ESPRIT IV
Domain 4: Long Term Research
Task 4.2.: Reactive Long Term Research

PARASOL

An Integrated Programming
Environment for Parallel Sparse
Matrix Solvers
(Project No. 20160)

Deliverable D 2.1d Final report
A Multifrontal Massively Parallel Solver
MUMPS version 4.0
June 30, 1999

CERFACS (F)
ENSEEIHT-IRIT (F)
Rutherford Appleton Laboratory (GB)

Classification:

Status: C
Version: 4.0
Distribution: ~ EU Commission, Reviewers, Project partners

Contents

1

2

Roadmap for parallel direct solver MUMPS
Introduction to MUMPS
Experimental environment

Description of the main implementation issues

4.1 Mapping oo e e e e e e e e e

4.2 Sources of parallelism L
4.2.1 Description of type 2 parallelism L Lo,
4.2.2 Description of type 3 parallelism Lo L oL,

4.3 Parallel implementation issueso

4.4 LU versus LDLT approaches o v ittt e e e e e
4.4.1 Assembly PrOCeSS« o it e e e e e e e e e e e
4.4.2 Factorization of type 1 nodes
4.4.3 Parallel factorization of type 2 nodes oL oL Lo,

Some other functionalities of MUMPS

5.1 Multiple instances Lo e e e e e
5.2 Pre-processing and post-processing facilities oo oo oL
5.3 Input of matrices in elemental format
5.4 Rank revealing and null space basis determination
5.5 Distributed assembled matrix Lo e
5.6 Return a specified Schur complemento oL 0oL

Performance analysis and code tuning

6.1 Basic performance and influence of ordering o000
6.2 Elemental input matrix format oL oL oL
6.3 Memory scalability issues e e
6.4 Dynamic scheduling strategies L L o
6.5 Splitting nodes of the assembly tree L Lo

Dissemination: the use of MUMPS in a joint project CERFACS-INRIA
Performance summary of MUMPS4.0 and comparison with PSPASES v1.0.2

PARASOL interface to MUMPS

A1 Configuring MUMPS through the PTD
A2 Passingdatato MUMPS
A3 Instance descriptoro e e e
A4 Data transfer descriptors.. oL L e e e e
A.5 Descriptors for mapping and solution phase oo oL
A.6 Descriptors for the mapping phase o
A.7 Descriptors for the solution phase
A.8 Additional functionality provided through the PARASOL interface

B Fortran 90 interface to MUMPS 44

B.1

B.2
B.3

Input and output parameters Lo 44
B.1.1 Centralized assembled matrix input Lo, 47
B.1.2 Element matrix input L e 48
B.1.3 Distributed assembled matrix input o oL oL 48
B.1.4 Right-hand side and solution vector, 49
B.1.5 Control parameters. L e e e e 49
B.1.6 Optional input parameters e 52
B.1.7 Information parameters e 52
Error diagnostics L e 54
Examples of use of MUMPS L e e e 56
B.3.1 Anassembled problem 56
B.3.2 Anelemental problem L 56

Abstract

This document describes work performed in Workpackage 2.1 of the ESPRIT project 20160
(PARASOL) carried out at CERFACS (France), ENSEEIHT-IRIT (France), and Rutherford
Appleton Laboratory (England).

1 Roadmap for parallel direct solver MUMPS

This deliverable is associated with Version 4.0 of the MUMPS code. There follows the complete roadmap
for MUMPS.

SOLVER NAME: MUMPS or PSL_MUMPS

SCHEDULE OVERVIEW:

version description time schedule
Alpha version of code in PVM 1/97
1.0 MPI version using only tree parallelism 5/97
2.0 Node and tree parallelism and distributes original 2/98

matrix and root node. Uses ScaLAPACK at root node.
Still unsymmetric assembled.
Better data management enabling solution of larger

problems.

Using PARASOL interface (host-node paradigm)
2.1 Version for symmetric positive definite matrices 5/98
2.2 with Fortran 90 interface 9/98

Additional features include:
Ability to handle general symmetric matrices.
Hybrid host version (including serial code).
Basic version of rank estimate and null-space.
2.2 with PARASOL interface 10/98
Includes orderings based on METIS and other graph
partitioning strategies.
3.1 Version with element entry. 1/99
Includes improved strategy for rank estimation
and null-space.
3.2 Capability of handling distributed matrix input. 2/99
4.0 Final version*) tuned to interface with other 4/99
PARASOL codes.

) An additional functionality (not present in the original roadmap), for using MUMPS within Schur
based methods, has been added to MUMPS 4.0.

2 Introduction to MUMPS

MUMPS (“MUltifrontal Massively Parallel Solver”) is a package for solving linear systems of equations
Ax = b, where the matrix A is either unsymmetric, symmetric positive definite, or general
symmetric. MUMPS uses a multifrontal technique which is a direct method based on the LU
factorization of the matrix. We refer the reader to the papers [3, 30, 31] for full details of this
technique.

Several aspects of our algorithm combine to give us an approach which is unique amongst sparse
direct solvers. These include:

e classical partial numerical pivoting during numerical factorization requiring the use of dynamic
data structures,

e the ability to automatically adapt to computer load variations during the numerical phase,

e high performance, by exploiting both the independence due to sparsity and the parallelism
coming from dense structure processing, and

e the capability of solving a wide range of problems, including symmetric, unsymmetric, and
rank deficient systems using either LU or LDL" factorization.

To address all these factors we have designed a fully asynchronous algorithm based on a multifrontal
approach with distributed dynamic scheduling of the tasks. Most currently available versions of
distributed memory parallel solvers are based on a static mapping of the tasks and of the data and
do not allow either numerical pivoting or task migration during numerical factorization. Assuredly,
among the other work on distributed memory sparse direct solvers of which we are aware [13, 16, 23,
35, 37, 38], we do not know of any with the same capabilities as the MUMPS solver. The current version
of our package provides a large range of options (assembled, assembled distributed, and elemental
input format, determination of null-space basis and rank deficiency, return of Schur complement
matrix, and classical pre and postprocessing facilities) to process a large class of test problems
(symmetric definite, general symmetric, unsymmetric, and rank deficient matrices).

In the multifrontal method, all elimination operations take place within a dense submatrix, called

a frontal matriz. The frontal matrix can be partitioned as

Fll F12

Fy Fa
and pivots at this stage in the elimination can be chosen from within the block Fi; only. The Schur
complement Foy — Fo1 F;' Fia is computed and used to update later rows and columns of the matrix.
We call this update matrix, the contribution block.

The overall factorization of the sparse matrix using a multifrontal scheme, can be described by
an assembly tree, where the nodes correspond to computations of the Schur complement as just
described, and the edges represent the transfer of the contribution block which is assembled (or
summed) with other contribution blocks and original matrix entries at the parent node in the tree.
The original matrix entries are summed as a complete row and column (or a block of rows and
columns) and, to facilitate this, the input matrix is ordered according to the pivot order and stored
as a collection of arrowheads. That is, if the permuted matrix has entries in columns {j1, j2, js}
of row 4, ¢ < ji,J2,73, (and also in rows {ki, k2} of column i, ¢ < k1, k2), then the arrowhead list
associated to variable ¢ is {aii, ajy i, Qjo,i, Qjg i, @i kg, Qi ke - 10 the symmetric case, only entries from
the lower triangular part of the matrix are stored. We say that we are storing the matrix in arrowhead
form or by arrowheads.

In our implementation, the tree is constructed from the symmetrized pattern of the matrix and
a given sparsity ordering. By symmetrized pattern, we mean the pattern of a matrix, where a;;
is considered present if a;; or aj; is nonzero, 1 < ¢,5 < n. That is, the pattern of the matrix
A+ AT where the summation is symbolic. Our factorization does, however, allow the matrix to be
unsymmetric.

An important aspect of the assembly tree is that operations at nodes which are not ancestors or
descendents of each other are independent thus giving the possibility for obtaining parallelism from
the tree (so-called tree parallelism). For example, work can commence immediately and in parallel on
all the leaf nodes of the tree. Fortunately, near the root node of the tree, where the tree parallelism is
very poor, the frontal matrices are usually much larger and so techniques for exploiting parallelism in
dense factorizations can be used (for example, blocking and use of higher Level BLAS). We call this
node parallelism. We discuss further aspects of the parallelism of the multifrontal method throughout
the later sections of this report. Our work is based on our experience of designing and implementing
a multifrontal scheme on shared and virtual shared memory computers (for example, [2, 3, 4]) and
on an initial prototype distributed memory multifrontal version [33].

In the unsymmetric case, threshold pivoting is used to maintain numerical stability so that it is
possible that the pivots selected at the analysis phase are unsuitable. In the numerical factorization
phase, we are at liberty to choose pivots from anywhere within the pivot block (including off-diagonal
pivots) but it still may be impossible to eliminate all variables from this block. The result is that
the Schur complement that is passed to the parent node may be larger than anticipated by the

analysis phase and so our data structures may be different from those forecast by the analysis. This
implies that we need to allow dynamic scheduling during numerical factorization. In the symmetric
positive-definite case only static scheduling is required. However, in this present work, we will use
dynamic scheduling for symmetric systems because we want to use our code to solve problems that
are not positive definite and it provides more flexibility for load balancing.

3 Experimental environment

Throughout this report we will use a set of test problems to show the performance of our algorithms.
We describe the set in this section.

In Tables 1 and 2, we show both symmetric and unsymmetric test problems. All except one
come from the industrial partners of the PARASOL Project. The remaining matrix, BBMAT, is
from the forthcoming Rutherford-Boeing Sparse Matrix Collection [28]. For symmetric matrices, the
number of entries does not include the entries in the strictly upper triangular part of the matrix.
Typical PARASOL test cases are from the following major application areas: computational fluid
dynamics (CFD), structural mechanics, modelling compound devices, modelling ships and mobile
offshore platforms, industrial processing of complex non-Newtonian liquids, and modelling car bodies
and engine components. Some test problems are provided in both assembled format and elemental
format. The suffix (RSA or RSE) is used to differentiate them. For those in elemental format, the
original matrix is represented as a sum of element matrices

A=A,
where each A; has nonzero entries only in those rows and columns which correspond to variables
in the ith element. Because element matrices may overlap, the number of entries of a matrix in
elemental format is often larger than for the same matrix when assembled (compare the matrices
from Det Norske Veritas in Norway in Tables 1 and 2). Typically there are about twice the number
of entries in the unassembled elemental format.

Real Symmetric Elemental (RSE)

Matrix name Order | Nb of elements | Nb of entries | Origin

M_T1.RSE 97578 5328 6882780 Det Norske Veritas
SHIP_001.RSE 34920 3431 3686133 Det Norske Veritas
SHIP_003.RSE | 121728 45464 9729631 Det Norske Veritas
SHIPSEC1.RSE | 140874 41037 8618328 Det Norske Veritas
SHIPSECH.RSE | 179860 52272 11118602 Det Norske Veritas
SHIPSEC8.RSE | 114919 35280 7431867 Det Norske Veritas
THREAD.RSE 29736 2176 3718704 Det Norske Veritas
X104.RSE 108384 6019 7065546 Det Norske Veritas

Table 1: Unassembled symmetric test matrices from PARASOL partner (in elemental format).

In Tables 3, 4, and 5, we present statistics on the various test problems: the number of entries in
the factors and the number of floating-point operations for elimination (for unsymmetric problems
we show both the estimated and the actual number which may differ because of numerical pivoting).

The statistics clearly depend on the ordering used during elimination. Two classes of ordering will
be used in the report. The first is an approximate minimum degree ordering (referred to as AMD, see
[1]). The second class is based on a hybrid nested dissection and minimum degree technique (referred
to as ND). These hybrid orderings were generated using a combination of the graph partitioning tool
SCOTCH [44] with Halo-AMD (see [45]), or ONMETIS [41]. For matrices available in both assembled
and unassembled format, we used nested dissection based orderings provided by Det Norske Veritas
and denote these by MFR in the following. Note that in this report, it is not our intention to compare
the ordering packages used. We will discuss the influence of the type of orderings on the performance
of MUMPS in Section 6.1.

Real Unsymmetric Assembled (RUA)

Matrix name Order | Nb of entries | Origin
MIXING-TANK 29957 1995041 Polyflow S.A.
INV-EXTRUSION-1 30412 1793881 Polyflow S.A.
BBMAT 38744 1771722 Rutherford-Boeing (CFD)
Real Symmetric Assembled (RSA)

Matrix name Order | NDb of entries | Origin

OILPAN 73752 1835470 INPRO

B5TUER 162610 4036144 INPRO

MH 220542 5494489 INPRO
CRANKSEG_1 52804 5333507 MacNeal-Schwendler
CRANKSEG_2 63838 7106348 MacNeal-Schwendler
BMW7ST_1 141347 3740507 MacNeal-Schwendler
BMWCRA_1 148770 5396386 MacNeal-Schwendler
BMW3_2 227362 5757996 MacNeal-Schwendler
M_T1.RSA 97578 4925574 Det Norske Veritas
SHIP_001.RSA 34920 2339575 Det Norske Veritas
SHIP_003.RSA 121728 4103881 Det Norske Veritas
SHIPSEC1.RSA 140874 3977139 Det Norske Veritas
SHIPSECH.RSA 179860 5146478 Det Norske Veritas
SHIPSEC8.RSA 114919 3384159 Det Norske Veritas
THREAD.RSA 29736 2249892 Det Norske Veritas
X104.RSA 108384 5138004 Det Norske Veritas

Table 2: Assembled test matrices from PARASOL partner (except the matrix BBMAT).

