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Abstract 

Computational chemistry increasingly requires the use of a variety of applications in close 
cooperation to solve complex problems, and the realisation of Grid technologies has provided a 
strong technological framework for such integration. However, communication between 
applications is still hindered by a lack of data format standards and agreed semantics. Consideration 
of a common data and command representation would alleviate some of this difficulty. In addition, 
the storage of data in a 'universal' format with suitable meta-data would simplify its analysis, 
interpretation and appropriate re-use. Another aim is to be able to log metadata conforming to a 
known data model such that scientific procedures can be more reliably repeatable. Simple 
conversion between existing application data formats is error prone and not scalable, and a solution 
is to find a common 'middle ground' for the data representation. The eCCP1 project has been 
established to formulate the requirements for enabling effective use of Grid resources by the 
quantum chemistry community. More specifically, the project investigates Grid middleware, 
compute resources, client tools and tracks and develops standards in data and command 
representation.

1.   Introduction 
Quantum chemistry (QC) applications often 
work with their own unique file formats that 
tend to be implicit, and have semantics that are 
only completely understood by those that have 
considerable experience of the codes 
themselves. The approach to the use of such 
computational codes is changing, with the 
frequent use of several techniques and codes to 
solve specific complex problems. This arises 
from a desire to model systems over ever 
increasing length and time scales. Examples 
include the study of bio-molecular processes 
that should ideally be treated with a full 
quantum mechanical approach, but where the 
size of the system requires some classical 
treatment. Another example is in the 
understanding of environmental processes, 
where atomistic processes are affecting large 
systems over an extended period [1]. The 
current UK e-science program is seeking to 
address issues associated with the construction 
of a computational Grid based framework for 
such code interoperability. However, the 
process is still stifled by the lack of agreed data, 
meta-data and semantic standards. In QC tools 
do exist to convert between a range of the more 
common file formats (e.g. Open Babel [2]), but 
this is often only a small subset of formats, that 
can change between code versions. A common 

data and command representation for quantum 
chemistry also has advantages outside those of 
code interoperability.  If formatted data is well 
supported with meta-data and the semantics are 
clearly defined, then advantages include the 
promotion of appropriate data reuse. 
Conformance to an agreed standard also makes 
data available to a wider community through the 
use of tools adapted for this purpose. Such 
common tools could be used to analyse and 
visualise data, including rendering structures 
and the analysis of charge densities (such as a 
Bader analysis). 

There are a number of existing ways that 
such data could be represented. These include 
ASCII representations, such as the 
Crystallographic Information File (CIF) [3], 
storage in relational tables, use of the eXtensible 
Mark up Language (XML) such as the 
Chemical Mark up Language (CML) [4] or as 
serialised objects with their associated methods 
and data members. The data models could then 
be defined in SQL, in XML Schema, using class 
interface definitions or using diagrammatic 
forms such as the Unified Modelling Language 
(UML). Formatted data should be supported by 
meta-data defined by a meta-data schema. 
Examples of existing schema include the 
CCLRC Scientific Meta-data Model [5]. If data 
is to be shared amongst different codes and 
stored in repositories for later use, it is 
important to be clear about the data semantics. 



For performance reasons, many scientific 
application developers work with the Fortran 
language and careful consideration needs to be 
given to the implementation of APIs/GUI front 
and back ends that enable the use of formatted 
data from such codes. 

2.   The Data Model 

2.1   QC data-types 

The initial QC data-types that are to be 
considered in the data model are those that are 
commonly used in a range of different 
applications. These include: geometries, basis 
sets, commands, properties on grids (such as 
orbitals and densities), dynamics and accuracies 
and tolerances. XML has been chosen as the 
meta-language for the data format, principally 
due to its wide spread adoption and the 
availability of mature tools. This makes an 
XML format easily interpretable by disparate 
groups of collaborators. A document detailing 
QC data-type issues can be found on the eCCP1 
TWiki site [6]. 

