
Exploiting Zeros in Frontal Solvers

J A Scott

August 1997

Technical Report
RAL-TR-97-04 1

CLRC

COUNCIL FOR THE CENTRAL LABORATORY OF THE RESEARCH COUNCILS

0 Council for the Central Laboratory of the Research Councils 1997

Enquiries about copyright, reproduction and requests for
additional copies of this report should be addressed to:

The Central Laboratory of the Research Councils
Library and Information Services
Rutherford Appleton Laboratory
Chilton
Didcot
Oxfordshire
OX1 1 OQX
Tel: 01 235 445384
E-mail I ibraryQrl .ac. uk

Fox: 01 235 446403

ISSN 1358-6254

Neither the Council nor the Laboratory accept any responsibility for loss or
damage arising from the use of information contained in any of their
reports or in any communication about their tests or investigations.

RAL-TR-97-041

Exploiting zeros in frontal solvers.*

by

Jennifer A. Scott

Abstract

An important feature of the frontal method for the solution of large sparse systems of
linear equations is that the frontal matrix is held as a dense matrix. This allows efficient
dense linear algebra kernels, in particular, the Level 3 Basic Linear Algebra Subprograms
(BLAS) to be used during the numerical factorization. However, the frontal matrix may
contain a significant number of zeros and this, in turn, leads to unnecessary operations
being performed and to zeros being stored explicitly in the factors. In this paper we look
at how we can take advantage of zeros within the frontal matrix. We illustrate the effects
of exploiting zeros in the front on the factorization and solve times, and on the storage
requirements for the Harwell Subroutine Library general frontal code MA42 using a range
of problems arising from real engineering and industrial applications.

Keywords: sparse linear equations, frontal method, Gaussian elimination, finite-element
equations, Level 3 BLAS.

AMS(MSC 1991) subject classifications: 65F05, 65F50.

CR classification system: G.1.3.

* Current reports available by anonymous ftp from matisa. cc . rl . ac . uk (internet 130.246.8.22)
in the directory pubheports.

Department for Computation and Information,
Atlas Centre, Rutherford Appleton Laboratory,
Oxon OX11 OQX, England.
August 13, 1997.

CONTENTS i

Contents

1 Introduction 1

2 Frontal schemes 1

3 Exploiting zeros 3
3.1 Exploiting zeros within the frontal matrix 3
3.2 Efficient static condensations . 4

4 Numerical results 5

5 Conclusions 10

6 Acknowledgements 11

1 INTRODUCTION 1

1 Introduction

In this report, we are interested in using the frontal method to solve systems of linear
equations

where the n x n matrix A is large and sparse. B is an n x nrhs (nrhs 2 1) matrix of
right-hand sides and X is the n x nrhs solution matrix. The frontal method was originally
developed by Irons (1970) for the solution of symmetric positive-definite systems which
come from finite-element discretizations in structural analysis. The method was extended
to unsymmetric finite-element problems by Hood (1976). For finite-element problems, the
system matrix A is normally envisaged as a sum of finite-element matrices

m

A = CA(') ,

where each matrix A(') has nonzeros only in a few rows and columns and corresponds
to the matrix from element 1. The frontal method interleaves an assembly phase and an
elimination phase, thereby allowing operations to be confined to a relatively small matrix,
termed the fiontul mutriz, that can be regarded as dense. Duff (1983) realised that the
method could be extended to general unsymmetric matrices by assembling the matrix A
one row (equation) at a time. In this case, A(*) corresponds to row I of A. This strategy
was first implemented in the early 1980s in the Harwell Subroutine Library (1996) code
MA32. MA32 was very widely used before being substantially restructured and improved by
Duff and Scott (1993,1996b). The upgraded code, MA42, which has superseded MA32 in the
Harwell Subroutine Library (HSL), has been used on a wide range of modern computers
to solve problems from many different application areas. It allows input by elements or
equations but is principally structured for finite-element problems.

