
RAL-TR-98-039

PARASOL

An Integrated Programming Environment for

Parallel Sparse Matrix Solvers1

Patrick Amestoy2, Iain Du�3, Jean Yves L'Excellent4 and Petr Plech�a�c5

ABSTRACT
PARASOL is an ESPRIT IV Long Term Research Project whose main goal is to build and
test a portable library for solving large sparse systems of equations on distributed memory

systems. There are twelve partners in �ve countries, �ve of whom are code developers and
�ve end users. The software is written in Fortran 90 and uses MPI for message passing.
There are routines for both direct and iterative solution of symmetric and unsymmetric
systems. The �nal library will be in the public domain.

We will discuss the PARASOL Project with particular emphasis on the algorithms

and software for direct solution that are being developed by RAL and CERFACS

in collaboration with ENSEEIHT-IRIT in Toulouse. The underlying algorithm is a

multifrontal one with a switch to ScaLAPACK processing towards the end of the

factorization (and solution). We will discuss the algorithms, the interface, and their current

status and illustrate the performance of the direct solver on a range of problems from the

PARASOL end users.

Keywords: MPI, distributed memory architecture, sparse matrices, multifrontal direct
methods.

AMS(MOS) subject classi�cations: 65F05, 65F50.

1Support from the EU ESPRIT IV LTR Project 20160 is gratefully acknowledged. This

report is a preprint of an article that will appear in the Proceedings of the HPCI Conference

1998 that was held in Manchester, England in January 1998.
2 amestoy@enseeiht.fr, 3 I.S.Du�@rl.ac.uk, 4 excelle@cerfacs.fr, 5 P.Plechac@rl.ac.uk.

Current reports available by anonymous ftp from matisa.cc.rl.ac.uk in the directory

\pub/reports". This report is in �le hpci98RAL98039.ps.gz. Also published as Technical

Report TR/PA/98/13 from CERFACS.

Department for Computation and Information
Atlas Centre
Rutherford Appleton Laboratory
Oxon OX11 0QX

May 6, 1998.

Contents

1 Introduction 1

2 The PARASOL Interface 2

3 MUMPS - MUltifrontal Massively Parallel Solver 6

4 Results 10

5 Conclusions and future work 13

i

1 Introduction

PARASOL is a Long Term Research (LTR) ESPRIT IV Project (No 20160) for \An
Integrated Environment for Parallel Sparse Matrix Solvers". This Project started
on January 1st, 1996, and its aim is to develop a parallel scalable library of sparse
matrix solvers using Fortran 90 and MPI. At the end of the Project, the codes will
be made available in the public domain.

The PARASOL Consortium is managed by PALLAS in Germany and consists
of

� leading European research organizations with internationally recognized
experience and an established track record in the development of parallel
solvers (CERFACS, GMD-SCAI, ONERA, Rutherford Appleton Laboratory
(RAL), University of Bergen);

� industrial code developers who de�ne the requirements for PARASOL, are
providing test cases generated by their �nite-element packages, and will use
the developed software in production mode (Apex Technologies, Det Norske
Veritas (DNV), INPRO, MacNeal-Schwendler (MSC), Poly
ow);

� two leading European HPC software companies who will exploit the project
results and are providing state-of-the-art programming development tools
(GENIAS, PALLAS).

For more information, see the project web site at http://www.genias.de/parasol.
The codes in the Library include direct methods, domain decomposition

techniques, and multigrid algorithms. Within this project, RAL and CERFACS
are involved in the development of direct solvers and are working in this context
in close collaboration with ENSEEIHT-IRIT, Toulouse, France. The codes are
implemented as portable prototypes integrated into the PARASOL Library. The
four di�erent solvers and their implementation within the PARASOL Library are
depicted in Figure 1.1.

