
RAL-TR-98-031

On ordering elements for a frontal solver.�

by

Jennifer A. Scott

Abstract

The e�ciency of the frontal method for the solution of �nite-element problems
depends on the order in which the elements are assembled. We look at
using variants of Sloan's algorithm to reorder the elements. Both direct and

indirect reordering algorithms are considered and are used in combination
with spectral orderings. Numerical experiments are performed on a range of
practical problems and, on the basis of the results, we propose a hybrid element
resequencing algorithm for use with a frontal algorithm.

Keywords: ordering �nite-elements, frontal method, Sloan algorithm, spectral
method.

AMS(MSC 1991) subject classi�cations: 65F05, 65F50.

CR classi�cation system: G.1.3.

� Current reports available by anonymous ftp from matisa.cc.rl.ac.uk in the

directory pub/reports. This report is in �le sRAL98031.ps.gz.

Department for Computation and Information,

Atlas Centre, Rutherford Appleton Laboratory,
Oxon OX11 0QX, England.

March 31, 1998.

CONTENTS i

Contents

1 Introduction 1

2 Finite element graphs 2

3 Sloan's algorithm 4

3.1 The basic algorithm . 4
3.2 Sloan's algorithm for indirect element ordering 5
3.3 Sloan's algorithm for direct element ordering 5

4 Spectral and hybrid reordering algorithms 5
4.1 Spectral reordering . 5

4.2 The hybrid method . 6

5 Software design 7

6 Numerical results 8

6.1 Test problems . 8
6.2 MC43 versus MC63 . 10
6.3 Adjusting the weights . 11
6.4 Sloan versus hybrid . 13

7 Element orderings and frontal solvers 14

8 Conclusions 16

9 Acknowledgements 16

A Appendix: Speci�cation Sheets 19

1 INTRODUCTION 1

1 Introduction

In this report, we are interested in the e�cient use of the frontal method to
solve large sparse systems of linear equations

AX = B; (1.1)

where the n� n matrix A is a sum of nelt �nite-element matrices

A =
neltX
l=1

A(l); (1.2)

and the n� nrhs matrix B of right-hand sides is of the form

B =
neltX
l=1

B(l): (1.3)

Each matrix A(l) has nonzeros only in a few rows and columns and corresponds
to the matrix from element l. The frontal method is a variant of Gaussian

elimination, the main feature of the method being that the contributions A(l)

from the �nite-elements are assembled one at a time and the construction of
the assembled coe�cient matrix A is avoided by interleaving assembly and

elimination operations. An assembly operation is of the form

aij (aij + a
(l)
ij ; (1.4)

where a
(l)
ij is the (i; j)th nonzero entry of the element matrix A(l). A variable

is fully summed if it is involved in no further sums of the form (1.4) and is
partially summed if it has appeared in at least one of the elements assembled
so far but is not yet fully summed. The Gaussian elimination operation

aij (aij � ail[all]
�1alj (1.5)

may be performed once all the terms in the triple product in (1.5) are fully

summed.
Since variables can only be eliminated after they are fully summed, the

assembly order will determine, to a large extent, the order in which the variables

are eliminated. At any stage during the assembly and elimination processes,
the fully and partially summed variables are held in an in-core frontal matrix.
Dense linear algebra operations are performed on the frontal matrix. For
e�ciency, in terms of both storage and arithmetic operations, the elements

must be assembled in an order that keeps the size of the frontal matrix, known
as the wavefront, as small as possible. Of interest is

� the maximum wavefront, since this a�ects the in-core storage needed,

� the sum of the wavefronts, known as the pro�le, since this determines the
total storage needed for the matrix factors, and

2 FINITE ELEMENT GRAPHS 2

� the root-mean-square wavefront, since the work performed when
eliminating a variable is proportional to the square of the current
wavefront.

In the past, a number of algorithms for automatically ordering �nite

elements have been proposed (for example, Akin and Pardue, 1975, Bykat, 1977,
Razzaque, 1980, Pina, 1981, Sloan and Randolph, 1983, Fenves and Law, 1983,
Sloan, 1986, Du�, Reid and Scott, 1989, Kaveh, 1991, and Paulino, Menezes,
Gattass and Mukherjee, 1994). Du� et al. divide these algorithms into direct

and indirect element ordering algorithms. Direct algorithms order the elements
directly while indirect algorithms use a two-step approach in which the variables
are �rst relabelled and used to resequence the elements; the new variable indices
are subsequently discarded. Du� et al. report that both approaches can be used

e�ectively and neither has been found to be consistently superior to the other.
The Harwell Subroutine Library code MC43 (Du� et al., 1989) implements

both a direct and an indirect ordering algorithm, based on the pro�le reduction

algorithm of Sloan (1986). Motivated by the �ndings of Kumfert and
Pothen (1997), we recently looked at a number of ways of improving the
performance and e�ciency of Sloan's algorithm (Reid and Scott, 1998). These
included implementing the priority queue as a binary heap and using a hybrid

algorithm that combines a spectral ordering (see, for example, Barnard, Pothen
and Simon, 1995) with the Sloan algorithm. This work led to improved
codes for pro�le reduction, MC60 and a driver MC61, being included in the
Harwell Subroutine Library (1995) and prompted us to look at revising MC43

in a similar way. The new element ordering code is called MC63.
The outline of this report is as follows. In Section 2, we brie
y review

graphs that can be associated with a �nite-element mesh. These graphs are

fundamental to our reordering algorithms. In Section 3, we look at Sloan's
algorithm. In Section 4, we discuss using spectral orderings to resequence
elements and introduce a hybrid method that combines using a spectral ordering
with Sloan's algorithm. The design of our new code MC63 is discussed in

Section 5. Numerical experiments on a range of practical problems are reported
on in Section 6. Results illustrating the use of MC63 with the Harwell Subroutine
Library frontal solver MA62 are given Section 7, and some concluding comments

are made in Section 8. Speci�cation sheets for MC63 are included in the
Appendix.

2 Finite element graphs

The element resequencing algorithms that we use in this report are based on the
method of (Sloan, 1986, 1989). The method, which has been widely used during

the last decade for pro�le reduction, exploits the close relationship between
a matrix A = faijg of order n with a symmetric sparsity pattern and its
undirected graph with n nodes. Two nodes i and j are neighbours (or are
adjacent) in the graph if and only if aij is nonzero. A �nite-element mesh is

a collection of �nite elements in which elements are joined at their common
boundaries and vertices. Finite-element nodes may lie at vertices, along the

2 FINITE ELEMENT GRAPHS 3

sides, on the faces, or within the element itself. Associated with each �nite-
element node is a set of variables corresponding to the freedoms at that node.
The �nite-element mesh with its degrees of freedom can be transformed into
the graph of the assembled �nite-element matrix and, for convenience, we call

this the variable connectivity graph. The nodes of the variable connectivity
graph are the variables de�ned on the �nite-element mesh, and the edges are
constructed by making the variables of each element pairwise adjacent.

In many �nite-element problems, there are a number of freedoms at each
node of the �nite-element mesh. Moreover, nodes may belong to the same set
of elements. Both features can be exploited through the use of supervariables.
A supervariable is a collection of one or more variables, such that each variable

belongs to the same set of �nite elements. The �nite-element mesh can
be transformed into a supervariable connectivity graph, whose nodes are the
supervariables and whose edges are formed by making the supervariables of
each �nite element pairwise adjacent. Provided the list of variables in each

supervariable is recorded, the supervariable connectivity graph provides a
compact representation of the variable connectivity graph. For problems in
which the number of supervariables is substantially less than the number of

variables, Sloan's algorithm is much more e�cient if supervariables are used.
Reid and Scott (1998) report results that illustrate this.

For �nite element problems, Sloan's method may also be applied to the
element connectivity graph, in which the nodes are the �nite elements. There

is more than one way in which the element connectivity may be de�ned. Bykat
(1977) generates the element connectivity graph by de�ning two elements to be
adjacent to one another whenever they share a common edge and describes

his algorithm in detail for planar triangular elements. This de�nition was
generalized by Fenves and Law (1983) to problems in k dimensions (k = 1; 2; 3),
by de�ning two elements in k dimensions to be adjacent whenever they possess
a common boundary of (k � 1) dimensions. The resulting graph is termed the

dual graph (see Paulino et al., 1994). The main advantage of the dual graph is
its economy in terms of data storage because the number of edges is generally
substantially fewer than in the variable or supervariable graphs. A disadvantage
is that the adjacency of elements cannot always be completely represented

by this de�nition of adjacent elements, since k-dimensional elements are not
necessarily connected through (k � 1)-dimensional boundaries. In addition,
adjacent �nite elements do not necessarily have the same dimensionality. In

such examples, the dual graph may become disconnected, and each component
must be numbered independently. This contributes to the di�culties associated
with attempting to implement this algorithm.

A more convenient way of de�ning element adjacency is to de�ne two

elements to be adjacent whenever they have one or more variables in common.
The resulting graph is the element communication graph and was used by Du�
et al. (1989) and Paulino et al. (1994). Throughout the remainder of this
report, the element connectivity graph will refer to the element communication

graph.

