq.64. Because R;/b is a factor multiplying each row of the matrix 
S in Eq.66, we may factorise the eigenvalues as 

where are now just eigenvalues of S. 

For b > 0 as in these models, & decreases with decreasing renormalisation scale 
p. For the fixed point to be infra-red stable, we require every eigenvalue A i  to have 
a positive real part, since then pi -+ 0 as p decreases. A i  = 0 corresponds to a 
direction in coupling space which is neither attracted nor repelled by the fixed point. 
For each of these directions there should be one free parameter in the solution to 
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the fixed point equations which embodies the information on where a solution lies 
along this direction (and is set by the initial boundary conditions). In the class of 
models presented here, this corresponds to some information about the string scale 
being retained at lower energies. Because Rj,b > 0 in Eq.67, this simply translates 
to  the condition that every eigenvalue Xi of S must possess a positive real part. 
Complex eigenvalues always come in complex conjugate pairs, as do their associated 
eigenvectors. Writing X j  E kj + is j ,  where k j ,  s j  are real, the solution in this case is 

(68) x j ~ k j + i s j  + x;Gkj-isj  = $j  xjGisj  + x ; ~ - ~ s j  [ I .  
Eq.68 describes a spiral-like trajectory, the distance to the fixed point being controlled 
by GkJ. Thus k j  must be positive for the trajectory to be infra-red stable. If these 
conditions are not met, the fixed point is either a saddle point or an ultra-violet fixed 
point and so the fixed point will never be achieved at low energies. We will see in the 
following specific models, examples of infra-red stable and saddle point behaviour. 
We will also see that the zero eigenvalue directions occur from a degeneracy in the 
fixed point equations. 

4.4 Example 1: Higgs Mixing Model 

As a first example of the general results, we calculate the fixed point solutions and 
the infra-red stability in a Higgs mixing model similar to that proposed by Ross [17]. 
In this model there are n H l  = 10,nH2 = 10 copies of the vector representations 

in the model, which means n 2  = 20. Ross also included some colour triplets which 
served the purpose of increasing the gauge unification scale although not enough to 
be consistent alone with string-scale gauge unification. We saw in Eq.35 that such 
a model has string scale gauge unification if ns = 24, but we shall ignore the exotic 
sexton representations in the following analysis. The superpotential of the model is 
then 

' 

It is to  be understood in the first three terms Eq.70 that 

z = -Xcharge(ith family) - Xcharge(jth family). 
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Therefore the Higgs which occur in the interactions with couplings ( h , k , l ) i j  have 
charges as given below: 

(72) i (h, k ,  l)llH{:j (h, k ,  l)l2H{:j (h, l)13H{:j 
(h, kjl)21H{:j (h,k,l)22H{i2) (h, k,l)23H{51) ( (hi l)31H!:i (hi k ,  l)32H!j1) (h, k ,  l)33Ht,2 

The above Higgs having direct couplings are only a subset of the full list of required 
Higgses: 

The one-loop wavefunction renormalisations from Appendix 2 are: 

N q  = 261 - 2CY: 
i 

The Higgs wavefunction contributions are: 
3 1 
2 

NH;z) = -62  + -61 - 3 YEj" - 2 i j  i j  

The wavefunction contributions for the singlets are: 
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Following Ross, we assume a general symmetric form for the matrices I ,  k, h at the 
string scale and use the fact that the RGEs Eq.60 respect this form. The solutions of 
the fixed point equations Eq.62 applied to this model are [17] 

RhiJ = ( g + g ) (  2 1 1  1 2 1 )  

1 1 2  

Eq.77 shows that there are 3 undetermined parameters at the fixed point. When we 
check the solution for infra-red stability we find that the eigenvalues of S are 

J, = {17.9,12.8,11.6,9.57,8.56,11.1,7.39,4.16,3.78,5.06,5.65,3.81,4.98,6.0, 
4.66,0,0,0}. (78) 

Eq.78 shows that the fixed point solution identified is completely infra-red stable, 
with three undetermined free parameters. 