AMD ordering
Entries in Flops Time for
Matrix factors (x109) (x109) analysis
estim. | actual | estim. | actual | (seconds)
MIXING-TANK 38.5 39.1 64.1 64.4 4.9
INV-EXTRUSION-1 30.3 31.2 34.3 35.8 4.6
BBMAT 46.0 46.2 41.3 41.6 8.1
ND ordering
Entries in Flops Time for
Matrix factors (x109) (x109) analysis
estim. | actual | estim. | actual | (seconds)
MIXING-TANK 18.9 19.6 13.0 13.2 12.8
INV-EXTRUSION-1 15.7 16.1 7.7 8.1 14.0
BBMAT 35.7 35.8 25.5 25.7 11.3

Table 3: Statistics for unsymmetric test problems on the IBM SP2 (ordering based on AMD or ND).

The AMD ordering algorithms are tightly integrated within the MUMPS code; the other orderings
are passed to MUMPS via an option that allows the user to specify an externally computed ordering.
Because of this tight integration, we observe in Table 3 that the analysis time is smaller using
AMD than some user-defined precomputed ordering. In addition, the cost of computing the external
ordering is not reported in these tables.

AMD ordering ND ordering

Entries Flops | Time for Entries Flops
Matrix in factors analysis | in factors

(x10%) | (x10%) | (seconds) | (x10%) | (x109)
OILPAN 10 4 4 10 3
BSTUER 26 13 15 24 12
MH 28 8 6(*) 28 9
BMW7ST_1 27 15 10 25 11
BMW3_2 51 45 15 45 29
BMWCRA_1 97 128 6(*) 70 61
CRANKSEG_1 40 50 10 32 30
CRANKSEG_2 61 102 14 41 42

Table 4: Statistics for symmetric test problems on the IBM SP2 (ordering based on AMD or
ND). ®) time obtained on the SGI Origin 2000 because of insufficient disk space on the IBM
SP2.

Entries Flops
Matrix in factors

(x108) | (x10%)
M_T1 29 17
SHIP_003 57 73
SHIPSEC1 37 32
SHIPSECH 51 52
SHIPSECS8 34 34
THREAD 24 39
X104 24 10

Table 5: Statistics for symmetric test problems, available in both assembled (RsA) and
unassembled (RSE) formats (MFR ordering).

Most results presented in this report have been obtained on a 35 processor IBM SP2 located at
GMD (Bonn, Germany). Each node of this computer is a 66 MHertz processor with 128 MBytes
of physical memory and 512 MBytes of virtual memory. The SGI Cray Origin 2000 from Parallab
(University of Bergen) has also been used to run some of our largest test problems. The Parallab
computer consists of 64 nodes sharing 24 GBytes of physically distributed memory. Each node has
two R10000 MIPS RISC 64-bit processors sharing 384 MBytes of local memory. Each processor runs
at a frequency of 195 MHertz and has a peak performance of a little under 400 Mflops.

All experiments reported in this report use Version 4.0 of MUMPS. The software is written in
Fortran 90. It requires MPI for message passing and makes use of BLAS [26, 27], LAPACK [11],
BLACS [25], and ScaLAPACK [15] subroutines. On the IBM SP2, we are currently using a non-
optimized portable local installation of ScaLAPACK, because the IBM optimized library PESSL V2
is not available.

4 Description of the main implementation issues

The main features of the MUMPS package include the solution of the transposed system, input of the
matrix in assembled format or elemental format, error analysis, iterative refinement, scaling of the
original matrix, estimate of rank deficiency and null space basis, and the possibility for the user to
input a given ordering.

The software is written in Fortran 90. It requires MPI for message passing and makes use of
BLAS [26, 27], LAPACK, BLACS, and ScaLAPACK [15] subroutines. It has been tested on an
IBM-SP2, an SGI Power Challenge, and an SGI Origin 2000.

MUMPS exploits both parallelism arising from sparsity and from dense factorizations kernels. The
pool of work tasks is distributed among the processors, but an identified (host) processor is required
to perform the analysis phase, distribute the incoming matrix to the other (slave) processors, collect
the solution, and generally oversee the computation. The code solves the system Ax = b in three
main steps:

1. Analysis. The host performs an approximate minimum degree algorithm based on the
symmetrized pattern A 4+ AT, and carries out symbolic factorization. A mapping of the
multifrontal computational graph is then computed, and symbolic information is transferred
from the host to the other processors. Using this information, the processors estimate the
memory necessary for factorization and solution.

2. Factorization. The host sends appropriate entries (or elements) of the original matrix to
the other processors that are responsible for the numerical factorization. The numerical
factorization on each frontal matrix is conducted by a master processor (determined by the
analysis phase) and one or more slave processors (determined dynamically). Each processor
allocates an array for contribution blocks and factors; the factors must be kept for the solution
phase.

3. Solution. The right-hand side b is broadcast from the host to the other processors. These
processors compute the solution x using the (distributed) factors computed during Step 2, and
the solution is assembled on the host.

MUMPS allows the host processor to participate in computations during the factorization and solve
phases, just like a slave processor. This may lead to memory imbalance since the host already stores
the initial matrix, but it also allows us to run MUMPS on a single processor and avoids one processor
being idle during the factorization and solve phases.

For both the symmetric and the unsymmetric algorithms used in the code, we have chosen a
fully asynchronous approach with dynamic scheduling of the computational tasks. Asynchronous
communication is used to enable overlapping between communication and computation. Dynamic
scheduling was initially chosen to accommodate numerical pivoting in the factorization. The other
important reason for this choice is that, with dynamic scheduling, the algorithm can adapt itself at
execution time to remap work and data to more appropriate processors. In fact, we combine the
main features of static and dynamic approaches; we use the estimation obtained during analysis to
map some of the main computational tasks; the other tasks are dynamically scheduled at execution
time. The main data structures (the original matrix and the factors) are similarly partially mapped
according to the analysis phase. Part of the initial matrix is replicated to enable rapid task migration
without data redistribution.

4.1 Mapping

A mapping of the assembly tree to the processors is performed statically as part of the analysis
phase. The main objectives of this phase are to control the communication costs, and to balance
the memory used and the computation done by each processor. The computational cost will be
approximated by the number of floating-point operations, and only the matrix of the factors will be
taken into account when balancing the memory used by the processors.

In this section, we describe the algorithms used to map the assembly tree onto the processors
and show how we have combined memory and work balancing criteria.

Figure 1: Decomposition of the assembly tree into levels.

The tree is processed from the bottom to the top, level by level (see Figure 1). Level Lo is
determined using the Algorithm 1 [34] and is illustrated in Figure 2. Then for ¢ > 0, a node belongs
to L, if all its children belong to L;, j < i. First, nodes of level Lo (and the subtrees for which they
are the root) are mapped. This first step is designed to balance the work in the subtrees and to
reduce communication since all nodes in a subtree are mapped onto the same processor. Normally to
get a good load balance it is necessary to have many more nodes in level Lo than there are processors.
Thus Lo depends on the number of processors and a higher number of processors will lead to smaller
subtrees.

Algorithm 1 — Construction and mapping of the initial level L,
Let Lo <+ Roots of the assembly tree
Repeat
Find the node q in Lo whose subtree has largest computational cost
Set Lo + (Lo\{q}) U {children of q} (See Figure 2)
Cyclic mapping of the nodes of Lo onto the processors.
Estimate the load imbalance
Until load imbalance < threshold

c

Figure 2: One step in the construction of the first level L.

The mapping of higher levels in the tree takes into account only memory balancing issues. For
each processor, the memory load (total size of its factors) is first computed for the nodes at level L.
For each level L;, ¢ > 0, each unmapped node of L; is mapped to the processor with the smallest
memory load and its memory load is revised.

The mapping is then used to explicitly distribute the permuted initial matrix onto the processors
and to estimate the amount of work and memory required on each processor.

4.2 Sources of parallelism

‘We consider the condensed assembly tree of Figure 3, where the leaves are Lo subtrees of the assembly
tree.

10

PO: P1: PO
Type3

P2: P3 : P2

SUBTREES

Figure 3: Distribution of the computations of a multifrontal assembly tree.

There will be in general more leaf subtrees than processors, and therefore we can expect a good
overall load balance of the computation at the bottom of the tree. However, if we only exploit
the tree parallelism, the speed-up is very disappointing. The actual speed-up from this parallelism
depends on the problem but is typically only 2 to 4 irrespective of the number of processors. This
poor performance is caused by the fact that the tree parallelism decreases while going towards the
root of the tree. Moreover, it has been observed (see for example [4]) that often more than 75% of the
computations are performed in the top three levels of the assembly tree. It is thus necessary to obtain
further parallelism within the large nodes near the root of the tree. The additional parallelism will
be based on parallel versions of the blocked algorithms used during the factorization of the frontal
matrices.

Nodes of the tree processed by only one processor will be referred to as nodes of type 1 and
the parallelism of the assembly tree will be referred to as type I parallelism. Further parallelism
is obtained by doing a 1D block partitioning of the rows of the frontal matrix for nodes with a
large contribution block. Such nodes will be referred to as nodes of type 2 and the corresponding
parallelism as type 2 parallelism. Finally, if the root node is large enough, then 2D block cyclic
partitioning of the root frontal matrix is performed. The parallel root node will be referred to as a
node of type 3 and the corresponding parallelism as type & parallelism.

4.2.1 Description of type 2 parallelism

If a node is of type 2, one processor (called the master of the node) holds all the fully summed rows
and performs the pivoting and the factorization on this block while other processors (so called slaves)
perform the updates on the contribution rows (see Figure 4).

Macro-pipelining based on a blocked factorization of the fully-summed rows is used to overlap
communication with computation. The efficiency of the algorithm thus depends on both the block
size used to factor the fully-summed rows and on the number of rows allocated to a slave process.
During the analysis phase, based on the structure of the assembly tree, a node is determined to
be of type 2 if its frontal matrix is sufficiently large. In terms of memory, the mapping algorithm
assumes that the master processor holds the fully-summed rows and that any other processors might
be selected as slave processes. As a consequence, part of the initial matrix is duplicated onto all
the processors to enable efficient dynamic scheduling of computational tasks. At execution time, the
master then first receives symbolic information describing the structure of the contribution blocks

11

Fully Partly
summed columns
|
|

Fully summed :

pivot-block :
|
|

Partly simmed Contribution block

rows (sent to father)

Figure 4: Type 2 nodes: partitioning of frontal matrix.

sent by its children. Based on this information, the master determines the exact structure of its
frontal matrix and decides which slave processors will participate in the factorization of the node.

Further details on the implementation of type 2 nodes depends on whether the initial matrix is
symmetric or not and will be given in Section 4.4.3.

4.2.2 Description of type 3 parallelism

In order to have good scalability, we perform a 2D block cyclic distribution of the root node. We use
ScaLAPACK [15] or the vendor equivalent implementation (PDGETRF for unsymmetric matrices
and PDPOTRF for symmetric matrices).

Currently, a maximum of one root node, chosen during the analysis, is processed in parallel. This
node is of type 3. The node chosen will be the largest root provided its size is larger than a computer
dependent parameter. One processor, the so-called master of the root, holds all indices describing
the root frontal matrix.

We define the root node as determined by the analysis phase, the estimated root node. Before
factorization, the estimated root node frontal matrix is statically mapped onto a 2D grid of processors.
We use a static distribution and mapping for those variables known by the analysis to be in the root
node so that, for an entry in the estimated root node, we know where to send it and assemble it
using functions involving integer divisions, moduli, ...

In the factorization phase, the original matrix entries and the part of the contribution blocks from
the children corresponding to the estimated root can be assembled as soon as they are available. The
master of the root node then collects the index information for all the uneliminated variables of its
children and builds the structure of the frontal matrix. This symbolic information is broadcast to all
participating processors. The contributions corresponding to uneliminated variables can then be sent
by the children to the appropriate processors in the 2D grid for assembly, or directly assembled locally
if the destination is the same processor. Note that, because of the requirements of ScaLAPACK,
local copying of the root node is required since the leading dimension will change if there are any
uneliminated variables.

4.3 Parallel implementation issues

To enable automatic overlapping between computation and communication, we have chosen to use
fully asynchronous communications. For flexibility and efficiency, explicit buffering in the user space
has been implemented. We have developed a Fortran 90 module to send asynchronous messages,
based on immediate sends. We define a send buffer for each processor based on information from the
analysis phase. When we try to send contribution blocks, factorized blocks, ... we first check to see
if there is room in the send buffer. Our module provides an equivalent of MPI_BSEND [24] with the
advantage that messages are directly packed in the buffer and problems occurring when the buffer is

12

full are overcome. Note that messages are never sent when the destination is identical to the source;
in that case the associated action is performed directly locally, instead of the send.