Recent experiments by Duff and Scott (1996~) found that, for some problems, the
frontal code MA42 can require substantially more operations and storage for the factors
than other HSL codes for solving large sparse systems. In particular, the equation entry to
MA42 was found to be inefficient if the equations were poorly ordered. Closer examination
revealed that, in this case, a large number of zeros are held explicitly within the factors.
Our aim is to reduce the number of zeros within the factors, while not compromising the
efficiency of the code when applied to well-ordered problems. Reducing the zeros will
reduce the operation count and the storage required for the matrix factors as well as the
time needed for using the factors to solve for different right-hand sides B.

The outline of this report is as follows. In Section 2, we briefly review frontal schemes.
We then look, in Section 3, at how we can exploit zeros within the front. The efficient
treatment of static condensation variables is also discussed. In Section 4, we illustrate
the advantages of exploiting zeros in frontal solvers. Concluding comments are made in
Section 5.

2 Frontal schemes

The frontal method is a variant of Gaussian elimination and involves the matrix
factorization

A = PLUQ, (2.1)

2 FRONTAL SCHEMES 2

where P and Q are permutation matrices, and L and U are lower and upper triangular
matrices, respectively. The solution process is completed by performing the forward
elimination

(PL)Y = B, (2.2)

followed by the back substitution

(UQ)X = Y . (2.3)

The main feature of the method is that the contributions A(’) from the finite-elements
(or rows of A for equation entry) are assembled one at a time and the construction of
the assembled coefficient matrix A is avoided by interleaving assembly and elimination
operations. An assembly operation is of the form

where a j j (‘1 is the (i , j) th nonzero entry of the element matrix A(‘). A variable is fi l ly
summed if it is involved in no further sums of the form (2.4) and is partially summed i f it
has appeared in at least one of the elements assembled so far but is not yet fully summed.
The Gaussian elimination operation

a;j -+ a;j - ~ ; l [a n] - ~ a l j (2.5)

may be performed as soon as all the terms in the triple product in (2.5) are fully summed.
Since variables can only be eliminated after they are fully summed, the assembly order

will determine, to a large extent, the order in which the variables are eliminated. At
any stage during the assembly and elimination processes, the fully and partially summed
variables are held in an in-core frontal matrix. Suppose that entry is by elements. If after
the assembly of an element, there are k fully summed variables and these are permuted to
the first rows and columns of the frontal matrix, we can partition the frontal matrix F as

where FT is a square matrix of order k. The rows and columns of FT, the rows of FR,
and the columns of Fc are fully summed; the variables in Fu are not yet fully summed.
Pivots may be chosen from anywhere in FT. For symmetric positive-definite systems, they
can be taken from the diagonal in order but in the general case, off-diagonal pivots may
be chosen to satisfy a threshold criteria. This is discussed in Duff (1984). The pivot row
and column are permuted to the first row and column of (2.6), row 1 of FT is scaled by
the pivot and columns 2 to k of the permuted frontal matrix updated. Columns 2 to k
of the updated matrix FT are then searched for the next pivot. When chosen, the pivot
row and column are permuted to row 2 and column 2 of the frontal matrix, row 2 of FT
is scaled by the pivot, and columns 3 to k of the frontal matrix are updated. This process
continues until no more pivots can be found. Assuming k (k > 1) pivots have been chosen,
FR is updated using the Level 3 BLAS routine -TRSM

FR t -FTIFR

and, finally, FU is updated using the Level 3 BLAS routine SEMM

Fv + Fv + FcFR.

3 EXPLOITING ZEROS 3

In practice, stability restrictions may only allow T pivots to be chosen (T < k) and, in this
case, the first T rows of FR are updated using -TRSM and then Fu and the remaining k - T

rows of FR are updated using -GEM, with interior dimension T . If a single pivot is chosen,
Level 2 BLAS routines are used. Further details of how this strategy is implemented
within the frontal code MA42 are given by Duff and Scott (1996b).

If the assembly is by equations, rather than by elements, an equation is fully summed
as soon as it enters the front so that an elimination can be performed once a column
becomes fully summed; that is, whenever the equation containing the last occurrence of
a variable is assembled. For equation entry, the frontal matrix will thus be rectangular
and of the form (2.6) with the rows and columns of FT and Fc fully summed, and the
rows of FR and FU fully summed but the columns of FU not yet fully summed. Since the
rows of Fc are fully summed, for each fully summed column, pivots can be chosen from
anywhere in the column. Therefore the largest entry in the column may be used as the
pivot (partial pivoting) and (provided the matrix is non singular) no pivots are delayed
by stability considerations.

