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Abstract

We report a case study in grid computing with associated data and metadata management 
in which we have used molecular dynamics to investigate the anomalous compressibility 
maximum in amorphous silica.  The primary advantage of grid computing is that it 
enables such an investigation to be performed as a highly-detailed sweep through the 
relevant parameter (pressure in this case); this is advantageous when looking for derived 
quantities that show unusual behaviour. However, this brings with it certain data 
management challenges. In this paper we discuss how we have used grid computing with 
data and metadata management tools to obtain new insights into the behaviour of 
amorphous silica under pressure.

Introduction 
It is now well-established that grid computing 
comes into its own in the physical sciences 
when it enables simulation studies to be carried 
out across a sweep of the input parameters. 
Examples might be studies of a system as a 
function of external conditions such as 
temperature or pressure.  Whilst the existence of 
a grid of computers facilitates the parallel 
running of many separate simulations, to make 
effective use of the potential of grid computing 
it is essential to have appropriate workflow and 
data management tools. In this paper we report 
on a case study that has used a set of tools 
developed within the eMinerals project.

The particular case concerns a study of the 
properties of amorphous silica (SiO2) as a 
function of pressure. Our interest concerns the 
way that volume varies with pressure. In almost 
all materials, relative volume changes become 
smaller with increasing pressure, which is 
equivalent to the statement that most materials 
become stiffer under pressure. Usually this can 
be explained by the fact that the atoms are being 

squeezed closer together, and the closer they are 
the stiffer the structure. However,  amorphous 
silica behaves differently. On increasing 
pressure, amorphous silica initially becomes 
softer, until it crosses over to normal behaviour 
[1]. Formally the stiffness is defined by the 
inverse of the compressibility, κ–1, where 

κ = –V–1(∂V/∂P).
Here V is the volume, and P is the pressure. In 
most materials, κ decreases on increasing 
pressure, but in amorphous silica κ has a 
maximum at a pressure of around 2 GPa.

Our approach is to use the classical 
molecular dynamics simulation method to study 
the pressure-dependence of amorphous silica. 
Because we need to calculate a differential, it is 
important to obtain a large number of data 
points on the volume/pressure graph, and it is in 
this regard that grid computing plays an 
important role.  Using a grid enables the many 
separate jobs to be run at the same time, 
increasing the throughput by more than an order 
of magnitude so that collecting many data 
points becomes a viable process.



In this work we make use of the following 
technologies:
‣ Methods to create and submit many jobs in 

which one or more parameters are varied [2];
‣ Metascheduling within a minigrid compute 

environment,  with jobs distributed over 
clusters and Condor pools [2,3];

‣ Use of the San Diego Storage Resource 
Broker (SRB) for data archiving and the 
sharing of data files [4];

‣ Use of XML output data and associated tools 
to aid data analysis and sharing of the 
information between collaborators [5];

‣ Incorporation of workflows within the job 
submission procedure to enable analysis to be 
performed on the fly [2];

‣ Automatic metadata capture using the 
recently-developed RCommands [6].

The purpose of this paper is to describe how 
these tools were combined to facilitate a 
detailed molecular dynamics simulation study 
of the compressibility of amorphous silica using 
grid computing.

Science background
Amorphous silica, SiO2, is a random network of 
corner-linked SiO4 tetrahedra, Figure 1.  We 
work with configurations of 512 tetrahedra 
generated from initial configurations of 
amorphous elemental silicon [7] and tested 
against neutron total scattering data [8].

The issue of compressibility concerns the 
inherent flexibility of the network of connected 
tetrahedra. This is a subtle issue, because 
standard engineering methods of counting 
constraints and degrees of freedom do not 
capture the whole story. We have previously 
demonstrated [7] that the silica network has an 
inherent network flexibility in which the SiO4 
tetrahedra can rotate and buckle the network 
without the tetrahedra themselves needing to 
distort.  Such motions will cost relatively little 
energy; the higher-energy processes are those 
that cause the SiO4 tetrahedra to distort, either 
through bending of the O–Si–O bond angles or 
stretching of the Si–O bonds. There are two 
ways in which buckling of the network of 
corner-linked SiO4 tetrahedra can happen. One 
is through fast vibrations, and the other is 

through larger jump motions in which several 
tetrahedra change their orientations together. 
Animations of both processes are available from 
references 9 and 10 respectively, and are 
surprisingly instructive.

