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Abstract 

 
The Message Passing Interface standard (MPI) is currently the most common programming model 

deployed by the HPC community to parallelise a wide range of applications in computational 

science and engineering for distributed memory architectures.  

 

We build on a previous in-depth study of the performance of a range of Gigabit Ethernet MPI 

implementations and switches using the synthetic MPI benchmark IMB. This paper is essentially 

an appendix to that study, and presents results from benchmarks of a further three typical 1U 

Gigabit switches deployed in ‘plug and play’ mode, along with an enhanced method for analysing 

the significant amounts of data produced, which aims to accurately capture performance and 

summarise findings in a more digestible format. 
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1. Introduction 

 
The introduction of ‘Beowulf clusters’ – clusters of commodity servers or PCs first with Fast 

Ethernet and then Gigabit Ethernet (GbE) interconnects – has led to a marked increase in 

access to affordable parallel computing facilities for researchers over the last decade. Prior to 

this, scientists with HPC needs were reliant on limited access to expensive, often remote, 

centralised resources based on proprietary RISC or vector technologies. 

 

Our previous study [1] - hereafter referred to as ‘paper I’ - includes an overview of this area 

of HPC and references other benchmark studies of Gigabit clusters. For the sake of brevity 

and tautology avoidance we will not re-present this material here. 

 

There is a need to regularly revisit these types of studies however, due to changes in 

hardware, e.g. new processors/servers, GbE switches not previously available etc; and 

previously untested combinations of software - new MPI libraries and compilers, new Linux 

kernels with altered TCP stacks etc. 

 

Here we concentrate on assessing three additional switches that became available to us since 

the publication of paper I. Moreover, we examine ways of building on the method presented 

in paper I for summarising results with further rendering of the large amount of data produced 

into a format which accurately captures a particular setup’s performance and is more easily 

interpreted. 

 

We are currently in the process of addressing the outstanding tasks we set ourselves 

previously such as: 

 

• work with switch manufacturers and tune performance through eg judicious 

management of buffer sizes  

• assessment of alternative MPI implementations with TCP-bypass (SCore, GAMMA) 

and comparison with Scali MPI 

• generating benchmark data on other clusters with different server architectures (e.g. 

Intel Woodcrest and Clovertown) 

• benchmarking of TCP offload technologies 

• broadening the portfolio of MPI implementations being assessed to include the likes 

of OpenMPI and MPICH2 

• assessment of core/edge architectures and the performance impact of oversubscription 

 

We will report on these efforts in due course and look to extend them further once we have 

gained access to copper-based 10 Gigabit Ethernet clusters featuring servers with on-board 

adaptors – a development that should lead to a considerable decrease in the price of 10 GbE 

and therefore increase in its adoption not only in HPC but also in general enterprise 

computing.  

 

To reiterate our previous approach to benchmarking: for now, we concentrate on presenting 

an expanded version of our previous findings from a ‘plug and play’ exercise with additional 

data generated on switches from Extreme Networks, HP and Nortel Networks. We have made 

no attempt to optimize the various system components, eg through Ethernet switch 

management. Instead we have built libraries with recommended compiler switch settings 

where available; we have taken Ethernet switches straight out of the box with firmware etc. as 

supplied to us. So far our focus has therefore been on how we believe such clusters are 

typically setup and deployed at HPC sites (in the UK at least) by Tier 1 vendors and/or their 

Integrator/OEM partners, or end-users ‘rolling their own’.  
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These initial studies aim to highlight what we believe are reasonable performance 

expectations for typical GbE cluster configurations, how this information can then be used as 

input into a TCO analysis, and how this in turn affects the choice as to whether or not to 

purchase proprietary MPI libraries, and/or a higher performance interconnect such as 

InfiniBand instead. 

 

2. System Details: Hardware and Software 

 

The cluster deployed in this benchmarking study is comprised of 32 IBM e325 servers 

featuring two sockets each with a single-core Opteron CPU clocked at 2.0 GHz. An additional 

e325 server is used as a head node for management, compilation, job submission etc. Further 

system architecture details are given in paper I.  For the sake of brevity, again we will present 

a summary of just the 2.6 kernel data generated thus far.  

 

A range of typically deployed 1U 48 port GbE switches from the following manufacturers 

have so far been assessed (new switches in italics):  

 

• Cisco Systems (Catalyst 4948) 

• Extreme (Summit48si and  x450-24t, a 24 port switch, therefore benchmarking of 64 

process runs of IMB did not take place) 

• Force10 Networks (S50) 

• HP (Procurve 2848 and Procurve 3500yl) 

• Netgear (GS 748T) 

• Nortel Networks (5510-48T and 5520-48T)  

 

A discussion of the architectural factors that differentiate these products in the context of MPI 

benchmarking will be provided in a future paper detailing our attempts to optimise 

performance cf. this initial ‘plug and play’ study. 