3 SLOAN'S ALGORITHM 4

3 Sloan's algorithm

In this section, we give a brief outline of Sloan's algorithm for pro�le reduction
and discuss how the method can be extended for element reordering. Here and

elsewhere we assume that the variable connectivity and the element connectivity
graphs are connected. If not, it is straightforward to apply the algorithm to
each component, and all our software allows for this.

3.1 The basic algorithm

Sloan's algorithm for reordering the nodes of a connected graph has two distinct
phases:

1. Selection of a start node and an end node.

2. Node reordering.

In the �rst phase, the start and end nodes are chosen to be the endpoints

of a pseudodiameter. Sloan �nds a pseudodiameter using a modi�ed version
of the Gibbs, Poole and Stockmeyer (1976) algorithm. In the second phase,
the pseudodiameter is used to guide the reordering. One end s of the
pseudodiameter is used as the start node and the other e is used as the target end

node. Sloan ensures that the position of a node in his ordering is not far from
one for which the distance from the target end node is monotonic decreasing.
He is able to improve the pro�le and wavefront by localized reordering. Sloan
begins at the start node s and uses the priority function

Pi = �W1ci +W2d(i; e) (3.1)

for node i, where W1 and W2 are integer weights, ci (the current degree) is
the amount that the wavefront will increase if node i is numbered next, and
d(i; e) is the distance to the target end node. At each stage, the next node

in the ordering is chosen from a list of eligible nodes to maximize Pi. The
list of eligible nodes comprises the neighbours of nodes that have already been
numbered and their neighbours. A node has a high priority if it causes either

no increase or only a small increase to the current wavefront and is at a large

distance from the target end node. Thus, a balance is kept between the aim of

keeping the number of nodes in the front small and including nodes that have
been left behind (further away from the target end node than other candidates).

Following numerical experimentation, Sloan recommends the pair (2,1) for
the weights. However, the results of Kumfert and Pothen (1997) and Reid and
Scott (1998) indicate that, for some problems, there are considerable advantages
in using other values. In particular, the choice (16,1) can yield much smaller

pro�les. To allow the user to experiment with di�erent choices of the weights,
the new pro�le reduction code MC60 of Reid and Scott has weights that are
input parameters.

4 SPECTRAL AND HYBRID REORDERING ALGORITHMS 5

3.2 Sloan's algorithm for indirect element ordering

Sloan's algorithm may be used to reorder elements by applying the method to
the variable connectivity graph and then resequencing the elements in ascending

order of their earliest variable in the new variable order. In most �nite-element
problems, the number of supervariables (see Section 2) is signi�cantly less than
the number of variables. In such cases, it is more e�cient to apply a modi�ed
version of the Sloan algorithm to the supervariable connectivity graph. The

modi�cations to the Sloan algorithm take into account the number of variables
associated with each supervariable (see Du� et al., 1989).

3.3 Sloan's algorithm for direct element ordering

An alternative approach to element reordering is to apply Sloan's algorithm
directly to the element connectivity graph. The main disadvantage of this is that
the number of variables in each element is not taken into consideration. To allow

for �nite-element meshes comprising �nite elements with di�erent numbers of

freedoms, Du� et al. (1989) looked at modifying the priority function in the
second phase of the algorithm. An element is said to be \active" if it has been
assembled but has one or more unassembled neighbours. In an attempt to

reduce both the number of elements that are active at each stage of the frontal
method and the number of partially summed variables, Du� et al. de�ne the
priority of element i to be

Pi = �W1ngaini +W2d(i; e)�W3nadji: (3.2)

Here ngaini is the number of variables element i will introduce into the front less

the number that can then be eliminated, and nadji is the number of elements
adjacent to element i that have not yet been relabelled. The weights used
by Du� et al. in the Harwell Subroutine Library code MC43 are (10; 5; 1).

If assembling element i leads to the elimination of a single variable j, then
ngaini = cj , where cj is de�ned as in equation (3.1). In this case, the priority
function (3.2) is Sloan's function with a third weight to resolve ties. If every
element leads to such an elimination, we have another implementation of the

Sloan variable ordering algorithm (with a tie-breaking strategy). In general,
however, this will not be the case and the algorithm is therefore di�erent but
closely related.

4 Spectral and hybrid reordering algorithms

4.1 Spectral reordering

Spectral algorithms have been used in recent years for matrix pro�le and
wavefront reduction. Barnard et al. (1995) describe a spectral algorithm that

associates a Laplacian matrix L with the given matrix A with a symmetric

4 SPECTRAL AND HYBRID REORDERING ALGORITHMS 6

sparsity pattern,

L = flijg =

8><
>:

�1 if i 6= j and aij 6= 0

0 if i 6= j and aij = 0P
i 6=j jlijj if i = j:

(4.1)

An eigenvector corresponding to the smallest positive eigenvalue of the
Laplacian matrix is termed a Fiedler vector. The spectral permutation of
the variables is computed by sorting the components of a Fiedler vector into

monotonically nonincreasing or nondecreasing order.
For unassembled �nite-element problems, the new variable order can be

used to obtain an element ordering. We refer to this as the indirect spectral

element reordering algorithm. Alternatively, Paulino et al. (1994) propose
constructing the Laplacian matrix associated with the element connectivity
graph and reordering the elements by sorting the components of a Fiedler vector
of this Laplacian. The results presented by Paulino et al. suggest that the

method can be e�ective for �nite-element problems but comparisons were only
reported with the Gibbs-Poole-Stockmeyer and Gibbs-King algorithms (Lewis,
1982). In our numerical experiments (see Section 6), we call this method the
direct spectral element reordering method.

4.2 The hybrid method

Kumfert and Pothen (1997) observe that spectral orderings do well in a global
sense but are often poor locally. They therefore propose using the spectral
method to �nd a global ordering that guides the second phase of Sloan's method.
Their results show that this can yield a �nal ordering with a much smaller

pro�le than using either the spectral method alone or Sloan's method using the
Gibbs-Poole-Stockmeyer pseudodiameter. Further experiments by Reid and
Scott (1998) support this view, particularly for very large problems. The so-
called hybrid method uses a priority function in which the distance d(i; e) from

the target end node is replaced by pi, the position of node i in the spectral
ordering. Speci�cally, for a graph with n nodes, Reid and Scott (1998) use the
priority function

Pi = �W1ci �W2(h=n)pi; (4.2)

where h is the number of level-sets in the level set structure rooted at the �rst
node. Reid and Scott recommend computing orderings for the pairs of weights
(1; 2) and (16; 1) and choosing the one with the smallest pro�le. This is the
default in the driver MC61.

Kumfert and Pothen (1997) and Reid and Scott (1998) use the hybrid
method to reorder assembled matrices. In the present study, we are concerned
with unassembled matrices. We can extend the hybrid method to this class of
problems in one of two ways:

1. In the indirect algorithm, use the hybrid method to order the variables.

We will refer to this method as the indirect hybrid algorithm. In practice,
for e�ciency, the spectral variable ordering is mapped to a spectral
supervariable ordering and the supervariable connectivity graph is used.

5 SOFTWARE DESIGN 7

2. Apply the spectral method to the element connectivity graph. In the
second phase of Sloan's algorithm, replace (3.2) with a priority function

Pi = �W1ngaini +W2(h=nelt)pelti �W3nadji (4.3)

where nelt is the number of elements, h is the number of level-sets in the

level set structure rooted at the �rst element, and pelti is the position of
element i in the direct element spectral ordering. We will call this the
direct hybrid algorithm.

We remark that, although in our experiments we only use the spectral
orderings in the hybrid algorithms, any input ordering can be used. Our

software is written to allow this.

5 Software design

In this section, we discuss the design of our new package, MC63, for ordering
�nite elements. Our new subroutines are named according to the naming

convention of the Harwell Subroutine Library (1995).
There are three entries to MC63:

� MC63I sets default values for the control parameters. It should normally
be called once prior to calling MC63A. The control parameters include
stream numbers for diagnostic printing and parameters that determine

whether or not supervariables are to be used and whether the user wishes
to supply a global priority function.

� MC63A reorders the elements. The user chooses whether a direct or an
indirect algorithm is implemented.

� MC63B computes, for a given element order, the maximum wavefront, the

pro�le, and the root-mean-square wavefront. An option exists for checking
the input data.

Full details of the calling sequence and the argument lists are given in the
speci�cation sheets (see Appendix). Note that we work only with the pattern

of the matrix. Thus for matrices that are not positive de�nite, the actual
factorization may be more expensive and require more storage than is indicated
by MC63B. We now look in more detail at the reordering routine MC63A.

MC63A accepts lists of variables belonging to the elements and, after

performing initial checks on the user's data, calls MC63B to compute statistics

for the natural element order 1, 2,.., nelt. At this point, MC63B also checks the
element variable lists for out-of-range and duplicated indices. If such entries
are found they are either removed and the computation continues after issuing

a warning message or terminates if this has been requested.
If supervariables are wanted, they are constructed using the Harwell

Subroutine Library pro�le reduction package MC60. Otherwise, each variable

is treated as a supervariable. The element variable lists are overwritten by

6 NUMERICAL RESULTS 8

element supervariable lists. A map of variable to supervariable indices allows
the user to later restore the element variable lists, if desired.