Our approach is to consider the behaviour of 
amorphous silica in the two extremes of large 
negative and positive pressures in comparison 
with intermediate pressures. First we note that 
the compressibility, as defined earlier,  can also 
be defined in terms of the second derivative of 
the free energy G: 

κ = –V–1(∂2G/∂P2). 
Thus compressibility is related to changes in 
energy, and our hypothetical extreme end states 
are both states in which any changes are 
necessarily accompanied by large changes in 
energy as compared to the intermediate state. At 
large negative pressures (corresponding to 
stretching the material) the bonds are 
themselves stretched tight and the flexibility of 
the network is accordingly reduced. To change 
the pressure in this extreme will involve 
distorting the SiO4 tetrahedra – either by 
changing bond lengths or bond angles – which 
as noted above is quite a high energy process. 
At the high-pressure extreme, atoms are pushed 
tightly together and further changes in volume 
can again only be accomplished by distorting 
the SiO4 tetrahedra. But in the intermediate 
region,  where there is more flexibility of the 
network, volume changes can be accomplished 
by crumpling the network without any 
distortions of the SiO4 tetrahedra. Since this is a 
low energy process, the compressibility is a lot 
higher.

Figure 1. Configuration used in the simulations 
described in this paper, with SiO4 polyhedra 

represented as tetrahedra rather than representing 
the individual atoms.



The task we set ourselves was to 
demonstrate the reasonableness of this 
hypothesis, and the chosen tool is molecular 
dynamics simulation. We have two good sets of 
interatomic potential energy functions for silica, 
both based on quantum mechanical calculations 
of small clusters of silicon and oxygen atoms; 
these are described in references 11 and 12 
respectively. For the present paper we will only 
present results using the model of reference 11, 
but will refer to the other set of results later. We 
use the DL_POLY_3 molecular dynamics 
simulation code [13],  which has been adapted 
for working within a grid computing 
environment.

We ran simulations for pressures between ±5 
GPa and at a temperature of 50 K. Our aim was 
to capture data for many pressures within this 
range, and to analyse the resultant 
configurations at the same time as running the 
simulations. At each pressure we ran one 
simulation with a constant-pressure and 
constant-temperature (NPT; N implies a 
constant number of atoms) algorithm in order to 
obtain data for the equilibrium volume, 
followed by a simulation using a constant-
volume and constant-energy (NVE) algorithm 
for the more detailed analysis (see later in this 
paper).  The analysis was performed using 
additional programs, and was incorporated 
within the workflow of each job carried out 
within the grid computing environment.

eScience methodology

Grid computing environment

The simulations were performed on the 
combination of the eMinerals minigrid [3,14], 
which primarily consists of linux clusters 
running PBS, and CamGrid [15],  which consists 
of flocked Condor pools.  Although the 
eMinerals minigrid and CamGrid are 
independent grid environments, they have 
overlapping resources, and the tools developed 
to access the eMinerals minigrid [3,14] have 
been adapted to work on CamGrid, and, 
incidentally,  to also enable access to NGS 
resources, in the same manner.

Access to the eMinerals minigrid is 
controlled by the use of escience digital 
certificates and the use of the Globus toolkit. 
We have developed a metascheduling job 
submission tool called my_condor_submit 
(MCS) to make the process easier for end users 
[2,3,15]. This uses the Condor-G interface to 

Globus to submit three separate jobs per 
simulation. The first job takes care of data 
staging from the SRB to the remote computing 
resource, whilst the last job uploads output data 
back to the SRB as well as capturing and storing 
metadata. The middle job takes care of running 
the actual simulation and corresponding 
analysis as part of a script job.

Data management

Data management within the eMinerals 
minigrid is focussed on the use of the San Diego 
Storage Resource Broker. The SRB provides a 
good solution to the problem of getting data into 
and out of the eMinerals minigrid.  However, it 
also facilitates archiving a complete set of files 
associated with any simulation run on the 
minigrid. The way that the eMinerals project 
uses the SRB follows a simple workflow:
1. The data for a run,  and the simulation 

executable, are placed within the SRB. It is 
not necessary for the files to be within the 
same SRB collection.

2. A submitted job, when it reaches the 
execute machine, first downloads the 
relevant files.

3. The job runs, generating new data files.
4. At the end of the job, the data files 

generated by the run are parsed for key 
metadata which is ingested into the central 
metadata datbase, and the files are put into 
the SRB for inspection at a later time.

This simple workflow is managed by the MCS 
tool using Condor’s DAGman functionality. We 
have built into the workflow a degree of fault 
tolerance, repeating any tasks that fail due to 
unforseen errors such as network interruption.

