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Abstract 

An important feature of the frontal method for the solution of large sparse systems of 
linear equations is that the frontal matrix is held as a dense matrix. This allows efficient 
dense linear algebra kernels, in particular, the Level 3 Basic Linear Algebra Subprograms 
(BLAS) to be  used during the numerical factorization. However, the frontal matrix may 
contain a significant number of zeros and this, in turn, leads to  unnecessary operations 
being performed and to zeros being stored explicitly in the factors. In this paper we look 
at how we can take advantage of zeros within the frontal matrix. We illustrate the effects 
of exploiting zeros in the front on the factorization and solve times, and on the storage 
requirements for the Harwell Subroutine Library general frontal code MA42 using a range 
of problems arising from real engineering and industrial applications. 
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1 INTRODUCTION 1 

1 Introduction 

In this report, we are interested in using the frontal method to solve systems of linear 
equations 

where the n x n matrix A is large and sparse. B is an n x nrhs (nrhs 2 1) matrix of 
right-hand sides and X is the n x nrhs solution matrix. The frontal method was originally 
developed by Irons (1970) for the solution of symmetric positive-definite systems which 
come from finite-element discretizations in structural analysis. The method was extended 
to unsymmetric finite-element problems by Hood (1976). For finite-element problems, the 
system matrix A is normally envisaged as a sum of finite-element matrices 

m 

A = CA( ' ) ,  

where each matrix A(') has nonzeros only in a few rows and columns and corresponds 
to the matrix from element 1. The frontal method interleaves an assembly phase and an 
elimination phase, thereby allowing operations to be confined to  a relatively small matrix, 
termed the fiontul mutriz, that can be regarded as dense. Duff (1983) realised that the 
method could be extended to general unsymmetric matrices by assembling the matrix A 
one row (equation) at a time. In this case, A(*) corresponds to row I of A. This strategy 
was first implemented in the early 1980s in the Harwell Subroutine Library (1996) code 
MA32. MA32 was very widely used before being substantially restructured and improved by 
Duff and Scott (1993,1996b). The upgraded code, MA42, which has superseded MA32 in the 
Harwell Subroutine Library (HSL), has been used on a wide range of modern computers 
to solve problems from many different application areas. It allows input by elements or 
equations but is principally structured for finite-element problems. 

Recent experiments by Duff and Scott (1996~) found that, for some problems, the 
frontal code MA42 can require substantially more operations and storage for the factors 
than other HSL codes for solving large sparse systems. In particular, the equation entry to 
MA42 was found to be inefficient if the equations were poorly ordered. Closer examination 
revealed that, in this case, a large number of zeros are held explicitly within the factors. 
Our aim is to reduce the number of zeros within the factors, while not compromising the 
efficiency of the code when applied to  well-ordered problems. Reducing the zeros will 
reduce the operation count and the storage required for the matrix factors as well as the 
time needed for using the factors to solve for different right-hand sides B. 

The outline of this report is as follows. In Section 2, we briefly review frontal schemes. 
We then look, in Section 3, at how we can exploit zeros within the front. The efficient 
treatment of static condensation variables is also discussed. In Section 4, we illustrate 
the advantages of exploiting zeros in frontal solvers. Concluding comments are made in 
Section 5.  

2 Frontal schemes 

The frontal method is a variant of Gaussian elimination and involves the matrix 
factorization 

A = PLUQ, (2.1) 



2 FRONTAL SCHEMES 2 

where P and Q are permutation matrices, and L and U are lower and upper triangular 
matrices, respectively. The solution process is completed by performing the forward 
elimination 

(PL)Y = B, (2.2) 

followed by the back substitution 

(UQ)X = Y .  (2.3) 

The main feature of the method is that the contributions A(’) from the finite-elements 
(or rows of A for equation entry) are assembled one at a time and the construction of 
the assembled coefficient matrix A is avoided by interleaving assembly and elimination 
operations. An assembly operation is of the form 

where a j j  (‘1 is the ( i , j ) th  nonzero entry of the element matrix A(‘). A variable is fi l ly 
summed if  it is involved in no further sums of the form (2.4) and is partially summed i f  it 
has appeared in at least one of the elements assembled so far but is not yet fully summed. 
The Gaussian elimination operation 

a;j -+ a;j - ~ ; l [ a n ] - ~ a l j  (2.5) 