Estimates of the minimum sizes needed for the send and receive buffers are computed by each
processor prior to factorization. This estimation is based on the static mapping of the assembly
tree and takes into account the three types of parallelism used during factorization. Note that, for
example, using type 2 parallelism will significantly reduce the size of the contribution blocks sent
between processors, and thus of the required buffers, as shown in Figure 5. Buffers are allocated on
each processor at the beginning of the factorization.

16x10‘
14+ R i S LR L S S S e SR A S il
12 1
% + TYPE 1+ 3
| —— TYPE1+2+3||
ks
g4l]
£
z
6, 4
4+ ¥ i
2 L L L L

2 4 6 8 10 12 14 16 18
Number of processors

Figure 5: Impact of type 2 parallelism on the size (in number of 64-bit reals) of the send buffer. Test
matrix is WANGS3.

If there is not enough space to put the message in the buffer, the procedure requesting the
send returns with an error code. In such cases, to avoid deadlock, the processor will try to receive
messages until space becomes available in its local send buffer. Let us take a simple illustrative
example. Processor A has filled-up its buffer doing an asynchronous send of a large message to
processor B. Processor B has done the same to processor A. The next messages sent by both
processors A and B will then be blocked until the other processor has received the first message.
More complicated situations involving more processors can occur, but in all cases the key issue for
avoiding deadlock is that each processor tries not to be the blocking processor.

MPI only guarantees that messages are non-overtaking, that is if a processor sends two messages
to the same destination, then the receiver will receive them in the same order. For synchronous
algorithms the non-overtaking property is often enough to ensure that messages are received in
the correct order. With a fully asynchronous algorithm, based on dynamic scheduling of the
computational tasks, it can happen that messages arrive “too early”. In this case, it is crucial
to be sure that the “missing” messages have already been sent so that blocking receives can be
performed to process all messages that should have already been processed at this stage of the
computation. As a consequence, the order used for sending messages is important. The impact on
the algorithm design will be illustrated in Sections 4.4.1 and 4.4.3 during the detailed description
of type 2 parallelism for LDLT factorization.

4.4 LU versus LDLT approaches

In this section, we describe the main differences between the symmetric and the unsymmetric
algorithms. The symmetric code currently solves symmetric positive-definite systems, but it has
been designed so that future developments like fully distributed LDL” factorization with numerical
pivoting and the detection of the null spaces, remain possible.

13

Taking into account the symmetry of the input matrix leads to a reduction in both the memory
requirements (smaller input matrix, matrix of factors and frontal matrices) and the computational
cost. Only the lower part of the original matrix is accessed and the LDL” factorization is computed.
Even if a significant part of the implementation issues are shared by the LU and LDL” factorizations,
taking into account the symmetry implies major modifications in the assembly process, in the blocked
factorization of nodes of type 1 and 2, and in the type 2 and 3 parallel algorithms.

Taking into account the symmetry for a node of type 3 was rather straightforward because our
implementation is based on the use of ScaLAPACK [15] routines (PDGETRYF for the LU factorization
and PDPOTREF for the LL” factorization). Note that a parallel version of the LDL” factorization
for dense matrices does not exist in ScaLAPACK and that this issue will have to be addressed in a
future release of the code that includes numerical pivoting for symmetric matrices.

4.4.1 Assembly process

An estimation of the frontal matrix structure (size, number of fully-summed variables) is computed
during the analysis phase. The final structure and the list of indices in the front is however only
computed during the assembly process of the factorization phase. The list of indices of a front is the
result of a merge of the index lists of the contribution blocks of the children with the list of indices
in the arrowheads associated with all the fully-summed variables of the front. Once the index list of
the front is computed, the assembly of numerical values can be performed efficiently.

Let inode be a node of type 2. The master of inode defines the partition of rows of the frontal
matrix into blocks, and chooses a set of slave processors that will participate in the parallel assembly
and factorization of inode. It sends a message (identified by the tag DESC_STRIP) describing the
work to be done on each slave processor. It also sends a message (with tag MAPROW) to all type
1 nodes and slave processors of type 2 nodes for the children of inode, giving them information on
where to send their contribution blocks for the assembly process.

As already mentioned in Section 4.3, the order in which messages are sent is important. For
example, a slave of inode may receive a contribution block before receiving the message of tag
DESC_STRIP from its master. To allow this slave processor to safely perform a blocking receive
on the missing DESC_STRIP message, we must ensure that the master of the node has sent
DESC_STRIP before sending MAPROW. Otherwise we cannot guarantee that DESC_STRIP will
actually be sent (for example, the send buffer might be full).

The main difference between the symmetric and the unsymmetric case is that a global ordering
of the indices in the frontal matrices is necessary in the symmetric case to guarantee that all lower
triangular entries in a contribution row of a child are in the lower triangular part of the corresponding
row in the parent. We use the global ordering obtained during analysis, that is, the order in which
variables would be eliminated if no numerical pivoting occurs.

Moreover, it is quite easy to perform a merge of sorted lists efficiently. If we assume that the
list of indices of the contribution block of each child is sorted then the sorted merge algorithm will
be efficient if the indices associated with the arrowheads are also sorted. Unfortunately, sorting
all the arrowheads can be costly. Furthermore, the number of fully-summed variables (or number
of arrowheads) in a front might be quite large and the efficiency of the merging algorithm might
be affected by the large number of sorted lists to merge. Based on experimental results, we have
observed that it is enough to sort only the arrowhead associated with the first fully-summed variable
of each frontal matrix. The assembly process for the list of indices of the node is thus described in
Algorithm 2.

Algorithm 2 Assembly of indices in a parent node
1. Sorted merge of the sorted lists of the indices of the children and of the first arrowhead.
2. Build and sort variables belonging only to the other arrowheads (and not found at step 1)
8. Merge the sorted list built at step 2 with the sorted list obtained at step 1.

The key issue for efficiency of Algorithm 2 is the fact that only a small number of variables are
found at step 2. This has been experimentally validated. For example, on matrix WANGS3, the
average number of indices found at step 2 was 0.3. The numerical assembly can then be performed,
row by row.

14

4.4.2 Factorization of type 1 nodes

Blocked algorithms are used during the factorization of type 1 nodes and, for both the LU and the
LDLT factorization algorithms, we want to keep the possibility of postponing the elimination of
fully-summed variables. Note that classical blocked algorithms for the LU and LL” factorizations
of full matrices [11] are quite efficient, but it is not the case for the LDL” factorization.

We will briefly compare kernels involved in the blocked algorithms. We then show how we
have exploited the frontal matrix structure to design an efficient blocked algorithm for the LDL”
factorization.

Let us suppose that the frontal matrix has the structure of Figure 6, where A is the block of fully
summed variables available for elimination. Note that, in the code, the frontal matrix is stored by
TOWS.

CA C

N

Figure 6: Structure of a type 1 node.

During LU factorization, a KJI-SAXPY blocked algorithm [3, 21] is used to compute the LU
factor associated with the block of fully summed rows (matrices A and C). The Level 3 BLAS kernel
DTRSM is used to compute the off-diagonal block of L (overwriting matrix B). Updating the matrix
E is then a simple call to the Level 3 BLAS kernel, DGEMM.

During LDLY factorization, a right-looking blocked algorithm is first used to factor the block
column of the fully summed variables. Let L,ss be the off diagonal block of L stored in place of the
matrix B and D4 be the diagonal matrix associated with the LDLT factorization of the matrix A.
The updating operation of the matrix E is then of the form E < E — L,¢ fDALZf ¢ where only the
lower triangular part of E needs to be computed. No Level 3 BLAS kernel is available to perform
this type of operation which corresponds to a generalized DSYRK kernel.

Note that, when we know that no pivoting will occur (symmetric positive definite matrices),
Loy is computed in one step using the Level 3 BLAS kernel DTRSM. Otherwise, the trailing part
of L,f¢ has to be updated after each step of the blocked factorization, to allow for a stability test
for choosing the pivot.

To update the matrix E, we have applied the ideas used by [22] to design efficient and portable
Level 3 BLAS kernels. Blocking of the updating is done in the following way. At each step, a block
of columns of E (E}, in Figure 7) is updated. In our first implementation of the algorithm, we stored

Ck

N\

Ly =

Figure 7: Blocks used for updates of the contribution part of a type 1 node.

the scaled matrix D ALZf ¢ in matrix C, used here as workspace. Because of cache locality issues, the
Megaflop rate was still much lower than that of the LU or Cholesky factorizations. In the current

15

version of the algorithm, we compute the block of columns of DALZf 7 (Cx in Figure 7) only when
it will be used to update Ej. Furthermore, to increase cache locality, the same working area is used
to store all C matrices. This was possible because C matrices are never reused in the algorithm.
Finally, the Level 3 BLAS kernel DGEMM is used to update the rectangular matrix Ej. This implies
more operations but is more efficient on the IBM SP2 than the updates of the shaded trapezoidal
submatrix of E}, using a combination of DGEMV and DGEMM kernels. Our final blocked algorithm

is summarized in Algorithm 3.

Algorithm 3 LDL7T factorization of type 1 nodes
Blocked factorization of the fully summed columns
do k = 1, nb_blocks

Compute Cy, (block of columns of DALOT”)
Ey < Ey — Ly Cy,
end do

4.4.3 Parallel factorization of type 2 nodes

The differences between the symmetric and the unsymmetric case come from a modification of both
the frontal matrix structure and the parallel algorithm. The modification of the matrix structure is
illustrated in Figure 8. In both algorithms, the master processor is in charge of all the fully summed
rows and the blocked algorithms used to factor the block of fully-summed rows are the ones described

in the previous subsection.

Unsymmetric

Master €8]

Symmetric

“._Master

Figure 8: Structure of a type 2 node.

Contribution

rows

In the unsymmetric case, at each block step, the master processor sends the factorized block of
rows to its slave processors and then updates its trailing submatrix. The behaviour of the algorithm
is illustrated in Figure 9, where program activity is represented in black, inactivity in grey, and
messages by lines between processes. The figure is a trace record generated by the VAMPIR, package
[43] from PALLAS. We see that, on this example, the master processor is relatively more loaded

than the slaves.

In the symmetric case, a different parallel algorithm has been implemented. The master of the
node performs a blocked factorization of only the diagonal block of fully-summed rows. At each
block step, its part of the factored block of columns is broadcast to all slaves ((1) in Figure 8). Each
slave can then use this information to compute its part of the block column of L and to update part
of the trailing matrix. Each slave, apart from the last one, then broadcasts its just computed part
of the block of column of L to the following slaves (illustrated by messages (2) and (3) in Figure 8).
Note that, to process messages (2) or (3) at step k of the blocked factorization, the corresponding

message (1) at step k£ must have been received and processed.

We have chosen a fully asynchronous approach to implement the algorithm. Messages (1) and
(2) might thus arrive in any order. The only property that MPI guarantees is that messages of type
(1) will be received in the correct order because they come from the same source processor. When
a message (2) at step k arrives too early, we have then to force the reception of all the pending

16

HMPI

MFacto_Level_2 FFacto_Level 2

g

Figure 9: VAMPIR trace of an isolated type 2 unsymmetric factorization (Master is Process 1).

messages of type (1) for steps smaller than or equal to k. This induces a necessary property in the
broadcast process of messages (1): if at step k, message (1) is sent to slave 1, we must be sure that it
will also be sent to other slaves. In our implementation of the broadcast, we first check availability
of memory in the send buffer (with no duplication of data to be sent) before starting effective send
operations. Thus, if the asynchronous broadcast starts, it will complete.

1:22. 1:22.15 1:22.35 1:22.4

WMPI
n N . , ; , ' MBlocfacto
. - ' . Histack
Process 1 4 v 2 he 79 | MFacto_Hiv 2
- - = Mass_Hiv_2

Process z MP

Figure 10: VAMPIR trace of an isolated type 2 symmetric factorization; constant row block sizes.
(Master is Process 1).

Similarly to the unsymmetric case, our first implementation of the algorithm is based on constant
row block size. We can clearly observe from the corresponding execution trace in Figure 10 that the
later slaves have much more work to perform than the others. To balance work between slaves, later
slaves should hold less rows. This has been implemented using a heuristic that aims at balancing the
total number of floating-point operations involved in the type 2 node factorization on each slave. As
a consequence, the number of rows treated varies from slave to slave. The corresponding execution
trace is shown in Figure 11. We can observe that work on the slaves is much better balanced and
both the difference between the termination times of the slaves and the elapsed time for factorization

17

are reduced.

oilpannew_symvi_8.bpv: Global Timeline.
a7 11715 19172

MPI

i Application
EBlocfacto
MFacto_HNiv_2

Process 0 MPI_Al
Process 1 4. _- Facto_Level_2 ‘ | 75 | i 2 ! Pr ? : 7
Process Z MPI_Prob .] \\llucﬁcm £l atoc_ “7

Process 3 MPI_Prob -)

Process 4 MPI_Probie : I 5 L ; 5 B PI_Probe
Process 5 MPI_Probe lﬁﬂ
Process 6 MPI_Probe i
Process 7 MPI_Probe E

Process 8 MPI.Probe || 60! 1 s 1tk M '3e0 A ks o HE 73 78

= JrEp

Figure 11: VAMPIR trace of an isolated type 2 symmetric factorization; variable row block sizes. (Master
is Process 1).