2.2   The data model design 

The data model is currently being defined with 
UML, using Object Domain, with the aim of 
generating XML schema using the UML profile 
of David Carlson [7]. This profile allows for 
automatic generation of the XML schema using 
the Eclipse based Hypermodel tool [8]. A 
modular approach to the construction of a QC 
schema, similar to that specified in the 
UN/CEFACT CCTS [9] is under consideration. 
Here semantically free core components are 
defined in XML schema that will form the 
building blocks of quantum chemistry data-
types. These core components are of either 
complex or simple type with simple XSD data-
type content. The data-types are then used in 
further schema to construct information entities. 
Entities have well defined semantics and are 
used to construct the QC data model. This 
highly modular approach makes the data model 
easily extensible and components re-usable. 

2.3   Links and relationships 

Some data is not complete without other 
supplementary data. In a quantum chemistry 
context an example would be the dependence of 
molecular orbital coefficients on the atomic 
basis sets and molecular geometry. It is 
therefore important to clearly define links and 
relationships between data. Some relationships 
are implicit, through the structure of the 

document. For example, this could be through 
the ordering or nesting of elements. In addition, 
XML data-types can be modelled in schema as 
extensions or restrictions of other types, 
allowing sub-typing. However, often more 
complex relationships need to be declared. Of 
course, it is possible to declare implicit 
relationships through legislation, but a way of 
specifying a change of the rules in certain 
circumstances is required. An example would 
include the selection of a specific atomic basis 
set for certain atoms of a molecule, where the 
basis set is different from that mapped to these 
atoms through legislation. It is also important to 
be able to record such mappings and referrals 
for future references. It is likely that semantic 
web technologies, such as the resource 
description framework (RDF) will be used in its 
XML serialised form to declare such 
relationships. Another consideration is that QC 
data will reside in repositories, such as basis set 
and structure libraries, and the data model must 
permit data to be standalone in this respect. 
Therefore, it is difficult to rely on the data 
structures themselves to highlight such 
relationships.  

It is common practice to separate data and 
meta-data, primarily to increase the efficiency 
of meta-data searches. Linking of the data and 
its meta-data is therefore a further concern. Data 
is often derived from other data. A simple QC 
example would be the relaxation of a structure, 
originally determined through a less expensive 
calculation; it is important to keep track of data 
provenance. These links could be modelled in 
the meta-data schema (as is the case in the 
CCLRC meta-data model, which supports the 
concepts of related references, directionality and 
the granularity of the referenced source). An 
alternative is to make use of XLink linkbases. 
These are databases of links between external 
resources. The XLink specification allows each 
link to have an ‘arcrole’, which is like an RDF 
‘HAS A’ predicate. 

2.4   Binary data 

Some QC data is not suitable to be formatted in 
XML, due mainly to the very large documents 
that would result. It is likely that data structures 
scaling in size greater than with the square of 
the number of electrons should have a binary 
representation, examples would include two 
electron integrals. If this data is to be transferred 
between machines then a machine independent 
way of storing the binary data is required. 
NetCDF, HDF, BinX or DFDL [10] could be 
used for this purpose. 



3.   Architecture 

3.1 Data handling 

A quantum chemistry calculation requires data, 
commands, controls and parameters. Some of 
these are new and required from the user and 
others can be taken from elsewhere. This could 
be from a data repository such as an XML 
database, examples including Xindice or eXist. 
A meta-data repository could be mined for links 
to data that match specified criteria. In the 
current context, this could be for the structure of  
 

 
 

Figure 1. QC data management framework 
 

 
a molecule or for particular atomic basis sets. A 
framework is required for both the data mining, 
input of data from the user and subsequent 
collation of the data for input into the quantum 
chemistry application. This collation would 
require consideration of the relationships 
between data, such as those between atomic 
basis sets and atoms. Default relationships could 
be assumed, with the user having the option to 
change these from within a data management 
framework. The development of common 
GUI/portal front and back ends to QC 
applications, such as the Python based CCP1 
GUI [11], could provide such a framework. The 
QC code input is to be XML conforming to the 
eCCP1 data model. This could either be read by 
the application directly or transformed (for 
example using XSLT) to standard code input. 
Many QC applications depend on the Fortran 
language and traditionally XML support for 
Fortran has been poor. However, several Fortran 
APIs now exist. xmlf90 provides a SAX and 

DOM interface for reading and a ‘well formed 
XML’ module for writing [12]. It also includes 
an XPath inspired module for locating specific 
parts of a document (SAX-based). An 
alternative is to write Fortran wrappers that link 
to foreign APIs for XML parsing, such as the C 
based libXML or Xerces. This approach has a 
shortfall in that the parsing of data between 
codes written in different languages is compiler 
and platform dependent and any wrapper must 
consider the possibilities. The upside is that 
these libraries are often very advanced, heavily 
used and have a good support base. 