For each supervariable, the number of elements involving it is counted. Lists
of the elements associated with the supervariables are then constructed. If the

user has selected a direct element reordering algorithm, the element connectivity
graph is constructed from the supervariable lists, otherwise the supervariable
connectivity graph is constructed from the element lists.

In the indirect element reordering algorithm, MC60C is used to reorder the
supervariables. The user may optionally specify a global priority vector whose
components pi are used in the priority function (4.2). Once the supervariables
have been reordered, the elements are resequenced in ascending order of their

earliest supervariable in the new supervariable order. The new supervariable
indices are not preserved.

In the direct element ordering algorithm, the element connectivity graph is
relabelled using either the priority function (3.2) or (4.3). If (3.2) is used, the

start and target end nodes (s; e) are computed using the modi�ed Gibbs-Poole-
Stockmeyer algorithm (MGPS) of Reid and Scott (1998). Again, MC60 is used
for this. To use (4.3), the user must supply an element global priority vector

pelt.
Having chosen the start and target end elements, the start element is

numbered �rst and a list of elements that are eligible to be numbered next
is formed. When selecting the element with highest priority for renumbering

next from the list of eligible elements, a simple sequential search is performed
while the list is less than a given threshold and a switch to a binary heap search
is made once the list exceeds this threshold. As in MC60, a threshold of 100 is

used. Management of the list of eligible elements is discussed in detail by Reid
and Scott (1998).

A �nal call to MC63B (without error checking) computes statistics for the
new element order.

We remark that, in MC63, equations (3.2) and (4.3) do not de�ne the priority
function fully since we give maximum priority to any element that will introduce
no new variables into the front.

6 Numerical results

In this section, we �rst describe the problems that we use for testing the element
reordering algorithms discussed in this report and then present numerical

results.

6.1 Test problems

Each of the test problems arises from a real engineering or industrial application.
A brief description of each problem is given in Table 6.1. All but the
last four problems were supplied as unassembled �nite-element problems.

The �rst �ve problems are taken from the Harwell-Boeing Collection (Du�,
Grimes and Lewis, 1992). Unfortunately, the number of unassembled element
problems included in either the Harwell-Boeing Collection or the Matrix

6 NUMERICAL RESULTS 9

Degrees Number Number
Identi�er of of super- of Description/discipline

freedom variables elements
LOCK2232 2208 368 944 Launch umbilical tower
LOCK3491 3416 702 684 Cross-cone vehicle structure
MAN5976 5882 2399 784 Deformation of 3D cylinder
CEGB3306 3222 537 791 2.5D framework problem
CEGB3024 2996 1418 551 2D reactor core section
RAMAGE02 1476 4939 1400 Navier Stokes and continuity equations
AEAC5081 5801 1637 800 Double glazing problem
TRDHEIM 22098 2868 813 Mesh of the Trondheim fjord
TSYL201 20685 2881 960 Part of oil production platform
OPT1 15449 3802 977 Part of oil production platform
CRPLAT2 18010 3004 3152 Corrugated plate �eld
CHAM 12834 12834 11070 Part of an engine cylinder
TUBU 26573 26573 23446 Engine cylinder model
BCSPWR10 5300 5291 7232 Eastern US power network
BCSSTK15 3948 3948 12992 Model of an o�-shore platform
BCSSTK18 11948 11444 21056 Nuclear power station
BCSSTK32 44609 43342 78779 Automobile chassis

Table 6.1: The test problems

Market (http://math.nist.gov/MatrixMarket/) is limited and those that are
available all are small by today's standards. We have selected the unassembled

problems from the Harwell-Boeing Collection with at least 500 elements and
have additionally used some test examples that are not included in the
Collection. Problem AEAC5801 came from Andrew Cli�e of AEA Technology
and RAMAGE02 from Alison Ramage of the University of Strathclyde.

Problems TRDHEIM, CRPLAT2, OPT1, and TSYL201 were supplied by
Christian Damhaug of Det Norske Veritas Research, Norway, and CHAM and
TUBU were from Ron Fowler of the Rutherford Appleton Laboratory. For

CHAM and TUBU, only lists of supervariables belonging to each element
were available so for these problems the number of variables is equal to the
number of supervariables. To provide further test examples with a large
number of elements, we took four problems from the Harwell-Boeing Collection

(BCSPWR10, BCSSTK15, BCSSTK18, and BCSSTK32) that are supplied in
assembled form and used the Harwell Subroutine Library (HSL) code MC37 to
generate a set of element matrices that, if assembled, would yield the same

matrix.
When testing the element ordering algorithms, the elements were input

in random order. Our old code MC43 and the new code MC63 are written in
standard Fortran 77, and all the results presented in this section were obtained

using the EPC (Edinburgh Portable Compilers, Ltd) Fortran 90 compiler with
optimization -O running on a 143 MHz Sun Ultra 1. In our experiments
involving the spectral method, the Fiedler vector was obtained using Chaco

6 NUMERICAL RESULTS 10

2.0 (Hendrickson and Leland, 1995). We used the SymmLQ/RQI option and
the input parameters were chosen to be the same as those used by Kumfert and
Pothen (1997). Note that we do not include timings for the hybrid methods
because the Chaco package is written in C and the HSL does not currently have

a Fortran code for computing the Fiedler vector.

6.2 MC43 versus MC63

In Tables 6.2 and 6.3, we compare the performance of the old code MC43 with

that of the new code MC63. Results are given for both the direct and indirect
algorithms, using the weights (10; 5; 1) and (2; 1), respectively. In Table 6.2,
the maximum and root-mean-square wavefronts are given, and in Table 6.3,

timings are presented. As expected, the codes generally yield orderings of

Identi�er MC43 MC63

Direct Indirect Direct Indirect
LOCK2232 72 48.5 60 45.8 72 48.2 60 45.8
LOCK3491 209 135.5 181 118.1 203 126.5 266 137.5
MAN5976 204 171.1 230 178.1 213 174.7 256 181.3
CEGB3306 78 60.3 114 73.9 78 60.4 78 60.3
CEGB3024 124 76.0 92 61.2 124 76.0 92 63.4
RAMAGE02 1452 1289.3 1502 1333.3 1452 1289.3 1472 1328.5
AEAC5081 149 180.7 190 119.1 156 180.2 175 116.5
TRDHEIM 348 172.4 324 139.1 348 172.4 324 146.3
TSYL201 540 511.2 534 511.2 540 511.2 696 505.3
OPT1 1006 619.9 883 544.1 1006 619.3 804 530.1
CRPLAT2 538 376.3 560 328.0 392 292.8 470 358.9
CHAM 412 333.0 412 313.1 412 331.1 412 332.9
TUBU 638 407.2 863 449.4 630 406.6 848 444.3
BCSPWR10 69 45.9 81 42.3 70 46.2 72 40.9
BCSSTK15 424 282.8 354 234.1 365 260.0 329 227.4
BCSSTK18 541 320.1 506 294.6 562 321.7 500 304.2
BCSSTK32 3280 1910.0 1682 840.7 2628 1655.2 999 572.0

Table 6.2: The maximum and root-mean-square wavefronts found by MC43 and

MC63.

comparable quality, although the new code performed signi�cantly better than
the old code on the last example. The di�erences are attributable to the
di�erences in the implementations of the algorithms. For example, the two

codes handle supervariables in a slightly di�erent manner. MC63 takes the
numbers of variables in the supervariables into account when calculating the
width of a level-set structure but only MC43 allows for the numbers of variables in

the supervariables when calculating the degrees of the supervariables in the list

of potential start nodes. The new code also uses a slightly di�erent modi�cation
of the Gibbs-Poole-Stockmeyer algorithm when choosing start and end nodes.
This is discussed in detail by Reid and Scott (1998).

6 NUMERICAL RESULTS 11

Identi�er MC43 MC63

Direct Indirect Direct Indirect
LOCK2232 0.03 0.03 0.03 0.03
LOCK3491 0.03 0.03 0.03 0.03
MAN5976 0.04 0.11 0.05 0.10
CEGB3306 0.02 0.02 0.02 0.02
CEGB3024 0.02 0.05 0.03 0.06
RAMAGE02 0.27 0.75 0.21 0.59
AEAC5081 0.50 0.60 0.50 0.60
TRDHEIM 0.08 0.13 0.09 0.13
TSYL201 0.10 0.16 0.11 0.16
OPT1 0.13 0.32 0.12 0.32
CRPLAT2 0.18 0.18 0.19 0.18
CHAM 1.75 1.34 0.97 0.79
TUBU 4.41 3.22 2.70 1.62
BCSPWR10 0.18 0.16 0.15 0.13
BCSSTK15 2.79 0.43 1.17 0.33
BCSSTK18 2.62 1.15 1.01 0.51
BCSSTK32 35.65 14.25 10.16 4.88

Table 6.3: A comparison of CPU times for MC43 and MC63. (Sun Ultra).