A key feature of the frontal method is that the matrix factors need not be held in-
core. This allows large problems to be solved using only modest amounts of high-speed
memory. The minimum in-core memory requirement is dependent on the maximum order
of the frontal matrix, so the order in which the elements or equations are input is critical.
MA42 optionally allows the use of direct access files for holding the matrix factors. As the
rows and columns of the factors are generated they are written to buffers, which are held
in-core. MA42 uses three buffers: one each for the reals in PL and UQ and one for the row
and column indices of the variables in the factors. Once a buffer becomes full, i t is written
to the corresponding direct access file. The size of the buffers is chosen by the user but,
for efficiency, the buffers should be chosen as large as in-core memory permits.

3 Exploiting zeros

3.1

During the factorization, the frontal matrix may contain some zero entries. Treating the
frontal matrix as a dense matrix results in unnecessary operations being performed with
these zeros. As we discussed in the previous section, high level BLAS are used, so that the
cost of these operations may not be prohibitive. If, however, the frontal matrix contains
a significant number of zeros, i t can be advantageous to exploit these zeros. In particular,
there are many zeros in the front if the elements (or equations) are poorly ordered. To
see how we can exploit the zeros, suppose the frontal matrix has been permuted to the
form (2.6). By performing further row and column permutations, the frontal matrix can
be expressed in the form

Exploiting zeros within the frontal matrix

where 01 and 02 are zero matrices of order k x kl and k2 x k, respectively. Assuming the
current frontal matrix is of order 1 f rnt x k f rnt (with I f rnt = k f r n t for element entry),
and k is the number of fully summed variables, kl and k2 satisfy 0 5 kl 5 I f rnt - k and
0 5 k2 5 k f r n t - k.

In place of (2.7) and (2.8), we now need only perform the updates

3 EXPLOITING ZEROS 4

and

In practice, for element entry, T 5 k pivots are chosen and again -TRSM and then -GEMM
with interior dimension T are used. When writing to the buffers, F R ~ and Fcl, rather than
FR and Fc, are stored, resulting in savings in both the real and integer factor storage.

If more than one pivot is chosen, the updated matrices F R ~ and Fcl may still contain
some zeros. However, the experiments which we report in Table 4.4 (Section 3) show that,
in general, the number of zeros remaining in the factors is small (for element problems,
typically less than 10 per cent of the total number of entries in the factors). We do not,
therefore, attempt to exploit zeros within F R ~ and Fcl .

We now discuss how the factorization phase of MA42 (that is, MA42B) can be modified
to exploit zeros in the front. In MA42, because of the overheads involved in swapping and
sorting operations, the fully summed rows and columns are not permuted to the first rows
and columns of the frontal matrix before the pivot selection begins. Instead, the fully
summed columns are searched for a pivot and, once a pivot has been found, its row and
column are permuted to the last row and column of the frontal matrix. When the next
pivot is chosen, it is permuted to the last but one row and column of the frontal matrix, and
so on. For element entry, if r < k pivots are chosen for the current element, the remaining
k-r fully summed columns are permuted to columns Zfrnt-k, Zfrnt-k-1, ..., Zfrnt-r+1
of F.

To take advantage of zeros we now need to perform further row permutations to collect
the zeros in the fully summed columns into a block held in the first rows and, similarly,
column permutations to collect the zeros in the fully summed rows into a block held in the
first columns. To collect the zeros in the fully summed columns into a block, the number 1
of rows with zeros in all the pivotal columns is initially set to 0. Rows 1 to k f rnt - k + 1 of
the pivotal columns are scanned in reverse order. Let i be the index of the row currently
being scanned. There are two possibilities: either there is a nonzero entry in at least one
of the pivotal columns or all the entries in the pivotal columns are zero. In the first case,
no action is needed and, assuming i > 1, we now scan row i - 1. In the second case, we
increment I by one and, starting with row I, we search for a row with index at most i - 1
with a nonzero entry in at least one of the pivotal columns. If we find such a row, it is
interchanged with row i and we then scan row i - 1. Otherwise, there are no more rows to
add to the zero block. Column permutations to collect the zeros in the fully summed rows
into a block are then performed in a similar manner, before performing the elimination
operations.