The Library provides its own communication and data exchange routines
(the PARASOL Interface) as a higher level message passing protocol based on
MPI and designed for speci�c data structures that arise in the �nite-element
approximation of partial di�erential equations and operations with sparse matrices.
In this short paper, we focus on the sparse direct solver (MUMPS) developed by
RAL and CERFACS in collaboration with ENSEEIHT-IRIT (see Amestoy, Du�
and L'Excellent (1998) for more details). We �rst give a brief overview of the
PARASOL Interface Library (see Supalov (1998)) emphasizing aspects relevant to
the implementation of MUMPS in Section 2. We then brie
y describe the algorithm
used by the MUMPS package in Section 3.

1

PARASOL interface

Application Code (Finite Element Approximation of PDEs)

Au = f

(APEX, DNV, INPRO, Poly
ow, MSC)

PARASOL interface

Iterative solver

DDM Domain
Decomposition

Parallab, Univ Bergen

PARASOL interface

Iterative solver

FETI Dual
Schwarz

ONERA

Iterative solver

HS Hierarchical
solver

GMD

PARASOL interface

Multifrontal
sparse solver

Direct solver

MUMPS

RAL/CERFACS

PARASOL interface

Figure 1.1: PARASOL Library

The PARASOL end users are providing several examples for the solver developers
to use as a test set. The test cases range from quite small problems (around 10000
equations) to large problems with over 2.5 million degrees of freedom. We consider
the performance of the MUMPS package on some of these test cases in Section 4,
before commenting on planned future work in Section 5.

2 The PARASOL Interface

Several very di�erent solvers and algorithms for the solution of large sparse linear
systems are integrated within the PARASOL Library. The Project has designed and
uses a higher level message passing protocol in order to overcome di�culties arising
from the di�erent data structures typically used by the di�erent algorithms. These
di�culties are exacerbated by a distributed memory environment. The package uses
the MPI 1.1 message passing interface (Message Passing Interface Forum 1995) as
the basis for its own interface standard. The PARASOL Interface allows users (and
solver developers) to exchange data between di�erent modules of the package in

2

a precisely de�ned way that is independent of the speci�c data structures needed
internally in the user's codes or solvers.

The PARASOL Interface accommodates three modes of parallel execution:

� Host-node - one process inputs the problem de�nition and the others exchange
data with it and compute the solution,

� Hybrid-host - one process inputs the problem de�nition and exchanges data
with the others, but then helps the others to compute the solution, and

� Hybrid-node - all processes input the problem de�nition and compute the
solution.

Currently only the Host-node mode is e�ciently implemented by the MUMPS solver.
It is the responsibility of the user to de�ne, con�gure and terminate the parallel

environment in addition to controlling I/O resources. However, the PARASOL
Library o�ers tools for controlling synchronization of data exchanges. The basic
process within the PARASOL environment is called an instance and is described by
its descriptor, which also encodes an MPI communicator used for data exchanges
related to a given instance. Every PARASOL routine is passed an instance descriptor
as an argument and then performs operations only on data associated with this
instance. The PARASOL Library allows the user to run several PARASOL instances
simultaneously. The instance operates on its own set of private data structures,
although it can initialize and use another instance. This feature provides an easy
mechanism for integrating di�erent solvers from the Library into a new solver. For
example, the domain decomposition solver can call the sparse direct solver. This
new solver will use all parallel features of both solvers, without any changes of data
structures.

The PARASOL Interface guide (Supalov, 1998) gives a detailed description of
the data exchange protocol and data structures de�ned for PARASOL routines.
Here we restrict ourselves to data structures relevant for the current version of
MUMPS, which only handles assembled sparse matrices. We will not discuss the
implementation of data protocols related to structures such as �nite-element meshes,
element matrix format etc.

Sparse matrices are represented within the PARASOL Library in the compressed
column storage format, that is, for an m � n sparse matrix A = (aij) we have a
descriptor which contains the data shown in Table 2.1.

The matrix is stored in associated arrays:

col - stores pointers to the start of the column data (entries in a column) in row

and val. The last entry of col points to the �rst free entry in row, val. The
length of col is equal to PSL NCOL + 1.

row - stores row indices of entries for each column. The length of row is equal to
PSL NVAL + 1.