Reid and Scott (1998) found that which end of the pseudodiameter is chosen
as the start node can have an e�ect on the �nal ordering. They concluded
that there is generally a slight advantage in choosing the pseudoperipheral
node that gives the narrowest width as the start node and this choice is

used by MC63, but not by MC43. To try and account for why MC63 performs
particularly well on problem BCSSTK32, we tried not swapping the ends of the
pseudodiameter. In this case, the maximum and root-mean-square wavefronts
for the direct algorithm increased to 3325 and 1924.9, respectively, and for the

indirect algorithm they rose to 1631 and 834.3, respectively, making the results
for the old and new codes similar.

Many of our test problems are not large enough to illustrate the time savings

that can be achieved by using a binary heap to manage the queue of eligible
nodes. Sloan (1986) observed that the binary heap search is the method of
choice when the root-mean-square wavefront exceeds several hundred nodes and
for smaller problems a simple sequential search is faster. The method we use of

commencing with code that performs a simple search, and switches to code that
uses a binary heap if the number of eligible nodes exceeds a threshold, ensures
MC63 is as e�cient as MC43 on small problems, but is substantially faster on large
problems (see, for example, problems TUBU, BCSSTK18 and BCSSTK32).

6.3 Adjusting the weights

In this section, we consider the e�ect of adjusting the weights in the priority
function. As already mentioned, Du� et al. recommend the weights (10; 5; 1)
but Kumfert and Pothen (1997) suggest that, for some problems, other values

6 NUMERICAL RESULTS 12

give much better results. In our �rst test, we compare using W3 = 1 in the
direct reordering priority functions (3.2) and (4.3) with W3 = 0. The weights
(W1;W2) are given the values of (10; 5) for the Sloan method and, following Reid
and Scott (1998), (5; 10) for the hybrid method. Our �ndings are presented in

Table 6.4. The results suggest that for Sloan there is a slight advantage in using
a third weight to resolve ties but, in general, the di�erence in the root-mean-
square wavefront between using W3 = 0 and W3 = 1 is small (less than 2 per

cent). For the hybrid method, the results do not support the use of a third
weight.

Identi�er Sloan Hybrid
W3 = 0 W3 = 1 W3 = 0 W3 = 1

LOCK2232 51.3 48.2 61.8 61.8
LOCK3491 125.5 126.5 208.0 213.2
MAN5976 179.6 174.7 174.5 174.3
CEGB3306 59.8 60.3 65.3 65.3
CEGB3024 73.5 76.1 49.3 49.7
RAMAGE02 1289.3 1289.3 1321.9 1385.8
AEAC5081 117.4 108.2 108.3 108.2
TRDHEIM 172.4 172.4 148.1 149.6
TSYL201 511.2 511.2 511.5 511.6
OPT1 621.6 619.3 537.5 536.4
CRPLAT2 292.1 292.8 238.0 238.0
CHAM 330.6 331.1 329.6 332.6
TUBU 411.8 406.6 403.6 408.3
BCSPWR10 46.3 46.2 34.3 34.5
BCSSTK15 269.7 260.0 188.8 205.6
BCSSTK18 336.1 321.7 209.5 221.3
BCSSTK32 1493.6 1655.2 756.4 828.5

Table 6.4: Root-mean-square wavefronts with W3 = 0; 1.

We have examined the wavefronts for the direct and indirect ordering
algorithms for (W1;W2) = (5w1; 5w2), with (w1; w2) equal to each of the 13
pairs (1; 64), (1; 32), (1; 16), ..., (1; 1), (2; 1), ..., (64; 1) on all the test matrices.
Our �ndings are shown in Table 6.5. In this table we show the percentage

increases in the root-mean-square wavefront from the best value when the
recommended weights of (10; 5; 1) for Sloan and (1; 2; 0) for the hybrid method
are used. We see that, in general, the recommended weights give root-mean-

square wavefronts that are within 5 per cent of the minimum value. For each
method there are a small number of problems for which weights other than the

recommended ones give signi�cant improvements. However, a closer look at the
results reveals that the weights that give minimum wavefronts di�er with the

problem and method. For example, direct Sloan applied to TRDHEIM has the
smallest root-mean-square wavefront when (w1; w2) = (1; 2) but for problem
BCSSTK32, the minimum is achieved with the pair (1; 16). To allow the user
to experiment with di�erent weights, in MC63 the weights are input parameters

6 NUMERICAL RESULTS 13

Identi�er Sloan Hybrid
Direct Indirect Direct Indirect

LOCK2232 0.0 0.0 0.0 0.0
LOCK3491 0.0 10.3 8.5 0.0
MAN5976 5.7 0.0 2.4 0.3
CEGB3306 0.6 0.3 3.9 3.5
CEGB3024 0.4 0.0 1.3 0.8
RAMAGE02 2.3 0.1 5.0 16.7
AEAC5081 0.4 0.0 0.1 0.1
TRDHEIM 25.3 0.1 2.6 0.0
TSYL201 0.0 0.7 0.0 0.0
OPT1 11.3 1.4 11.1 0.0
CRPLAT2 0.6 9.5 0.2 0.7
CHAM 0.6 0.0 0.4 3.0
TUBU 0.0 0.0 4.6 2.4
BCSPWR10 20.7 15.8 8.5 5.4
BCSSTK15 0.7 0.0 0.2 0.6
BCSSTK18 3.4 25.1 0.0 0.0
BCSSTK32 32.6 0.0 10.7 3.1

Table 6.5: Percentage increases in the root-mean-square wavefront above the
minimum value when the recommended weights are used.

under the user's control.

6.4 Sloan versus hybrid

In Table 6.6, we present root-mean-square wavefronts for the di�erent
algorithms discussed in this report. The weights recommended in Section 6.3

are used. For purposes of comparison, we include results for the original element
order. We note that, in most instances (not including the last four problems
that were arti�cially \disassembled" using MC37), this order was thought, by
the originator of the problem, to be a \good" element order. In Table 6.6,

we highlight in bold the smallest root-mean-square wavefront for each problem
and any within 2 per cent of the smallest. We see that, if the elements are
not originally well ordered, both the direct and indirect spectral algorithms can
substantially reduce the root-mean-square wavefront. However, comparison of

columns 3 and 6 and columns 4 and 7 demonstrate that it is worthwhile to use
Sloan's method to re�ne the spectral ordering. By looking also at Table 6.5, we
observe that the only problems where the hybrid method gives poorer results

than the corresponding spectral method are those for which the recommended
weights give a root-mean-square wavefront that is far from the minimum. For
these problems, the hybrid method becomes competitive if other weights are
used. For example, if we use the weights (1; 1) in the indirect hybrid algorithm

in place of the recommended values of (1; 2), the root-mean-square wavefront
for RAMAGE02 reduces to 1298.9, and this is smaller than the indirect spectral
root-mean-square wavefront.

7 ELEMENT ORDERINGS AND FRONTAL SOLVERS 14

Identi�er Original Spectral Sloan Hybrid
order Direct Indirect Direct Indirect Direct Indirect

LOCK2232 74.8 74.3 65.1 48.2 45.6 61.8 48.6
LOCK3491 583.0 227.4 128.0 126.5 135.4 208.0 103.7

MAN5976 175.9 182.7 185.3 174.7 180.7 174.5 174.4

CEGB3306 245.9 100.4 95.0 60.3 60.5 65.3 64.9
CEGB3024 108.3 52.9 53.2 76.1 63.3 49.7 49.4

RAMAGE02 1492.3 1335.2 1403.1 1289.3 1328.4 1321.9 1515.6
AEAC5081 142.2 129.4 108.2 108.2 116.5 108.2 108.4

TRDHEIM 181.9 163.3 156.0 172.4 146.3 148.1 144.8

TSYL201 861.6 530.0 513.6 511.2 505.3 511.5 502.7

OPT1 2067.7 573.7 604.9 619.3 530.1 536.4 557.0
CRPLAT2 1178.1 257.2 251.7 292.8 358.7 238.0 242.0

CHAM 769.0 346.1 353.6 331.1 332.9 329.5 338.9

TUBU 1298.6 470.1 460.9 406.6 447.2 403.6 393.2

BCSPWR10 1458.5 44.4 39.7 46.2 40.9 34.3 32.4

BCSSTK15 282.2 214.5 190.8 260.0 227.4 188.8 175.5

BCSSTK18 547.9 239.5 239.5 321.7 304.3 209.5 200.6

BCSSTK32 2472.8 720.1 704.3 1655.2 572.0 756.4 537.9

Table 6.6: Root-mean-square wavefronts with di�erent algorithms.

A comparison between the Sloan and hybrid algorithms is less clear-cut. The
hybrid method is primarily intended for very large problems and, on the basis of
the results we have obtained, the hybrid method generally out-performs Sloan

for problems with a large number of elements. We conclude from our empirical
evidence that the user may wish to reorder the �nite elements using either a
direct or an indirect algorithm and may wish to use a hybrid method. MC63

allows each of these options to be selected.