In this way, we can exploit zeros without altering the internal data structures of MA42.
The overheads are the searching for zeros and, once found, the additional row and column
permutations .

3.2 Efficient static condensations

Many finite-element discretizations include variables which are internal to the element.
These so-called static condensation variables can be eliminated without reference to any
other elements. In general, the order of an element is very much smaller than the frontsize
so the relative cost of eliminating static condensation variables is negligible. MA42 offers the
user the option of performing static condensations. If this option is chosen, each incoming
element or equation is checked for internal variables. For the equation entry, the presence
of more than one internal variable results in a structurally singular matrix and, in this
case, a warning message is issued and, unless the user chooses to continue (in which case,

4 NUMERICAL RESULTS 5

the equation is assembled straight into the frontal matrix), the computation terminates.
Otherwise, pivots are chosen from the internal variables and, as each pivot is chosen, the
corresponding row and column are permuted to the end of the incoming element matrix
A('). The elimination operations are performed within the element (or equation) using
the BLAS. Once all possible eliminations have been performed, the partially eliminated
element or equation is assembled into the frontal matrix. The rows of UQ and columns
of PL corresponding to the static condensation variables are then written to the in-core
buffers.

For equation entry, if the equations are well-ordered, the current frontsize may not
be significantly greater than the number of variables in an incoming equation. However,
this may not be the case i f the equations are poorly ordered and, for element entry, the
order of an element is generally much smaller than the order of the frontal matrix. Thus,
by writing the rows of UQ and columns of PL corresponding to the static condensation
variables into the frontal matrix before writing to the buffers, zeros may be written to the
buffers. In particular, i f entry is by elements and the current frontsize is frnt and the
incoming element has nvar variables, frnt - nvar zero entries are written to the L and
U buffers for each static condensation variable in the element. If there are a significant
number of static condensation variables in the problem, this can lead to a large number
of zeros being stored explicitly within the factors (see Table 4.3 in Section 4). This is
avoided if we can write the rows of UQ and columns of PL corresponding to the static
condensation variables directly to the buffers. For the equation entry, this can be done
using the existing MA42 data structures. However, for the element entry, i f off-diagonal
pivoting is used (and this is the default), an extra array of length nvar is required. We
now explain this.

For each element (or equation), the user must specify in an array ivar of length nvar
a list of the variables belonging to it. The reds must be specified in an array avar. For
equation entry there is at most one static condensation variable and a single permutation
is needed to permute this variable to the end of ivar and avar. Assuming the stability
criteria is satisfied, the first nvar - 1 entries of avar are then scaled by the pivot, before the
pivot and scaled array avar are written to the real buffers. The integer buffer requires the
row and column indices of the variables. The row index is the current equation number
and the column indices are in ivar. Thus for equation entry, no additional arrays are
needed. However, the same is not true for element entry. In this case, once a pivot has
been chosen from amongst the internal variables, row and column permutations within
the element must generally be performed. If off-diagonal pivoting is used, both the row
and column indices of the variables within the element are needed. If we are to avoid
writing to the frontal matrix before writing to the buffers, we need a second array jvar
of length nvar to enable ivar to be used to hold the rows indices and jvar the column
indices. This extra array could be an internal work array. Alternatively, if the user were
allowed to specify both the row and column indices of the incoming element, the code
could be generalised to allow the input of rectangular elements. We anticipate that in a
future release of the Harwell Subroutine Library, MA42 will be superseded by a new frontal
code which will use an additional array jvar for static condensations and which will allow
rectangular elements to be input.