So far, in the limit that singlets are ignored, our results are in agreement with 
those of ref.[17]. Although the stability question was not addressed [17] we find that 
the fixed point is stable in the infra-red limit so all is well. Now we must consider the 
effect of the singlets. In the Ross model [17] the result was quoted that the singlet 
couplings of the Higgs Mixing Model are approximately flavour independent. We find 
that this is only valid if the extra Higgs doublets which do not have direct couplings 
to fermions are ignored. To be explicit, Ross considered a model with the only extra 
Higgs states being 

However we saw earlier that the full list of Higgs states in Eq.73 is required for 
correct Cabbibo mixing and CKM mixing. The full Higgs mixing model is analysed 
in Appendix 3 where we solve the 80 simultaneous equations for 80 unknowns (keeping 
the matrices k, I ,  h symmetric) to determine the stability and predictive properties 
of the model. The solution detailed in Appendix 3 shows that the solution has 27 
undetermined parameters and 9 unstable directions. Thus the infra-red fixed point 
identified previously by ignoring the singlet couplings will not be realised. The effect 
of including the singlet couplings is to destabilise the fixed point in the infra-red 
direction. 

27 



4.5 Example 2: Quark-Line Mixing Model 

We next consider a model with mixing along the Q doublet line provided by: 

nQ = 9, (80) 

as in Eq.15. Such a model by itself is not expected to be realistic since it does not 
account for lepton masses, but it may be regarded as part of a fuller model such as 
the TIQ = 9,nu = 4,nD = 10,nE = 8 example in Tables 3,4. 

The superpotential of this example is explicitly: 

w =  
+ 
+ 
+ 
+ 

The wavefunction renormalisations for the chiral quarks and leptons and MSSM 
Higgs doublets are (see Appendix 2): 

YSQ3 - YSQ3 8 -  3 -  1 
N Q ~  = -03 + 7 0 2  + -61 - 5 3  - 

3 2 18 

8 -  8 -  
Nu; = -a3 3 + -a1 9 - 2Y& - 2y;), 

8 8 
Nu; = 4 3  3 + -61 9 - 2?1,), 

28 



x=-4 
3 

x=-4 
4 

The fixed point conditions for the couplings Rk3,Rkj, R'Qi ,R'Qi, R'Q(l), RSQ(Z), 
R'Q(z), are: 

If we were to ignore the contribution of the singlet sector then the fixed point 
equations for the couplings Rt3,Rij, Eqs.83 and 84, lead to the matrix equation: 

29 



where rQuH2 = 88/9, and we have assumed all the gauge couplings to be equal. Upon 
inverting the matrix we find, 

for the fixed point solutions of the couplings. Note that this solution has a global 
SU(2) flavour symmetry in the Yukawa couplings of the two lightest families, unlike 
the Higgs mixing model for example [17]. The reason that it is present in this model is 
that there is a single Higgs doublet which is common to all the fixed point equations, 
as compared to the Higgs mixing model where a different Higgs couples in each entry 
of the Yukawa matrix. When the singlets are included they will explicitly break the 
global SU(2)  flavour symmetry, as we discuss below. Note that in some recent models, 
such a symmetry is assumed as a starting point [28]. We then checked that the system 
of RGEs in Eq.59 is infra-red stable in this case by determining the eigenvalues of 
the matrix Sij in Eq.95. These come out to be 1,3,10 + m, 10 - J3'j, so for b > 0 
(the case considered here), the fixed point is encouragingly infra-red stable in all four 
independent directions. 

Once the singlets are included the above fixed point in Eq.96 will be modified. If we 
return to Eqs.83-94 we see that there are the same number of equations as unknowns, 
so the whole system may be regarded as a large matrix which may be inverted along 
the above lines. From Eqs.83-94 the following relations may be obtained, 

These relations are formally quite model-independent: they apply to any model with 
nQ = 9 provided Eq.7 holds, regardless of the number of additional states. However 
the implications of these relations will depend on the particular model under consid- 
eration since the wavefunction renormalisations have model dependence. For instance 
in this particular example, we can immediately see that the previously obtained fixed 
point based on ignoring the effect of the singlets is not consistent with these equalities. 
For example it would imply (NU; -NU;) o( (5  - 5) = 0 and (NU; -Nu:) o( (9 - 10) # 0, 
although the two relations are approximately consistent. 