A further consideration is that some 
libraries, such as libXML, have mixed SAX-
DOM interfaces for parsing data. A pure SAX 
interface is useful for quickly reading data with 
very little overheads, but poor if the data has 
many links. A DOM interface is useful for 
heavily referenced data, but the memory 
overheads are potentially more significant for 
large XML documents. A mixed interface, such 
as libXML’s xmlTextReader, will allow SAX 
to, and the construction of a DOM from, an 
XPath specified node in the XML document.  

Data models evolve with time and this can 
lead to overheads keeping the parser APIs up to 
date. Automatic creation of APIs from the XML 
schema is possible and is implemented by the 
Chemical Markup Language (Java and C++ API 
generators) and CCPN (Python API generators) 
[13]. Some work still remains in mapping the 
wrapper data structures to the internal data 
structures of the QC application. 

Completion of a calculation will result in a 
new set of data. This data should be formatted 
in a way that conforms to the eCCP1 data 
model. If this data is to be stored in repositories, 
meta-data should be harvested. Some meta-data 
can be automatically generated by the 
GUI/portal, knowing the application executed 
and the details of the job’s data, commands, 
parameters and controls. The input data itself 
could form part of the meta-data. Other meta-
data will be required from the user, being 
entered for each calculation or common data 
being read from a file. This would include 
information about the user, the project, the 
purpose of the study and so forth. The data and 
meta-data should then be transferred to the 
repository and any links updated. From the 
earlier discussion, these links would include 
those from the data to meta-data, those that 
provide pedigree and those to data 
dependencies. Figure 1. provides an outline of 
the above processes.  

The eCCP1 project is planning a reference 
implementation of the above framework. This 



will include data and meta-data models for key 
quantum chemistry data-types, APIs and 
wrappers for the XML parsing and the 
development of a data management framework, 
such as an extension of the CCP1 GUI for meta-
data mining, data collation, job submission and 
data and meta-data harvesting and curation. The 
project is driven by the requirements of the 
international quantum chemistry community 
and information is being gathered via meetings 
such as those at the NeSC [14]. It is planned to 
start discussions on the eCCP1 TWiki site 
(http://grids.ac.uk/eccp) and email list (eccp-
data@forge.nesc.ac.uk). Tools will be available 
at (http://forge.nesc.ac.uk/projects/eccp), while 
data and meta-data models will be available at 
the eCCP1 TWiki site. These models will 
appear as UML diagrams and XML schema. 
Detailed discussions will take place on the mail 
list and overview documents will be maintained 
at the TWiki site. These overviews will include 
details of the components of the models and 
software tools and issues associated with each. 

3.2   Grid Processes 

A framework for the handling of a common data 
and command format for QC applications is an 
important component of promoting the effective 
use of Grid resources by the QC community. 
However, there are a number of other processes 
that require careful attention. Client tools should 
be developed that expose Grid resource 
characteristics and match these to job 
requirements. Job requirement determination is 
a complex task, which could involve 
estimations by the user or passes through a job 
process. Careful thought has to be given to 
authorisation and authentication, ensuring that 
jobs are executed on Grid resources by genuine 
users that have the required permissions. Grid 
resources may not have the required 
applications and their deployment then becomes 
an issue, along with that of software licensing. 
The submission of jobs requires the handling of 
failures and a framework for the management of 
workflow. Finally, transparent access to the data 
by local and remote resources is required. This 
could utilise technologies such as the Storage 
Resource Broker (SRB).  

4. Concluding summary 
The development of a common data and 
command representation for quantum chemistry 
has clear advantages for the interoperability of 
applications developed by disparate groups of 
collaborators. Such a representation promotes 
the development of common tools that can be 

used to analyse and visualise data.  Other 
advantages include the ability to intelligently 
search for data by mining meta-data 
repositories. Such data, with well defined 
semantics and meta-data can be appropriately 
used by a range of applications. Repositories 
could form convenient libraries of structures 
and basis sets. As the current trend towards 
multi-scale, multi-length science continues, a 
framework as described herein will become an 
important tool for computational science. 
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