3

PSL TYPE MPI DOUBLEPRECISION ... MPI data type
PSL NAME PSL MATRIX data name
PSL ATTR PSL SYMMETRIC,PSL HERMITIAN,PSL UNSYMMETRIC matrix structure
PSL FORM PSL SPARSEMAT sparse matrix format
PSL NROW INTEGER m > 0 number of rows
PSL NCOL INTEGER n > 0 number of columns
PSL NVAL INTEGER ne > 0 number of entries

Table 2.1: Sparse matrix descriptor

val - stores values of entries for each column. The length of val is equal to
PSL NVAL + 1.

The right-hand side(s) are entered either in the sparse vector format, which
has the same descriptor as a sparse matrix with the following �elds modi�ed:
PSL NAME = PSL RHSIDE or PSL SOLUTION, PSL ATTR = PSL LEFT or PSL RIGHT

(vector position), PSL FORM = PSL SPARSEVEC, or in the dense vector format (see
Table 2.2). In the case of dense vectors, the arrays col, row are not used and the
vectors are stored in val(1:PSL LDIM,1:PSL NVEC).

PSL TYPE MPI DOUBLEPRECISION MPI data type
PSL NAME PSL RHSIDE,PSL SOLUTION,... data name
PSL ATTR PSL LEFT,PSL RIGHT vector position
PSL FORM PSL DENSEVEC dense vector format
PSL NROW INTEGER > 0 number of rows
PSL NVEC INTEGER > 0 number of vectors
PSL LDIM INTEGER > 0 leading dimension of val

Table 2.2: Dense vector descriptor

The PARASOL Library provides the user with easy access to the solvers via
control routines for each solver and data exchange routines related to the transfer
of data structures relevant to the given solver.

We illustrate the use of the PARASOL Library for the MUMPS solver
implemented within a simple code which reads a sparse matrix from an external
�le, maps the solver onto a given number of processors, and performs the solution.
The skeleton for this is shown in Figure 2.1.

The generic calls to psl init and the other psl calls are interpreted by the
PARASOL Interface, through the de�ned con�guration name, to be calls to the
PARASOL control routines for the MUMPS solver.

Unlike the exchange routines, the control routines make heavy use of the internal
structure of the MUMPS code. Their implementation is based on appropriate calls

4

to the subroutine psl mumps. We use the name \MUMPS code" to refer to the
whole set of routines for which the routine psl mumps serves as a driver.

� psl mumps init - this routine initializes the MUMPS instance:

1. creating a description of nodes, the current version e�ciently supports
PSL MODE = PSL HOSTNODE and the user has reserved one process (rank
= 0),

2. allocating private data structures for the instance, and

3. calling the initialization phase of the MUMPS code,

� psl mumps end - this routine terminates the instance:

1. deallocating the resources,

� psl mumps map - the mapping routine performs the analysis and factorization
phases of the MUMPS code:

1. setting output/diagnostics parameters,

2. receiving the sparse structure of the matrix (n,ne,col,row) on the
master,

3. performing the analysis phase of the MUMPS code,

4. receiving numerical values for the matrix entries (val) on the master, and

5. performing the numerical factorization,

� psl mumps solve - the solution routine calls the solution phase of the MUMPS
code:

1. receiving the right-hand side(s), and

2. solving,

� psl mumps endsolve - the termination routine sends the solution to the user
and deallocates the memory.

The data exchange routines of the form host in Figure 2.1 must be coded by the
user and should include calls to the following data exchange routines that support
data communication needed between the user's code and the MUMPS solver:

� psl mumps contract - establishing a data exchange session,

� psl mumps what2send - send an inquiry,

� psl mumps sendIdata - send INTEGER data (col, row),

� psl mumps sendDdata - send DOUBLE PRECISION data (val),

5

� psl mumps need2recv - request data,

� psl mumps recvIdata - receive INTEGER data, and

� psl mumps recvDdata - receive DOUBLE PRECISION data.

