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We consider the quantum easy-plane (XXZ) magnet on
the square lattice. In the classical case the system exhibits
the Berezinskii-Kosterlitz-Thouless transition. Simulations,
both for ferro- and antiferromagnets, using the method of the
effective classical Hamiltonian, are made for different spin val-
ues and refer to the specific heat, the static spin correlation
functions and correlation lengths in a broad range of tempera-
tures, below and above the transition. The effects of quantum
fluctuations are quantitatively evaluated and discussed.

The two-dimensional (2-d) XXZ model is described by
the general Hamiltonian

H=-3IY (S 5at X+ 288a) . O
id

where the index i = (31, 12) runs over the sites of a square
lattice with nn displacements d. The spin operators sat-
isfy |$i|> = S(S+1). This hamiltonian describes a ferro-
magnetic (FM) interaction for J > 0 or an antiferromag-
netic (AFM) one for J < 0, with an easy-plane anisotropy
A € [0,1).

The Hamiltonian keeps its form, but with (J,A) —
(=J,=A), by performing the canonical transformation
(57,57, Si) = ((=)+5F, (- —)1+i2G¥ 55, There
fore 1t is sufficient to consider the FM model only, with
A € (-1,1), to treat simultaneously both FM and AFM.
This also explicitly shows that the XX0 (A = 0) AFM
and FM models are equivalent.

The classical counterpart of the Hamiltonian (1) is

H=-4IBY (fefa+olelia+rsielya) , ()
id

where 8; = S;/g is a unit vector. In the following we
will use the dimensionless temperature t = T/JS2. At
variance with the quantum case, as far as the static prop-
erties are concerned, the classical ferromagnetic and anti-
ferromagnetic model are fully equivalent, since the corre-
sponding classical integrals are invariant under the trans-
formation &y — ()1 +24.

For any value of |A\| < 1 the classical model de-
scribed by the Hamiltonian (1) undergoes a Beresinskii-
Kosterlits-Thouless (BKT) phase transition {1,2] at a fi-
nite temperature taxr = Taxr/JS? alike the planar,
or classical XY, model. In the latter, the out of plane

fluctuations are completely suppressed, and the spins are
reduced to two-component vectors in the zy plane.

The distinctive feature of a BKT transition is the van-
ishing of the order parameter at any temperature, the
transition being signalled by the exponential divergence
of the in-plane susceptibility and spin fluctuations corre-
lation length at tpxT, accompanied by the change in the
behaviour of the spin-spin correlation function, which de-
cays exponentially in the completely disordered region,
i.e. for temperature above tgxr, and as a power law be-
low it. The physical mechanism driving the transition
is the unbinding of vortex pairs, which gives rise also to
the appearance of a maximum in the specific heat at a
temperature slightly higher than tgxr.

Monte Carlo simulations of the classical systems [3-6]
confirm that the planar and XXZ model have the same
qualitative behaviour, but the value of the transition tem-
perature tpxt ~ 0.89 [7,8] of the planar model lowers to
texT =~ 0.70 [6,6] of the XX0 model as a consequence of
the inclusion of the out-of-plane spin fluctuations, and de-
creases further as ) increases, vanishing logarithmically
[9,10] as the isotropic limit A — 1 is approached.

Experiments and quantum Monte Carlo simulations
indicate that the qualitative features of a BKT transi-
tion are preserved in the quantum system, with quan-
titative modifications of the critical parameters arising
from quantum fluctuations. Such arguments suggest
that the theoretical approach we recently introduced [1 l]
named pure-quantum self-consistent harmonic approz-
mation (PQSCHA) can be very effective in estimating
the quantitative modification of the features of the BKT
transition in the XXZ model due to quantum effects, as it
allows to recast the study of the quantum thermodynam-
ics of a model to that one of an effective classical model
with suitable renormalised parameters. The effectiveness
of such approach has been confirmed by the PQSCHA
estimates of the critical temperature for strongly easy-
plane quantum ferro- and antiferromagnet obtained by a
simple scaling procedure and reported in Refs. [12-14).
In this paper we present a more comprehensive inves-
tigation of the properties of the quantum XXZ model,
focusing our attention on some relevant thermodynamic
quantities, as magnetic specific heat, spin-spin correla-
tion functions and correlation length, which we have ob-
tained by classical Monte Carlo simulations of the sys-
tem described by the effective Hamiltonian; moreover,
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. An outline of the derivation of the effective Hamil-
m%ammofdmulmmupmmm
[16,13-14). The procedure which leads from % to Hen
involves a transformation from quantum spins to bosonic
variables. The most suitable spin-boson transformation
are the Villain transformation [17] in the strongly easy-
plane case and the Holstein-Primakoff (HP) in the al-
most isotropic case (A — 1).

Eventually, the PQSCHA recipe gives the following ef-
fective Hamiltonian for the XXZ model [12,14,15):

M= =2
id

(Fofratalelia + sl olra) +

+NJS*G() . (3)

As in Eq. (2), {s} are classical normalised spin vari-
ables, and the spin_length is determined unambigously
by the theory to be § = S+ }. Within the PQSCHA [11]
the contribution of pure-quantum fluctuations, which are
treated at the self-consistent harmonic level, are embod-
ied in the dimensionless interaction parameters j.r and
Aett, while G(t) is an additive renormalisation that does
not enter the calculation of operator averages. j.r and
Aot may be written [12,14,15] in terms of suitable renor-
malisation parameters, representing the pure-quantum
part of the square fluctuations of the in-plane and out-
of-plane spin components. The renormalisation of the
exchange-energy by the factor jgv < 1, and the weak-
ening of the easy-plane anisotropy (|Aer| > |A|), are thus
the result of the cooperative effect of in-plane and out-of-
plane pure-quantum fluctuations. For ¢t = oo or S — o0,
Jut = 1 and |Asr| = [A]) and the classical limit is recov-
ered

Using the PQSCHA formalism [11] one can calculate
smagumdoorrd&tmmbymeamofclnmcalexpree-
sions involving the Boltsmann factor corresponding to
the effective Hamiltonian. In the present case the classi-
cal average with the effective Hamiltonian is defined as

()g =2 (II./“‘) (--)e—PHat

In order to obtain the PQSCHA thermal average of a
quantum observable, the dots are to be replaced by a
phase-space function that is obtained by Gaussian smear-
ing, on the scale of the pure-quantum fluctuations, of the
Weyl aymbol associated with the same obeervable [11,18].