In Appendix 4 we give the fixed point of this example, including the singlets. 
Out of the 25 independent directions in which the fixed point may attract, 3 are 
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infra-red unstable and the rest are infra-red stable. We therefore have discovered a 
saddle point and this will not be realised in nature since the trajectories will actually 
get further from the fixed point direction as p, the renormalisation scale decreases. 
This behaviour is rather similar to that encountered in the Higgs mixing model, 
and we therefore expect that it may be a general feature of models of this kind, 
once the singlets are included. Of course, one should in theory check the stability 
of all the other fixed points involving zeroes in some of the couplings. If one was 
completely infra-red stable then it would be the fixed point realised by values of the 
low renormalisation scale couplings. However we shall not pursue this example any 
further here. 
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5 Conclusions 

We have explored a scenario in which the minimal supersymmetric standard model 
(MSSM) is valid up to an energy scale of N 10l6 GeV, but that above this scale the 
theory is supplemented by extra vector-like representations of the gauge group, plus 
a gauged U(1)x family symmetry. The basic idea of our approach is that the extra 
heavy matter above the scale N 10l6 GeV may be used in two different ways: (1) to 
allow (two-loop) gauge coupling unification at the string scale; (2) to  mix with quarks, 
leptons and Higgs fields via spaghetti diagrams and so lead to phenomenologically 
acceptable Yukawa textures. 

We considered models in which there are enough heavy vector representations 
to give every effective MSSM-type Yukawa coupling a non-zero value. Using this 
constraint (detailed by Eqs.24-26), plus the further condition that the mass scale must 
not be too far below the string scale, we performed a two-loop string gauge unification 
analysis which yielded 8 models that satisfy these conditions for t a n p  = 43 and 2 for 
tan p = 5 in Tables 3 and 4. For example nQ = 9, nu = 4, nD = 10, n E  = 8 (all else 
zero) satisfies the constraints of string unification independently of tan p, and also 
has enough heavy matter to enable Yukawa textures to be generated via spaghetti 
diagrams. An example of a different solution is 722 = 20, ns = 24 where n2 = 20 may 
be interpreted as being due to n H 1  = 10, n H ,  = 10 as required as in the Higgs mixing 
model. 

Because the dimensionless couplings are of order 1 and because the RG running 
of the gauge couplings above MI is steep, one might hope the dimensionless couplings 
would be forced toward numerical values approximating a fixed, point at MI. This 
would allow us to make numerical estimates of the values of the fermion masses and 
mixings at low energy. Motivated by these considerations we constructed the super- 
potential for a general model involving intermediate matter, and various Standard 
Model singlets that provide the U(l)x breaking. We obtained the one-loop RGEs 
for the general model, and then obtained conditions for stability of the fixed point, 
showing that the direction of stability in terms of the renormalisation scale depended 
on the eigenvalues of the coefficient matrix of the fixed point equations. 