7 Element orderings and frontal solvers

We have looked at using variants of Sloan's algorithm to reorder �nite-elements.
Both direct and indirect reordering algorithms have been considered and used in
combination with spectral orderings. As discussed in the introduction, the main

motivation behind this work was the need for element orderings that are e�cient
when used with a frontal solver. In this section, we present results of using
the MC63 element orderings with a frontal solver. In the Harwell Subroutine
Library we have two frontal codes for real matrices: MA42 (Du� and Scott,

1996) for general unsymmetric problems and MA62 (Du� and Scott, 1997) for
symmetric positive-de�nite systems. Both codes are designed for unassembled
�nite-element matrices, although MA42 does include an option for entering the
assembled matrix row-by-row. The matrix factors may optionally be held in

direct access �les. For e�ciency, Level 3 BLAS are used in the innermost loop
of the matrix factorization.

The element ordering schemes we have considered work only with the

pattern of the �nite element matrices. They are therefore most useful for

7 ELEMENT ORDERINGS AND FRONTAL SOLVERS 15

Identi�er Factorization time Solve time Number of ops Storage
(seconds) (seconds) (�107) (Kwords)

Before After Before After Before After Before After

LOCK2232 1.1 0.32 0.03 0.02 5.1 0.7 218 120
LOCK3491 4.0 0.99 0.11 0.06 51.3 7.2 1123 448
MAN5976 33.9 33.1 0.85 0.82 482.1 471.2 9133 8982
CEGB3306 0.64 0.45 0.03 0.03 3.1 1.7 232 219
CEGB3024 0.51 0.46 0.04 0.04 2.6 2.4 249 233
RAMAGE02 232.6 175.4 2.2 1.8 3811.9 2852.3 25547 21847
AEAC5081 1.5 1.1 0.09 0.07 12.4 7.5 786 585
TRDHEIM 5.7 4.6 0.34 0.32 51.8 36.6 2872 2389
TSYL201 98.1 38.3 1.5 1.0 1528.4 535.5 17236 10654
OPT1 54.5 31.6 0.9 0.7 857.1 437.4 10031 7596
CRPLAT2 126.5 11.3 1.7 0.49 1918.9 112.6 17985 4583
CHAM 53.9 13.1 0.95 0.46 766.2 151.7 9689 4472
TUBU 121.9 35.6 1.7 1.1 1858.9 440.0 17277 10742

Table 7.1: The results of using MC63 with the frontal solver MA62. (CRAY J932)

positive de�nite matrices. For more general matrices, the need to preserve
numerical stability may lead to the actual factorization being more expensive

and requiring more storage. To illustrate the e�ectiveness of our element
ordering algorithms, in this section we present results for MA62, using the user-
supplied element order and the MC63 element order. As discussed in Section 5,
MC63 o�ers both a direct and indirect version of Sloan's algorithm and a direct

and indirect hybrid algorithm. We saw in Table 6.6 that the method that
gives the smallest root-mean-square wavefront is problem dependent so we have
chosen the best ordering for each problem (using the recommended weights).

Default values are used for all MA62 control parameters.
The experimental results quoted in Table 7.1 were obtained on a single

processor of a CRAY J932 using 64-bit
oating-point arithmetic, and the
vendor-supplied BLAS. The codes MC63 and MA62 were compiled using the

CRAY Fortran compiler f90, with default options. For each problem, values
for the entries of the matrix were generated using the HSL pseudo-random
number generator FA01. The times include the i/o overhead for using direct
access �les. The storage is the total storage for the matrix factors and includes

both real and integer storage. Since, on the CRAY, both integers and reals
are stored in 64-bit words, the value is just the sum of the number of real and
the number of integer words needed. The number of
oating-point operations

(\ops") counts all operations (+,-,*,/) equally. The \Solve" times quoted are
for a single right-hand side.

The results demonstrate the importance of reordering the elements and
illustrate that for problems that are not initially well ordered, substantial

savings can be achieved by using MC63. Where there is a signi�cant reduction
in the root-mean-square wavefront it is re
ected in much lower factorization
and solve times, operation counts, and factor storage, although we note that
the e�ect of using Level 3 BLAS means that the poorer orderings can have a

8 CONCLUSIONS 16

higher Mega
op rate so that, for some problems, the ratio of times, before and
after ordering, is not as high as the operation count ratio. Furthermore, MA62
is partly able to o�set the e�ect of a poor ordering by exploiting zeros within
the frontal matrix (see Du� and Scott, 1997 and Cli�e, Du� and Scott, 1997).

For example, we note that, for the problem CEGB3306, the root-mean-square
wavefront is reduced by a factor of 4 (see Table 6.6) using MC63 but the saving in
factor storage is small. This is because the root-mean-square wavefront assumes

that the frontal matrix is dense but MA62 is able to take some advantage of zeros
in the front.

8 Conclusions

In this report, we have looked at using variants of Sloan's algorithm to reorder
�nite-elements for use with a frontal solver. Both direct and indirect versions

of the reordering algorithm have been considered and used in combination with
spectral orderings. We found that, in general, there is little di�erence in the
quality of the ordering obtained using the direct or the indirect method: for
some problems the direct method gives the best reduction in the wavefront but

for others the converse is true. Our results suggest that the hybrid method
is superior to the spectral method and generally out-performs Sloan for large
problems but o�ers no consistent advantage for smaller problems. Further tests

involving problems with a large number of elements are needed before �rm
conclusions can be drawn.

A disadvantage of the hybrid method is the need to compute a global priority
function. The time taken to compute a spectral ordering is signi�cantly more

than that needed to compute start and end nodes for the Sloan algorithm
(see Kumfert and Pothen, 1997). For this reason, if the tradeo� between
the quality of the ordering and the time taken for computing the ordering
favours fast reordering algorithms, the Sloan algorithm may be preferred, with

the direct method selected if the number of elements is less than the number
of supervariables and the indirect method used otherwise. However, in our
experiments with the frontal method, the time required to compute an element

ordering was small compared with that needed by the matrix factorization and

solve steps. For large problems, it may therefore be worthwhile experimenting
with the options o�ered by MC63 before using the frontal solver, particularly if
a number of factorizations are to use the same element ordering.

The code MC63 is available and will be included in the next release of the
Harwell Subroutine Library. Anyone interested in using the code should contact
the author for details of price and conditions of use.

9 Acknowledgements

I would like to thank my colleagues John Reid and Iain Du� at the Rutherford

Appleton Laboratory their interest and comments on this report.

REFERENCES 17

References

J.E. Akin and R.M. Pardue. Element resequencing for frontal solutions. in

J. R. Whiteman, ed., `Mathematics of Finite Elements and Applications'.

Academic Press, 1975.

S.T. Barnard, A. Pothen, and H. Simon. A spectral algorithm for envelope
reduction of sparse matrices. Numerical Linear Algebra with Applications,
2, 317{198, 1995.

A. Bykat. A note on an element ordering scheme. Inter. Journal on Numerical

Methods in Engineering, 11, 194{198, 1977.

K.A. Cli�e, I.S. Du�, and J.A. Scott. Performance issues for frontal schemes on
a cache-based high performance computer. Technical Report RAL-TR-97-
001, Rutherford Appleton Laboratory, 1997. To appear in Inter. Journal

on Numerical Methods in Engineering.

I.S. Du� and J.A. Scott. The design of a new frontal code for solving sparse

unsymmetric systems. ACM Trans. Mathematical Software, 22(1), 30{45,
1996.

I.S. Du� and J.A. Scott. MA62 { a new frontal code for sparse positive-de�nite
symmetric systems from �nite-element applications. Technical Report

RAL-TR-97-012, Rutherford Appleton Laboratory, 1997.

I.S. Du�, J.K. Reid, and J.A. Scott. The use of pro�le reduction algorithms
with a frontal code. Inter. Journal on Numerical Methods in Engineering,
28, 2555{2568, 1989.

I. S. Du�, R. G. Grimes, and J. G. Lewis. Users' guide for the Harwell-Boeing

sparse matrix collection (Release I). Technical Report RAL-TR-92-086,
Rutherford Appleton Laboratory, 1992.

S.J. Fenves and K.H. Law. A two-step approach to �nite element ordering.
Inter. Journal on Numerical Methods in Engineering, 19, 891{911, 1983.

N.E. Gibbs, W.G. Poole, and P.K. Stockmeyer. An algorithm for reducing the

bandwidth and pro�le of a sparse matrix. SIAM J. Numerical Analysis,
13, 236{250, 1976.

Harwell Subroutine Library. A Catalogue of Subroutines (Release 12).
Advanced Computing Department, AEA Technology, Harwell Laboratory,

Oxfordshire, England, 1995.

B. Hendrickson and R. Leland. The Chaco user's guide: Version 2.0. Technical
Report SAND94-2692, Sandia National Laboratories, Albuquerque, NM,
1995.

A. Kaveh. A connectivity coordinate system for node and element ordering.

Computer Structures, 41, 1217{1223, 1991.

REFERENCES 18

G. Kumfert and A. Pothen. Two improved algorithms for envelope and
wavefront reduction. BIT, 18, 559{590, 1997.

J.G. Lewis. Implementation of the Gibbs-Poole-Stockmyer and Gibbs-King
algorithms. ACM Trans. Mathematical Software, 8, 180{189, 1982.

G.H. Paulino, I.F. Menezes, M. Gattass, and S. Mukherjee. Node and element

resequencing using the Laplacian of a �nite element graph: Part II
implementation and numerical results. Inter. Journal on Numerical

Methods in Engineering, 37, 1531{1555, 1994.