However, the comparison of Figures 9 and 11 shows that firstly the number of messages involved
in the symmetric algorithm is much larger than in the unsymmetric case; secondly, that the master
processor performs relatively less work than in the parallel algorithm for unsymmetric matrices.

5 Some other functionalities of MUMPS

5.1 Multiple instances

MUMPS has been integrated in the DDM solver that is being developed at the University of Bergen.
For the DDM solver, it is very important that MUMPS is able to factorize and solve in separate steps. It
is equally important that MUMPS can handle several systems of equations simultaneously. This allows
the DDM solver to first factor a set of matrices, and then use the factors to solve the associated
systems in a cg-iteration. Since the MUMPS software defines each system of equations as an instance,
MUMPS must therefore allow several instances to coexist. This feature was not planned initially, but
has been implemented on request from the DDM developers.

5.2 Pre-processing and post-processing facilities

MUMPS offers pre-processing and post-processing facilities. Permutations for a zero-free diagonal [29]
can be applied to very unsymmetric matrices and can help reduce fill-in and arithmetic. Prescaling of
the input matrix can help reduce fill-in during factorization and can improve the numerical accuracy.
A range of classical scalings are provided for the user and can be automatically performed before
numerical factorization. Iterative refinement can be optionally performed after the solution step.
Arioli, Demmel, and Duff [12] have shown that with only two to three steps of iterative refinement
the solution can often be significantly improved. Finally, MUMPS also enables the user to perform
classical error analysis based on the residuals.

MUMPS returns an estimate of the sparse backward error using the theory and metrics developed in
[12]. We use the notation x for the computed solution and a modulus sign on a vector or a matrix to
indicate the vector or matrix obtained by replacing all entries by their moduli. The scaled residual

b — A)_c|z.
(ol + TATRD; @

is computed for all equations except those for which the numerator is nonzero and the denominator
is small. For all the exceptional equations,

w1 =

18

(1AL 1%]); + [[Aill o 1%l o
is used instead, where A; is row ¢ of A. The largest scaled residual (1) and the largest scaled residual

(2) are both returned. If all equations are in category (1), wo is set to zero. The computed solution
X is the exact solution of the equation

(A +5A)x = (b +b),

w2 =

where
6A;; < max(wi,w2)|Al;,

and db; < max(wi|b|;,w2||A:ll |||,). Note that dA respects the sparsity of A. An upper bound
for the error in the solution is also returned.

5.3 Input of matrices in elemental format

MUMPS allows the user to input the matrix in elemental format. The matrix is not assembled by the
solver but the elemental matrices are preserved and directly operated on. The main modifications
that were necessary to the implementation lie in the analysis, the distribution of the matrix (especially
the root matrix), and the assembly process. The corresponding right-hand side must still be provided
in assembled format.

5.4 Rank revealing and null space basis determination

MUMPS provides options for rank detection and computation of the null space basis. The dynamic
pivoting strategy available in both the symmetric and unsymmetric version of MUMPS postpones all
the singularities to the root node of the elimination tree. Therefore, the problem of rank detection
of the original matrix is reduced to the problem of rank detection of the root matrix. At this root,
rank revealing algorithms are applied. The null space basis for the original matrix is computed from
the null space basis for the root matrix by a backsubstitution with the computed sparse factors.

Strategies based on rank revealing QR and rank revealing LU are provided. The strategies
assume that the rank deficiency of the matrix is small (which is the case in the applications of the
PARASOL project). Details will be given in a forthcoming technical report [9].

5.5 Distributed assembled matrix

If the assembled matrix is initially held centrally on the host, the time to distribute the real entries of
the original matrix can be comparable to the time to perform the actual factorization. For example,
on matrix OILPAN, the time to distribute the input matrix is on average 6 seconds whereas the time
to factorize the matrix on 16 processors of the IBM SP2 is 6.8 seconds. The distribution of the input
matrix is the main preprocessing step in the numerical factorization phase. During this step, the
input matrix is organized into arrowhead format and distributed according to the mapping provided
by the analysis phase. In the symmetric case, the first arrowhead of each frontal matrix is also
sorted to enable efficient assembly. Clearly, increasing the size of the matrix will make the time for
the factorization phase dominant although a centralized matrix will limit the size of the problem
that can be solved on a distributed memory computer. With a distributed input matrix format, a
performance improvement can be expected because we parallelize the reformatting and sorting tasks
using asynchronous all-to-all communications during the redistribution phase. To improve both the
memory and the time scalability of our approach, the input matrix should thus be distributed. Note
that, based on the static mapping of the tasks to processes, one can determine an a priori distribution
of the input data so that no further remapping will be required. This approach, referred to as the
MUMPS mapping, will limit the communication to duplications of the original matrix corresponding
to type 2 nodes (further studied in Section 6.3). In this case, the distribution depends on the static
mapping which itself depends on the number of processors used.

In Figure 12, we compare three strategies for providing the input matrix:

19

1. Centralized matrix: the input matrix is held on one processor (the host).

2. MUMPS mapping: the input matrix is distributed over the processors according to a mapping
array that is computed during the analysis phase.

3. Random mapping: the input matrix is distributed over the processors in a random but even
manner that has no correlation to the mapping computed during the analysis phase.

B *
6
X
S K
@ 5
=}
c
§ k-3 Centralized matrix
2 4 = — m ysing MUM PS mapping -
E @—@ Random mapping
5, A
3 3
g \
B \
o 2
\
n
~ ~
1 = »
——.————
0 ‘ ‘ ‘ ‘ - . L L
0 4 8 12 16 20 o o8 -

Number of Processors
Figure 12: Impact of the input format for matrix OILPAN on the time for distribution on the IBM SP2.

We clearly see, in Figure 12, the benefit of using asynchronous all-to-all communications (MUMPS
or random mapping options) with respect to using one-to-all communication patterns (centralized
matrix option). Furthermore, it is even more interesting to observe that exploiting the mapping
provided during analysis does not significantly reduce the time because of the good overlapping
between communication and computation (here mainly data reformatting and sorting) in our
redistribution algorithm.

5.6 Return a specified Schur complement

A Schur complement matrix can be returned to the user. The user must specify the list of indices
of the Schur matrix. MUMPS then provides both a partial factorization of the complete matrix and
access to the assembled Schur matrix. The Schur matrix is considered as a full matrix. The partial
factorization that builds the Schur matrix can also be used to solve linear systems associated to the
“interior” variables.

For example, consider the partitioned matrix

Aigr A
A= 1AL
(Asr Ao) ®)

where the variables of Az 2 are those specified by the user. Then the Schur complement, as
returned by MUMPS, is Ay s — Az,lA;&Al,z, and the solve is performed on A;; only.

20

6 Performance analysis and code tuning

6.1 Basic performance and influence of ordering

From earlier studies (for example [40]), we know that the ordering may seriously impact both the
uniprocessor time and the parallel behaviour of the method. To illustrate this, we report in Table 6
performance obtained using only type 1 parallelism. That is, we only consider tree parallelism
and exclude any parallelism from within the nodes of the assembly tree (node parallelism). The
results show that tree parallelism only does not produce very good speedups but they also show
(see column “Speedup”) that we usually get better parallelism from the tree with nested dissection
based orderings than with minimum degree based orderings. We thus gain by using nested dissection
because of a reduction in the number of floating-point operations (see Tables 3 and 4) and a better
balanced assembly tree.

Matrix Time Speedup
AMD ND | AMD ND
OILPAN 12.6 7.3 291 4.45
BMW7ST_1 55.6 21.3 2.55 4.87
BBMAT 78.4 49.4 4.08 4.00
B5TUER 334 25.5 3.47 4.22

Table 6: Influence of the ordering on the time (in seconds) and speedup for the factorization
phase, using only type 1 parallelism, on 32 processors of the IBM SP2.

We now discuss the performance obtained with MUMPS that will be used as a reference for this
report. The performance obtained on matrices provided in elemental format (RSE matrices) will be
shown in Section 6.2. In Tables 7 and 8, we show the performance of nested dissection and minimum
degree orderings on the IBM SP2 and the SGI Origin 2000, respectively. Note that speedups are
difficult to compute on the IBM SP2 because memory paging often occurs when using a small
number of processors. Performance gains when using nested dissection orderings on a small number
of processors of the IBM SP2; are thus due also to the reduction in the memory required by each
processor to factorize the matrix. Therefore, instead of reporting elapsed time on 1 processor, the
uniprocessor CPU time has been reported. When the memory was not large enough to run on one
processor, an estimation of the MFlops rate has been used to compute a uniprocessor time. This
estimate was also used, when necessary, to compute the corresponding speedups in Table 6. Note
that on a small number of processors there can still be a memory effect so that there appears to be
no speedup relative to the CPU uniprocessor time although the speedup over the elapsed time on
one processor can be considerable.

In Table 8, we also show the time for the solution phase; we observe that, relatively to what
could be expected on this phase, the speedups are quite good.

In the remainder of this report, we will mainly use nested dissection based orderings, unless stated
otherwise.

21

Matrix Ordering Number of processors

1) 4 8 16 24 32

OILPAN AMD 37 13.6 9.0 6.8 5.9 5.8
ND 33 10.8 7.1 5.7 4.6 4.6

B5TUER AMD 116 | 155.5 | 24.1 16.8 16.1 13.1
ND 108 55.7 | 21.6 16.8 14.7 10.5

BMW7ST_1 AMD 142 | 153.4 | 46.5 21.3 18.4 16.7
ND 104 | 105.7 | 36.7 | 20.2 12.9 11.7

BMW3_2 AMD 421 - 1309.8 | 74.2 51.0 | 34.2
ND 246 - 11453 | 426 | 25.8 23.6

CRANKSEG_1 AMD 456 508.3 | 1624 | 784 | 63.3
ND 270 | 228.2 | 102.0 | 424 | 39.1 31.9

CRANKSEG_2 AMD 926 - - | 819.6 | 308.5 | 179.7
ND 378 - | 3166 | 79.7 | 41.7 | 35.7

BBMAT AMD 320 | 276.4 68.3 47.8 44.0 39.8
ND 198 | 106.4 | 76.7 | 35.2 34.6 | 30.9

INV-EXTRUSION-1 | AMD 279 - 67.9 63.2 56.5 56.0
ND 70 25.7 17.5 16.0 13.1 12.4

MIXING-TANK AMD 495 0 | 288.5 70.7 64.5 61.3
ND 104 | 32.80 | 26.1 174 14.4 14.8

Table 7: Impact of the ordering on the time (in seconds) for factorization on the IBM SP2.
*) estimated CPU time on one processor; - means not enough memory.

Factorization phase

Matrix Ordering Number of processors
1 2 4 8 16 32
BMW7ST_1 AMD 85.7 | 56.0 | 28.2 | 185 | 15.1| 14.2
ND 63.1 | 385 | 279 | 195 | 21.1]| 11.5
BMW3_2 AMD 252.7 | 1534 | 81.8 | 494 | 340 273
ND 152.1 | 93.8 | 525 | 33.0 | 22.1|17.0
BMWCRA_1 AMD 663.0 | 396.5 | 238.7 | 141.6 | 110.3 | 76.9
ND 306.6 | 182.7 | 80.9 | 529 | 41.2]| 35.5
CRANKSEG_2 | AMD 566.1 | 392.2 | 220.0 | 115.9 | 86.4 | 774
ND 2169 | 11569 | 72.0 | 60.3 | 46.9 | 38.9

Solution phase

Matrix Ordering Number of processors
1 2 4 8 16 32
BMW7ST_1 AMD 4.2 2.4 2.3 1.9 14| 1.6
ND 3.3 2.1 1.7 14 1.6 | 1.5
BMW3_2 AMD 6.7 4.1 3.6 2.4 21| 1.9
ND 6.3 3.8 2.9 2.4 20| 24
BMWCRA _1 AMD 11.4 7.2 6.8 3.9 28 | 24
ND 8.3 4.7 2.7 2.1 1.8 | 2.0
CRANKSEG_2 | AMD 6.8 5.8 4.4 2.9 24| 2.3
ND 4.3 2.7 1.8 1.5 1.1 | 1.8

Table 8: Impact of the ordering on the time (in seconds) for factorization and solve phases on
the SGI Origin 2000.

22

6.2 Elemental input matrix format

In this section, we discuss the main algorithmic changes to handle efficiently problems that are
provided in elemental format. We assume that the original matrix can be represented as a sum of

element matrices
A=Y A

where each A; has nonzero entries only in those rows and columns which correspond to variables in
the ith element. It is usually held as a small square matrix that is dense and possibly unsymmetric.
If the matrix A is symmetric, only the lower triangular part of each A; is stored.

In a multifrontal approach, element matrices need not be assembled in more than one frontal
matrix during the elimination process. This is simply due to the fact that the frontal matrix structure
contains, by definition, all the variables adjacent to all the fully summed variables of the front. As
a consequence, element matrices need not be split during the assembly process. Note that, for
classical fan-in and fan-out approaches [13], this property does not hold since the positions of the
element matrices to be assembled are not restricted to fully summed rows and columns. The main
modifications that we had to make to our implementation for assembled matrices lie in the analysis,
the distribution of the matrix, and the assembly process.