These routines are used only for data exchange between a user's application
(program) and the MUMPS solver (package). The basic data communication for
MUMPS requires: sending a matrix (PSL NAME = PSL MATRIX), and a right-hand
side vector (PSL NAME = PSL RHSIDE), and receiving a solution vector (PSL NAME =

PSL SOLUTION).
The current version (Version 2.0) of the MUMPS integration into the PARASOL

package supports the PSL HOSTNODE and PSL HYBRIDHOST execution models,
although only the former fully bene�ts from the parallel features of the MUMPS
Version 2.0 code. The execution mode PSL HOSTNODE is schematically described in
Figure 2.2. In this mode, one processor is dedicated to serve as a master process for
PARASOL and the remaining processors are used for the parallel implementation
of the solver.

3 MUMPS - MUltifrontal Massively Parallel

Solver

MUMPS is a parallel sparse direct solver for distributed memory architectures using
a multifrontal method, which is a direct method based on the LU factorization of
the matrix. We refer the reader to our earlier papers (Amestoy and Du� 1989, Du�
and Reid 1983, Du� and Reid 1984) for full details of this technique. The current
version of MUMPS (Version 2.0) solves the system

Ax = b;

where A is assembled and unsymmetric.
The structure of the matrix is �rst analysed to determine an ordering that,

in the absence of any numerical pivoting, will preserve sparsity in the factors. In
Version 2.0 of MUMPS, an approximate minimum degree ordering strategy is used on
the symmetrized pattern A+AT , and this analysis phase produces both an ordering
and an assembly tree. The assembly tree is then used to drive the subsequent
numerical factorization and solution phases. At each node of the tree, a dense
submatrix (called a frontal matrix) is assembled using data from the original matrix
and from the sons of the node. Pivots can be chosen from within a submatrix of the
frontal matrix (called the pivot block) and eliminations performed. The resulting
factors are stored for use in the solution phase and the Schur complement (the
contribution block) is passed to the father node for assembly at that node. In the
numerical factorization phase, the tree is processed from the leaf nodes to the root

6

PROGRAM example

! Include files

INCLUDE 'mpif.h' ! MPI definitions

INCLUDE 'pslf.h' ! PARASOL definitions

! Local data

INTEGER self ! MPI rank of the current process

INTEGER id(PSL_IDSIZE) ! PARASOL instance descriptor

INTEGER rc ! return code

CALL MPI_INIT(rc) ! initialize MPI

CALL MPI_COMM_RANK(MPI_COMM_WORLD,self,rc) ! get MPI rank

id = 0 ! clear the instance desc.

id(PSL_COMM) = MPI_COMM_WORLD ! use MPI communicator

id(PSL_CONF) = PSL_MUMPS ! name the configuration

id(PSL_MODE) = PSL_HOSTNODE ! select execution mode

CALL psl_init(id,rc) ! initialize PARASOL instance

CALL psl_map(id,rc) ! nodes compute mapping/reordering

IF(self.EQ.0) THEN

CALL host_serves_mapping_data_ex(....id,rc) ! reading data from a file

END IF

CALL psl_solve(id,rc) ! nodes solve the system

IF(self.EQ.0) THEN

CALL host_serves_solution_data_ex(....id,rc) ! collecting the solution

CALL host_outputs_data(....id,rc) ! printing the solution

END IF

CALL psl_end(id,rc) ! terminate PARASOL instance

CALL MPI_FINALIZE(rc) ! terminate MPI

END

Figure 2.1: Skeleton of PARASOL Test Driver for MUMPS code

7

Host

rank=0

MUMPS

Process

Process

Process

Process

node

node

node

node

Host
User data exchange

PARASOL data exch.

Solver

psl mumps

USER

rank=1

rank=2

rank=3

rank=4

rank=5

PSL MODE = PSL HOSTNODE

MUMPS Solver

routines

Figure 2.2: HOST NODE execution model for MUMPS

(if the matrix is reducible, we have a forest, and each component tree of the forest
will be treated similarly and independently). The subsequent forward and backward
substitutions during the solution phase process the tree from the leaves to the root
and from the root to the leaves, respectively. A crucial aspect of the assembly tree
is that it de�nes only a partial order for the factorization since the only requirement
is that a son must complete its elimination operations before the father can be fully
processed. It is this freedom that enables us to exploit parallelism in the tree (tree
parallelism).