4 Numerical results

In this section, we first describe the problems that we use for testing the effects of exploiting
zeros within the frontal solver and then present our numerical results. In all cases, the test
problems arise in real engineering and industrial applications. For each test problem, i f

4 NUMERICAL RESULTS 6

numerical values were provided with the matrix, these values are used in our experiments.
Otherwise, values for the entries were generated using the Harwell Subroutine Library
(HSL) random number generator FAOl. A brief description of each of the unassembled

Identifier

CEGB3306
CEGB2919
LOCK2232
TRDHEIM
CRPLAT2
OPT1
TSY L20 1
AEAC6398

AEA87000

Degrees of
freedom

3222
2859
2208

22098
18010
15449
20685
6398

87000

Static
condensation

variables
0

387
0

7740
192
70 1

52
3020

35553

Number of
elements

791
128
944
813

3152
977
960
600

5800

Description/discipline

2.5D framework problem
3D cylinder with flange
Lockheed tower problem
Mesh of the Trondheim fjord
Corrugated plate field
Part of oil production platform
Part of oil production platform
Flow of a Newtonian fluid past a
cylinder in a channel
Flow of a Newtonian fluid in a pipe
with a sudden svmmetric exDansion

Table 4.1: The element test problems

element problems is given in Table 4.1. The number of unassembled element problems
available in the Harwell-Boeing Collection (Duff, Grimes and Lewis, 1992) is limited and all
are small by today’s standards. Consequently, we have only selected three representative
problems, CEGB3306, CEGB2859, and LOCK2232, from this Collection. The problems
AEAC6398 and AEA87000 are from Andrew Cliffe of AEA Technology and were chosen
because they contain a large number of static condensation variables. The remaining
problems (TRDHEIM, CRPLAT2, OPT1, and TSYL201) were supplied by Christian
Damhaug of Det Norske Veritas, Norway. These problems are much larger than those
in the Harwell-Boeing Collection and vary widely in the proportion of variables which are
static condensation variables. For all the element problems, unless stated otherwise, we
reorder the elements using the direct element reordering algorithm offered by the HSL
routine MC43 before the frontal solver is used.

The assembled test problems, for which the MA42 equation entry is used, are listed
in Table 4.2. The first three are taken from the Harwell-Boeing Collection and the
other problems were supplied by Tim Davis, University of Florida. SHERMAN3 and
ONETONE2 were chosen as they have a significant number of static condensation
variables. ONETONEB was also selected because Duff and Scott (1996e) observed that,
compared with other HSL sparse solvers, MA42 performed poorly for this problem. For the
same reason, WEST2021 and PSMIGR 3 were chosen. For unsymmetric problems, the
Harwell Subroutine Library does not contain the equivalent of a profile minimizer but, for
problems with a nearly symmetric structure, an ordering for the equation entry to MA42
can be obtained by applying the HSL profile reducing code MC40 to the pattern of A+AT.
To enable comparisons to be made between problems for which we have a good ordering
and those for which only the original ordering is available, we include SHERMAN3 and
WANG3 since they have (almost) symmetric sparsity patterns. For these problems, MC40
is used.

The experimental results given in this paper were obtained using 64-bit floating-point
arithmetic on the following platforms:

0 A Sun Ultra 1 using the epcf90 Fortran compiler, with compiler option -0.

4 NUMERICAL RESULTS

Identifier

SHERMAN3'
WEST2021
PSMIGR 3
WANG3'
ONETONE2

7

Static
Order condensation Number of Description/discipline

5005 2109 20033 Oil reservoir simulation
2021 34 7353 Chemical engineering
3140 0 543162 Population migration

variables entries

26064 0 177168 3D semiconductor device simulation
36057 1919 227628 Harmonic balance method

Real storage
(Kwords)

Table 4.2: The assembled test problems. * denotes reordered using MC40.

Integer Factorize
storage time

0 A single processor of a CRAY J932 using the CRAY Fortran compiler cf77-7 with
compiler option -2v and the vendor-supplied BLAS.

All times are CPU times in seconds and include the i/o overhead for the use of direct
access files for storing the matrix factors. In our tables of results, the solve times are for
a single right-hand side (nrhs = 1). We remark that the savings in the solve times which
result from our modifications to MA42 are even more worthwhile if nrhs > 1.