During the analysis phase, we can exploit the elemental format of the matrix to detect
supervariables. A supervariable is a set of variables having the same list of adjacent elements.
This is illustrated in Figure 13 where the matrix is composed of two overlapping elements and three
supervariables can easily be detected.

Supervariables have been used, in a similar context, to compress graphs associated with assembled
matrices from structural engineering prior to a multiple minimum degree ordering [14]. For assembled
matrices, however, it has been observed that the use of supervariables, in combination with an
Approximate Minimum Degree ordering, is not more efficient, (see [1]).

Graph_size with

Matrix supervariable detection
OFF ON
M_T1.RSE 9655992 299194

SHIP_003.RSE 7964306 204324
SHIPSEC1.RSE 7672530 193560
SHIPSEC5.RSE | 9933236 256976
SHIPSEC8.RSE | 6538480 171428
THREAD.RSE 4440312 397410
X104.RSE 10059240 246950

Table 9: Impact of supervariable detection on the size of the input graph Graph_size (length
of adjacency lists) given to the ordering phase.

Tables 9 and 10 show the impact on both the size of the graph processed by the ordering phase
(AMD ordering) and on the time for the complete analysis phase (including graph compression
and ordering). Graph_size corresponds to the size of the graph (length of adjacency lists
of variables/supervariables) given as input to the ordering phase. Table 2 shows that, when
supervariable detection is off, Graph_size is twice the number of entries (diagonal entries excluded)
in the symmetric assembled matrix.

The working space required by the analysis phase using the AMD ordering is dominated by the
space required by the ordering phase and is Graph_size plus an overhead that is a small multiple
of the order of matrix. If the ordering is performed on a single processor, the space required to
compute the ordering is the most memory intensive part of the analysis phase. With supervariable
detection, the complete uncompressed graph need not be built since the ordering phase can operate
directly on the compressed graph. Table 9 shows that, on large graphs, compression can reduce
the memory requirements of the analysis phase dramatically. Finally, we see in Table 10 that,
using supervariables, the reduction in time is not only due to the reduced time for ordering, but

23

I nitial matrix

Initial h of variabl
nitial graph of variables (sum of two overlapping elements)

12 3 45 67 8

00 NO Ok WON B

3supervariables: {1,2,3}, {4,5}, {6,7,8}

Graph of supervariables 12 3 45 67 8

® 6,78

® 45

e 123

Figure 13: Supervariable detection for matrices in elemental format.

24

also to a significant reduction in time needed for building the much smaller adjacency graph of the
supervariables.

Time for analysis

Matrix supervariable detection
OFF ON
M_T1.RSE 46 (1.8 5 (0.

SHIP_003.RSE | 7.4 (
SHIPSECL.RSE | 6.0 (2.
SHIPSECS.RSE (
SHIPSEC8.RSE | 5.7
THREAD.RSE 2.6
X104.RSE 6.4 (3.5)

3)
2 (0.7)
6 (0.6)
9 (0.8)
6 (0.5)
2 (0.2)

1.5 (0.3)

Table 10: Impact of the supervariable detection on the time (in seconds) for the analysis phase
on the SGI Origin 2000). The time spent in the AMD ordering is in parentheses.

The overall time spent in the assembly process for matrices in unassembled format will differ
from the overall time spent in the assembly process for the equivalent assembled matrix. Obviously,
for the matrices in elemental format there is often significantly more data to assemble (usually about
twice the number of entries as for the same matrix in assembled format). However, the assembly
process of matrices in elemental format might be performed more efficiently than the assembly
process of assembled matrices. First, because we potentially assemble at once a larger and more
regular structure (a full matrix). Second, because more input data will be assembled earlier in the
processing of the assembly tree. This has two consequences. The assemblies are performed in a
more distributed way and fewer element duplications might occur for nodes of type 2 (since we do
not split the elements, we duplicate the complete elements belonging to a node of type 2). A more
detailed analysis of the duplication issues linked to matrices in elemental format will be addressed
in Section 6.3.

The experimental results in Tables 11 and 12, obtained on the SGI Origin 2000, show the good
behaviour of the code on a limited number of processors for both the factorization and the solution
phases.

Matrix Number of processors

1 2 4 8| 16
M_T1.RSE 92 56 | 30 18 | 17
SHIP_003.RSE | 392 | 242 | 156 | 120 | 92
SHIPSEC1.RSE | 174 | 128 | 65 | 36 | 27
SHIPSECS.RSE | 281 | 176 | 114 | 63 | 43
SHIPSEC8.RSE | 187 | 127 | 68 | 36 | 30
THREAD.RSE 186 | 120 | 69 46 | 37
X104.RSE 56 | 34| 20 16 | 16

Table 11: Time (in seconds) for factorization of the unassembled matrices on the SGI Origin
2000. MFR ordering is used.

We have observed that the performance of MUMPS for assembled and unassembled problems is
very similar, provided the same ordering is used. The reason for that is that the extra amount
of assemblies of original data for unassembled problems is relatively small compared to the total
number of flops.

25

Size of total space (Mbytes)

Matrix Number of processors

1 2 4 8| 16
M_T1.RSE 35121111208
SHIP_003.RSE | 6.9 | 3.6 | 3.3 | 2.5 | 2.0
SHIPSEC1.RSE | 3.8 | 3.1 | 2.1 | 1.6 | 1.5
SHIPSECS.RSE | 5.5 | 42 29| 22| 1.9
SHIPSEC8.RSE | 3.8 [3.1 | 20| 14| 1.3
THREAD.RSE 23119131008
X104.RSE 2619|114 |10]| 1.1

Table 12: Time (in seconds) for the solution phase of the unassembled matrices on the SGI
Origin 2000. MFR ordering is used.

6.3 Memory scalability issues

On distributed memory computers, one of the main properties of a parallel algorithm is its capacity
to efficiently exploit the increase in memory available when increasing the number of processors.
This issue is often as critical as the reduction in execution time.

We show, in Figure 14, the maximum and average memory required per processor as a function
of the number of processors. We see that these values are quite similar and this shows that the
memory load is well balanced between the processors.

BMW3_2

250

N
o
o

® —@®Maximum
B—8 Average

=
o
o

=
o
o

50

8 16

24

Number of Processors

32

Size of total space (Mbytes)

BMWCRA_1

800

700

__

600

500

o — @ Maximum
=—8 Average

_m—e——

400

300

200

100

I S S S

e

12

16 20 24

Number of Processors

28 32

Figure 14: Total memory (maximum and average) requirement per processor (ND ordering).

Table 13 shows the average size per processor of the main components of the working space used
during the factorization of the matrix BMW3_2. These components are:

26

INITIAL MATRIX: the size required to store the initial matrix in arrowhead format.
COMMUNICATION BUFFERS: the space allocated for both send and receive buffers.

FACTORS: the size reserved for the factors; a processor does not know after the analysis phase
in which type 2 nodes it will participate, and therefore it reserves enough space to be able to
participate in all type 2 nodes.

STACK AREA: the size of the space used for stacking both the contribution blocks and the
factors.

Number of processors 1 2 4 8 16 | 24 | 32
FACTORS 423 | 211 | 107 | 58 | 35 | 31 | 31

ideal - 211 | 106 | 53 | 26 | 18 | 13

STACK AREA 502 | 294 | 172 | 92 | 51 | 39 | 38
ideal - 251 | 126 | 63 | 31 | 21 | 16

INITIAL MATRIX 69 345|173 | 89 | 5.0 | 4.0 | 3.5
ideal - 345|173 | 86 | 43|29 | 2.2
COMMUNICATION BUFFERS 0 45 34 14 6 6 5
OTHER 20 20 20 20 | 20 | 20 | 20
TOTAL 590 | 394 | 243 | 135 | 82 | 69 | 67

ideal - 295 | 147 | 74 | 37 | 25 | 18

Table 13: Analysis of the memory used during factorization of matrix BMw3_2 (ND ordering). All sizes
are in MBytes per processor.

e OTHER: the size of all the remaining working space allocated per processor.
e TOTAL: the total memory required per processor.

The lines ideal in Table 13 are obtained by dividing the memory requirement on one processor by
the number of processors. This allows us to check how the memory requirements of MUMPS scale over
the processors.

We see that, even if the total memory (sum of all the local working spaces) increases, the average
memory required per processor significantly decreases up to 16 processors. We also see that the
size for the factors and the stack area are much larger than ideal. Part of this difference is due
to parallelism and is unavoidable. Another part, however, is due to an overestimation of the space
required. The main reason for this is that the mapping of the type 2 nodes on the processors is
not known at analysis and each processor can potentially participate in the elimination of any type
2 node. Therefore, each processor allocates enough space to be able to participate in all type 2
nodes. The working space that is actually used is smaller and, on a large number of processors, we
could reduce the estimate for both the factors and the stack area. For example, we have successfully
factorized matrix BMW3_2 on 32 processors with a stack area that is 20% smaller than reported in
Table 13.

The average working space used by the communication buffers also significantly decreases up to
16 processors. This is mainly due to type 2 node parallelism where contribution blocks are split
among processors until a minimum granularity is reached. Therefore, when we increase the number
of processors, we decrease (until reaching this minimum granularity) the size of the contribution
blocks sent between processors. Note that on larger problems, the average size per processor of the
communication buffers will continue to decrease for a larger number of processors. Let N denotes
the matrix order. We see, as expected, that the line OTHER does not scale at all since it corresponds
to data arrays of size in O(IN) that need to be allocated on each contributing process. We see that
although this space is O(IV), it still significantly affects the difference between TOTAL and ideal.
However, the relative influence of this fixed size area will be smaller on large matrices from 3D
simulations and therefore does not affect the asymptotic scalability of the algorithm.

The imperfect scalability of the initial matrix storage is explained by the fact that, to migrate
tasks corresponding to type 2 nodes efficiently (see Section 6.4), part of the data associated with
the original matrix is duplicated on all processors. We will study this feature in more detail in the
remainder of this section. We want to stress, however, that from a user point of view, all numbers
reported in this context should be related to the total memory used by the MUMPS package which is
usually dominated, on large problems, by the size of the stack area.

An alternative to the duplication of data related to type 2 nodes would be to allocate the original
data associated with a frontal matrix to only the master process responsible for the type 2 node.
During the assembly process, the master process would then be in charge of redistributing the original
data to the slave processes. This strategy introduces extra communication costs during the assembly

27

of a type 2 node and thus has not been chosen. With the approach based on duplication, the process
responsible for a type 2 node has all the flexibility to choose collaborating processes dynamically
since this will not involve any data migration of the original matrix. However, the extra cost of
this strategy is that, based on the decision during analysis of which nodes will be of type 2, partial
duplication of the original matrix must be performed.

In order to have sufficient node parallelism near the root of the assembly tree, MUMPS uses a
heuristic that relates the number of type 2 nodes to the number of processors used. The influence
of the number of working processors on the duplication of matrix data is shown in Table 14. On a
representative subset of our test problems, we show the total number of type 2 nodes and the sum
over all processes of the number of entries from the original matrix. If there is only one processor,
no type 2 nodes are introduced and no data is duplicated.

20

|

15
Ay

e —eBMW3 2
== THREAD.RSA
KK SHIPO0L.RSA
A — A SHIPOOL.RSE

Per centage
=
o

16

Number of Processors

Figure 15: Study of the duplication of the input matrix due to type 2 nodes. The percentage
of duplicate entries is relative to the number of entries in the original matrix. A value of k
means that k percent of the original matrix is duplicated.

Typical effects are summarized in Figure 15 where we show the percentage of duplicate entries
per process. On a globally addressable memory computer, such as the SGI Origin 2000, Table 14
reflects more the main property of the algorithm whereas on a purely distributed memory computer,
such as the IBM SP2, the most relevant information is shown in Figure 15.

It is quite interesting to note that, since the original data for unassembled matrices are in general
assembled earlier in the assembly tree than the same matrix in assembled format, the number
of duplications is often relatively much smaller with unassembled matrices than with assembled
matrices. Matrix THREAD.RSE (in elemental format) is an extreme case since, even on 16 processors,
type 2 node parallelism does not require any duplication (see Table 14).

To conclude this section, we want to point out that the code scales well from a memory point of
view even if, on shared memory non-uniform memory access computers, our overestimation of the
total stack area is a bottleneck that needs to be addressed. Limiting the dynamic scheduling to a
subset of processors when performing the static allocation might be a simple solution to control the
increase in the total memory required.