In the unsymmetric case, threshold pivoting is used to maintain numerical
stability so that it is possible that the pivots selected at the analysis phase are
unsuitable. In the numerical factorization phase, we are at liberty to choose pivots
from anywhere within the pivot block (including o�-diagonal pivots) but it still may
be impossible to eliminate all variables from this block. The result is that the Schur
complement that is passed to the father node may be larger than anticipated by the
analysis phase and so our data structures may be di�erent from those forecast by the
analysis. This implies that we need to allow dynamic scheduling during numerical
factorization, in contrast to the symmetric positive de�nite case where only static
scheduling is required.

A version of the multifrontal code for shared memory computers was developed
by Amestoy and Du� (1989) and was included in Release 12 of the Harwell
Subroutine Library (HSL, 1996) as code MA41. This was the basis for Version 1.0 of
MUMPS that was released in May 1997.

In the current version of MUMPS (Version 2.0), both tree and node parallelism
are exploited, and we distribute the pool of work among the processors, but our
model still requires an identi�ed host node to perform the analysis phase, distribute

8

P3

P0

P1

P2
P0

P1

P2

P3P2P1

P0 P1

P3

P0 P1

P0

P0

P3

P0

SUBTREES

P3

P2 P2

P0

P2

P2

P3

P0

Type 2

Type 3

Type 2P0

Type 2

P0

Type 1

Figure 3.1: Distribution of the computations of a multifrontal tree

the incoming matrix, collect the solution, and generally oversee the computation.
All routines called by the user for the di�erent steps are SPMD, and the distinction
between the host and the other processors is made by the MUMPS code. The code
is organized with a designated host node and other processors as follows (notice
that the following steps are easily implemented within the controlling strategy of
the PARASOL Library):

1. Analysis. The host performs an approximate minimum degree algorithm based
on the symmetrized pattern A+AT , and carries out symbolic factorization. A
mapping of the multifrontal tree is then computed, and symbolic information
is transferred from the host to the other processors. Using this information,
the processors estimate the memory necessary for factorization/solution.

2. Factorization. The host sends appropriate entries of the original matrix to the
other processors that are responsible for the numerical factorization. The
numerical factorization on each frontal matrix is conducted by a master
processor (determined by the analysis phase) and one or more slave processors
(determined dynamically) as discussed later in this section. Each processor
allocates an array for contribution blocks and factors; the latter should be
kept for the solution.

3. Solution. The right-hand side is broadcast from the host to the other

9

processors. These processors compute the solution using the (distributed)
factors computed during Step 2, and the solution is assembled on the host.

For an e�cient and more scalable parallelism on general matrices, the elimination
of frontal matrices near the root of the tree has to be parallelized. Version 2.0
of MUMPS exploits both tree parallelism and node parallelism; this is done by
introducing Type 2 and Type 3 nodes, as de�ned below.

We consider the assembly tree of Figure 3.1 where, instead of single nodes as
the leaves, there are subtrees whose constituent nodes have frontal matrices of small
order. Each subtree is processed by a single processor, to avoid communication at
that stage. This mapping of subtrees to processors is performed by the analysis
phase. For large problems, there will be more subtrees than processors which will
aid in the overall load balancing of the computation.

Above the subtrees, there can still be some nodes processed by only one processor.
These nodes (as well as nodes inside the subtrees) are called nodes of Type 1.

Consider a typical frontal matrix in the tree in which there are NPIV pivots to
eliminate (that is, the pivot block has order NPIV) and NCB rows to update (that
is, the order of the frontal matrix is NPIV+NCB). A node is of Type 2 if NCB is large
enough (the default in the code is that NCB should be larger than 800). The partial
factorization process is then parallelized with the �rst NPIV rows on one processor,
called the master of the node and the NCB rows distributed among other processors
(called the slaves of the node). For instance, in the Type 2 node on the right of
Figure 3.1, P3 is the master, and P0, P1, and P2 are the slaves.

A pipelined factorization is used, and updates to the contribution blocks are
performed in parallel. In our implementation, the assembly process is also fully
parallel.