may be performed as soon as all the terms in the triple product in (2.5) are fully summed. 
Since variables can only be eliminated after they are fully summed, the assembly order 

will determine, to a large extent, the order in which the variables are eliminated. At 
any stage during the assembly and elimination processes, the fully and partially summed 
variables are held in an in-core frontal matrix. Suppose that entry is by elements. If after 
the assembly of an element, there are k fully summed variables and these are permuted to 
the first rows and columns of the frontal matrix, we can partition the frontal matrix F as 

where FT is a square matrix of order k. The rows and columns of FT, the rows of FR, 
and the columns of  Fc are fully summed; the variables in Fu are not yet fully summed. 
Pivots may be chosen from anywhere in FT. For symmetric positive-definite systems, they 
can be taken from the diagonal in order but in the general case, off-diagonal pivots may 
be chosen to satisfy a threshold criteria. This is discussed in Duff (1984). The pivot row 
and column are permuted to the first row and column of (2.6), row 1 of FT is scaled by 
the pivot and columns 2 to k of the permuted frontal matrix updated. Columns 2 to k 
of the updated matrix FT are then searched for the next pivot. When chosen, the pivot 
row and column are permuted to row 2 and column 2 of the frontal matrix, row 2 of FT 
is scaled by the pivot, and columns 3 to k of the frontal matrix are updated. This process 
continues until no more pivots can be found. Assuming k ( k  > 1) pivots have been chosen, 
FR is updated using the Level 3 BLAS routine -TRSM 

FR t -FTIFR 

and, finally, FU is updated using the Level 3 BLAS routine SEMM 

Fv + Fv + FcFR. 
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In practice, stability restrictions may only allow T pivots to be chosen (T  < k )  and, in this 
case, the first T rows of FR are updated using -TRSM and then Fu and the remaining k - T 

rows of FR are updated using -GEM, with interior dimension T .  If a single pivot is chosen, 
Level 2 BLAS routines are used. Further details of how this strategy is implemented 
within the frontal code MA42 are given by Duff and Scott (1996b). 

If the assembly is by equations, rather than by elements, an equation is fully summed 
as soon as it enters the front so that an elimination can be performed once a column 
becomes fully summed; that is, whenever the equation containing the last occurrence of 
a variable is assembled. For equation entry, the frontal matrix will thus be rectangular 
and of the form (2.6) with the rows and columns of FT and Fc fully summed, and the 
rows of FR and FU fully summed but the columns of FU not yet fully summed. Since the 
rows of Fc are fully summed, for each fully summed column, pivots can be chosen from 
anywhere in the column. Therefore the largest entry in the column may be used as the 
pivot (partial pivoting) and (provided the matrix is non singular) no pivots are delayed 
by stability considerations. 

A key feature of the frontal method is that the matrix factors need not be held in- 
core. This allows large problems to be solved using only modest amounts of high-speed 
memory. The minimum in-core memory requirement is dependent on the maximum order 
of the frontal matrix, so the order in which the elements or equations are input is critical. 
MA42 optionally allows the use of direct access files for holding the matrix factors. As the 
rows and columns of the factors are generated they are written to buffers, which are held 
in-core. MA42 uses three buffers: one each for the reals in PL and UQ and one for the row 
and column indices of the variables in the factors. Once a buffer becomes full, i t  is written 
to the corresponding direct access file. The size of the buffers is chosen by the user but, 
for efficiency, the buffers should be chosen as large as in-core memory permits. 

3 Exploiting zeros 

3.1 

During the factorization, the frontal matrix may contain some zero entries. Treating the 
frontal matrix as a dense matrix results in unnecessary operations being performed with 
these zeros. As we discussed in the previous section, high level BLAS are used, so that the 
cost of these operations may not be prohibitive. If, however, the frontal matrix contains 
a significant number of zeros, i t  can be advantageous to exploit these zeros. In particular, 
there are many zeros in the front if  the elements (or equations) are poorly ordered. To  
see how we can exploit the zeros, suppose the frontal matrix has been permuted to the 
form (2.6). By performing further row and column permutations, the frontal matrix can 
be expressed in the form 

Exploiting zeros within the frontal matrix 

where 01 and 02 are zero matrices of order k x kl and k2 x k,  respectively. Assuming the 
current frontal matrix is of order 1 f rnt x k f rnt (with I f  rnt = k f r n t  for element entry), 
and k is the number of  fully summed variables, kl and k2 satisfy 0 5 kl 5 I f  rnt - k and 
0 5 k2 5 k f r n t  - k. 