We first present results to illustrate the importance of implementing static
condensation efficiently when the problem has a large number of static condensation
variables. Our results are given in Table 4.3. We see that, in general, for problems with

927 (o.lj
6686 (1642)
5048 (4)

16697 (706)
16248 (258)
1474 (589)
992 (106)

32114 (11608)

57 10.6
535 51.9
352 48.9

1196 588.8
352 588.0
290 6.3
169 6.0

4432 192.9

I (Kwords) I (seconds)
1015 (88) I 72 I 10.6

20702 (195) I 2553 I 181.8
597 (210) I 594 1 2.7
597 (210j I 594 I 2.7

24246 (21019) I 13102 I 100.4
23346 (19718) I 11801 I 100.2

Solve
time

(seconds)
0.6
0.5
3.8
2.8

10.2
10.0
0.9
0.6

22.2
14.0
0.8
0.8

24.8
21.0

Table 4.3: The effect of improving the efficiency of the static condensation phase (Sun
Ultra 1). Standard denotes the HSL Release 12 version of MA42 and modified denotes
that an extra array jvar is used for static condensations (see Section (3.2)). The figures in
parentheses are the number of zeros (in thousands) which are held explicitly in the factors.

a large number of static condensation variables, using an extra array jvar as described in
Section 3.2 substantially reduces the number of zeros held explicitly within the factors. In
particular, for the unassembled problems we see that less than 10 per cent of the entries
in the factors are zeros. The reduction in the real and integer storage for the factors leads
to savings in the solve times. The small savings in the factorize times for some of the
problems can be attributed to the reduction in data movement which results from writing
directly from the element arrays to the buffers. For problem SHERMANS (which was

4 NUMERICAL RESULTS 8

Integer
storage

reordered using MC40), the standard and modified codes yield the same factors. Further
investigation shows that, when reordered, the static condensation variables are all in rows
of length 1 (that is, each static condensation variable is the only variable in its row), and
these rows are the first rows to be assembled. For problem ONETONE2, a large number
of zeros remain in the factors, which suggests that the problem is poorly ordered.

In Tables 4.4 to 4.7, we show the effects of exploiting zeros in the front. When zeros
are exploited, we use the implementation of static condensation described in Section 3.2;
otherwise, the HSL Release 12 version of MA42 is used. Problems AEAC6398 and
AEA87000 had been preordered using MC43 before they were supplied to us but for the
remaining unassembled problems, we give results on the Sun Ultra both for the supplied
order and for the ordering obtained using MC43. On the CRAY J932, the results are for
the reordered elements.

Factorize Solve
time time

Identifier

CEGB3306

CEGB2919

LOCK2232

TRDHEIM

CRPLAT2

OPT1

TSYL201

AEAC6398

AEA87000

Zeros
exploited

N
Y
N
Y
N
Y
N
Y
N
Y
N

Ordered

N
N
Y
Y
N
N
Y
Y
N
N
Y
Y
N
N
Y
Y
N
N
Y
Y
N
N
Y
Y
N
N
Y
Y
Y
Y
Y
Y

Real storage
(Kwords)

1528 (1292)
261 (26)
390 (186)
372 (0.7)

1154 (313)

1015 (88)
927 (0.1)

2827 (2552)
287 (12)

843 (2)

220 (33)

(Kwords) (seconds)
260 5.9
48 3.5
71 3.8
68 1.8
87 10.2
52 8.7
72 10.6
57 10.5

433 17.4
46 10.8
40 0.9

Y [188 (0.2)
N I 7566 (2174)

(seconds)
0.9
0.2
0.3
0.2
0.8
0.5
0.6
0.5
1.7
0.2
0.2

5403 (11)
N 6686 (1642)

52.5
535 383 1 51.9
352 50.3

6381 3422.4
5530 3844.2
2120 259.4
2095 257.3
4372 2550.9

383 999.4
352 588.8
352 594.9

1638 1662.1
1568 1684.7
1021 578.6
1005 576.9

290 6.3
276 5.7

4432 192.9
2553 185.2

Y I 5048 (4)
N I 45068 (7646)