At the root node, a full LU factorization is performed. If the size of the root node
is deemed large enough, the root node is said to be of Type 3, and is factorized using
ScaLAPACK (Blackford, Choi, Cleary, D'Azevedo, Demmel, Dhillon, Dongarra,
Hammarling, Henry, Petitet, Stanley, Walker and Whaley 1997). The assembly of
the root node is directly distributed in a 2D cyclic grid and is completely parallel.

4 Results

In this section, we present results to demonstrate the performance of the MUMPS
code on a few of the set of PARASOL test examples. We show the performance of
MUMPS with di�erent levels of parallelism as well as the speedup obtained on an
IBM SP2.

The test cases are summarized in Table 4.1 where N, NE denote the size of the
matrix and the number of entries, respectively. The size of the LU factors is reported
in the column \LU-Fac", and the number of
oating-point operations to factorize
the matrix is given in the last column.

10

The results in Table 4.2 show that there is often good speedup on the test
examples, indeed sometimes the performance is superlinear. This is caused by
the reduction in memory requirements on individual processors with a consequent
reduction in paging overheads.

Problem Origin Type N NE LU-Fac Ops
�106 �106 �109

INV EXTRUSION-1 POLYFLOW U 30412 1.79 49.7 36
OILPAN INPRO S 73752 1.84 20.6 8
MIXING-TANK POLYFLOW U 29957 1.99 62.7 142
CRANKSEG1 MSC S 52804 10.6 80.1 101
BMW7ST 1 MSC S 141347 3.74 54.0 31
WANG3 RBSMC U 26064 0.2 11.5 11

Table 4.1: The test matrices used in numerical experiments.

Analysis LU Factorization
Number processors 1 2 4 8 16 32
Test case
INV EXTRUSION-1 5.2 536.7 179.1 72.7 69.1
OILPAN 4.4 133.7 25.9 22.0 21.0
MIXING-TANK 4.4 607.6 83.8 80.1
CRANKSEG1 36.0 626.0
CRANKSEG1 a 9.1 1251.4 1022.8 899.6
Number processors 1 8 12 16 20 24
BMW7ST 1 9.7 118.9 60.8 43.8 44.1 38.7

Table 4.2: Times for Analysis and Factorization in seconds. Results obtained on the
IBM SP2 at GMD, Bonn. aComputed on SGI Origin at Parallab, Bergen.

Table 4.3 compares MUMPS with the symmetric code WSSMP (Gupta, Joshi
and Kumar 1997). As MUMPS is an unsymmetric solver, the symmetric matrix is
expanded into full memory storage format and subsequent operations are performed
on this expanded form. Nonetheless, MUMPS exhibits a comparable performance
with the well-tuned symmetric solver.

The importance of di�erent levels of parallelism is demonstrated on an example
of an unsymmetric matrix, WANG3, from the collection of sparse matrices by Davis
(1997). CPU times for the numerical factorization are shown in Table 4.4. The times
for only using tree parallelism are in the column headed by L1, while L2 denotes
that nodes of Type 2 are treated in parallel. With L3, the root node is assembled
and factorized in parallel using ScaLAPACK.

11

WSSMP MUMPS 2.0
Analysis 500 10.2
Matrix redistribution 11.8
Factorization 22.1 43.8
Triangular solution 1.14 1.6

Table 4.3: Comparison with WSSMP for the test example BMW7ST 1 on 16
processors of the IBM SP2 at GMD (thin nodes with 128 MB of physical memory
and 512MB of virtual memory). Times are in seconds.

No. procs L1 L1 + L2 L1 + L2 + L3
Time Speed-up

Seq CPU Time 71.0 71.0 71.0 1
2 61.3 89.3
3 96.6 79.5
4 46.9 65.7 77.9
5 49.1 33.3 23.7 3.0
6 46.4 31.9 22.4 3.2
7 45.4 30.1 20.5 3.5
8 44.1 27.9 20.7 3.4

Table 4.4: Comparison of di�erent levels of parallelism

12

Figure 4.1: Output from the VAMPIR log of the MUMPS run with only tree
parallelism (L1).