Having discussed the general case, we then investigated the fixed point of two 
examples in some detail: a Higgs-line mixing model with n H ,  = 10,nH, = 10 and 
a quark-line mixing model with nQ = 9. Both models have infra-red stable fixed 
points in the approximation that the couplings involving the singlets are ignored. 
However when the singlets are included in the analysis we found that the number 
of undetermined parameters grows (from 3 to 27 in the Higgs-line mixing model, 
and from 0 to 9 in the Quark-line mixing model) and in addition the fixed point is 
destabilised in both models. The lesson is clear: it is not in general appropriate to 
ignore the singlet couplings which must be incorporated fully into the analysis. The 
most predictive scenario would be one in which the Yukawa couplings depend only 
upon & in the fixed point solution. It is not yet clear how one could pick a model 
in which this is likely to be true, or how one could pick a model that possesses a 
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completely infra-red stable fixed point with all Yukawa couplings non-zero. However it 
is possible that such a model is contained in the subset of the models in Table 3 which 
have not all been analysed in detail because of their individual algebraic complexity. 
The search for a completely realistic model, and the detailed comparison of its low 
energy predictions to data, is left as the subject of future work. The idea of being able 
to predict the entire fermion mass spectrum in terms of one or two free parameters is 
an exciting prospect, and we hope that the general results of the present paper will 
be helpful in this endeavour. 
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Appendix 1: Two-Loop Renormalisation of MSSM Plus In- 
termediate States 

We derived the following RGEs for the two-loop evolution of the gauge couplings 
and third family Yukawa couplings in the case of a,dditional intermediate matter from 
ref. [26]. Note that we have neglected other Yukawa couplings as an approximation. 
This a good approximation for the bulk of the running which is between MI and 
1 TeV, where the intermediate states have been integrated out of the effective field 
theory and the effective Yukawa couplings are all much less than 1 apart for Xt,b,7. As 
we are not considering neutrino masses in this analysis, we assume that there are no 
neutrino Yukawa couplings in the effective field theory being considered. For now we 
must assume there are no extra couplings between the superfields of the MSSM and 
the extra matter for reasons of simplicity and computing time. Naively one might 
expect these couplings to only change the results slightly because they decouple after 
less than 2 orders of magnitude in renormalisation running and because they only 
affect the running of the gauge couplings at the two-loop level. Nonetheless, it should 
be borne in mind that these couplings could influence the results, particularly in view 
of the fact that these dimensionless couplings are expected to be of order 1. The 
equations are valid in the DR scheme. 

- 

+-+2nE +g, -+-+- gn2) + 2 n ~ + 3 2 n ~  2ns ) ( y  3 i Q  
27 43 5 

3 
1 

16n2 
3 
10 

2 dg2 16n - = gi  1 + 3 n ~  + 722 + - (-6Az - 6Xi - 2X: + g; (25+ 
dt’ 

7 ( 3 n ~  + n2)) + -gT (6 + 2 + 2n2) + 8g32 ( 2 n ~  + 3))] 

1 
16r2 

2 4 7 3  161r - = 
dt’ 

-3 + 2 n ~  + nu + nD + ns + - (-4Xz - 4Xi +g,” (14+ 
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where t‘ = l n p  and p is the renormalisation scale. 

We now detail the matching conditions between the 
- 

and the MS schemes [27]: 

2 (101) 
- AF(mt) 

X,fbR(mt) = 
M S .  1 + g T ( r r ~ t ) ~ / 1 2 r ~  - 3gp(mt) /128s2’ 

where the superscripts denote what scheme the quantity is evaluated in. To a good 
approximation, gfR = g p  and A? = A,““. Our running value of mt is determined 

- 

bY 

g3mt)) (102) t - mt(mt>(l+ 7 mPhw - 

where m:hys is the value extracted from experiment. For mphys = 180 GeV [21] and 
central values of as(Mz) ,  we obtain mt(mt) = 166 GeV. 

Appendix 2: One-loop wavefunction renormalisation of the 
general model 

Here we give the wavefunction renormalisation contributions to  the RGEs for the 
general model in Eq.56. In the following equations for the wavefunction renormali- 
sation of Ni, all sums are intended to  be over couplings that multiply the field i in 
Eq.56: 
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3 1 
2 2 NLi = -62 + - 6 1  - y.'. 83 - y !  tY - y"; - y s L i  

j Y 

The wavefunction renormalisations for the vector states are: 

8 ,  3 ,  1 
-a3 + -a2 + -61 
3 2 18 
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The wavefunction contributions for the singlets are: 