In place of (2.7) and (2.8), we now need only perform the updates 
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and 

In practice, for element entry, T 5 k pivots are chosen and again -TRSM and then -GEMM 
with interior dimension T are used. When writing to the buffers, F R ~  and Fcl, rather than 
FR and Fc, are stored, resulting in savings in both the real and integer factor storage. 

If more than one pivot is chosen, the updated matrices F R ~  and Fcl may still contain 
some zeros. However, the experiments which we report in Table 4.4 (Section 3) show that, 
in general, the number of zeros remaining in the factors is small (for element problems, 
typically less than 10 per cent of the total number of entries in the factors). We do not, 
therefore, attempt to exploit zeros within F R ~  and Fcl . 

We now discuss how the factorization phase of MA42 (that is, MA42B) can be modified 
to exploit zeros in the front. In MA42, because of the overheads involved in swapping and 
sorting operations, the fully summed rows and columns are not permuted to the first rows 
and columns of the frontal matrix before the pivot selection begins. Instead, the fully 
summed columns are searched for a pivot and, once a pivot has been found, its row and 
column are permuted to the last row and column of the frontal matrix. When the next 
pivot is chosen, it is permuted to the last but one row and column of the frontal matrix, and 
so on. For element entry, if  r < k pivots are chosen for the current element, the remaining 
k-r fully summed columns are permuted to columns Zfrnt-k, Zfrnt-k-1, ..., Zfrnt-r+1 
of F. 

To take advantage of zeros we now need to perform further row permutations to collect 
the zeros in the fully summed columns into a block held in the first rows and, similarly, 
column permutations to collect the zeros in the fully summed rows into a block held in the 
first columns. To collect the zeros in the fully summed columns into a block, the number 1 
of rows with zeros in all the pivotal columns is initially set to 0. Rows 1 to k f rnt - k + 1 of 
the pivotal columns are scanned in reverse order. Let i be the index of the row currently 
being scanned. There are two possibilities: either there is a nonzero entry in at least one 
of the pivotal columns or all the entries in the pivotal columns are zero. In the first case, 
no action is needed and, assuming i > 1, we now scan row i - 1. In the second case, we 
increment I by one and, starting with row I, we search for a row with index at most i - 1 
with a nonzero entry in at least one of the pivotal columns. If we find such a row, it is 
interchanged with row i and we then scan row i - 1. Otherwise, there are no more rows to 
add to the zero block. Column permutations to collect the zeros in the fully summed rows 
into a block are then performed in a similar manner, before performing the elimination 
operations. 

In this way, we can exploit zeros without altering the internal data structures of MA42. 
The overheads are the searching for zeros and, once found, the additional row and column 
permutations . 

3.2 Efficient static condensations 

Many finite-element discretizations include variables which are internal to the element. 
These so-called static condensation variables can be eliminated without reference to any 
other elements. In general, the order of an element is very much smaller than the frontsize 
so the relative cost of eliminating static condensation variables is negligible. MA42 offers the 
user the option of performing static condensations. If this option is chosen, each incoming 
element or equation is checked for internal variables. For the equation entry, the presence 
of more than one internal variable results in a structurally singular matrix and, in this 
case, a warning message is issued and, unless the user chooses to continue (in which case, 
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the equation is assembled straight into the frontal matrix), the computation terminates. 
Otherwise, pivots are chosen from the internal variables and, as each pivot is chosen, the 
corresponding row and column are permuted to the end of the incoming element matrix 
A('). The elimination operations are performed within the element (or equation) using 
the BLAS. Once all possible eliminations have been performed, the partially eliminated 
element or equation is assembled into the frontal matrix. The rows of UQ and columns 
of PL corresponding to the static condensation variables are then written to the in-core 
buffers. 