3.0
3.8
2.8

31.1
27.6

8.6
8.5

55.6
14.6
10.2
10.2
22.0
22.0
13.4
12.9
0.9
0.5

22.2
14.0

Y
I N

Y
N
Y
N
Y
N
Y
N
Y I 20837 (0.4)
N I 1474 (589)

39011 . (59j

12791 (2)
12937 (1480)

61453 (42332)
19925 (106)
16697 (706)
16000 (10)
33668 (624)
33056 (12)
20934 (97)

Y
N
Y

906 ‘(21 j
32114 (11608)
20702 (195)

35 I 0.9 1 0.1
598 I 56.1 I 4.5

Table 4.4: The effect on unassembled problems of exploiting zeros in the front (Sun Ultra
1). The figures in parentheses are the number of zeros (in thousands) which are held
explicitly in the factors.

From Table 4.4, we see that, in general, if the elements are not well ordered, worthwhile
savings are achieved in the real and integer factor storage and in the factorize and solve

4 NUMERICAL RESULTS 9

Exploited

+ CRPLAT2

OPT1 N

Y

Factorize Solve
time time

(seconds) (seconds)
1 .o 0.07
1.1 0.07
2.3 0.07
2.4 0.06
0.6 0.04
0.6 0.04

11.6 0.49
12.0 0.38
53.6 1.16
56.7 1.12
88.3 0.94

88.7 I 1.03

Table 4.5: The effect on ordered unassembled problems of exploiting zeros in the front
(CRAY J932).

times by exploiting zeros in the front. Once the elements have been ordered, the savings
which result from exploiting zeros are much smaller. By comparing Tables 4.3 and 4.4, we
see that once the problems CEGB2919, TRDHEIM and AEA87000 have been ordered, the
reduction in the number of zeros within the factors comes from using the array jvar when
implementing static condensation: no further reduction is achieved by exploiting zeros
in the front. Moreover, for the problem CEGB2919, the factor storage and the factorize
time are less when zeros are exploited for the original ordering than for the MC43 ordering.
This is because, for this problem, more zeros are exploited when the original ordering
is used. The results in Tables 4.4 and 4.5 also show that, if the number of zeros in the

Identifier

SHERMAN3

WEST2021

PSMIGR 3

WANG3

ONETONE2

Zeros
exploited

N
Y
N
Y
N
Y
N
Y
N
Y

Real storage
(Kwords)

597 (313)
387 (0.006)
545 (512)
60 (27)

9433 (1973)
7865 (405)

38480 (12792)
25687 (0)
24246 (21019)
4356 (700)

Integer
storage

(Kwords)
594
393
229
20

1913
1032

37504
25068
13102
1311

Factorize
time

seconds) seconds) + i -pT
847.8
811.2
971.4
956.8
100.4 24.8
46.8

Table 4.6: The effect on assembled problems of exploiting zeros in the front (Sun Ultra 1).
The figures in parentheses are the number of zeros (in thousands) which are held explicitly
in the factors.

front is a small proportion of the total number of nonzeros, the overheads of searching for
them and the increased data movement to accumulate them into blocks can increase the

5 CONCLUSIONS 10

factorize time. For example, problem AEA87000 has a factorization time of 182 seconds
when static condensation is implemented efficiently (Table 4.3) but this increases to 185
seconds on the Sun Ultra when we also look for zero blocks. Unfortunately, we do not
know how many zeros there are in the front until we search for them. However, since the
solve time is not increased and may be reduced by exploiting zeros, an increase in the
factorize time may be considered tolerable. In particular, if the factors are to be used to
solve for a large number of right-hand sides an increase in the factorize time could be more
than compensated for by the storage and solve time savings. This has been our experience
when using MA42 for eigenvalue calculations (Scott and Lehoucq, 1997).

Identifier Zeros Factorize
exploited time

I I (seconds)
SHERMAN3 11 N 1.8

WEST2021

PSMIGR 3 145.2
II Y I 107.7

WANG3 N 210.1
Y 180.5

ONETONE2 11 N I 84.3

Solve
time

seconds)

0.80

12.59
8.09
5.56

Table 4.7: The effect on assembled problems of exploiting zeros in the front (CRAY J932).

