Deliverable D2.1b : MUMPS Version 2.0
A MUlItifrontal Massively Parallel Solver

January 23, 1998

Introduction

Deliverable D2.1b consists of a Fortran 90 implementation of a distributed
multifrontal code using MPI. It is available through the PARASOL interface.
This code is Version 2.0 of MUMPS (MUTItifrontal Massively Parallel Solver)
and is described in more detail in the Report TR/PA/98/02 that can be
considered to be an Appendix to this document.

Since this is the second report, we do not give such a detailed background
to multifrontal methods that we did formerly [7], but we nevertheless open
with a short discussion, in Section 1, that serves to introduce terms used
later in this document.

We then, in Section 2, describe the main features of Version 2.0 of the
MUMPS code and discuss the Fortran 90 interface in Section 3. We show
how Version 2.0 of MUMPS can be used within the PARASOL interface in
Section 4. It is this version that we have distributed to the partners in the
Project. Finally, in Section 5, we comment on some enhancements that are
planned for future releases of the code.

1 The multifrontal method

MUMPS is a code for distributed memory parallel computers that solves
sparse sets of linear equations using a multifrontal method, which is a direct
method based on the LU factorization of the coefficient matrix. We refer

the reader to our earlier papers [1, 2, 3| for full details of this technique.
Version 2.0 of MUMPS solves the system

Ax =D,

where A is unsymmetric.

Although we do not wish to describe the multifrontal method in any detail
in this document, we will now briefly examine some of the features that are
important to our subsequent discussion of the MUMPS code.

The structure of the coefficient matrix is first analysed to determine
an ordering that, in the absence of any numerical pivoting, will preserve
sparsity in the factors. In Version 2.0 of MUMPS, an approximate minimum
degree ordering strategy is used on the symmetrized pattern A + AT, and
this analysis phase produces both an ordering and an assembly tree. The
assembly tree is then used to drive the subsequent numerical factorization
and solution phases. At each node of the tree, a dense submatrix (called a
frontal matriz) is assembled using data from the original matrix and from the
sons of the node. Pivots can be chosen from within a submatrix of the frontal
matrix (called the pivot block) and eliminations performed. The resulting
factors are stored for use in the solution phase and the Schur complement (the
contribution block) is passed to the father node for assembly at that node. In
the numerical factorization phase, the tree is processed from the leaf nodes to
the root (if the matrix is reducible, we have a forest, and each component tree
of the forest will be treated similarly and independently). The subsequent
forward and backward substitutions during the solution phase process the
tree from the leaves to the root and from the root to the leaves, respectively.
A crucial aspect of the assembly tree is that it defines only a partial order
for the factorization since the only requirement is that a son must complete
its elimination operations before the father can be fully processed. It is this
freedom that enables us to exploit parallelism in the tree (tree parallelism).

In the unsymmetric case, handled by Version 2.0 of MUMPS, threshold
pivoting is used to maintain numerical stability so that it is possible that
the pivots selected at the analysis phase are unsuitable. In the numerical
factorization phase, we are at liberty to choose pivots from anywhere within
the pivot block (including off-diagonal pivots) but it still may be impossible
to eliminate all variables from this block. The result is that the Schur
complement that is passed to the father node may be larger than anticipated
by the analysis phase and so our data structures may be different from

these forecast by the analysis. This implies that we need to allow dynamic
scheduling during numerical factorization, in contrast to the symmetric
positive definite case where only static scheduling is required.

A version of the multifrontal code for shared memory computers was
developed by Amestoy and Duff [1] and was included in Release 12 of the
Harwell Subroutine Library [6] as code MA41. In this version, control and
synchronization were enabled through a centralized pool of work, initialized
to the leaf nodes. New nodes were added to the pool when all their sons
were processed. Because of the reduction in tree parallelism towards the
root of tree, it is also necessary to parallelize the computations within a
node (node parallelism) and this was accommodated in the shared memory
code by having two types of task in the work pool identified by a simple flag.
Amestoy and Espirat [5] developed a distributed version of the multifrontal
code using PVM but included only tree parallelism. This was the basis for
Version 1.0 of MUMPS that was released in May 1997.

In the current version of MUMPS (Version 2.0), both tree and node
parallelism are exploited, and we distribute the pool among the processors,
but our model still requires an identified host node to perform the analysis
phase, distribute the incoming matrix, collect the solution, and generally
oversee the computation. In the context of PARASOL, we thus support
either the host-node model or the hybrid-host model. All routines called by
the user for the different steps are SPMD, and the distinction between the
host and the other processors is made by the MUMPS code.

2 Description of Version 2.0 of MUMPS

The MUMPS Version 2.0 code is organized with a designated host node and
other processors as follows:

1. Analysis. The host computes an approximate minimum degree ordering
and performs symbolic factorization. A mapping of the multifrontal
tree is then computed, and symbolic information is passed from the
host to the other processors. Using this information, the processors
estimate the memory necessary for factorization/solve.