H.L. Pina. An algorithm for frontwidth reduction. Inter. Journal on Numerical

Methods in Engineering, 17, 1539{1546, 1981.

A. Razzaque. Automatic reduction of frontwidth for �nite element analysis.
Inter. Journal on Numerical Methods in Engineering, 15, 1315{1324, 1980.

J.K. Reid and J.A. Scott. Ordering symmetric sparse matrices for small pro�le
and wavefront. Technical Report RAL-TR-98-016, Rutherford Appleton

Laboratory, 1998.

S.W. Sloan. An algorithm for pro�le and wavefront reduction of sparse matrices.
Inter. Journal on Numerical Methods in Engineering, 23, 1315{1324, 1986.

S.W. Sloan. A Fortran program for pro�le and wavefront reduction. Inter.

Journal on Numerical Methods in Engineering, 28, 2651{2679, 1989.

S.W. Sloan and M.F. Randolph. Automatic element reordering for �nite-

element analysis with frontal schemes. Inter. Journal on Numerical

Methods in Engineering, 19, 1153{1181, 1983.

A Appendix: MC63 specification document

1 SUMMARY

This subroutine uses a variant of Sloan’s algorithm to generate an element assembly ordering that is
efficient when subsequently used with a frontal solver (for example, the packages MA42 and MA62). The number
of floating-point operations and the storage required by a frontal solver for an unassembled finite-element
matrix are dependent upon the order in which the elements are assembled; the variation in the performance of
different element orderings can be significant. The assembly ordering obtained by MC63 is designed to reduce
the maximum and root-mean-square (r.m.s.) wavefronts and the profile, which in turn reduce storage
requirements and computation times for the frontal solver. Only the pattern of the finite elements is used.

Let n denote the number of variables (degrees of freedom) in the finite-element mesh. If f denotes thei

number of variables in the front before the ith elimination, the maximum wavefront is defined as

max {f },i
1≤i≤n

the profile is defined as

n

f ,∑ i
i=1

and the root-mean-square wavefront is defined as

n1 2f .∑ in i=1

The user can choose between using a direct and an indirect element ordering algorithm. The indirect element
ordering algorithm first orders the variables and then orders the elements. An option exists for working with
supervariables in place of variables (a supervariable is a collection of one or more variables that belong to the
same set of finite elements). If the problem has significantly fewer supervariables than variables, using
supervariables will reduce the execution time of the ordering algorithm and will, in general, produce an ordering
of comparable quality. Moreover, if the number of elements is less than the number of supervariables, it is
generally quicker to order the elements using the direct ordering algorithm. However, for a given problem it is
difficult to predict whether an indirect or a direct element ordering will produce the smaller wavefront.

ATTRIBUTES — Remark: Supersedes MC43. Versions: MC63A, MC63AD. Calls: MC60. Date: March 1998.
Origin: J. A. Scott, Rutherford Appleton Laboratory. Conditions on external use: (i), (ii), (iii) and (iv).

2 HOW TO USE THE PACKAGE

2.1 Argument lists and calling sequence

There are three entries:

(a) MC63I/ID sets default values for control parameters. It should normally be called once prior to calling
MC63A/AD.

(b) MC63A/AD reorders the elements.

(c) MC63B/BD computes, for a given element assembly order, the maximum front size, the profile, and the
root-mean-square wavefront.

Only MC63A/AD provides extensive checks on the data. MC63B/BD optionally checks for duplicate and
out-of-range entries. MC63B/BD is called by MC63A/AD but may also be used in combination with another
algorithm for choosing an element assembly order.

2.1.1 To set default values for the control parameters

The single precision version

CALL MC63I(ICNTL)

The double precision version

CALL MC63ID(ICNTL)

ICNTL is an INTEGER array of length 10 that need not be set on entry. This array is used to hold control
parameters. On return, ICNTL contains default values. If the user wishes to use values other than the
defaults, the corresponding entries in ICNTL should be reset after the call to MC63I/ID. The control
parameters are:

ICNTL(1) is the stream number for error messages and has the default value 6. Printing of error messages is
suppressed if ICNTL(1) ≤ 0.

ICNTL(2) is the stream number for warning messages and has the default value 6. Printing of warning
messages is suppressed if ICNTL(2) ≤ 0.

ICNTL(3) controls whether or not supervariables are used. If ICNTL(3) = 0, supervariables are used and if
ICNTL(3) = 1, variables are used. The default value is 0.

ICNTL(4) controls whether the user wishes to supply a global priority vector. If ICNTL(4) = 0, no priority
vector is supplied and one is generated automatically using rooted level-set structures. If
ICNTL(4) = 1, the user must supply a priority vector either in ORDER (DIRECT = .TRUE.) or in
PERM (DIRECT = .FALSE.). The default value is 0.

ICNTL(5) controls the action taken if duplicate and/or out-of-range indices are detected in the element
variable lists. If ICNTL(5)=0 and such indices are detected, they are removed, a warning is
issued and the computation continues; if ICNTL(5)=1, the computation terminates. The default
value is 0.

ICNTL(6) controls whether the user wishes to supply the weights for the priority function. If ICNTL(6)=0,
no weights are supplied and the weights used then depend on the algorithm chosen by the user
(see Section 4). If ICNTL(6) = 1, the user must supply weights in WT. The default value is 0.

ICNTL(7) to ICNTL(10) are currently not used but are given the default value 0.

2.1.2 To reorder the elements

The single precision version

CALL MC63A(DIRECT,N,NELT,NE,ELTVAR,ELTPTR,ORDER,PERM,NSUP,VARS,SVAR,
+ WT,LIW,IW,LW,W,ICNTL,INFO,RINFO)

The double precision version

CALL MC63AD(DIRECT,N,NELT,NE,ELTVAR,ELTPTR,ORDER,PERM,NSUP,VARS,SVAR,
+ WT,LIW,IW,LW,W,ICNTL,INFO,RINFO)

DIRECT is a LOGICAL variable that must be set by the user. DIRECT controls which reordering algorithm is
implemented. If DIRECT = .TRUE., an direct element reordering algorithm is implemented; if DIRECT =
.FALSE., an indirect element reordering algorithm is implemented.

N is an INTEGER variable that must be set by the user to the largest integer used to index a variable in the
finite-element problem. Note that the variables need not be numbered contiguously and, in this case, N
will be larger than n, the number of degrees of freedom. This argument is not altered by the routine.
Restriction: N ≥ 1.

NELT is an INTEGER variable that must be set by the user to the total number of finite elements in the problem.
This argument is not altered by the routine. Restriction: NELT ≥ 1.

NE is an INTEGER variable that must be set by the user to be at least as large as the total number of entries in
the element variable lists. This argument is not altered by the routine. Restriction: NE ≥ 1.

ELTVAR is an INTEGER array of length NE. On entry, ELTVAR must contain lists of the variable indices

belonging to each of the finite elements, with those for element 1 preceding those for element 2, and so
on. If duplicate or variable indices outside the range [1, N] are detected, they are removed and the
computation continues (ICNTL(5) = 0, the default) or the computation terminates with ELTVAR
unchanged (ICNTL(5) = 1). On successful return, ELTVAR holds lists of supervariables (ICNTL(3) = 0) or
variables (ICNTL(3) = 1) belonging to the elements.

ELTPTR is an INTEGER array of length NELT+1. On entry, ELTPTR(IELT) must contain the position in ELTVAR
of the first variable in element IELT (IELT =1, 2,..., NELT), and ELTPTR(NELT+1) must be set to the
position after the last variable in the last element. On return, ELTPTR holds corresponding data for the
revised ELTVAR.

ORDER is an INTEGER array of length NELT. It need be set on entry only if DIRECT = .TRUE. and ICNTL(4) =
1. In this case, ORDER must hold positive global priority values for the elements (see Section 4, equation
(2)). ORDER may be a permutation, in which case the element for which ORDER(IELT) = 1 is likely to be
chosen first in the new assembly order and the element for which ORDER(IELT) = NELT is likely to be
chosen last. On exit, the order in which the elements should be assembled is given by ORDER(1),
ORDER(2),..., ORDER(NELT).

PERM is an INTEGER array that is only accessed if DIRECT = .FALSE. and ICNTL(4) = 1. In this case, PERM
must be of length N and, if variable I is used to index a variable, PERM(I) must be set by the user to hold
the positive global priority value for the variable I (see Section 4, equation (1)). PERM may be a
permutation, in which case the variable for which PERM(I) = 1 is the variable with lowest priority and the
variable for which PERM(I) = N is the variable with highest priority. This argument is not altered by the
routine.

NSUP is an INTEGER variable that need not be set on entry. On successful return, if ICNTL(3) = 0 (the default),
NSUP holds the number of supervariables. If ICNTL(3) = 1, on exit NSUP = N.

VARS is an INTEGER array of length N that need not be set on entry. On successful return, VARS(IS) holds the
number of variables in supervariable IS, IS=1, 2,..., NSUP. If supervariables are not used, VARS(I) is set
to 1 if I is used to index a variable and to 0 otherwise, I = 1, 2,..., N.