28

Matrix Number of processors
1 2 4 8 12 16
OILPAN Type 2 nodes 0 4 7 10 17 22
Total entries | 1835 | 1845 | 1888 | 2011 | 2235 | 2521
BMWT7ST_1 Type 2 nodes 0 4 7 9 13 21
Total entries | 3740 | 3759 | 3844 | 4031 | 4308 | 4793
BMW3_2 Type 2 nodes 0 1 3 13 14 21
Total entries | 5758 | 5767 | 5832 | 6239 | 6548 | 7120
THREAD.RSA Type 2 nodes 0 3 8 12 23 25
Total entries | 2250 | 2342 | 2901 | 4237 | 6561 | 8343
THREAD.RSE Type 2 nodes 0 2 8 12 15 25
Total entries | 3719 | 3719 | 3719 | 3719 | 3719 | 3719
SHIPSEC1.RSA | Type 2 nodes 0 0 4 11 19 21
Total entries | 3977 | 3977 | 4058 | 4400 | 4936 | 5337
SHIPSEC1.RSE | Type 2 nodes 0 1 4 13 19 27
Total entries | 8618 | 8618 | 8618 | 8627 | 8636 | 8655

Table 14: Study of the duplication of the input matrix due to type 2 nodes. The rows
“Total entries” correspond to the sum of the number of entries in the original matrix over all
processors (x103). The number of type 2 nodes is also indicated.

6.4 Dynamic scheduling strategies

To avoid the drawback of centralized scheduling on distributed memory computers, we have chosen
to implement distributed dynamic scheduling strategies. We remind the reader that type 1 nodes
are statically mapped to processes at analysis time and that only type 2 tasks, which represent a
large part of the computations and of the parallelism of the method, are involved in the dynamic
scheduling strategy.

To be able to choose dynamically the processes that will collaborate in the processing of a type 2
node, we have designed a two-phase assembly process. Let Inode be a node of type 2 and let Pmaster
be the process to which I'node is initially mapped. In the first phase, the (master) processes to which
the sons of Inode are mapped, send symbolic data (integer lists) to Pmaster. When the structure of
the frontal matrix is determined, Pmaster decides a partitioning of the frontal matrix and chooses
the slave processes. It is during this phase that Pmaster will collect information concerning the load
of the other processors to help in its decision process. The slave processes are informed that a new
task has been allocated to them. Pmaster then sends the description of the distribution of the frontal
matrix to all collaborative processes of all sons of Inode so that they can send their contribution
blocks (real values) in pieces directly to the correct processes involved in the computation of Inode.
The assembly process is thus fully parallelized and the maximum size of a message sent between
processes is reduced (see Section 6.3).

A pool of tasks private to each process is used to implement dynamic scheduling. All tasks ready
to be activated on a given process are stored in the pool of tasks local to the process. Each process
executes the following algorithm:

Algorithm 1
while (not all nodes processed)
if local pool empty then
blocking receive for a message; process the message
elseif message available then
recetve and process message
else
extract work from the pool, and process it
endif
end while

29

Note that priority is given to message reception. The main reasons for this choice are first that
the message received might be a source of additional work and parallelism and second that the
sending process might be blocked because its send buffer is full.

Two scheduling strategies have been implemented. In the first strategy, referred to as cyclic
scheduling, the master of a type 2 node does not take into account the load on the other processors
and performs a simple cyclic mapping of the tasks to the processors. In the second strategy, referred
to as (dynamic) flops-based scheduling, the master process uses information on the load of the
other processors to allocate type 2 tasks to the least loaded processes. The load of a processor is here
defined as the amount of work (flops) associated with all the active or ready-to-be-activated tasks.
Each process is in charge of maintaining local information associated with its current load. With
a simple remote memory access routine (one-sided communication MPI_GET), each process could
have access to the load of all other processes when necessary. This feature, included in MPI-2, is
not available on our target computers. To overcome this problem of portability, we have designed a
module based only on symmetric communication tools (MPI asynchronous send and receive). Each
process is in charge of both updating its local load and broadcasting the information. To control the
amount of extra data sent, an updated load is broadcast only if it represents a significant relative
variation with respect to the last load value broadcast.

Matrix & Number of processors
scheduling 16| 20| 24| 28| 32
BMW3_2

cyclic 52.4 | 31.8 | 26.2 | 29.2 | 23.0

flops-based 294 | 27.8 | 25.1 | 25.3 | 22.6
CRANKSEG_2
cyclic 79.1 | 47.9 | 40.7 | 41.3 | 38.9
flops-based 61.1 | 45.6 | 41.9 | 41.7 | 40.4

Table 15: Comparison of cyclic and flops-based schedulings. Time (in seconds) for factorization
on the IBM SP2 (ND ordering).

Matrix & Number of processors
scheduling 4 | 8| 16
SHIP_003.RSE

cyclic 156.1 | 119.9 91.9

flops-based 140.3 | 110.2 83.8
SHIPSECS.RSE

cyclic 113.5 | 63.1 42.8
flops-based 999 | 61.3 37.0
SHIPSEC8.RSE

cyclic 68.3 | 36.3 29.9
flops-based 65.0 | 35.0 25.1

Table 16: Comparison of cyclic and flops-based schedulings. Time (in seconds) for factorization
on the SGI Origin 2000 (MFR ordering).

When the initial static mapping does not balance the work well, we can expect that the dynamic
flops-based scheduling will improve the performance with respect to cyclic scheduling. Tables 15 and
16 show that significant performance gains can be obtained by using dynamic flop-based scheduling.
On a large number of processors (> 24), the gain is less significant because our test problems are
too small to keep all processors busy and thus lessen the benefits of a good dynamic scheduling
algorithm. We also expect that this feature will improve the behaviour of the parallel algorithm on
a multi-user distributed memory computer. The results reported in Table 16 were obtained when
the SGI Origin 2000 was not very loaded. Results on a loaded machine vary considerably and are
not reported here because of the difficulty of interpreting them. An investigation on a computer

30

providing non-symmetric communication routines might be of interest.

Another possible use of dynamic scheduling is to improve the memory usage. We have seen, in
the previous section, that the size of the working space required for the stack area is overestimated
and based on a very slack and unobtainable upper bound. Dynamic scheduling based on memory
load could be used to address this issue. Type 2 tasks can be mapped to the least loaded processor
(in terms of memory used in the stack area). The memory estimation of the size of the stack area
can then be based on a static mapping of the type 2 tasks.

6.5 Splitting nodes of the assembly tree

During the processing of a parallel type 2 node, both in the symmetric and the unsymmetric case,
the factorization of the pivot rows is performed by a single processor. Other processors can then
help in the update of the rows of the contribution block using a 1D decomposition. Considering
the parallel factorization of the complete matrix, the elimination of the first fully summed rows
can thus represent a potential bottleneck for scalability, especially for frontal matrices with a large
fully summed block near the root of the tree, where parallelism arising from the tree is limited. To
overcome this problem, we postprocess the tree to subdivide nodes with large fully summed blocks,
as shown in Figure 16.

In this figure, we consider an initial node of size NFRONT with NPIV pivots. We replace this node
by a son node of size NFRONT with NPIV,, pivots, and a father node of size NFRONT —NPIV,,p,
with NPIV f4¢per = NPIV —NPIV,, pivots. This allows us to decrease the longest path in the graph
of tasks at the cost of extra assembly operations and extra communications. Note that, in practice,
we might divide the intial node into more than two new nodes.

We experimented with a simple algorithm that modifies the assembly tree to see how this feature
could improve the parallelism. The algorithm is applied after the symbolic factorization. We applied
the algorithm only to nodes near the root of the tree, that is only up to a certain maximum distance
from the root. We chose this distance (that is the number of edges between the root and the node)
to be dmae = log,(NPROCS — 1). We do this because splitting large nodes far from the root of the
tree where sufficient tree parallelism can already be exploited would only lead to additional assembly
and communication costs.

Let Inode be a node in the tree, and d(Inode) the distance of Inode to the root. For all nodes
Inode such that d(Inode) < dmaz, we apply the following algorithm, controlled by a parameter
p, p>0.

Algorithm 2 Splitting of a node

if NFRONT — NPIV/2 is large enough then
1. Compute Wiaster = number of flops performed by the master of the node.
2. Compute Wiave = number of flops performed by a slave task,
assuming that NPROCS — 1 slaves can participate.
8. if Wiaster > Wiiave * (1 + p*m”(l’ldéé""de)_l)) then
3.1. Cut Inode in two nodes (son and father) so that NPIV,, = NPIV fothe, = NPIV/2.
3.2. Apply Algorithm 2 recursively to nodes son and father.
endif
endif

Note that Algorithm 2 is applied only when NFRONT — NPIV/2 is large enough because we
want to guarantee that the son of the split node will be of type 2. NFRONT — NPIV,,, is the size of
the contribution block of the son and during Algorithm 2 NPIV,,, is set to NPIV /2. The choice of
p allows us to control the general amount of split and is a machine dependent parameter. At step 3
of the algorithm, we multiply p by d(Inode) —1 to limit the number of split nodes as tree parallelism
increases.

Splitting is analysed in Table 17 on both a symmetric test problem CRANKSEG_2 and an
unsymmetric test problem INV-EXTRUSION-1. Ncut corresponds to the number of type 2 nodes
cut to increase the parallelism. A value p = 0 is used as a flag to indicate no splitting, while more
splitting occurs as p decreases. Flops-based dynamic scheduling is used for all runs in this section.
The best time obtained for a given number of processors is indicated in bold font. We see that
significant performance improvements (of up to 40% reduction in time) can be obtained by using

31

/N

NPIV

O~NOUAWN -

NFRONT

/N

mm Contribution blocks
mm Pivot blocks

ASSEMBLY TREE
BEFORE SPLITTING

32

/ N\

NPV father

_—
4
5
6

NFRONT-NPIV ,

NPIVn

1
2
3

NFRONT

RN

ASSEMBLY TREE
AFTER SPLITTING

Figure 16: Tree before and after the subdivision of a frontal matrix with a large pivot block.

CRANKSEG_2
p Number of processors
16 20 24 28 32
0 | Time | 61.1 | 45.6 | 41.9 | 41.7 | 40.4

Ncut 0 0 0 0 0
200 | Time | 37.9 | 31.4 | 30.4 | 29.5 | 25.4
Ncut 6 7 9 9 12
150 | Time | 41.8 | 31.3 | 31.0 | 28.9 | 27.2
Ncut 7 9 10 12 13
100 | Time | 39.8 | 32.3 | 28.4 | 28.6 | 26.7
Ncut 9 11 13 14 15

50 | Time | 36.7 | 33.6 | 31.4 | 29.6 | 274
Ncut 12 13 16 17 21
10 | Time | 40.8 | 32.5 | 29.5 | 29.8 | 26.0
Ncut 16 17 21 28 32

INV-EXTRUSION-1

p Number of processors
4 8 16 24 32
0 | Time | 25.9 | 16.7 | 14.6 | 13.5 | 14.6
Ncut 0 0 0 0 0
200 | Time | 25.5 | 16.7 | 13.4 | 12.1 | 12.4
Ncut 0 1 3 6 12
150 | Time | 24.9 | 16.3 | 13.5 | 134 | 12.4
Ncut 1 1 4 11 9
100 | Time | 24.9 | 16.2 | 13.7 | 13.1 | 13.6
Ncut 1 2 6 19 24
50 | Time | 24.9 | 17.0 | 13.5 | 13.6 | 16.6
Ncut 1 3 14 25 35
10 | Time | 249 | 175 | 134 | 14.5 | 15.8
Ncut 2 6 17 27 33

Table 17: Time (in seconds) for factorization and number of nodes cut for different values of parameter
p on the IBM SP2. Nested dissection ordering and flops-based dynamic scheduling are used.

33

node splitting. For small values of p, the number of nodes split does not increase too much and
that even if the best timings are generally obtained for relatively large values of p, the time does not
increase too much for small values of p.

7 Dissemination: the use of MUMPS in a joint project
CERFACS-INRIA

In the framework of a joint research project between INRIA (A. Marrocco, P. Le Tallec) and
CERFACS (L. Giraud, J.C. Rioual) the MUMPS package has been used within a parallel domain
decomposition code for the solution of the drift diffusion equation involved in semiconductor device
modeling [39].

The model problem describes the stationary state of a transistor (for ¢ — c0) when a tension is
applied on its bounds. The model is a system of six completely coupled nonlinear partial differential
equations. The system is decoupled and discretized in time by an implicit nonlinear scheme. At each
time step, three systems of two nonlinear partial differential equations have to be solved. The first
system is associated with the electrostatic potential, the second with the negative charges (electrons),
and the third with the positive charges (holes).

Each of these systems is discretized in space by a mixed finite element method defined on 2D
unstructured meshes and solved by a Newton-Raphson method. At each step of this method, a linear
system of equations has to be solved. For this, a domain decomposition technique without overlapping
is used. Preliminary experimental results have shown the relevance of a two level preconditioner for
the Schur complement. The coarse space component consists in associating one degree of freedom
with each edge of the domain decomposition, referred to as “edge-based” preconditioner in [19].
Among the local components investigated, the most robust is the one that consists in assembling
the local Schur complement associated with each subdomain. This results in a block diagonal
preconditioner with overlap between the blocks [17, 18]. While this preconditioner is numerically
relevant, we need an efficient sparse software to make it computationally competitive. In this context
MUMPS and its Schur complement functionality are used. The list of unknowns of the Schur matrix
(i.e. interface nodes of the Neumann local matrix in a domain decomposition framework) is given
to MUMPS which provides the assembled Schur complement matrix and the possibility to use the
factorization done on the interior nodes. The advantage of using MUMPS is twofold. First, it computes
the local Schur complement matrix at only about twice the price of the factorization of the local
Dirichlet problem. Second, it significantly reduces the computational time in the Krylov iteration
as we only need to perform a DGEMV (compared to a sparse forward/backward substitution in a
classical approach).