2. Factorization. The host sends appropriate entries of the original
matrix to the other processors, that are responsible for the numerical
factorization. The numerical factorization on each frontal matrix

is conducted by a master processor (determined by the analysis
phase) and zero or more slave processors (determined dynamically)
as discussed later in this section. Each processor allocates an array for
contribution blocks and factors; the latter should be kept for the solve.

3. Solve. The right-hand side is broadcast from the host to the
other processors. These processors compute the solution using the
(distributed) factors computed during step 2, and the solution is
assembled on the host.

For an efficient and more scalable parallelism on general matrices, the
elimination of frontal matrices near the root of the tree has to be parallelized
as was, for example, done in the shared memory version of this code. Whereas
the previous version of MUMPS (Version 1.0) only used tree parallelism,
Version 2.0 of MUMPS also exploits node parallelism; this is done by the
introduction of Type 2 and Type 3 nodes, as defined below.

We consider the assembly tree of Figure 1 where, instead of single nodes as
the leaves, there are subtrees whose constituent nodes have frontal matrices
of small order. Each subtree is processed by a single processor, to avoid
communication at that stage. This mapping of subtrees to processors is
performed by the analysis phase. For large problems, there will be more
subtrees than processors which will aid in the overall load balancing of the
computation.

Above the subtrees, there can still be some nodes processed by only one
processor. These nodes (as well as nodes inside the subtrees) are called nodes
of Type 1.

Consider a typical frontal matrix in the tree in which there are NPIV
pivots to eliminate (that is, the pivot block has order NPIV) and NCB rows
to update (that is, the order of the frontal matrix is NPIV4+NCB). A node
is determined to be of Type 2 if NPIV and NCB are large enough. The
partial factorization process is then parallelized with the first NPIV rows on
one processor, called the master of the node and the NCB rows distributed
among other processors (called the slaves of the node). For instance, in the
Type 2 node on the right of Figure 1, P3 is the master, and P0, P1, and P2
are the slaves.

A pipelined factorization is used, and updates on the contribution blocks
are performed in parallel. In our implementation, the assembly process is
also fully parallel.

PO: P1: PO
Type3

P2: P3: P2

SUBTREES

Figure 1: Distribution of the computations of a multifrontal tree

At the root node, a full LU factorization is performed. If the size of the
root node is deemed large enough, the root node is said to be of Type 3, and
is factorized using ScaLAPACK. An earlier version assembled the root node
as a full matrix and redistributed it. In the current version, the assembly of
the root node is directly distributed in a 2D cyclic grid and is now completely
parallel.

Other characteristics of the code include :

e Distribution of the original matrix to the processors according to a
mapping determined by the analysis phase. This allows for much better
scalability,

e Scaling of the original matrix, with several possible scaling algorithms,

e A mechanism to handle asynchronous buffered messages that is better

than the MPI_BSEND call,

e Numerical pivoting, which means that the code must allow the order
of frontal matrices in the tree to increase dynamically,

o Backward error estimate and iterative refinement.

3 Fortran 90 interface

In the Fortran 90 interface to MUMPS, there is a single user callable
subroutine called PSL_MUMPS that has a single parameter mumps_par that
holds all data pertinent to a given problem. It is of Fortran 90 derived
datatype STRUC_MUMPS, viz.

TYPE (STRUC_MUMPS) :: mumps_par
CALL PSL_MUMPS(mumps_par)

This derived datatype, STRUC_MUMPS, has many components, only some
of which are of interest to the user. The other components are internal to
the package. Some of them must only be defined on the host. Others must
be defined on all processors.

The interface to MUMPS consists in calling the subroutine PSL_MUMPS
with the appropriate parameter settings in the components of its argument.
A mumps . h file containing a definition of the structure is available and should
be included in the program to define the derived data type. An example of
how to use the Fortran 90 interface is given Figure 2.

The main control on the package is effected through the parameter
mumps_par%JOB that should be set to —1 to initialize structures and set
processor ranks with mumps_par%MYID, and to —2 to deallocate them at
the end of the computation. Other values of mumps_par%JOB determine
whether all phases (analysis, factorization, and solve) will be performed or
only a subset of them.

The input matrix and right-hand side are defined by other components
of mumps_par in the following way:

¢ N is the order of the matrix A.
e N7 is the number of entries being input.

e IRN, JCN are integer arrays of length N7 containing the row and
column indices, respectively, for the matrix entries.

e ASPK is a double precision array of length NZ. The user must set
ASPK(K) to the value of the entry in row IRN(K) and column JCN(K)
of the matrix.

e RHS is a double precision array of length N. On entry, RHS(I) must
hold the I th component of the right-hand side of the equations being
solved. On exit, RHS(I) will hold the I th component of the solution
vector.