SVAR is an INTEGER array of length N that need not be set on entry. On successful return, SVAR(I) holds the
supervariable to which variable I belongs, I = 1, 2,..., N. If variable I does not appear in the element lists,
SVAR(I) = 0.

WT is a REAL (DOUBLE PRECISION in the D version) array of length 3. If ICNTL(6) = 1, WT must be set by the
user to hold the weights that are used in the priority function that is minimized when the element
assembly order is computed (see Section 4). Default values are used if ICNTL(6) = 0. WT(3) is not used if
DIRECT = .FALSE. On return, WT holds the weights used in the priority function.

LIW is an INTEGER variable which defines the length of the work array IW. The workspace required depends
upon whether the direct or the indirect element reordering algorithm is used, and upon whether
supervariables are used (that is, the workspace depends upon the parameters DIRECT and ICNTL(3)).
Lower bounds on the workspace needed are given by

LIW ≥ max(NE+3*NELT+NSUP+2, 2*N) if DIRECT = .TRUE. and ICNTL(3) = 0.

LIW ≥ 2*(NELT+N+1)+max(NE, 4*NELT) if DIRECT = .TRUE. and ICNTL(3) = 1.

LIW ≥ max(NE + NELT + 3*NSUP + 2, 2*N) if DIRECT = .FALSE. and ICNTL(3) = 0.

LIW ≥ 3*N+2+NELT+max(NE, 3*N) if DIRECT = .FALSE. and ICNTL(3) = 1.

Upper bounds on the workspace required are given by

LIW ≤ max(NE, 4*NELT)+2*max(NELT,N)+3+NELT* (maxel+1) if DIRECT = .TRUE., where
maxel is the maximum number of elements to which any one variable belongs.

LIW ≤ max(NE, 3*N)+3*N+2+NELT*nodes*nodes if DIRECT = .FALSE., where nodes is the
maximum number of variables in an element.

If LIW is too small, a value which will suffice is returned in INFO(5). This argument is not altered by the
routine.

IW is an INTEGER array of length LIW. This array is used by the subroutine as workspace.

LW is an INTEGER variable which defines the length of the work array W. If DIRECT = .TRUE., LW must be at
least NELT, and if DIRECT = .FALSE., LW must be at least NSUP. If LW is too small, a value which will
suffice is returned in INFO(6). This argument is not altered by the routine.

W is a REAL (DOUBLE PRECISION in the D version) array of length LW. This array is used by the subroutine
as workspace.

ICNTL is an INTEGER array of length 10 that must be set by the user to hold control parameters. Default values
are set by a call to MC63I/ID. This argument is not altered by the routine.

INFO is an INTEGER array of dimension 15 that need not be set on entry.

INFO(1) is used as an error flag. On a successful exit, it is set to:

0 – Fully successful.

+1 – A warning has been issued. Further details are given in INFO(2), INFO(3), and
RINFO.

If a fatal error has been detected, INFO(1) is set to a negative value:

–1 – N ≤ 0 or NELT ≤ 0 or NE < ELTPTR(NELT+1)-1. Immediate return with input parameters
unchanged.

–2 – Failure due to insufficient space allocated to the array W. INFO(6) is set to a value that
will suffice for LW.

–3 – ICNTL(5)=1 and duplicate or out-of-range indices detected in ELTVAR. The number of
such indices is given by INFO(2) and INFO(3). The array ELTVAR is changed so that
such indices are removed.

–4 – Failure due to insufficient space allocated to the array IW. INFO(5) is set to a value that
will suffice for LIW.

INFO(2) holds the number of variable indices that were removed because they were duplicates.

INFO(3) holds the number of variable indices that were removed because they were out-of-range.

INFO(4) holds the number n of variables in the problem.

INFO(5) holds the amount of integer workspace used by the subroutine. If the user has provided
insufficient integer workspace (INFO(1) = -4), INFO(5) is set to a value which will suffice for
LIW (this value may be larger than the minimum workspace required).

INFO(6) holds the amount of real workspace used by the subroutine. If the user has provided insufficient
real workspace (INFO(1) = -2), INFO(6) is set a value which will suffice for LW.

INFO(7) indicates whether the arrays ELTVAR and ELTPTR have been altered. If INFO(7) = 0, ELTVAR and
ELTPTR are unchanged, otherwise they have been altered.

INFO(8) to INFO(15) are not currently used.

RINFO is a REAL (DOUBLE PRECISION in the D version) array of dimension 6 that need not be set on entry. On
successful exit, RINFO contains the following information.

RINFO(1) holds the maximum wavefront for the initial element order 1, 2,..., NELT.

RINFO(2) holds the r.m.s. wavefront for the initial element order 1, 2,..., NELT.

RINFO(3) holds the profile for the initial element order 1, 2,..., NELT.

RINFO(4) holds the maximum wavefront for the permuted element order ORDER(1), ORDER(2),...,
ORDER(NELT).

RINFO(5) holds the r.m.s. wavefront for the permuted element order ORDER(1), ORDER(2),...,
ORDER(NELT).

RINFO(6) holds the profile for the permuted element order ORDER(1), ORDER(2),..., ORDER(NELT).

2.1.3 To compute statistics for a given element assembly order

The single precision version

CALL MC63B(JCNTL,N,NSUP,NELT,NE,ELTVAR,ELTPTR,VARS,ORDER,IW,INFO,RINFO)

The double precision version

CALL MC63BD(JCNTL,N,NSUP,NELT,NE,ELTVAR,ELTPTR,VARS,ORDER,IW,INFO,RINFO)

JCNTL is an INTEGER variable that controls whether the lists of variable indices are checked for errors.

0 – No checks made.

+1 – Any duplicate or out-of-range indices are removed and the computation continues.

–1 – The computation terminates if any duplicate or out-of-range indices are found.

If JCNTL = +1 or -1, INFO(2) and INFO(3) provide information on the number of duplicate and
out-of-range indices. This argument is not altered by the routine.

N is an INTEGER variable that must be set by the user to the largest integer used to index a variable in the
finite-element problem. This argument is not altered by the routine.

NSUP is an INTEGER variable. If MC63A/AD has been called, it should be unchanged since the call to MC63A/AD.
Otherwise, NSUP should be set to N, the largest integer used to index a variable in the finite-element
problem. This argument is not altered by the routine.

NELT is an INTEGER variable that must be set by the user to the total number of finite elements in the problem.
This argument is not altered by the routine.

NE is an INTEGER variable that must be set by the user to be at least as large as the total number of entries in
the element variable lists. This argument is not altered by the routine.

ELTVAR is an INTEGER array of length NE. It may be as returned by MC63A/AD. Alternatively, it may be set by
the user so that ELTVAR contains lists of the variable indices belonging to each of the finite elements, with
those for element 1 preceding those for element 2, and so on. This argument is unchanged on exit unless
JCNTL = 1 and duplicate and/or out-of-range indices are detected.

ELTPTR is an INTEGER array of length NELT+1. It may be as returned by MC63A/AD. Alternatively, it may be
set by the user so that ELTPTR(I) contains the position in ELTVAR of the first variable in element I (I=1,
2,..., NELT), and ELTPTR(NELT+1) must be set to the position after the last variable in the last element.
On exit, ELTPTR holds corresponding data for the revised ELTVAR.

VARS is an INTEGER array of length NSUP. If MC63A/AD was called, it should be unchanged since the call to
MC63A/AD and it is not altered by the subroutine. Otherwise, (the case NSUP = N) VARS need not be set by
the user.

ORDER is an INTEGER array of length NELT which must be set by the user so that the order in which the
elements are assembled is given by ORDER(1), ORDER(2),..., ORDER(NELT). This argument is not altered
by the routine.

IW is an INTEGER array of length NSUP. This array is used by the subroutine as workspace.

INFO is a REAL (DOUBLE PRECISION in the D version) array of length 4.

INFO(1) is used as an error flag. On exit, it is set to:

0 – No duplicate or out-of-range indices detected.

+1 – JCNTL = 1 and some duplicate or out-of-range indices have been removed.

–1 – JCNTL = -1 and duplicate or out-of-range indices detected.

Further details are given in INFO(2) and INFO(3).

INFO(2) holds the number of duplicate indices (only set if JCNTL = 1).

INFO(3) holds the number of out-of-range indices (only set if JCNTL = 1).

INFO(4) holds the number n of variables in the problem.

RINFO is a REAL (DOUBLE PRECISION in the D version) array of length 3. On exit, RINFO contains the
following information.

RINFO(1) holds the maximum wavefront for the given element order.

RINFO(2) holds the r.m.s. wavefront for the given element order.

RINFO(3) holds the profile for the given element order.

3 GENERAL INFORMATION

Use of common: None.

Other routines called directly: Subroutines internal to the package are MC63C/CD, MC63D/DD, MC63E/ED,
MC63F/FD, MC63G/GD. In addition, MC60C/CD, MC60H/HD, MC60L/LD, MC60O/OD are called.

Input/output: Error messages on unit ICNTL(1) (ICNTL(1) ≤ 0 suppresses them) and warnings on unit
ICNTL(2) (ICNTL(2) ≤ 0 suppresses them).

