
Towards a Common Data and Command Representation for
Quantum Chemistry

Rob Allan1, Philip Couch1, Peter Knowles2 & Paul Sherwood1

1. CCLRC, Daresbury Laboratory, Daresbury, Warrington, Cheshire. WA4 4AD. UK.
2. School of Chemistry, Cardiff University, P.O. Box 912, Cardiff, CF10 3TB. UK.

Abstract

Computational chemistry increasingly requires the use of a variety of applications in close
cooperation to solve complex problems, and the realisation of Grid technologies has provided a
strong technological framework for such integration. However, communication between
applications is still hindered by a lack of data format standards and agreed semantics. Consideration
of a common data and command representation would alleviate some of this difficulty. In addition,
the storage of data in a 'universal' format with suitable meta-data would simplify its analysis,
interpretation and appropriate re-use. Another aim is to be able to log metadata conforming to a
known data model such that scientific procedures can be more reliably repeatable. Simple
conversion between existing application data formats is error prone and not scalable, and a solution
is to find a common 'middle ground' for the data representation. The eCCP1 project has been
established to formulate the requirements for enabling effective use of Grid resources by the
quantum chemistry community. More specifically, the project investigates Grid middleware,
compute resources, client tools and tracks and develops standards in data and command
representation.

1. Introduction
Quantum chemistry (QC) applications often
work with their own unique file formats that
tend to be implicit, and have semantics that are
only completely understood by those that have
considerable experience of the codes
themselves. The approach to the use of such
computational codes is changing, with the
frequent use of several techniques and codes to
solve specific complex problems. This arises
from a desire to model systems over ever
increasing length and time scales. Examples
include the study of bio-molecular processes
that should ideally be treated with a full
quantum mechanical approach, but where the
size of the system requires some classical
treatment. Another example is in the
understanding of environmental processes,
where atomistic processes are affecting large
systems over an extended period [1]. The
current UK e-science program is seeking to
address issues associated with the construction
of a computational Grid based framework for
such code interoperability. However, the
process is still stifled by the lack of agreed data,
meta-data and semantic standards. In QC tools
do exist to convert between a range of the more
common file formats (e.g. Open Babel [2]), but
this is often only a small subset of formats, that
can change between code versions. A common

data and command representation for quantum
chemistry also has advantages outside those of
code interoperability. If formatted data is well
supported with meta-data and the semantics are
clearly defined, then advantages include the
promotion of appropriate data reuse.
Conformance to an agreed standard also makes
data available to a wider community through the
use of tools adapted for this purpose. Such
common tools could be used to analyse and
visualise data, including rendering structures
and the analysis of charge densities (such as a
Bader analysis).

There are a number of existing ways that
such data could be represented. These include
ASCII representations, such as the
Crystallographic Information File (CIF) [3],
storage in relational tables, use of the eXtensible
Mark up Language (XML) such as the
Chemical Mark up Language (CML) [4] or as
serialised objects with their associated methods
and data members. The data models could then
be defined in SQL, in XML Schema, using class
interface definitions or using diagrammatic
forms such as the Unified Modelling Language
(UML). Formatted data should be supported by
meta-data defined by a meta-data schema.
Examples of existing schema include the
CCLRC Scientific Meta-data Model [5]. If data
is to be shared amongst different codes and
stored in repositories for later use, it is
important to be clear about the data semantics.

For performance reasons, many scientific
application developers work with the Fortran
language and careful consideration needs to be
given to the implementation of APIs/GUI front
and back ends that enable the use of formatted
data from such codes.

2. The Data Model

2.1 QC data-types

The initial QC data-types that are to be
considered in the data model are those that are
commonly used in a range of different
applications. These include: geometries, basis
sets, commands, properties on grids (such as
orbitals and densities), dynamics and accuracies
and tolerances. XML has been chosen as the
meta-language for the data format, principally
due to its wide spread adoption and the
availability of mature tools. This makes an
XML format easily interpretable by disparate
groups of collaborators. A document detailing
QC data-type issues can be found on the eCCP1
TWiki site [6].

2.2 The data model design

The data model is currently being defined with
UML, using Object Domain, with the aim of
generating XML schema using the UML profile
of David Carlson [7]. This profile allows for
automatic generation of the XML schema using
the Eclipse based Hypermodel tool [8]. A
modular approach to the construction of a QC
schema, similar to that specified in the
UN/CEFACT CCTS [9] is under consideration.
Here semantically free core components are
defined in XML schema that will form the
building blocks of quantum chemistry data-
types. These core components are of either
complex or simple type with simple XSD data-
type content. The data-types are then used in
further schema to construct information entities.
Entities have well defined semantics and are
used to construct the QC data model. This
highly modular approach makes the data model
easily extensible and components re-usable.