For a 2-d spin system the classical-like averages (- - ) 4
can be obtained only numerically. At variance with pre-
vious work, where only the problem of the renormalisa-
tion of the BKT transition temperature was addressed,
for a given value of A it is not possible to rely on a sim-
ple temperature rescaling of the resuits obtained for the
Clessical system. Indeed, when we are interested to the
complete thermodynamic behaviour of the quantum sys-
tem, due to the temperature dependence of the remor-
malived anisotropy paremeter A\, new simulation runs

are peeded for any value of temperature, anisotropy and
scribed by the effective hamiltonian (3) were done in the
whole relevant temperature range for A = 0,0.5,0.7,0.9
and S = 1/2,1,3/2,5/2, and quantum internal energy,
magnetic susceptibility and spin-spin correlation function
were obtained by means of the proper PQSCHA expres-
sions.
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FIG. 1. Predicted transition temperature Texr/JS? of the
quantum XXZ antiferro- (A < 0) and ferromagnetic (A > 0)
model. The curves refer to increasing values of the spin going
upwards; the symbols are the results of classical (squares) [5]
and quantum (circles) [19-22] Monte Carlo simulations. Full
line: Villain transformation; dashed line: Holstein-Primakoff;
dot-dashed line: interpolated classical results.

Fig. 1 shows the BKT transition temperature of the
quantum XXZ model as a function of A and S, both for
FM (A > 0) and AFM () < 0) coupling, obtained by the
simple scaling procedure described in Refs. [12,14]. The
data for small values of |A| are those given by the effective
hamiltonian constructed by using the Villain transforma-
tion; however, as observed previously, the latter become
improper when the system looses its strongly easy-plane
character. For almost isotropic system the HP transfor-
mation imposes itself as a better choice and it has been
employed to construct the branches of the curves near
Al = 1. In such a way we are able to cover the whole
range of A, getting estimates of the critical temperature
in very good agreement with the available data of quan-
tum Monte Carlo simulations for any value of A even in
the extreme quantum case of S = 1/2.

The magnetic specific heat has been obtained by nu-
merical derivation of the internal energy for different val-
ues of the spin, from the classical model (S = o0) up
tospinS:*. In Fig. 2 the specific heat for A = 0 is
reported. Save the obvious effect that the specific heat
in the quantum case approaches 0 as t — 0, we see that
the qualitative behaviour does not change as the system
becomes more and more quantum, but the position of
the maximum follows the decrease of tpxrt, remaining
about 10% higher. The agreement with quantum Monte
Carlo data [19], available only for S = 1/2, should still be
considered satisfactory, as the high values of the renor-
malization paramaters for such strongly quantum system
puts it at the boundary of the range of applicability of
the effective Hamiltonian method.
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FIG. 2. Specific heat of the XX0 model. Dot-dashed line:
S = 1/2; short-dashed line: S = 1; long-dashed line: S = 3/2;
dot-dot-dashed line: S = 5/2; dashed line: S = 5; full-line:
S = oo (classical); circles: S = 1/2 data from quantum Monte
Carlo simulation [19].
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FIG. 3. In-plane normalized spin-spin correlation func-
tion C(j) of the quantum XXZ antiferromagnetic model for
A =0.5 at t = 0.6. Filled squares: S = 1/2; open triangles:
S = 1; filled triangles: S = 5/2; open squares: S = 3; filled
circles: S = oo (classical).
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FIG. 4. Spin-fluctuations correlation length £ of the quan- -

tum XXZ antiferromagnetic model for A = 0.5 as a function of
temperature. Filled squares: S = 1/2; open triangles: S = 1;
open circles: S = 3/2; filled triangles: S = 5/2; filled circles:
S = oo (classical).

In Fig. 3 the in-plane spin-spin correlation function

C(j) of the quantum 2-d antiferromagnet for A = 0.5 and
different values of the spin, are reported as a function of

the epin separation j at a fixed temperature ¢t = 08.
From Fig. 1 follows that such temperature should be
above tpxr for S > 3/2, and this is confirmed by the
behaviour of the correlation function: indeed, the log-
linear plot clearly shows as C(5) decays as a power law
for S = 5/2 and higher, and exponentially for § = 1
and S = 1/2, i.e. for low spin the quantum fluctuations
are strong enough to drive the system in the completely
disordered region.

The correlation length £ of spin fluctuations is another
relevant quantity to investigate the BKT transition: in
Fig. 4 we report £ as a function of temperature again
for the XXZ antiferromagnet and A = 0.5. It is apparent
that the quantum fluctuations destroy the correlations,
as £ at a given temperature decreases with S. At the
same time, however, the divergence of £ as t = tpxt is
still well described by the BKT law £ o ebe(t=taxr)™"/*
and the best fits of the data appearing in Fig.4 give es-
timates of the transition temperature in agreement with
those given in Fig. 1.
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