Combinatorial job preparation tools

One of the key tasks for escience is to provide 
the tools to enable scientists to access the 
potential benefits of grid computing. If 
scientists are to run large combinatorial studies 
routinely, they need tools to make setting-up, 
submitting, managing and tracking of many jobs 
nearly as easy as running a single job. To enable 
the scientists within the eMinerals project team 
to run detailed combinatorial studies one of the 
authors (RPB) has developed a set of tools that 
generate and populate new data collections on 
the SRB for all points on the parameter sweep, 
and then generate and submit the set of MCS 
scripts [2].

All that is required from the user is to 
provide a template input file from which all 



necessary unique input files will be created. The 
user specifies the name of the parameter whose 
value is to be varied, the start and end values, 
and the number of increments. For example, a 
user could specify that they wish to vary 
pressure between –5 and +5 GPa in 11 steps 
which would result in input files being created 
for pressures of –5, –4, –3, ... +4, +5 GPa. The 
tools then create a simple directory structure, 
with each sub-directory containing the 
necessary input files. A similar directory 
structure will also be created on the SRB. Each 
directory on the submission machine also 
contains the relevant MCS input script, with 
appropriate SRB calls and metadata commands.

The subsequent stage is job submission. The 
user runs one command, which walks through 
the locally created directory structure and 
submits all of the jobs using MCS. It is MCS 
that takes care of the issue of deciding where to 
run the simulation within the eMinerals 
minigrid or Camgrid environments, using a 
metascheduling algorithm explained elsewhere
[2]. This algorithm ensures that the user’s 
simulations do not sit in machine queues for 
longer than is necessary, and that the task can 
take full advantage of all available resources.

The tools also track the success of the job 
submission process, and any errors that occur as 
part of the submission are recognised. For 
example, if one of the Globus gatekeepers stops 
responding, it will cause Condor-G to fail in the 
submission. This will be noticed, and a user 
command will provide information on all failed 
jobs and will resubmit them as appropriate.

Workflow within the job script

Usually MCS is used to submit a binary 
executable, but can also submit a script (eg shell 
or  Perl) containing a set of program calls.  In 
our application, a standards-compliant shell 
script is used to control the execution of a 
number of statically linked executables and a 
simple  Perl script to run the analysis. In detail 
the script runs the following codes in order on 
the remote host: first DL_POLY_3 is run with 
the NPT ensemble in order to generate a model 
with the appropriate density for the pressure of 
interest, then the output of this run is used as 
input for a second DL_POLY_3 run in the NVE 
ensemble in order to sample the vibrational 
behaviour of the system at this density. 
Following the second molecular dynamics 
simulation, pair distribution functions are 
extracted for the Si–Si, Si–O and O–O 

separations, and configurations are extracted for 
analysis of the atomic motions based on a 
comparison of all configurations.  Finally a  Perl 
script collates the results of this analysis for 
later plotting. This analysis will not be reported 
in this paper, but is mentioned here to make the 
extent of the workflow clear.

Use of XML

The eMinerals project has made a lot of use of 
the Chemical Markup Language (CML) to 
represent simulation output data [5]. We have 
written a number of libraries for using CML 
within Fortran codes (most of our simulation 
codes are written in Fortran), and most of our 
simulation codes now write CML. We typically 
write three blocks of CML, one for “standard” 
metadata (some Dublin Core items, some 
specific to the code version and compilation 
etc), one to mirror input parameters (such as the 
input temperature and pressure, technical 
parameters such as cut-off limits),  and one for 
output properties (including all computed 
properties step by step and averages over all 
steps). This is illustrated in Figure 2.

The XML files stored within the SRB are 
transformed to HTML files using the TobysSRB 
web interface to the SRB, with embedded SVG 
plots of the step-by-step output [16]. This 
enables the user to quickly inspect the output 
from runs to check issues such as convergence.

XML output also allows us to easily collect 
the desired metadata related to both input and 
output parameters using the AgentX library, 
developed by one of the authors (PAC) [17]. 
This has been integrated into the MCS 
workflow, enabling the user to easily specify the 
metadata they wish to collect as part of their job 
submission process without needing to know the 
ins and outs of XML file formats.

Results management

When many jobs are run as part of a single 
study, it is essential to have tools that collate the 
key results from each run. For example, one key 
output from our work will be a plot of volume 
against pressure, with each data point obtained 
from a single computation performed using grid 
computing. In this we exploit the use of XML in 
our output files, because the required averaged 
quantities can be accessed by retrieving the 
value of the relevant XML element as per 
Figure 2. This value can be retrieved for each of 
the individual files using a simple XSLT 
transform, combining all of the values together 



then results in a list of points. This can easily be 
plotted as a graph using a further XSLT 
transformation into an SVG file.