2.3 Links and relationships

Some data is not complete without other
supplementary data. In a quantum chemistry
context an example would be the dependence of
molecular orbital coefficients on the atomic
basis sets and molecular geometry. It is
therefore important to clearly define links and
relationships between data. Some relationships
are implicit, through the structure of the

document. For example, this could be through
the ordering or nesting of elements. In addition,
XML data-types can be modelled in schema as
extensions or restrictions of other types,
allowing sub-typing. However, often more
complex relationships need to be declared. Of
course, it is possible to declare implicit
relationships through legislation, but a way of
specifying a change of the rules in certain
circumstances is required. An example would
include the selection of a specific atomic basis
set for certain atoms of a molecule, where the
basis set is different from that mapped to these
atoms through legislation. It is also important to
be able to record such mappings and referrals
for future references. It is likely that semantic
web technologies, such as the resource
description framework (RDF) will be used in its
XML serialised form to declare such
relationships. Another consideration is that QC
data will reside in repositories, such as basis set
and structure libraries, and the data model must
permit data to be standalone in this respect.
Therefore, it is difficult to rely on the data
structures themselves to highlight such
relationships.

It is common practice to separate data and
meta-data, primarily to increase the efficiency
of meta-data searches. Linking of the data and
its meta-data is therefore a further concern. Data
is often derived from other data. A simple QC
example would be the relaxation of a structure,
originally determined through a less expensive
calculation; it is important to keep track of data
provenance. These links could be modelled in
the meta-data schema (as is the case in the
CCLRC meta-data model, which supports the
concepts of related references, directionality and
the granularity of the referenced source). An
alternative is to make use of XLink linkbases.
These are databases of links between external
resources. The XLink specification allows each
link to have an ‘arcrole’, which is like an RDF
‘HAS A’ predicate.

2.4 Binary data

Some QC data is not suitable to be formatted in
XML, due mainly to the very large documents
that would result. It is likely that data structures
scaling in size greater than with the square of
the number of electrons should have a binary
representation, examples would include two
electron integrals. If this data is to be transferred
between machines then a machine independent
way of storing the binary data is required.
NetCDF, HDF, BinX or DFDL [10] could be
used for this purpose.

3. Architecture

3.1 Data handling

A quantum chemistry calculation requires data,
commands, controls and parameters. Some of
these are new and required from the user and
others can be taken from elsewhere. This could
be from a data repository such as an XML
database, examples including Xindice or eXist.
A meta-data repository could be mined for links
to data that match specified criteria. In the
current context, this could be for the structure of

Figure 1. QC data management framework

a molecule or for particular atomic basis sets. A
framework is required for both the data mining,
input of data from the user and subsequent
collation of the data for input into the quantum
chemistry application. This collation would
require consideration of the relationships
between data, such as those between atomic
basis sets and atoms. Default relationships could
be assumed, with the user having the option to
change these from within a data management
framework. The development of common
GUI/portal front and back ends to QC
applications, such as the Python based CCP1
GUI [11], could provide such a framework. The
QC code input is to be XML conforming to the
eCCP1 data model. This could either be read by
the application directly or transformed (for
example using XSLT) to standard code input.
Many QC applications depend on the Fortran
language and traditionally XML support for
Fortran has been poor. However, several Fortran
APIs now exist. xmlf90 provides a SAX and

DOM interface for reading and a ‘well formed
XML’ module for writing [12]. It also includes
an XPath inspired module for locating specific
parts of a document (SAX-based). An
alternative is to write Fortran wrappers that link
to foreign APIs for XML parsing, such as the C
based libXML or Xerces. This approach has a
shortfall in that the parsing of data between
codes written in different languages is compiler
and platform dependent and any wrapper must
consider the possibilities. The upside is that
these libraries are often very advanced, heavily
used and have a good support base.

A further consideration is that some
libraries, such as libXML, have mixed SAX-
DOM interfaces for parsing data. A pure SAX
interface is useful for quickly reading data with
very little overheads, but poor if the data has
many links. A DOM interface is useful for
heavily referenced data, but the memory
overheads are potentially more significant for
large XML documents. A mixed interface, such
as libXML’s xmlTextReader, will allow SAX
to, and the construction of a DOM from, an
XPath specified node in the XML document.

Data models evolve with time and this can
lead to overheads keeping the parser APIs up to
date. Automatic creation of APIs from the XML
schema is possible and is implemented by the
Chemical Markup Language (Java and C++ API
generators) and CCPN (Python API generators)
[13]. Some work still remains in mapping the
wrapper data structures to the internal data
structures of the QC application.