Restrictions:

N ≥ 1, NELT ≥ 1, NE ≥ 1.

4 METHOD

MC63A/AD accepts lists of variables belonging to the elements and, after performing initial checks on the
user’s data, calls MC63B/BD to compute statistics for the natural element order 1,2,..,nelt. MC63B/BD also checks
the element variable lists for out-of-range and duplicate indices. Any such entries are removed and the
computation either continues after issuing a warning message or terminates if this has been requested.

If supervariables are wanted (ICNTL(3) = 0), they are constructed using subroutine MC60O/OD from the
Harwell Subroutine Library profile reduction package MC60. Otherwise, each variable is treated as a
supervariable. The element variable lists are overwritten by element supervariable lists. A map of variable to
supervariable indices allows the user to later restore the element variable lists, if desired.

For each supervariable, the number of elements involving it is counted. Lists of the elements associated with
the supervariables are then constructed. If the user has selected the direct element reordering algorithm
(DIRECT = .TRUE), the element connectivity graph is constructed from the supervariable lists, otherwise the
supervariable connectivity graph is constructed from the element lists.

Both the direct and indirect algorithms are based upon the modifications of Sloan’s algorithm (Sloan 1986)
first introduced by Duff, Reid, and Scott (1989).

In the indirect element reordering algorithm (DIRECT = .FALSE), MC60C/CD is used to reorder the
supervariables. The priority function that is minimized when choosing the next supervariable in the order is

WT(1) deg(s) + WT(2) ν glob(s) (1)

where deg(s) is the number of variables that will enter the front if supervariable s is chosen next, ν is a
normalizing factor, and glob(s) is the (positive) global priority value of supervariable s (generated automatically
or provided in PERM). On the basis of our numerical experiments, the default values for the weights WT(1),
WT(2) are (2,1) if the global priority vector is based on a rooted level-set structure (ICNTL(4) = 0) and (1,2) for
a global priority vector based on the spectral method. Full details are given in Reid and Scott (1998). Once the
supervariables have been reordered, the elements are resequenced in ascending order of their earliest
supervariable in the new supervariable order. The new supervariable indices are not preserved.

In the direct element ordering algorithm, the element connectivity graph is relabeled using the priority
function

WT(1) ngain(ielt) + WT(2) ν glob(ielt) + WT(3) nadj(ielt) (2)

where ngain(ielt) is the number of variables element ielt will introduce into the front less the number that can
then be eliminated, nadj(ielt) is the number of elements adjacent to element ielt that have not yet been relabeled,
ν is a normalizing factor, and glob(ielt) is the (positive) global priority value of element ielt (generated

automatically or provided in ORDER). At each stage, from a list of eligible elements, the element that minimizes
the priority function is chosen to be next in the element assembly order. The default values for the weights are
(10,5,1) if the global priority vector is based on a rooted level-set structure (ICNTL(4) = 0) and (1,2,0) for a
global priority vector based on the spectral method. For full details the user is referred to Scott (1998).

A final call to MC63B/BD (without error checking) computes statistics for the new element order.

References

Duff, I. S., Reid, J. K., and Scott, J. A. (1989). The use of profile reduction algorithms with a frontal code. Int.
J. Numer. Meth. Engng.

Reid, J. K. and Scott, J. A. (1998). Ordering symmetric sparse matrices for small profile and wavefront.
Technical Report RAL-TR-98-016, Rutherford Appleton Laboratory.

Scott, J. A. (1998). On ordering elements for a frontal solver. Technical Report RAL-TR-98-031, Rutherford
Appleton Laboratory.

Sloan, S. W. (1986). An algorithm for profile and wavefront reduction of sparse matrices. Inter. J. Numer. Meth.
Engng. 23, 239-251.

5 EXAMPLE OF USE

The following program provides an example of the use of MC63. We wish to reorder the elements in the
following simple finite-element mesh comprising six 4-noded quadrilateral elements. The elements are initially
numbered arbitrarily. Note that the variables are not numbered contiguously and at some nodes there is more
than one freedom.

1 2 3

6 1

4 5 6

2 5

7 8 9

3 4

10,12 13,14 15,17

C Example to illustrate the use of MC63A.
C Both the direct and the indirect element reordering algorithms
C are employed.

C .. Parameters ..
INTEGER MELT,MXN,MZ,LIW
PARAMETER (MELT=6,MXN=20,MZ=30,LIW=200)

C ..
C .. Local Scalars ..

INTEGER I,IDUM,LW,N,NE,NELT,NSUP
LOGICAL DIRECT

C ..
C .. Local Arrays ..

REAL WT(3),RINFO(6),W(MXN)
INTEGER CPTR(MELT+1),CVAR(MZ),ELTPTR(MELT+1),ELTVAR(MZ),
+ ICNTL(10),INFO(15),IW(LIW),
+ ORDER(MELT),PERM(1),SVAR(MXN),VARS(MXN)

C ..
C .. External Subroutines ..

EXTERNAL MC63A,MC63I
C ..
C Read in the finite-element data

READ (5,*) N,NELT

READ (5,*) (ELTPTR(I),I=1,NELT+1)
NE = ELTPTR(NELT+1) - 1
READ (5,*) (ELTVAR(I),I=1,NE)
LW = MXN

C Take a copy of ELTVAR, ELTPTR as altered by MC63A/AD
C and we want to run direct and indirect algorithms

DO 5 I = 1,NELT+1
CPTR(I) = ELTPTR(I)

5 CONTINUE
DO 10 I = 1,NE

CVAR(I) = ELTVAR(I)
10 CONTINUE

CALL MC63I(ICNTL)

DO 20 IDUM = 1,2

IF (IDUM.EQ.1) THEN
DIRECT = .TRUE.
WRITE (6,'(/3X,A)') '*** Direct element reordering ***'

ELSE
DIRECT = .FALSE.
WRITE (6,'(/3X,A)') '*** Indirect element reordering ***'

C Reset ELTVAR, ELTPTR
DO 15 I = 1,NELT+1

ELTPTR(I) = CPTR(I)
15 CONTINUE

DO 16 I = 1,NE
ELTVAR(I) = CVAR(I)

16 CONTINUE
END IF

CALL MC63A(DIRECT,N,NELT,NE,ELTVAR,ELTPTR,ORDER,PERM,NSUP,
+ VARS,SVAR,WT,LIW,IW,LW,W,ICNTL,INFO,RINFO)

C Check for errors
IF (INFO(1).LT.0) GO TO 30

WRITE (6,'(A,I12,I12/A,1P,D12.4,1P,D12.4/
+ A,1P,D12.4,1P,D12.4)')
+ ' Original/new max. wavefront = ',
+ INT(RINFO(1)),INT(RINFO(4)),
+ ' Original/new r.m.s. wavefront = ',
+ RINFO(2),RINFO(5),
+ ' Original/new profile = ',
+ RINFO(3),RINFO(6)

WRITE (6,'(A,I12/A,I12,I12)')
+ ' Workspace used = ',
+ INFO(5),
+ ' Number of variables/supervariables = ',
+ INFO(4),NSUP

WRITE (6,'(/3X,A/6I5)') 'The new element order is :',
+ (ORDER(I),I=1,NELT)

20 CONTINUE
GO TO 40

30 WRITE (6,*) ' Unexpected error return'

40 STOP
END

The input data used for this problem is:

17 6
1 5 9 15 21 25 29
2 5 3 6 4 5 7 8 7 8 10 12 4 13
8 13 9 14 17 15 5 8 9 6 1 2 5 4

This produces the following output:

*** Direct element reordering ***
Original/new max. wavefront = 10 7
Original/new r.m.s. wavefront = 6.3823D+00 4.6476D+00
Original/new profile = 8.7000D+01 6.6000D+01
Workspace used = 86
Number of variables/supervariables = 15 13

The new element order is :
1 6 5 2 3 4

*** Indirect element reordering ***
Original/new max. wavefront = 10 7
Original/new r.m.s. wavefront = 6.3823D+00 4.6476D+00
Original/new profile = 8.7000D+01 6.6000D+01
Workspace used = 142
Number of variables/supervariables = 15 13

The new element order is :
1 6 5 2 3 4

	Abstract
	Contents
	1 Introduction
	2 Finite element graphs
	3 Sloan's algorithm
	3.1 The basic algorithm
	3.2 Sloan's algorithm for indirect element ordering
	3.3 Sloan's algorithm for direct element ordering

	4 Spectral and hybrid reordering algorithms
	4.1 Spectral reordering
	4.2 The hybrid method

	5 Software design
	6 Numerical results
	6.1 Test problems
	6.2 MC43 versus MC63
	6.3 Adjusting the weights
	6.4 Sloan versus hybrid

	7 Element orderings and frontal solvers
	8 Conclusions
	9 Acknowledgements
	References
	A Appendix: MC63 specification document
	1 SUMMARY
	2 HOW TO USE THE PACKAGE
	2.1 Argument lists and calling sequence
	2.1.1 To set default values for the control parameters
	2.1.2 To reorder the elements
	2.1.3 To compute statistics for a given element assembly order

	3 GENERAL INFORMATION
	4 METHOD
	5 EXAMPLE OF USE