These transformations can be done very 
quickly, and more importantly they can be done 
automatically, which means that the user and 
his/her collaborators simply need to look at a 
graph in a web page to quickly analyse trends 
within the data,  rather than having to open 
hundreds of files by hand to find the relevant 
data values to then copy into a graph plotting 

package. In our experience, this is the sort of 
thing that makes grid computing on this scale 
actually usable for the end user, and facilitates 
collaborations.

Metadata

With such quantities of data, it is essential that 
the data files are saved with appropriate 
metadata to enable files to be understood and 
data to be located using search tools.  We have 
developed tools, called the RCommands, which 

<?xml version=“1.0” encoding=“UTF-8”?>
<cml xmlns=“http://www.xml-cml.org/schema”
 xmlns:xsd=“http://www.w3.org/2001/XMLSchema”
 xmlns:dc=“http://purl.org/dc/elements/1.1/title”
 xmlns:dl_poly:“http://www.cse.clrc.ac.uk/msi/software/DL_POLY/dict”
 xmlns:dl_polyUnits:“http://www.cse.clrc.ac.uk/msi/software/DL_POLY/units”>

<metadataList>
 <metadata name=“dc:contributor” content=“I.T.Todorov &amp; W.Smith”/>
 <metadata name=“dc:source”
 content=“cclrc/ccp5 program library package, daresbury laboratory molecular dynamics 
program for large systems”/>
 <metadata name=“identifier” content=“DL_POLY version 3.06 / March 2006”/>
 <metadata name=“systemName” content=“DL_POLY : Glass 512 tetrahedra”/>
</metadataList>

<parameterList title=”control parameters”>
 <parameter title=“simulation temperature” name=“simulation temperature”
 dictRef=“dl_poly:temperature”>
 <scalar dataType=“xsd:double” units=“dl_polyUnits:K”> 5.0000E+01 </scalar>
 </parameter>
 <parameter title=“simulation pressure” name=“simulation pressure”
 dictRef=”dl_poly:pressure”>
 <scalar dataType=“xsd:double” units=“dl_polyUnits:katms”> -3.0000E+01 </scalar>
 </parameter>
 <parameter title=“simulation length” name=“selected number of timesteps”
 dictRef=“dl_poly:steps”>
 <scalar dataType=“xsd:integer” units=“dl_polyUnits:steps”> 50000 </scalar>
 </parameter>
</parameterList>

 <propertyList title=“rolling averages”>
  <property title=“total energy” dictRef=“dl_poly:eng_tot”>
   <scalar dataType=“xsd:double” units=“dl_polyUnits:eV_mol.-1”> -2.7360E+04 </scalar>
  </property>
  <property title=“volume” dictRef=“dl_poly:volume”>
   <scalar units=“dl_polyUnits:Angstroms.3”>2.2316E+04</scalar>
  </property>
 </propertyList>
 <propertyList title=“execution time”>
  <property title=“run time”>
   <scalar dataType=“xsd:double” units=“dl_polyUnits:s”> 17475.422 </scalar>
  </property>
 </propertyList>
</cml>

Figure 2. Example CML output from DL_POLY showing the key data lists.



MCS use to automatically collect and store 
metadata [6].  The metadata are culled from 
the CML output files,  collected from the 
metadata, parameter and property lists. 
Property data such as the computed 
average volume are used as metadata 
because they will be parameters within the 
metadata against which users are able to 
run search commands on.

Other information, including metadata 
content regarding the execution machine 
and directory, as well as the default 
metadata created as part of any of our 
XML output file creation, are also 
captured. These items of metadata provide 
a valuable audit trail for each simulation, in 
part replacing the scientist's traditional log 
book with a much more searchable and 
efficient means of tracking their submitted 
simulations. Scientists cannot reasonably 
be expected to keep track of each of several 
hundred simulations performed in this way 
without efficient and automatic metadata 
capture, since doing so by hand would 
result in more time being spent recording 
this sort of information than in actually 
analysing the science identified by the 
results.

It should be noted that the use of the 
RCommands and the AgentX tools did not 
give a significant overhead to the running 
of the the jobs. The DL_POLY_3 
simulations typically took 8 hours, whereas 
the metadata extraction only took 30 minutes or 
less.