An example of the use of MUMPS is given Figure 2. Two files have to
be included: mpif.h for MPI and mumps.h for MUMPS. The initialization
and termination of MPI are performed in the user program via the calls to
MPI_INIT and MPI_FINALIZE.

The package MUMPS must be initialized by calling PSL_MUMPS with
JOB=-1, then the problem is defined on the host, and the solution is
computed with a call to PSL_MUMPS with JOB=6, that causes all three phases
to be implemented. Finally, a call to PSL_MUMPS with JOB=-2 is performed
to deallocate data structures used by the instance of the package.

PROGRAM MUMPS
INCLUDE ’mpif.h’
INCLUDE ’mumps.h’
TYPE (STRUC_MUMPS) mumps_par
INTEGER IERR
CALL MPI_INIT(IERR)
C Define a communicator for the package.
mumps_par/4COMM = MPI_COMM_WORLD
C 1Initialize an instance of the package.
mumps_par%4JOB = -1
CALL PSL_MUMPS (mumps_par)
C Define problem on the host (processor 0)
IF (mumps_par%MYID .eq. O) THEN
READ(5,*) mumps_par/N
READ(5,*) mumps_par)NZ
ALLOCATE(mumps_par%IRN (mumps_par%NZ))
ALLOCATE(mumps_par%JCN (mumps_par%NZ))
ALLOCATE(mumps_par%4ASPK(mumps_par%NZ))
ALLOCATE(mumps_par%RHS (mumps_par}N))
READ(5,*) (mumps_par/IRN(I) ,I=1, mumps_par}NZ)

READ(5,*) (mumps_par%JCN(I) ,I=1, mumps_par%NZ)

READ(5,*) (mumps_par%ASPK(I),I=1, mumps_par}NZ)

READ(5,*) (mumps_par%RHS(I) ,I=1, mumps_par}N)
END IF

C Call package for solution
mumps_par%JOB = 6
CALL PSL_MUMPS (mumps_par)
C Solution has been assembled on the host
IF (mumps_par}MYID .eq. O) THEN
WRITE(6, *) ’ Solution is ’, (mumps_par}RHS(I),I=1,mumps_pariN)
END IF
C Destroy the instance (deallocate data structures)
mumps_par4J0B = -2
CALL PSL_MUMPS (mumps_par)
CALL MPI_FINALIZE(IERR)
STOP
END

Figure 2: Example program using Fortran 90 interface to MUMPS

4 PARASOL interface

Integration of Version 2.0 of the MUMPS solver into the PARASOL package
uses the PARASOL interface routines as described in [4]. In particular, we
supply all the required data exchange routines for communication between

the program and a package instance:

e psl_mumps_contract - establishing/closing a data exchange session,
¢ psl_mumps_what2send - send an inquiry,

e psl_mumps_send?data - send data,

¢ psl mumps need2recv - request data, and

¢ psl mumps_recv?data - receive data.

These routines are used only for data exchange between a user’s application
The current version

(program) and the MUMPS solver (package).

of the MUMPS integration into the PARASOL package supports only
the HOST-NODE execution model (PSL_MODE = PSL_HOSTNODE), which is

schematically described in Figure 3.

MUMPS Solver
PSL_-MODE = PSL_HOSTNODE

,’/ Solver
/" psl.mumps

Slave

rank=2

node

/
/
/
|
Host User data exfhange Master
ank=0 rank=1

r
\ <
USER PAR'ASOL data exch. | \iirvips
routines 1
\
v
\

Slave
rank=4
node

Slave

rank=5

node

Figure 3: HOST-NODE execution model for MUMPS

The basic data communication requires: sending a matrix (PSL_NAME =
PSL_MATRIX), and a right-hand side vector (PSL_NAME = PSL_RHSIDE, and
receiving a solution vector (PSL_NAME = PSL_SOLUTION).

The MUMPS solver itself is controlled by the PARASOL control routines:

e psl mumps_init - instance initialization,

e psl_mumps_end - instance termination,

¢ psl_mumps_map - mapping routine,

¢ psl_mumps_endmap- mapping termination,

e psl_mumps_solve - solution routine, and

e psl_mumps_endsolve - solution termination.

Unlike the exchange routines, the control routines make heavy use of the
internal structure of the MUMPS code. Their implementation is based on
appropriate calls to the subroutine PSL_MUMPS. We use the name “MUMPS
code” to refer to the whole set of routines for which PSL_MUMPS serves as a
driver. The MUMPS instance data is held in a structure called ps1l_mumps_i
of Fortran 90 derived type STRUC_MUMPS (see psl_mumps_inst.h).

e psl mumps_init - this routine initializes the MUMPS instance:

1. creating description of nodes, the current version supports only
PSL_MODE = PSL_HOSTNODE and the user has reserved one process
(rank = 0),

2. establishing the instance addressing, and

3. calling the initialization phase of the MUMPS code, MUMPS
function: JOB = -1.

e psl_mumps_end - this routine terminates the instance:

1. deallocating the resources by calling the termination phase of the
MUMPS, MUMPS function: JOB = -2.