Completion of a calculation will result in a
new set of data. This data should be formatted
in a way that conforms to the eCCP1 data
model. If this data is to be stored in repositories,
meta-data should be harvested. Some meta-data
can be automatically generated by the
GUI/portal, knowing the application executed
and the details of the job’s data, commands,
parameters and controls. The input data itself
could form part of the meta-data. Other meta-
data will be required from the user, being
entered for each calculation or common data
being read from a file. This would include
information about the user, the project, the
purpose of the study and so forth. The data and
meta-data should then be transferred to the
repository and any links updated. From the
earlier discussion, these links would include
those from the data to meta-data, those that
provide pedigree and those to data
dependencies. Figure 1. provides an outline of
the above processes.

The eCCP1 project is planning a reference
implementation of the above framework. This

will include data and meta-data models for key
quantum chemistry data-types, APIs and
wrappers for the XML parsing and the
development of a data management framework,
such as an extension of the CCP1 GUI for meta-
data mining, data collation, job submission and
data and meta-data harvesting and curation. The
project is driven by the requirements of the
international quantum chemistry community
and information is being gathered via meetings
such as those at the NeSC [14]. It is planned to
start discussions on the eCCP1 TWiki site
(http://grids.ac.uk/eccp) and email list (eccp-
data@forge.nesc.ac.uk). Tools will be available
at (http://forge.nesc.ac.uk/projects/eccp), while
data and meta-data models will be available at
the eCCP1 TWiki site. These models will
appear as UML diagrams and XML schema.
Detailed discussions will take place on the mail
list and overview documents will be maintained
at the TWiki site. These overviews will include
details of the components of the models and
software tools and issues associated with each.

3.2 Grid Processes

A framework for the handling of a common data
and command format for QC applications is an
important component of promoting the effective
use of Grid resources by the QC community.
However, there are a number of other processes
that require careful attention. Client tools should
be developed that expose Grid resource
characteristics and match these to job
requirements. Job requirement determination is
a complex task, which could involve
estimations by the user or passes through a job
process. Careful thought has to be given to
authorisation and authentication, ensuring that
jobs are executed on Grid resources by genuine
users that have the required permissions. Grid
resources may not have the required
applications and their deployment then becomes
an issue, along with that of software licensing.
The submission of jobs requires the handling of
failures and a framework for the management of
workflow. Finally, transparent access to the data
by local and remote resources is required. This
could utilise technologies such as the Storage
Resource Broker (SRB).

4. Concluding summary
The development of a common data and
command representation for quantum chemistry
has clear advantages for the interoperability of
applications developed by disparate groups of
collaborators. Such a representation promotes
the development of common tools that can be

used to analyse and visualise data. Other
advantages include the ability to intelligently
search for data by mining meta-data
repositories. Such data, with well defined
semantics and meta-data can be appropriately
used by a range of applications. Repositories
could form convenient libraries of structures
and basis sets. As the current trend towards
multi-scale, multi-length science continues, a
framework as described herein will become an
important tool for computational science.

5. References

[1] Environment from the molecular level: an
escience testbed project. Martin T Dove, Mark
Calleja, Jon Wakelin et al., AHM 2003, ISBN
1-904425-11-9
[2] The Open Babel Project.
http://openbabel.sourceforge.net/
[3] The Crystallographic Information File.
http://www.iucr.org/iucr-top/cif/#docs
[4] The Chemical Markup Language.
http://www.xml-cml.org
[5] The CCLRC Scientific Meta-data Model.
http://www-dienst.rl.ac.uk/library/2002/tr/dltr-
2002001.pdf
[6] The eCCP1 TWiki site.
http://grids.ac.uk/eccp
[7] Modelling XML applications with UML,
David Carlson, Addison-Wesley 2001, ISBN 0-
201-70915-5
[8] Hypermodel Overview.
http://www.xmlmodeling.com/hyperModel/inde
x.html
[9] UN/CEFACT Core Components Technical
Specification.
http://www.oasis-
open.org/committees/download.php/6232/CEF[
ACT-CCTS-Version-2pt01.zip
[10] GGF DFDL Primer.
http://www.ggf.org/Meetings/GGF11/Document
s/DFDL_Primer_v2.pdf
[11] The CCP1 GUI.
http://www.cse.clrc.ac.uk/qcg/ccp1gui
[12] An XML parser in Fortran.
http://lcdx00.wm.lc.ehu.es/~wdpgaara/xml/
[13]The CCPN Data Model.
http://www.ccpn.ac.uk/datamodel/datamodel.ht
ml
[14] Past eSI Events.
http://www.nesc.ac.uk/esi/past.html

	Abstract
	Introduction
	The Data Model
	The data model design
	Links and relationships
	Binary Data

	QC data-types
	Architecture
	Data handling
	Grid Processes

	Concluding Summary
	References