For equation entry, if  the equations are well-ordered, the current frontsize may not 
be significantly greater than the number of variables in an incoming equation. However, 
this may not be the case i f  the equations are poorly ordered and, for element entry, the 
order of an element is generally much smaller than the order of the frontal matrix. Thus, 
by writing the rows of UQ and columns of PL corresponding to the static condensation 
variables into the frontal matrix before writing to the buffers, zeros may be written to  the 
buffers. In particular, i f  entry is by elements and the current frontsize is frnt and the 
incoming element has nvar variables, frnt - nvar zero entries are written to  the L and 
U buffers for each static condensation variable in the element. If there are a significant 
number of static condensation variables in the problem, this can lead to a large number 
of zeros being stored explicitly within the factors (see Table 4.3 in Section 4). This is 
avoided if  we can write the rows of UQ and columns of PL corresponding to the static 
condensation variables directly to the buffers. For the equation entry, this can be done 
using the existing MA42 data structures. However, for the element entry, i f  off-diagonal 
pivoting is used (and this is the default), an extra array of length nvar is required. We 
now explain this. 

For each element (or equation), the user must specify in an array ivar of length nvar 
a list of the variables belonging to it. The reds must be specified in an array avar. For 
equation entry there is at most one static condensation variable and a single permutation 
is needed to permute this variable to the end of ivar and avar.  Assuming the stability 
criteria is satisfied, the first nvar - 1 entries of avar are then scaled by the pivot, before the 
pivot and scaled array avar are written to the real buffers. The integer buffer requires the 
row and column indices of the variables. The row index is the current equation number 
and the column indices are in ivar.  Thus for equation entry, no additional arrays are 
needed. However, the same is not true for element entry. In this case, once a pivot has 
been chosen from amongst the internal variables, row and column permutations within 
the element must generally be performed. If off-diagonal pivoting is used, both the row 
and column indices of the variables within the element are needed. If we are to avoid 
writing to  the frontal matrix before writing to  the buffers, we need a second array jvar 
of length nvar to enable ivar to be used to hold the rows indices and jvar the column 
indices. This extra array could be an internal work array. Alternatively, if  the user were 
allowed to specify both the row and column indices of the incoming element, the code 
could be generalised to allow the input of rectangular elements. We anticipate that in a 
future release of the Harwell Subroutine Library, MA42 will be superseded by a new frontal 
code which will use an additional array jvar for static condensations and which will allow 
rectangular elements to be input. 

4 Numerical results 

In this section, we first describe the problems that we use for testing the effects of exploiting 
zeros within the frontal solver and then present our numerical results. In all cases, the test 
problems arise in real engineering and industrial applications. For each test problem, i f  
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numerical values were provided with the matrix, these values are used in our experiments. 
Otherwise, values for the entries were generated using the Harwell Subroutine Library 
(HSL) random number generator FAOl. A brief description of each of the unassembled 

Identifier 

CEGB3306 
CEGB2919 
LOCK2232 
TRDHEIM 
CRPLAT2 
OPT1 
TSY L20 1 
AEAC6398 

AEA87000 

Degrees of 
freedom 

3222 
2859 
2208 

22098 
18010 
15449 
20685 
6398 

87000 

Static 
condensation 

variables 
0 

387 
0 

7740 
192 
70 1 

52 
3020 

35553 

Number of 
elements 

791 
128 
944 
813 

3152 
977 
960 
600 

5800 

Description/discipline 

2.5D framework problem 
3D cylinder with flange 
Lockheed tower problem 
Mesh of the Trondheim fjord 
Corrugated plate field 
Part of oil production platform 
Part of oil production platform 
Flow of a Newtonian fluid past a 
cylinder in a channel 
Flow of a Newtonian fluid in a pipe 
with a sudden svmmetric exDansion 

Table 4.1: The element test problems 

element problems is given in Table 4.1. The number of unassembled element problems 
available in the Harwell-Boeing Collection (Duff, Grimes and Lewis, 1992) is limited and all 
are small by today’s standards. Consequently, we have only selected three representative 
problems, CEGB3306, CEGB2859, and LOCK2232, from this Collection. The problems 
AEAC6398 and AEA87000 are from Andrew Cliffe of AEA Technology and were chosen 
because they contain a large number of static condensation variables. The remaining 
problems (TRDHEIM, CRPLAT2, OPT1,  and TSYL201) were supplied by Christian 
Damhaug of Det Norske Veritas, Norway. These problems are much larger than those 
in the Harwell-Boeing Collection and vary widely in the proportion of variables which are 
static condensation variables. For all the element problems, unless stated otherwise, we 
reorder the elements using the direct element reordering algorithm offered by the HSL 
routine MC43 before the frontal solver is used. 