¢ psl mumps map - the mapping routine performs the analysis and
factorization phases of the MUMPS code:

10

4.
d.

setting some output/diagnostics parameters of the MUMPS
code according to the PARASOL control parameters (call
psl_mumps_setout),

. receiving on the master the sparse structure of the matrix

n,nz,col,row and creating a representation required by
psl mumps (in psl_mumps_i records n,nz,irn,jcn),

. performing the analysis phase of the MUMPS code, MUMPS

function: JOB = 1,
receiving on the master numerical values of matrix entries, and

numerical factorization, MUMPS function: JOB = 2

¢ psl mumps_solve - the solution routine calls the solution phase of the

MUMPS code:

1.
2.

receiving the right hand side(s), and

solving, MUMPS function JOB = 3,

¢ psl mumps_endsolve - the termination routine sends the solution to
the user. Deallocation of the used memory is done in the routine
psl_mumps_end by calling the MUMPS code with the function
JOB = -2.

Examples of how to use the PARASOL interface routines for building
user-defined applications are described in Section 3.2 of [4]. We refer to this
guide for more details about the use of the PARASOL interface. However,
the user should keep in mind that the current integration of MUMPS into
the PARASOL package supports only the HOST-NODE ezecution model and
solution of unsymmetric sparse (assembled) matrices. Therefore using other
PARASOL attributes will generate error messages.

The integration of the MUMPS code allows a user to run the MUMPS
solver from the PARASOL test driver, see [8]. The solver has been
incorporated in the directory structure of ptd.2.0 as follows:

- ./src/ral - generic PARASOL interface routines for CERFACS/RAL

solvers,

- ./src/ral/mumps - specific PARASOL interface routines for the MUMPS
code and the MUMPS code itself.

11

To build the MUMPS solver the user has to modify ./src/makeconf,
and define SOL = ral, SOL2 = mumps. The MUMPS code uses routines from
ScaLAPACK (and consequently from BLACS) therefore these packages have
to be properly installed on the machine and the file makeconf should be
changed according to the installation details. For more details about how to
use the PARASOL test driver we refer to [8].

5 Next steps in the development of MUMPS

Version 2.0 of MUMPS is the first to offer full parallelism at both tree and
node level and is the basis for the future developments that we now describe.

One of our first tasks, after the formal release of Version 2.0 at the end of
January, will be to test and tune the code against some of the test problems
supplied by the PARASOL partners. We plan to present some of these results
at the Review meeting in Bonn in February. We anticipate that this will only
cause minor internal changes to the code resulting in Version 2.1 that will be
released in early spring.

We have presented a roadmap for future development of MUMPS but
the precise timing is still under discussion with partners. However, future
versions will include:

e the solution of transposed systems and an estimate of the forward error,

an interface to graph partitioning packages,

e a more efficient code for symmetric positive definite matrices,

an interface to handle unassembled finite-element problems directly,
and

facilities for holding factors out-of-core.

References

[1] Patrick R. Amestoy and Iain S. Duff. Vectorization of a multiprocessor
multifrontal code. Int. J. of Supercomputer Applics., 3:41-59, 1989.

12

[2] Tain S. Duff and John K. Reid. The multifrontal solution of indefinite
sparse symmetric linear systems. ACM Trans. Math. Softw., 9:302-325,
1983.

[3] Tain S. Duff and John K. Reid. The multifrontal solution of unsymmetric

sets of linear systems. SIAM J. Scientific and Statistical Computing,
5:633-641, 1984.

[4] A. Supalov (editor). PARASOL Interface Specification. Version 2.1.
January 9, 1998.

[5] V. Espirat. Développement d’une approche multifrontale pour machines
a mémoire distribuée et réseau hétérogene de stations de travail. Rapport
de stage de 3ieme année, ENSEEIHT-IRIT, Toulouse, France, 1996.

[6] HSL. Harwell Subroutine Library. A Catalogue of Subroutines (Release
12). AEA Technology, Harwell Laboratory, Oxfordshire, England, 1996.
For information concerning HSL contact: Dr Scott Roberts, AEA
Technology, 552 Harwell, Didcot, Oxon OX11 ORA, England (tel: +44-
1235-434988, fax: +44-1235-434136, email: Scott.Roberts@aeat.co.uk).

[7] PARASOL. Deliverable D2.1a: distributed multifrontal code. January
25, 1997.

[8] A. Supalov. The Rutherford-Boeing File Formats and the PARASOL
Test Driver. Version 2.1. January 9, 1998.

13