For the assembled problems, exploiting zeros in the front successfully reduces the
number of zeros held explicitly within the factors. Moreover, if the equations are not well-
ordered (for example, WEST2021 and PSMIGR 3), there are significant savings in the
factorize and solve times and in the factor storage. As remarked earlier, Duff and Scott
(1996a) observed that MA42 performed poorly for problem ONETONE2, for which we do
not have a good ordering available. Our results show that exploiting zeros significantly
enhances the performance of the frontal solver for this problem. When a problem is well-
ordered (SHERMAN3 and WANG3), there is either a modest saving in the factorize time
or an increase in the factorize time caused by the extra data movement, but there can still
be worthwhile savings in the solve times.

5 Conclusions

We have looked at the need to exploit zeros in frontal solvers and have implemented
two modifications to our general frontal solver MA42 which can substantially improve
its performance. In particular, the performance is improved i f the problem has a large
number of static condensation variables or is poorly ordered. This has indicated to us the
desirability of incorporating zero detection strategies within a new version of our general
frontal code. The modified code would allow the user to request that zeros in the front
are exploited and would also permit the input of rectangular elements. Our results have
also highlighted the need for a good ordering for assembled problems. By comparing our
results with those of Duff and Scott (1996a), we see that, even with the improvements
we have made, for most assembled problems, approaches other than the frontal method
are likely to be faster and require less factor storage. However, the frontal code does offer

6 ACKNOWLEDGEMENTS 11

the advantage of holding the factors out-of-core and is thus far superior in terms of main
memory. Finally, we remark that we have recently developed a frontal code MA62 (Duff and
Scott, 1997) for solving systems of symmetric positive-definite unassembled finite-element
equations and this code optionally exploits zeros in the front.

6 Acknowledgements

I would like to thank my colleague Iain Duff at Rutherford for his interest, for helpful
discussions, and for his comments on this report.

References

I.S. Duff. Enhancements to the MA32 package for solving sparse unsymmetric equations.
Report A E R E R11009, Her Majesty’s Stationery Office, London, 1983.

I.S. Duff. Design features of a frontal code for solving sparse unsymmetric linear systems
out-of-core. SIAM J. Scientific and Statistical Computing, 5 , 270-280, 1984.

I.S. Duff and J.A. Scott. MA42 - a new frontal code for solving sparse unsymmetric
systems. Technical Report RAL-TR-93-064, Rutherford Appleton Laboratory, 1993.

I.S. Duff and J.A. Scott. A comparison of frontal software with other sparse direct solvers.
Technical Report RAL-TR-96-102, Rutherford Appleton Laboratory, 1996a.

I.S. Duff and--J.A. Scott. The design of a new frontal code for solving sparse unsymmetric
systems. ACM Tmns. Mathematical Software, 22(1), 30-45, 1996b.

I.S. Duff and J.A. Scott. MA62 - a new frontal code for sparse positive-definite
symmetric systems from finite-element applications. Technical Report RAL-TR-97-
012, Rutherford Appleton Laboratory, 1997.

I. S. Duff, R. G. Grimes, and J. G. Lewis. Users’ guide for the Harwell-Boeing sparse matrix
Technical Report RAL-TR-92-086, Rutherford Appleton collection (Release I).

Laboratory, 1992.

Harwell Subroutine Library. A Catalogue of Subroutines (Release 12). Advanced
Computing Department, AEA Technology, Harwell Laboratory, Oxfordshire,
England, 1996.

P. Hood. F’rontal solution program for unsymmetric matrices. Inter. Journal on Numerical
Methods in Engineering, 10, 379-400, 1976.

B.M. Irons. A frontal solution program for finite-element analysis. Inter. Journal on
Numerical Methods in Engineering, 2 , 5-32, 1970.

J.A. Scott and R.B. Lehoucq. Implicitly restarted arnoldi methods and eigenvalues of the
discretized navier stokes equations. Technical Report to appear, Rutherford Appleton
Laboratory, 1997.