The assembled test problems, for which the MA42 equation entry is used, are listed 
in Table 4.2. The first three are taken from the Harwell-Boeing Collection and the 
other problems were supplied by Tim Davis, University of Florida. SHERMAN3 and 
ONETONE2 were chosen as they have a significant number of static condensation 
variables. ONETONEB was also selected because Duff and Scott (1996e) observed that, 
compared with other HSL sparse solvers, MA42 performed poorly for this problem. For the 
same reason, WEST2021 and PSMIGR 3 were chosen. For unsymmetric problems, the 
Harwell Subroutine Library does not contain the equivalent of a profile minimizer but, for 
problems with a nearly symmetric structure, an ordering for the equation entry to MA42 
can be obtained by applying the HSL profile reducing code MC40 to the pattern of  A+AT.  
To enable comparisons to be made between problems for which we have a good ordering 
and those for which only the original ordering is available, we include SHERMAN3 and 
WANG3 since they have (almost) symmetric sparsity patterns. For these problems, MC40 
is used. 

The experimental results given in this paper were obtained using 64-bit floating-point 
arithmetic on the following platforms: 

0 A Sun Ultra 1 using the epcf90 Fortran compiler, with compiler option -0. 
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Identifier 

SHERMAN3' 
WEST2021 
PSMIGR 3 
WANG3' 
ONETONE2 

7 

Static 
Order condensation Number of Description/discipline 

5005 2109 20033 Oil reservoir simulation 
2021 34 7353 Chemical engineering 
3140 0 543162 Population migration 

variables entries 

26064 0 177168 3D semiconductor device simulation 
36057 1919 227628 Harmonic balance method 

Real storage 
(Kwords) 

Table 4.2: The assembled test problems. * denotes reordered using MC40. 

Integer Factorize 
storage time 

0 A single processor of a CRAY J932 using the CRAY Fortran compiler cf77-7 with 
compiler option -2v and the vendor-supplied BLAS. 

All times are CPU times in seconds and include the i/o overhead for the use of direct 
access files for storing the matrix factors. In our tables of results, the solve times are for 
a single right-hand side (nrhs = 1). We remark that the savings in the solve times which 
result from our modifications to MA42 are even more worthwhile if  nrhs > 1. 

We first present results to illustrate the importance of implementing static 
condensation efficiently when the problem has a large number of static condensation 
variables. Our results are given in Table 4.3. We see that, in general, for problems with 

927 (o.lj 
6686 (1642) 
5048 (4) 

16697 (706) 
16248 (258) 
1474 (589) 
992 (106) 

32114 (11608) 

57 10.6 
535 51.9 
352 48.9 

1196 588.8 
352 588.0 
290 6.3 
169 6.0 

4432 192.9 

I (Kwords) I (seconds) 
1015 (88) I 72 I 10.6 

20702 (195) I 2553 I 181.8 
597 (210) I 594 1 2.7 
597 (210j I 594 I 2.7 

24246 (21019) I 13102 I 100.4 
23346 (19718) I 11801 I 100.2 

Solve 
time 

(seconds) 
0.6 
0.5 
3.8 
2.8 

10.2 
10.0 
0.9 
0.6 

22.2 
14.0 
0.8 
0.8 

24.8 
21.0 

Table 4.3: The effect of improving the efficiency of the static condensation phase (Sun 
Ultra 1). Standard denotes the HSL Release 12 version of MA42 and modified denotes 
that an extra array jvar is used for static condensations (see Section (3.2)). The figures in 
parentheses are the number of zeros (in thousands) which are held explicitly in the factors. 

a large number of static condensation variables, using an extra array jvar as described in 
Section 3.2 substantially reduces the number of zeros held explicitly within the factors. In 
particular, for the unassembled problems we see that less than 10 per cent of the entries 
in the factors are zeros. The reduction in the real and integer storage for the factors leads 
to savings in the solve times. The small savings in the factorize times for some of the 
problems can be attributed to the reduction in data movement which results from writing 
directly from the element arrays to the buffers. For problem SHERMANS (which was 
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Integer 
storage 

reordered using MC40), the standard and modified codes yield the same factors. Further 
investigation shows that, when reordered, the static condensation variables are all in rows 
of length 1 (that is, each static condensation variable is the only variable in its row), and 
these rows are the first rows to be assembled. For problem ONETONE2, a large number 
of zeros remain in the factors, which suggests that the problem is poorly ordered. 