The tuning of the code and also the in
uence of di�erent levels of parallelism
can be traced and visualized using VAMPIR, which is a tool developed by one of
the PARASOL project partners (PALLAS Gmbh). The two �gures in Figure 4.1
and Figure 4.2 show communication and load balancing, with the vertical lines
indicating messages being passed and the dark shaded regions work being performed
on processors. Although it may be di�cult to see too much from these �gures
without prior experience with the tool, the poor parallelism from using only tree
parallelism is seen in the left-hand �gure while the right-hand �gure shows more
communication due to the L2 and L3 levels, the L3 level being the denser part at
the right of the �gure. The elapsed time is of course much reduced, as can been
seen from the times along the top edges of the �gures.

5 Conclusions and future work

We have brie
y described the current interface to the PARASOL Library and have
discussed the direct solver available in that Library. We have illustrated that
the current version performs well, exhibits a good degree of parallelism, and is
competitive with a vendor supplied direct solver.

13

Figure 4.2: Output from the VAMPIR log of the MUMPS run with all levels of
parallelism (L1+L2+L3).

14

At a recent Project Review meeting, there was support for an extension of the
PARASOL Project to June 30, 1999. Further enhancements to the MUMPS code
that will be undertaken during this period include: a version for symmetric systems,
an element entry, more sophisticated ordering and mapping strategies, integration
with the other codes in the PARASOL package so that the direct solver can be
called from within the iterative solvers, and more rigorous testing and tuning.

Acknowledgment

We would like to thank Jennifer Scott of the Rutherford Appleton Laboratory for
helpful comments on an earlier draft of the paper.

References

Supalov, A. (Editor) (1998), PARASOL Interface Speci�cation. Version 2.1, January
9th, 1998.

Amestoy, P. R. and Du�, I. S. (1989), `Vectorization of a multiprocessor multifrontal
code', Int. J. of Supercomputer Applics. 3, 41{59.

Amestoy, P. R., Du�, I. S. and L'Excellent, J.-Y. (1998), MUMPS MUltifrontal
Massively Parallel Solver, Version 2.0, Technical Report TR/PA/98/02,
CERFACS.

Blackford, L. S., Choi, J., Cleary, A., D'Azevedo, E., Demmel, J., Dhillon, I.,
Dongarra, J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker,
D. and Whaley, R. C. (1997), ScaLAPACK Users' Guide, SIAM Press.

Davis, T. A. (1997), `University of Florida sparse matrix collection', Available at
http://www.cise.u
.edu/~davis and ftp://ftp.cise.u
.edu/pub/faculty/davis.

Du�, I. S. and Reid, J. K. (1983), `The multifrontal solution of inde�nite sparse
symmetric linear systems', ACM Trans. Math. Softw. 9, 302{325.

Du�, I. S. and Reid, J. K. (1984), `The multifrontal solution of unsymmetric sets of
linear systems', SIAM J. Scienti�c and Statistical Computing 5, 633{641.

Gupta, A., Joshi, M. and Kumar, V. (1997), WSSMP: Watson Symmetric Sparse
Matrix Package. Users Manual: Version 2.0�, Technical Report RC 20923
(92669), IBM T. J. Watson Research Centre, P. O. Box 218, Yorktown Heights,
NY 10598.

15

HSL (1996), Harwell Subroutine Library. A Catalogue of Subroutines (Release 12),
AEA Technology, Harwell Laboratory, Oxfordshire, England. For information
concerning HSL contact: Dr Scott Roberts, AEA Technology, 552 Harwell,
Didcot, Oxon OX11 0RA, England (tel: +44-1235-434988, fax: +44-1235-
434136, email: Scott.Roberts@aeat.co.uk).

Message Passing Interface Forum (1995), MPI: A Message Passing Interface
Standard Version 1.1, Technical report.

16

	ABSTRACT
	Contents
	1 Introduction
	2 The PARASOL Interface
	3 MUMPS - MUltifrontal Massively Parallel
	4 Results
	5 Conclusions and future work
	Acknowledgment
	References