 

As before, a mixture of free and commercial MPI libraries was used in this study: MPICH 

1.2.7; LAM-MPI 7.1; Scali MPI version 3. Likewise, compilers used were free (GCC 3.3) and 

commercial (PGI 6.0 and PathScale 2.0). Thus we have benchmarked 7 combinations of MPI 

library and compiler, namely:  

 

• MPICH with PGI, PathScale and GCC  

• LAM-MPI with PGI, PathScale and GCC  

• Scali MPI.  

 

A number of tests were carried out in order to ascertain whether or not the cluster was in 

principle ‘fit for purpose’. It was established that BIOS settings, memory types, configuration 

and performance (through use of the STREAM benchmark), and the performance of Linpack 

and NASTRAN kernels was consistent across the system and in line with expectations for the 

e325 server. We made use of the STAB suite from IBM’s Egan Ford  

(see http://sense.net/~egan/bench/). 

 

3. Benchmarking Methodology 
 

Using the above combinations of compilers, GbE switches and MPI libraries, we have 

benchmarked the widely used IMB (formerly PMB) suite from Intel.  IMB is easy to build 

and run and has become the de facto standard for testing the quality of MPI libraries and 

system interconnects. The data presented in this paper for MPI functions such as 

MPI_Allgather, MPI_Allreduce, MPI_Alltoall, MPI_Reduce_scatter and 
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MPI_Sendrecv at 16, 32 and 64 processes will be shown to clearly differentiate the 

performance of the various setups under test, and give an indication of the factors that users of 

MPI applications on GbE clusters need to take into account. Justification for this approach 

and set of choices is given in paper I. Data for all the MPI-1 functions included in the IMB 

suite will be available within the group’s DBD database 

(see http://www.cse.clrc.ac.uk/disco/dbd). 

 

4. Analysis of Results: Methodology 

 
It is clear that 7 flavours of MPI library/compiler combination, 5 MPI functions, 3 different 

process counts, 6 (and now 9) Ethernet switches and either 22 or 24 different data points for 

each class of test (depending on MPI function) will result in far too much data for the reader 

to easily analyse in graphical form. Nevertheless, for the interested reader we have produced 

log-log plots of average time per MPI function call vs. message size for the above set of tests, 

for both 2.4 and 2.6 kernels, and these graphs can be found in a separate document 

(http://www.cse.clrc.ac.uk/disco/gbe_perf.shtml).  

 

For the purposes of this ongoing study, we have devised a scheme that attempts to carry out a 

balanced and fair averaging of performance for each MPI function tested cf. a baseline metric, 

thus condensing the data into a more digestible form that allows us to draw conclusions more 

readily. Below, we re-iterate the scheme presented in paper I:  

 

• For each test (MPI function) we assign an equal weighting to all messages tested, i.e. 

no one message size is deemed more important than the others. In a multi-user 

environment with a variety of applications, and various data sets run over time 

(resulting in a range of message sizes) this would seem to be a reasonable approach. It 

is unlikely that a cluster would be bought for exclusive use by one user/application 

running very similar datasets (a very narrow range of message sizes) over the lifetime 

of its service. 

 

• Pick a baseline configuration with which to normalize the data. We have chosen the 

Extreme Summit48si (a fairly typical switch), LAM-MPI (widely used as it has a 

reputation of being the best performing free implementation), and the PGI compiler 

(popular with users of Opteron-based platforms).  

 

• For each system setup and each message size, compute a ratio of "baseline 

result"/"setup result".  Average performance by taking the geometric mean (the n
th
 

root of the product of n values) of these ratios for the range of message sizes tested. 

(We have limited the range of message sizes to 4 bytes upward due to very small or 

exactly zero timings being returned by IMB in some cases).  Geometric means were 

also taken across all processor counts generating a single mean value for each 

switch/compiler/MPI combination (See Figures 1-5).  The justification for using the 

geometric mean approach of paper I and in the extended method for summarising 

results presented below, rather than other means such as the arithmetic mean, is 

discussed in section 5 below. 