In Tables 4.4 to 4.7, we show the effects of exploiting zeros in the front. When zeros 
are exploited, we use the implementation of static condensation described in Section 3.2; 
otherwise, the HSL Release 12 version of MA42 is used. Problems AEAC6398 and 
AEA87000 had been preordered using MC43 before they were supplied to us but for the 
remaining unassembled problems, we give results on the Sun Ultra both for the supplied 
order and for the ordering obtained using MC43. On the CRAY J932, the results are for 
the reordered elements. 

Factorize Solve 
time time 

Identifier 

CEGB3306 

CEGB2919 

LOCK2232 

TRDHEIM 

CRPLAT2 

OPT1 

TSYL201 

AEAC6398 

AEA87000 

Zeros 
exploited 

N 
Y 
N 
Y 
N 
Y 
N 
Y 
N 
Y 
N 

Ordered 

N 
N 
Y 
Y 
N 
N 
Y 
Y 
N 
N 
Y 
Y 
N 
N 
Y 
Y 
N 
N 
Y 
Y 
N 
N 
Y 
Y 
N 
N 
Y 
Y 
Y 
Y 
Y 
Y 

Real storage 
(Kwords) 

1528 (1292) 
261 (26) 
390 (186) 
372 (0.7) 

1154 (313) 

1015 (88) 
927 (0.1) 

2827 (2552) 
287 (12) 

843 (2) 

220 (33) 

(Kwords) (seconds) 
260 5.9 
48 3.5 
71 3.8 
68 1.8 
87 10.2 
52 8.7 
72 10.6 
57 10.5 

433 17.4 
46 10.8 
40 0.9 

Y [ 188 (0.2) 
N I 7566 (2174) 

(seconds) 
0.9 
0.2 
0.3 
0.2 
0.8 
0.5 
0.6 
0.5 
1.7 
0.2 
0.2 

5403 (11) 
N 6686 (1642) 

52.5 
535 383 1 51.9 
352 50.3 

6381 3422.4 
5530 3844.2 
2120 259.4 
2095 257.3 
4372 2550.9 

383 999.4 
352 588.8 
352 594.9 

1638 1662.1 
1568 1684.7 
1021 578.6 
1005 576.9 

290 6.3 
276 5.7 

4432 192.9 
2553 185.2 

Y I 5048 (4) 
N I 45068 (7646) 

3.0 
3.8 
2.8 

31.1 
27.6 

8.6 
8.5 

55.6 
14.6 
10.2 
10.2 
22.0 
22.0 
13.4 
12.9 
0.9 
0.5 

22.2 
14.0 

Y 
I N  

Y 
N 
Y 
N 
Y 
N 
Y 
N 
Y I 20837 (0.4) 
N I 1474 (589) 

39011 . (59j 

12791 (2) 
12937 (1480) 

61453 (42332) 
19925 (106) 
16697 (706) 
16000 (10) 
33668 (624) 
33056 (12) 
20934 (97) 

Y 
N 
Y 

906 ‘(21 j 
32114 (11608) 
20702 (195) 

35 I 0.9 1 0.1 
598 I 56.1 I 4.5 

Table 4.4: The effect on unassembled problems of exploiting zeros in the front (Sun Ultra 
1). The figures in parentheses are the number of zeros (in thousands) which are held 
explicitly in the factors. 

From Table 4.4, we see that, in general, if the elements are not well ordered, worthwhile 
savings are achieved in the real and integer factor storage and in the factorize and solve 
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Exploited 

+ CRPLAT2 

OPT1 N 

Y 

Factorize Solve 
time time 

(seconds) (seconds) 
1 .o 0.07 
1.1 0.07 
2.3 0.07 
2.4 0.06 
0.6 0.04 
0.6 0.04 

11.6 0.49 
12.0 0.38 
53.6 1.16 
56.7 1.12 
88.3 0.94 

88.7 I 1.03 

Table 4.5: The effect on ordered unassembled problems of exploiting zeros in the front 
(CRAY J932). 