To validate the above domain decomposition approach, a comparison with a complete parallel
direct technique has been made. For this, the distributed input matrix functionality of MUMPS has
been used. The matrix associated with each subdomain is provided to MUMPS in a fully distributed
way. Overlapping between the the subdomains is handled automatically, which solves the complete
problem (with no centralized assembly) in parallel.

In conclusion, the ability to compute the local Schur complement at a low cost is a crucial feature
for the design of an efficient preconditioner.

The present study is ongoing research that is part of the PhD work of Jean-Christophe Rioual.

8 Performance summary of MUMPS4.0 and comparison
with PSPASES v1.0.2

Tables 18 and 19 show results obtained with MUMPS 4.0 using both dynamic scheduling and node
splitting. Default values for the parameters controlling the efficiency of the package have been used
and therefore the timings do not always correspond to the fastest possible execution time. The
comparison with results presented in Tables 7, 8, and 11 summarizes well the benefits coming from
the work presented in Sections 6.4 and 6.5.

34

Matrix Number of processors

1(%) 4 8| 16| 24| 32
OILPAN 33 11.1 7.5 5.2 4.8 4.6
B5TUER 108 | 82.1 | 51.9 | 13.4 | 13.1 | 10.5
BMW7ST_1 104 - 1298 (13.7 | 11.7 | 11.3
BMW3_2 246 - -1 24.1|24.0 | 204
CRANKSEG_1 270 | 185.3 | 92.4 | 27.3 | 25.6 | 20.9
CRANKSEG_2 378 - - | 41.8 | 31.0 | 27.2
BBMAT 198 | 255.4 | 85.2 | 34.8 | 32.8 | 30.9
INV-EXTRUSION-1 70 249 | 16.3 | 13.5 | 134 | 124
MIXING-TANK 104 308 | 21.6 | 16.4 | 14.7 | 14.8

Table 18: Time (in seconds) for factorization using MUMPS 4.0 with default options on IBM
SP2. ND ordering is used. *) : uniprocessor CPU or estimated CPU time; - means swapping
or not enough memory.

Matrix Number of processors

1 2 4 8 16
sc mh 37| 21| 13 7 5
BMW7ST_1 62| 36| 25| 12 10
BMW3_2 151 | 96| 53| 33 18

BMWCRA_1 307 | 178 82 58 36
CRANKSEG_2 | 217 | 112 66 46 29
M_T1.RSE 92 56 31 19 13
SHIP_003.RSE | 392 | 237 | 124 | 108 51
SHIPSEC1.RSE | 174 | 125 63 39 25
SHIPSEC5.RSE | 281 | 181 | 103 62 37
SHIPSEC8.RSE | 187 | 119 64 35 27
THREAD.RSE 186 | 125 70 38 24
X104.RSE 56 | 34 19 12 11

Table 19: Time (in seconds) for factorization using MUMPS 4.0 with default options on SGI
Origin 2000. ND or MFR ordering is used.

35

To further analyse the performance obtained with MUMPS, we compare the bahaviour of the code
with PSPASES v1.0.2 [37, 36]. We would like to emphasize that PSPASES is a software package
for the parallel Cholesky (LL™) factorization of symmetric positive definite matrices only; numerical
pivoting is not possible and this allows for the use of much simpler static data distribution, data
structures, and task mapping.

FACTORIZATION TIME X 1011 FLOP COUNT
300] I
2 L
250
15¢
200
150 1
100
0.5¢
50}
0 : 0
1 2 4 8 16 32 1 2 4 8 16 32
number of processors number of processors

mumps-onmetis
pspases—parmetis

pspases—onmetis

Figure 17: SGI Origin 2000, matrix BMWCRA_1

In Figure 17, we compare the performance obtained on matrix BMWCRA_1 with MUMPS 4.0 and
PSPASES v1.0.2. To have a fair comparison, nested dissection based orderings based on ONMETIS
[41] were used for both methods. We observe that for the current version of PSPASES, the default
ordering option (PARMETIS) should not be used for larger numbers of processors. We also see that,
even if MUMPS performs a more costly LDLT factorization of the matrix, the factorization times for
the two packages are almost identical. Futhermore, we also notice the good parallel behaviour of the
general purpose solver MUMPS, since timings are very comparable to those for PSPASES, even on 32
Processors.

36

A PARASOL interface to MUMPS

The MUMPS solver has been fully integrated within the PARASOL Ttest Driver, referred to as PTD.
In the following, we briefly describe how MUMPS can be called through the PTD and the PARASOL
interface.

A.1 Configuring MUMPS through the PTD
Currently, MUMPS can be invoked through the PTD as follows:
"loader’ ptd -uM [-"mode"] -d"path" "mat" "rhs" "sol" [-mi="1list"]

Here, arguments between brackets [] are optional and

"loader" is a machine dependent system executable for loading and executing parallel programs
on remote processors. For the IBM SP2 machine, this is normally (/usr/bin/)poe. For
the SGI/CRAY Origin 2000 at Bergen, this is mpirun -np "p" where "p" is the number of
Processors.

ptd is the executable of the PTD.
-uM invokes MUMPS through the PTD.

"mode" specifies the parallel execution model that the PTD will use (y is hybrid-host mode. Y is
hybrid-node mode). If this option is omitted, the PTD will run in host-node mode (which
requires at least two processors).

"path" is the full path to the data files.
"matrix" is the name of the file containing the matrix in Rutherford-Boeing format.

"rhs" is the name of the file containing the right-hand side. If "rhs" is substituted by a +, the PTD
will generate a random right-hand side and the user need not provide a file name.

"sol" is the name of the file that will hold the computed the solution vector (provided the PTD
terminates successfully).

"list" is a comma-separated list of integers that are used to set up an instance for MUMPS. Currently,
only two integers are accepted. The first integer specifies which parallel mode MUMPS will use (0
for host-node mode, 1 for hybrid-host mode). The second integer specifies the type of symmetry
of the input matrix (0 symmetric positive definite, 1 general symmetric). This integer is ignored
if the matrix is unsymmetric. If the integer list option is omitted, MUMPS will run in host-node
mode and a symmetric matrix is considered positive definite.

Note that by setting the options -y and -mi=1,0 (or -mi=1,1), the PTD will run on one processor.
Running both the PTD and MUMPS in host-node mode, requires at least three processors.

Not all possible combinations of command line options are allowed. For example, if the PTD
is invoked in hybrid-node mode (option -Y), MUMPS must be called in hybrid-host mode (option
-mi=1,0 or -mi=1,1). If incompatible options are given, the PTD may modify some options (and
issue an appropriate warning) and continue, or it may return with an error.

We note that some of the functionalities that are available within MUMPS cannot be invoked by
the command-line options of the PTD.

A.2 Passing data to MUMPS

The PARASOL Interface Specification [32] defines four phases. Before being used, an instance of the
package must always be initialized by the PARASOL initialization routine psl_init. The PARASOL
mapping routine psl_map should then be called to analyse the data and map it onto the processors.
After the mapping, the PARASOL solution phase, performed by routine ps1l_solve, solves the system
of equations. The solution phase may be called multiple times so that a series of problems wit similar
structure can be solved without recomputing the mapping. When the PARASOL instance is no longer
needed, its allocated resources can be freed by the psl_end routine.

37

An instance of the PARASOL package operates on its own set of private data. Each instance
has a descriptor that encodes several items, like for example an identification number, an MPI
communicator, the selected solver, and the phase it has reached.

For MUMPS, the following actions are taken by the PARASOL interface at each phase:

initialization: The interface checks the PARASOL instance supplied by the user. If the instance
is OK and specifies that MUMPS is to be used as solver, the interface extracts the data from this
instance that is necessary to initialize a MUMPS instance (for example the MPI communicator and
type of symmetry of the problem). Optionally, control parameters are read from a configuration
file and the MUMPS instance is modified accordingly. The PARASOL instance and MUMPS instance
have the same identification number.

mapping: The interface evaluates the mapping contract supplied by the user. If the contract is
accepted, the interface passes the matrix pattern provided by the user to MUMPS. Optionally, the
user can also provide an ordering of the variables or tell the interface to compute an ordering
(see Section A.8). Parameters that control this are read from a second configuration file. After
the (optional) ordering, MUMPS performs the analysis. MUMPS computed an ordering itself if it
was not given an ordering. Optionally, auxiliary information output by MUMPS is returned to
the user.

solve: The interface evaluates the solve contract supplied by the user. If the contract is accepted,
depending on what is specified in the contract, the interface passes the matrix values and/or
right-hand side to MUMPS. Optionally, the user may provide a scaling that will be used by MUMPS.
MUMPS performs the factorization and/or the solve phase. Optionally, the solution vector, the
deficiency of the matrix, a basis for the null space (if the matrix is deficient), and/or auxiliary
information output by MUMPS is returned to the user.

end: The PARASOL instance and the corresponding MUMPS instance are terminated.

A.3 Instance descriptor

The PARASOL instance descriptor id is an integer array whose fields are assigned a prescribed
meaning. It must be set by the user before the initialization phase of the PARASOL instance is
called. The descriptor contains permanent fields and package- and user-controlled fields. We refer to
the PARASOL Interface Specification [32] for a complete list of these fields, their meaning, and their
possible values. Not all the descriptor fields need be relevant to a particular PARASOL solver and
the range of values for a (relevant) field may be a subset of the range defined in [32]. Here, we list
the permanent fields and values that are relevant to MUMPS. The package- and user-controlled fields
must be used as described in [32].

Once set, the permanent fields of the instance descriptor must not be changed. The required
PARASOL solver is held by the configuration field id(PSL_CONF). To invoke MUMPS, this field
must be set to PSL_MUMPS. The model of parallel operation of the PARASOL instance is held by
the field id (PSL_CONF). Currently, the values PSL_HOSTNODE, PSL_HYBRIDHOST, and PSL_HYBRIDN(ODE
are allowed. The descriptor field id(PSL_COMM) must contain a valid MPI communicator. At
the initialization phase, this communicator is duplicated (in hybrid-host mode) or a ’smaller’
communicator is derived from it (in host-node mode). This new communicator is used by MUMPS
for message passing. The field id(PSL_DATA) must contain a (unique) identifier for this PARASOL
instance.

To fine tune the PARASOL instance for MUMPS, we currently use two additional permanent fields
id(PSL_CONF+1) and id (PSL_CONF+2). The field id (PSL_CONF+1) must be set to the type of symmetry
of the input matrix (0 is unsymmetric, 1 is symmetric positive definite, 2 is general symmetric). The
field id (PSL_CONF+2) must be set to the parallel execution model for MUMPS (0 is host-node, 1 is
hybrid-host).

A.4 Data transfer descriptors

For each PARASOL mapping and solution phase, the data exchange between the user and the
package (in our case MUMPS) is divided into data exchange sessions. Each data exchange session

38

negiotates and fullfills data transfer from the user to the package and vice versa. At the start of
each data exchange session, the user specifies to the package what (user-generated) data the package
can get in order to compute the (packet-generated) data the user expects to receive upon return.
This data is described by means of data transfer descriptors. A data transfer descriptor is an array
of integers. Associated with each descriptor are up to three other arrays, the contents of which are
interpreted according to the contents of the descriptor. If the package agrees with the description
of the data offered by the user, a contract is established and for each data transfer descriptor the
associated data is exchanged. The data exchange protocol is described in detail in [32].

In the following three sections, we list the data transfer descriptors that are used in the interface
to MUMPS. For the meaning of the individual fields of these descriptors, we refer to [32].

A.5 Descriptors for mapping and solution phase

The parameters that control the actions taken by MUMPS during the mapping and solution phase can
be provided by the user. To do this, the user may specify two descriptors, one for integer control
parameters and one for double precision control parameters:

Integer control parameters (user-data descriptor) [optional]

ud (PSL_TYPE) MPI_INTEGER

ud (PSL_NAME) = PSL_PARAM
ud (PSL_NROW) = 20

ud (PSL_NCOL) = 1

ud (PSL_LDIM) = ud(PSL_NROW)
ud (PSL_FORM) = PSL_TABLE

Double precision control parameters (user-data descriptor) [optional]

ud (PSL_TYPE) MPI_DOUBLE_PRECISION

ud (PSL_NAME) = PSL_PARAM
ud (PSL_NROW) = 5

ud (PSL_NCOL) = 1

ud (PSL_LDIM) = ud(PSL_NROW)
ud (PSL_FORM) = PSL_TABLE

The data associated with the integer control parameter descriptor is an integer array of length 20.
The data associated with the double precision control parameter descriptor is a double precision
array of length 5. Their contents are described in Section B.1.5.

The user may ask MUMPS to return auxiliary integer and/or double precision information about the
execution of MUMPS. The integer information (an array of length 20 and described in Section B.1.7)
can be requested by specifying the descriptor

Auxiliary integer information (package-data descriptor) [optional]

pd(PSL_TYPE) = MPI_INTEGER
pd (PSL_NAME) = PSL_PARAM
pd (PSL_NROW) = 20
pd(PSL_NCOL) = 1

pd (PSL_LDIM) = pd(PSL_NROW)
pd (PSL_FORM) = PSL_TABLE

The double precision information descriptor is the same except that pd(PSL_TYPE) must be
MPI_DOUBLE_PRECISION.