 

• However, this approach as it is could in principle award a biased higher scoring to a 

configuration that exhibits evidence of potentially severe performance problems,  for 

example, TCP congestion collapse, at certain message sizes. The symptoms are 

rapidly varying, spiky log-log plots of average time vs. message-size. More 

reasonable behaviour and performance over the test range should result in smooth 

slowly varying plots rising gradually with increased message size.  
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We feel this is an issue because we have carried out a number of experiments at and 

around data points that exhibit particularly sharp peaks and troughs on the log-log 

plots. Using command line options, it is possible to make IMB run a set of user 

defined message sizes instead of the default set of powers of 2 increases. We have 

observed, for some switch/library/compiler combinations, extremely rapid and erratic 

changes in timings, at and immediately either side of, certain message sizes. We feel 

that configurations that exhibit this behaviour should be penalised, as it is possible 

that a user will experience severe performance degradation if they stray outside of 

certain message size ranges through running a slightly different data set, sometimes 

by as much as several orders of magnitude! 

 

• Therefore we have imposed a further criterion. Firstly for each message size we 

determine the minimum result (across all configurations tested). Runs for the standard 

IMB power of 2 progression in message size, which contain results that exceed this 

minimum by more than an order of magnitude, are then highlighted in a red/orange 

colour as a health warning in the graphs presented at the end of this paper. (This is of 

course an arbitrary metric, and further experience may result in a more lax or 

stringent cut-off approach.) 

 

To further aid both the capture of the true performance characteristics of a particular setup, 

and the interpretation of results, we propose that the data be rendered further:  
 

• We include minimum and maximum geometric mean data for each switch.  These 

data represent the minimum and maximum geometric mean calculated across all 

MPI/compiler combinations, and all process counts, resulting in one minimum and 

one maximum value for each switch for each of the 5 IMB tests.  A geometric mean 

has also been calculated across MPI/compiler combinations and all processor counts.  

The minimum, maximum and geometric mean data described here are plotted in 

Figures 1-5.  These figures convey the range of results across a particular IMB test 

(MPI function) for each switch and make it easier to directly compare switch 

performance cf. the methodology presented in paper I. For completeness and 

comparison, in Figures 6-10 we re-present the graphical summaries from paper I with 

additional entries for the three new switches we have evaluated since. 

 

5. Analysis of Results: Discussion 

 

5.1 The Geometric Mean: The Correct Way to Summarise Benchmark Results? 

 

It can be tempting to summarise benchmark results with a single number in order to simplify 

the process of drawing conclusions about the systems under test.  Often this can lead to 

misleading results, especially when the summary statistic used is inappropriate for the original 

data.   

 

The pitfalls associated with summarising benchmark results with a single number are 

discussed at some length by Smith [2] who suggests that the arithmetic mean should be used 

to summarise performance data expressed as a time, while the harmonic mean should be used 

to summarise performance data expressed as a rate.  Smith offers no use for the geometric 

mean although Mashey [3] highlights the fact that it is used extensively in established 

benchmark suites to summarise performance data that has been normalised relative to a given 

system.  

 

Mashey also indicates that the geometric mean is the correct mean for summarising log-

normally distributed data (the lognormal distribution often provides a good fit for data that 
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has been normalised in the form of a ratio as all data will be positive and is usually positively 

skewed).   

 

Furthermore, Fleming and Wallace [4] present the geometric mean as the only valid mean for 

summarising normalised data and go on to provide a proof of this claim.  This proof provides 

the justification for using the geometric mean to produce the summary statistics used in 

Figures 1-10.  A simpler example of why the geometric mean should be used for normalised 

data (in the form of a ratio) is shown below. 

 

 System A System B System C 

Run-time in secs 40000 4000 400 

Table 1: Example benchmark results. 

 

 System A System B System C 

Normalised run-time 0.1 1 10 

Table 2: Normalised results with system B as the baseline. 

 

Consider the benchmark results in table 1.  In table 2 the same results have been normalised 

with system B as the baseline.  The values in table 2 represent the performance ratio for each 

system relative to system B.  If we take the arithmetic mean for system A and system B we 

get the following: 
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This arithmetic mean tells us that the mean normalised performance of systems A and C is 
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This geometic mean tells us that the mean normalised performance of systems A and C is 1.  

Remember that the original results are in the form of a performance ratio relative to system B.  

System A has a value of 0.1, which can be understood to mean ‘ten times slower than system 

B’, while system C has a value of 10, which can be understood to mean ‘ten times faster than 

system B’.  One would expect a mean ratio of system A and system C to be half way between 

‘ten times slower’ and ‘ten times faster’, in other words ‘The same speed as system B’.  The 

value of 1 given by the geometric mean represents ‘The same speed as system B’.  The value 

of 5.05 given by the arithmetic mean is actually just a value half way between 0.1 and 10.  It 

does not represent anything useful when considered as a performance ratio relative to system 

B. 