Results

Volume curve

The first key result we were aiming at was a 
plot of volume vs pressure, which is show in 
Figure 3. What is clear from this diagram is that 
the slope of the graph is greatest for 
intermediate pressures, indicating that 
amorphous silica is softest around ambient 
pressures. The virtue of having many points is 
that we were able to fit a polynomial to the data 
in order to extract the derivative dV/dP with 
reasonable confidence. We plot the 
compressibility, κ = –V–1(dV/dP) in Figure 4. 
The maximum in the compressibility occurs at a 
pressure of around 1 GPa. This is a bit less than 
the experimental value (2 GPa), but given that 
this is a second-order effect, the difference 
between experiment and simulation is not 

significant. What is important from this plot is 
that we have successfully modelled the 
compressibility maximum in amorphous silica, 
and we note here that we have reproduced this 
result with the model interatomic potential of 
reference [12] as well. This implies that the 
compressibility maximum is not a subtle feature 
peculiar to the details of the interatomic 
potentials (real or model) but is a consequence 
of the nature of the structure and atomic 
connectivities.

Interatomic distances

The distribution of interatomic distances is 
described by the pair distribution function, g(r), 
such that the number of pairs of atoms with 
separation between r and r  +  dr is given by 
4πr2g(r)dr. g(r) is thus a normalised histogram 
of interatomic distances,  which for close 
neighbours is typically peaked around a well-
defined mean separation. The mean separations 
for Si–O, O–O and Si–Si nearest neighbours are 
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plotted in Figure 5,  normalised to unity at 
zero pressure to facilitate comparison. The 
Si–O and O–O distances are defined by the 
relatively-rigid SiO4 tetrahedra – the ratio 
of the O–O to Si–O mean distance is equal 
to (8/3)1/3 – and it can be seen that their 
mean distances barely change with 
pressure. Thus we see that the SiO4 
tetrahedra on average barely change their 
size or shape across the range of pressures. 
On the other hand, the mean Si–Si distance 
varies much more with pressure, almost 
scaling with the length scale of the 
simulation sample, i.e.  the cube root of the 
sample volume (also shown in Figure 5). 
The pressure-dependence of the Si–Si 
distance suggests that the network is 
buckling with a folding of groups of 
connected tetrahedra.

The variances of the distributions of 
specific interatomic distances in g(r) are 
shown in Figure 6. These show a number of 
interesting features. Most clear is that the 
Si–O distribution is very sharp (small 
variance); this reflects the fact that this is a 
very strong bond with a high frequency, and 
hence low amplitude, stretching vibration. 
The variance of the Si–Si distribution 
clearly increases on increasing pressure, 
consistent with bucking of the network. The 
variance of the O–O distribution is 
interesting. Although the mean distance 
(figure 5) varies no more than the mean Si–
O distance, there is greater variation of the 
O–O distance. This means that all 
deformations of the SiO4 tetrahedra mostly 
involve flexing of the O–Si–O bond angles. It is 
interesting to note that the variance of the O–O 
distances has a minimum around the pressure of 
the maximum in the compressibility.

Summary points
‣ We have seen how grid computing enables us 

to run many concurrent simulations, which 
enable us to obtain data with sufficient points 
to be able to extract derived quantities that 
show anomalous behaviour.

‣ Launching many jobs is a challenge that 
requires an automated solution.  This work has 
been carried out using the parameter sweep 
tools developed within the eMinerals project.

‣ The actual mechanism of submitting the jobs 
to Globus resources and then managing the 
workflows, including interaction with the 

SRB, was enabled using the MCS tool 
developed by the eMinerals project.

‣ Data management presented several 
challenges. The use of the SRB for data 
storage was already in use within the 
eMinerals project,  and this case study showed 
the value of the SRB for data archiving.

‣ This work was greatly helped by the use of 
XML (CML) file outputs.  Examples were the 
use of the TobysSRB tool to inspect file 
output stored in the SRB in XML format, the 
use of XML to gather key data from many 
data files stored in the SRB, and the use of the 
SRB in gathering metadata.

‣ With the large number of data files generated 
in this study, automatic metadata capture is 
essential. We have used the RCommand 
framework as used within the MCS tool 
together with the Rparse tool to add metadata 
associated with each set of files.
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‣ This work was collaborative in nature, 
involving at times sharing of data between 
colleagues who were in physically different 
locations. Sharing of data was enabled using 
the above tools and methods.

‣ Finally, it is worth remarking that a large part 
of the simulation work reported in this study 
was carried out by a third year undergraduate 
student (LAS) as her degree project. We were 
confident, as proved to be the case, that the 
escience tools developed to support this work 
could easily be picked up by someone with no 
previous exposure to escience or 
computational science and who was working 
under some considerable time pressure.
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