times by exploiting zeros in the front. Once the elements have been ordered, the savings 
which result from exploiting zeros are much smaller. By comparing Tables 4.3 and 4.4, we 
see that once the problems CEGB2919, TRDHEIM and AEA87000 have been ordered, the 
reduction in the number of zeros within the factors comes from using the array jvar when 
implementing static condensation: no further reduction is achieved by exploiting zeros 
in the front. Moreover, for the problem CEGB2919, the factor storage and the factorize 
time are less when zeros are exploited for the original ordering than for the MC43 ordering. 
This is because, for this problem, more zeros are exploited when the original ordering 
is used. The results in Tables 4.4 and 4.5 also show that, if  the number of zeros in the 

Identifier 

SHERMAN3 

WEST2021 

PSMIGR 3 

WANG3 

ONETONE2 

Zeros 
exploited 

N 
Y 
N 
Y 
N 
Y 
N 
Y 
N 
Y 

Real storage 
(Kwords) 

597 (313) 
387 (0.006) 
545 (512) 
60 (27) 

9433 (1973) 
7865 (405) 

38480 (12792) 
25687 (0 )  
24246 (21019) 
4356 (700) 

Integer 
storage 

(Kwords) 
594 
393 
229 
20 

1913 
1032 

37504 
25068 
13102 
1311 

Factorize 
time 

seconds) seconds) + i -pT  
847.8 
811.2 
971.4 
956.8 
100.4 24.8 
46.8 

Table 4.6: The effect on assembled problems of exploiting zeros in the front (Sun Ultra 1). 
The figures in parentheses are the number of zeros (in thousands) which are held explicitly 
in the factors. 

front is a small proportion of the total number of nonzeros, the overheads of searching for 
them and the increased data movement to accumulate them into blocks can increase the 
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factorize time. For example, problem AEA87000 has a factorization time of 182 seconds 
when static condensation is implemented efficiently (Table 4.3) but this increases to 185 
seconds on the Sun Ultra when we also look for zero blocks. Unfortunately, we do not 
know how many zeros there are in the front until we search for them. However, since the 
solve time is not increased and may be reduced by exploiting zeros, an increase in the 
factorize time may be considered tolerable. In particular, if  the factors are to be used to  
solve for a large number of right-hand sides an increase in the factorize time could be more 
than compensated for by the storage and solve time savings. This has been our experience 
when using MA42 for eigenvalue calculations (Scott and Lehoucq, 1997). 

Identifier Zeros Factorize 
exploited time 

I I (seconds) 
SHERMAN3 11 N 1.8 

WEST2021 

PSMIGR 3 145.2 
II Y I 107.7 

WANG3 N 210.1 
Y 180.5 

ONETONE2 11 N I 84.3 

Solve 
time 

seconds) 

0.80 

12.59 
8.09 
5.56 

Table 4.7: The effect on assembled problems of exploiting zeros in the front (CRAY J932). 

For the assembled problems, exploiting zeros in the front successfully reduces the 
number of zeros held explicitly within the factors. Moreover, if  the equations are not well- 
ordered (for example, WEST2021 and PSMIGR 3), there are significant savings in the 
factorize and solve times and in the factor storage. As remarked earlier, Duff and Scott 
(1996a) observed that MA42 performed poorly for problem ONETONE2, for which we do 
not have a good ordering available. Our results show that exploiting zeros significantly 
enhances the performance of the frontal solver for this problem. When a problem is well- 
ordered (SHERMAN3 and WANG3), there is either a modest saving in the factorize time 
or an increase in the factorize time caused by the extra data movement, but there can still 
be worthwhile savings in the solve times. 

5 Conclusions 

We have looked at the need to exploit zeros in frontal solvers and have implemented 
two modifications to  our general frontal solver MA42 which can substantially improve 
its performance. In particular, the performance is improved i f  the problem has a large 
number of static condensation variables or is poorly ordered. This has indicated to us the 
desirability of incorporating zero detection strategies within a new version of our general 
frontal code. The modified code would allow the user to request that zeros in the front 
are exploited and would also permit the input of rectangular elements. Our results have 
also highlighted the need for a good ordering for assembled problems. By comparing our 
results with those of Duff and Scott (1996a), we see that, even with the improvements 
we have made, for most assembled problems, approaches other than the frontal method 
are likely to be faster and require less factor storage. However, the frontal code does offer 
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the advantage of holding the factors out-of-core and is thus far superior in terms of main 
memory. Finally, we remark that we have recently developed a frontal code MA62 (Duff and 
Scott, 1997) for solving systems of symmetric positive-definite unassembled finite-element 
equations and this code optionally exploits zeros in the front. 
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