 

As well as covering the uses of the various means, Smith [2] also discusses the normalisation 

of data and concludes that if performance is to be normalised with respect to a specific 

machine, then an aggregate performance measure (such as total time) should be calculated 

before any normalisation of the data takes place.  This is the method used to generate Figures 

11-16.  Total run-times are calculated and then the totals are normalised to give a relative 

measure of performance for each switch across multiple processor counts and MPI functions.   
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5.2 New/Further Findings 
 

 

Examination of Figures 1-16 provides a number of further conclusions to those presented in 

paper I (note: based on performance alone and without consideration of the price of these 

products): 

 

• Figures 1-5 clearly show the variation in switch performance over each of the five 

MPI functions focused on here.  According to these results the HP Procurve 3500yl is 

the switch that performs most consistently across all five MPI functions as it is the 

only switch to rank in the top 3 for all five tests.  It is a considerable improvement 

over the 2848, which, along with the Force10 S50, is at the other end of the 

performance scale. 

  

• As concluded previously in paper I, most of the configurations in Figure 6 are shown 

to be inadequate. LAM-MPI performance is acceptable up to 32 processes (in terms 

of passing the ‘smoothness’ test defined in paper I if not always in absolute 

performance terms) for the Netgear and Cisco switches. Clearly the best configuration 

is still the Scali MPI on the Cisco switch, with the Nortel and Extreme switches 

offering similar performance. LAM-MPI with all three compilers does rather well on 

the Cisco switch only. In general though, we can conclude, as before, that 

MPI_Alltoall is one test that does ‘sort the men from the boys’. The Extreme and 

Nortel switches show clear differentiation between the commercial/TCP bypass 

(Scali) and free/TCP-based (MPICH and LAM) MPIs. 

 

• As in paper I we note the trend across Figures 1-10, namely that of virtually 

overlapping performance of the Nortel 5510, Extreme Summit48si and now Nortel 

5520. Casual inspection suggests the numbers are identical – they aren’t – and we are 

confident that our analysis has been carried out without error. This similarity in 

performance can in part, we believe, be traced to commonality of components – 

ASICs, backplanes etc. We shall discuss architectural features in more depth in 

subsequent studies.  However, Figures 11-15 clearly illustrate that there are 

differences between the performance of the Extreme Summit48si switch and the two 

Nortel switches, particularly for 64 processor runs where the Summit48si performs 

relatively poorly.  In fact, Figure 16 shows that the overall performance of the 

Netgear GS 748T is very similar to that of the three switches mentioned above. 

 

• Performance for the x450-24t is competitive with the Cisco switch and the HP 

Procurve 3500yl for 16 and 32 processor runs.  As the x450-24t is only a 24 port 

switch it has not been possible to generate data for 64 processor runs with the cluster 

configuration used in the two studies so far.  In future revisions of this report we hope 

to be able to present data for 64 processor runs using the 48 port x450-48t, as this 

architecture does look promising and ought to perform well beyond 32 processes. 

Indeed, Ladd [5] has carried out MPI benchmarks on a number of switches, the 

findings of which appear to back up this assertion.  

 

 

6. Conclusions 

 
In this paper we have presented further IMB data for Gigabit Ethernet switches from a 

number of manufacturers deployed in ‘plug and play’ mode. This is part of an ongoing effort 

that will now turn to focussing on the management of these and other switches with a view to 

optimizing the performance of synthetic and real MPI applications, and ascertaining at what 
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point HPC users really do need to abandon GbE for higher priced interconnects such as 

InfiniBand, Myrinet and Quadrics. 

 

As the volume of benchmark data generated has increased, and therefore the ease of 

interpretation has decreased, we felt it was necessary to explore ways of refining the 

geometric mean summarising approach presented in paper I which would result in further 

rendering down of the data into a more digestible format. These amendments to our original 

approach result in the performance of the configurations under test being more easily 

understood. Moreover, there appears to be a degree of statistical rigour underlying the method 

with further justification provided by the earlier findings of Smith, Mashey et al. 
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Figure 1: Geometric mean across Alltoall runs (Ext/lam/pgi baseline)
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Figure 2: Geometric mean across Allreduce runs (Ext/lam/pgi baseline)
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Figure 3: Geometric mean across Allgather runs (Ext/lam/pgi baseline)
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Figure 4: Geometric mean across Reduce_scatter runs (Ext/lam/pgi baseline)
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Figure 5: Geometric mean across Sendrecv runs (Ext/lam/pgi baseline)
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Figure 11: Aggregated runtime Alltoall
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Figure 12: Aggregated runtime Allgather
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Figure 13: Aggregated runtime Allreduce
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Figure 14: Aggregated runtime Reduce_scatter
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Figure 15: Aggregated runtime Sendrecv
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Figure 16: All MPI functions
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