NaQ = -6 YrQz, Nauc = -3 yrucv  , NaDc = -3 Y r ~ C Y  

Nip, = - 2  YrLZ, NQEc = - Y ' E ~ ~ ,  

= - 2 C Y r H ; ,  NaH2 = - 2CYrH;  

Y Y X 

Y X 

NaH, 
z z 

NeQ -6 YsQz - 6 YSQi, Ne,, = -3 YSUCU - 3 Y S U , ,  

i Y j X 

Ne,, = - 3 C Y s ~ "  - 3 YsDj, 
Y j 

Appendix 3: Fixed point solution of the Higgs Mixing model 
including singlets 

For the Higgs Mixing model corresponding to the superpotential in Eq.70 with 
symmetric inputs for the 1, h, k matrices at a high scale but including the singlet 
couplings, we now present the solutions to the fixed point equations: 
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The eigenvalues of the matrix S are 

Xi = (-6.0, -12.0, -4.0, -6.0, -2.0, -6.0, -9.0, -5.0, -4.0,26.6 
21.2,20.2,5.68,5.36,4.83,4.32,3.72,3.18,3.92,3.68,2.69 
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3.31,2.0,0.317,2.08,2.32,0.633,2.81,1.67,1.17,2.28,26.6 
21.2,20.2,5.68,5.36,4.83,4.32,3.72,3.18,2.69,2.0,2.08 
2.32,3.92,0.317,3.68,0.633,3.31,1.17,2.81,1.67,2.28 

o ,o ,o ,  0, o , o , o ,  0, o , o , o ,  o ,o ,o ,  0,090, o , o ,  o ,o ,  o ,o ,o ,o ,  0,O) (107) 

to 3 significant figure accuracy. 

Appendix 4: Fixed point solution of Quark-line mixing model 
including singlets 

On solving the fixed point Eqs.83-94 including the singlet sector, we obtain 

115 3 b  
441 98 
- + - + R'Q(-~) 

-- - - - RT~(o)  + RrQ(-l) + R'Q(-~) 117b 10930 
539 4851 

- R T Q ( - ~ )  - ~ ' ~ ( - 2 )  
575 5b 
1323 98 

1078 539 

- + - - R'Q(O) 

+- - R T Q ( - ~ )  - ~ ~ ~ ( - 2 1  

117 b 5465 
485 1 1078 

+ Rh(0)3 - - + R'Q(O) + R'Q(-l) + R'Q(-2) -- 

-+- 5465 117b + R'Q(4) 
4851 1078 

6b  200 
77 231 

14553 539 

_ _  - - - R3Q(4) - RTQ(3) 

10070 31 b - RgQ(4)  -- - - 

5b 575 
98 1323 
13865 95b +- 14553 1078 
13865 95b +- 
14553 1078 
3 b  115 -+ -  
98 441 
115 3 b  
44 1 98 

13865 95b 
14553 1078 

- + - - RSQ(4) - RTQ(3) 

- - Rh(0)3 - RTQ(0) - R'Q(O) + - 

-Rh(0)3 + - +- 
192b 17660 +- 
539 4851 

40 



Eq.108 shows that in fact 25 out of the 34 variables are constrained. This must mean 
that within Eqs.83-94, 9 of the 34 constraints exhibit degeneracy. Even given this 
proviso, we appear to have greatly increased the predictivity of the model. Unfor- 
tunately though, there is a problem with the stability properties of the above fixed 
point. When the eigenvalues of the matrix corresponding to the generalisation of Sij 

are determined, we find they are: 

Xi = {66.8,48.0,16.2,15.0,3.68,4.53 + 0.2332,4.53 - 0.2332, -2.63,4.19,3.36, 
3.23,2.71 + 0.1222,2.71 - 0.1222,2.33,1.82,1.08 + 0.5622,1.08 - 0.5622, 
1.34 + 0.1822,1.34 - 0.1822, -0.477,0.885,0.275 + 0.1192,0.275 - 0.1192, 

0.392, -0.195,0,0,0,0,0,0,0,0,0}. (109) 
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