39

A.6 Descriptors for the mapping phase

When MUMPS is invoked, the PARASOL mapping phase must be given the pattern of a sparse matrix.
The PARASOL interface accepts input data in sparse matrix format or in elemental format as defined
in [32]. Therefore, one of the two following matrix data descriptors must always be specified by the
user. If a matrix descriptor is not given, a contract will not be established.

Sparse matrix format (user-data descriptor) [required]

ud (PSL_NAME)
ud (PSL_ATTR)
ud (PSL_FORM)
ud (PSL_NROW)
ud (PSL_NCOL)
ud (PSL_NVAL)
ud (PSL_ROW)
ud (PSL_COL)
ud (PSL_VAL)

PSL_MATRIX

PSL_SYMMETRIC ! or PSL_UNSYMMETRIC
PSL_SPARSEMAT

"order of matrix"

ud (PSL_NROW)

"number of matrix entries"

0

0

PSL_NOVAL

If ud(PSL_ATTR) = PSL_SYMMETRIC, the matrix supplied by the user is symmetric (in value and
structure). If ud(PSL_ATTR) = PSL_UNSYMMETRIC, the matrix is unsymmetric. The data that is
associated with this descriptor must be available in compressed column major order as specified in
[32].

Note that, although the interface to MUMPS supports the sparse matrix format, the actual data
passed to MUMPS is in coordinate form (see Section B.1.1). The interface performs this conversion.

Elemental matrix format (user-data descriptor) [required]

ud (PSL_NAME)
ud (PSL_ATTR)
ud (PSL_FORM)
ud (PSL_NROW)
ud (PSL_NCOL)
ud (PSL_NELT)
ud (PSL_NVAR)
ud (PSL_NVAL)
ud (PSL_ROW)
ud (PSL_COL)
ud (PSL_VAL)

PSL_MATRIX
PSL_SYMMETRIC
PSL_ELEMENTMAT
"order of matrix"

ud (PSL_NROW)

"number of elemental matrices"

"sum of dimensions of individual elements"
"number of values in elements"

0

0

PSL_NOVAL

! or PSL_UNSYMMETRIC

The elemental data that is associated with this descriptor must be available in dense column major
order as specified in [32]. If the matrix is symmetric (ud (PSL_ATTR) = PSL_SYMMETRIC), only the
lower triangular part of the elements (including the diagonal) must be given.

The fields PSL_ROW and PSL_COL specify that the pattern of the matrix must be passed to MUMPS.
The field PSL_VAL specifies that values are not passed to MUMPS (even if they are provided by the
user).

For each matrix descriptor, the field PSL_ATTR must be compatible with the instance descriptor
field PSL_CONF+1.

If the user wants that MUMPS uses a pre-calculated ordering of the variables during the analysis,
the following table descriptor must be specified:

User-defined ordering (user-data descriptor) [optional]

ud (PSL_TYPE) = PSL_INTEGER

ud (PSL_NAME) = PSL_VAR2NEW

ud (PSL_NROW) = "order of matrix"
ud (PSL_NCOL) = 1

ud (PSL_LDIM) = ud(PSL_NRQOW)

ud (PSL_FORM) = PSL_TABLE

40

The data associated with this descriptor is an integer array of length the order of the matrix. This
array must specify for each variable its rank in the pivot sequence. If the PSL_NROW field of this
descriptor is not equal to the same field of the matrix descriptor, a contract will not be established.

List of variables in the Schur complement matrix (user-data descriptor) [optional]

ud (PSL_TYPE) = MPI_INTEGER

ud (PSL_NAME) = PSL_MUMPS_VARSCHUR

ud (PSL_NROW) = "order of Schur complement matrix"
ud(PSL_NCOL) = 1

ud (PSL_LDIM) = ud(PSL_NROW)

ud (PSL_FORM) = PSL_TABLE)

The data associated with this descriptor is an integer array of dimension the order of the desired
Schur complement matrix. The i¢-th component of this array must contain the i-th variable in the
Schur complement matrix.

A.7 Descriptors for the solution phase

The matrix descriptor that was used during the mapping phase, must again be provided by the user
for the solution phase, but now:

! new field
ud (PSL_TYPE) = MPI_DOUBLE_PRECISION
! modified fields
ud (PSL_ROW) = PSL_KNOWN
ud (PSL_COL) PSL_KNOWN
ud (PSL_VAL) 0 ! or PSL_KNOWN

The field PSL_TYPE specifies that the data is provided in double precision format. The fields PSL_ROW
and PSL_COL specify that the pattern of the matrix is already known by MUMPS and is not passed at
the solution phase. If ud(PSL_VAL) = 0, the matrix values are passed to MUMPS. If ud (PSL_VAL) =
PSL_KNOWN, the values must have been passed to MUMPS in a previous solution phase with the same
instance, and now no values are passed (even if they are provided by the user).

If, besides factorization of the matrix, the user also wishes to solve a system of equations, the
following right-hand side descriptor must be supplied by the user:

Right-hand side (user-data descriptor) [optional]

ud (PSL_TYPE) = MPI_DOUBLE_PRECISION
ud (PSL_NAME) = PSL_RHSIDE

ud (PSL_ATTR) = PSL_RIGHT

ud (PSL_NROW) = "order of matrix"
ud (PSL_NVEC) = 1

ud (PSL_LDIM) = ud(PSL_NROW)

ud (PSL_FORM) = PSL_DENSEVEC

The data associated with this descriptor is a double precision array of length the order of the matrix
that contains the right-hand side vector. If the PSL_NROW field of this descriptor is not equal to the
same field of the matrix descriptor, a contract will not be established.

The solution to the system of equations is returned through the interface only when the following
solution descriptor is specified:

Solution vector (package-data descriptor) [optional]

41

pd(PSL_TYPE) = MPI_DOUBLE_PRECISION
pd (PSL_NAME) = PSL_SOLUTION
pd(PSL_ATTR) = PSL_RIGHT

ud (PSL_NROW) = "order of matrix"
pd (PSL_NVEC) = 1

pd (PSL_LDIM) = pd(PSL_NROW)

pd (PSL_FORM) = PSL_DENSEVEC

The data associated with this descriptor is a double precision array of length the order of the matrix
in which the solution vector will be returned. If the PSL_NROW field of this descriptor is not equal
to the same field of the matrix descriptor, a contract will not be established. Furthermore, if the
solution descriptor is provided by the user, the right-hand side descriptor must also be provided.

If the user wants MUMPS to return the deficiency (an integer) of the matrix, the following descriptor
must be provided:

Matrix deficiency (package-data descriptor) [optional]

pd(PSL_TYPE) = MPI_INTEGER

pd (PSL_NAME) = PSL_MUMPS_DEFICIENCY
pd (PSL_NROW) = 1

pd(PSL_NCOL) = 1

pd(PSL_LDIM) = pd(PSL_NROW)

pd (PSL_FORM) = PSL_TABLE)

If the user also wants a basis for the null space of the (rank-deficient) matrix, the following
descriptor must be provided:

Null space basis (package-data descriptor) [optional]

pd(PSL_TYPE) = MPI_DOUBLE_PRECISION
pd (PSL_NAME) = PSL_MUMPS_NULLSPACE
pd(PSL_NROW) = "order of matrix"
pd(PSL_NCOL) = "deficiency of matrix"
pd(PSL_LDIM) = pd(PSL_NROW)

pd (PSL_FORM) = PSL_TABLE

The data associated with this descriptor is a double precision array of dimension the order of the
matrix times the deficiency. The null space descriptor can only be used when the deficiency of the
matrix is known. Therefore, the null space descriptor must always be accompanied by the deficiency
descriptor. If the null space descriptor is provided by the user but not the deficiency descriptor, a
contract will not be established. The PSL_NROW field of the null space descriptor must be equal to
the same field of the matrix descriptor.

Optionally, the user may provide a row and column scaling vector that MUMPS will use to scale
the matrix values. For the row scaling, the following descriptor must be given:

Scaling vector (user-data descriptor) [optional]

ud (PSL_TYPE) = MPI_DOUBLE_PRECISION
ud (PSL_NAME) = PSL_MUMPS_ROWSCALE
ud (PSL_NROW) = "order of matrix"
ud (PSL_NCOL) = 1

ud (PSL_LDIM) = ud(PSL_NROW)

ud (PSL_FORM) = PSL_TABLE

42

The data associated with this descriptor is a double precision array of dimension the order of the
matrix. The ¢-th component of the array must contain the scaling factor for row ¢ of the matrix.

The descriptor for the column scaling is the same except that ud(PSL_NAME) =
PSL_MUMPS_COLSCALE. The j-th component of the associated data array must contain the scaling
factor for column j of the matrix.

Either no or both scaling descriptors must be present, otherwise a contract will not be established.
Furthermore, the PSL_NROW fields of the scaling descriptors must be equal to the same field of the
matrix descriptor.

Schur complement matrix (package-data descriptor) [optional]

pd(PSL_TYPE) = MPI_DOUBLE_PRECISION

pd (PSL_NAME) = PSL_MUMPS_MATSCHUR

pd(PSL_NROW) = "order of Schur complement matrix"
pd(PSL_NCOL) = pd(PSL_NROW)

pd(PSL_LDIM) = pd(PSL_NROW)

pd(PSL_FORM) = PSL_TABLE

The data associated with this descriptor is a two-dimensional double precision array that contains
the Schur complement matrix. The Schur complement matrix descriptor can only be used when
the Schur complement variables were given to the mapping phase. The PSL_NRQV field of the Schur
complement matrix descriptor must be equal to the same field of the Schur variables descriptor.

A.8 Additional functionality provided through the PARASOL
interface

Besides the approximate minimum ordering algorithm built in MUMPS, the PTD currently implements
4 external ordering strategies for the MUMPS solver based on graph partitioning package METIS [42].
These orderings are computed by the PARASOL interface during the mapping phase and entered to
the analysis phase of MUMPS. The seven orderings options currently available are:

e AMD - Approximate Minimum Degree ordering. This is the default (internal) ordering
generated by MUMPS if no user-defined ordering was specified by the user or if an error occurred
when an external ordering was computed.

e METIS based orderings. Multilevel spectral bisection from the METIS library is combined
with minimum degree heuristics on the subgraphs. The user can define the maximum size of
the subgraphs and the balancing factor for the size of the subgraphs at each bisection step.
This allows the user to control the size/depth of the bisection tree. The following options are
available:

0EO - Multilevel bisection and Multiple Minimum Degree (MMD) on the subgraphs. It uses
the OEMETIS code.

OE1 - Same as the 0EO option, but AMD is used on the subgraphs.

OE2 - Same as the 0EO option, but HALO-AMD is used on the subgraphs. Since the bisection
is implemented in a recursive manner, only partial information on the boundaries of the
subgraphs is available. Separators constructed at the last level of the bisection tree are used
for the definition of the boundary in HALO-AMD. The complete boundary information is
used in algorithm RLO (described below).

ONO - Multilevel bisection based on the ONMETIS package. It is identical to the ONMETIS
code except that AMD rather than MMD is used on the subgraphs.

o User-defined ordering. The user specifies an integer array that specifies for each variable in the
problem its rank in the pivot sequence.

Based on our experience during the project, we recommend the use of ONO (ONMETIS). If the
user has computed a good ordering, the user-defined ordering option is recommended.

43

B Fortran 90 interface to MUMPS

In the Fortran 90 interface, there is a single user callable subroutine called MUMPS that has a single
parameter mumps_par of Fortran 90 derived datatype STRUC_MUMPS. MPI must be initialized by the
user before the first call to MUMPS. The calling sequence looks as follows:

INCLUDE ’mpif.h’
INCLUDE ’mumps_struc.h’

INTEGER IERR
TYPE (STRUC_MUMPS) :: mumps_par

CALL MPI_INIT(IERR)
CALL MUMPS(mumps_par)

CALL MPI_FINALIZE(IERR)

The datatype STRUC_MUMPS holds all the data for the problem. It has many components, only
some of which are of interest to the user. The other components are internal to the package (and
could be declared private). Some of the components must only be defined on the host. Others
must be defined on all processors. The file mumps_struc.h defines the derived datatype and must
always be included in the program that calls MUMPS. The file mumps_root.h, which is included in
mumps_struc.h, defines the datatype for an internal component root, and must also be available
at compilation time. Components of the structure STRUC_MUMPS that are of interest to the user are
shown in Figure 18.

The interface to MUMPS counsists in calling the subroutine MUMPS with the appropriate parameters
set in mumps_par.

B.1 Input and output parameters
Components of the structure that must be set by the user are:

mumps_par%JOB (integer) must be initialized by the user on all processors before a call to MUMPS.
It controls the main action taken by MUMPS. It is not altered.

JOB=-1 initializes an instance of the package. This must be called before any other call
to the package concerning that instance. It sets default values for other components of
STRUC_MUMPS, which may then be altered before subsequent calls to MUMPS. Note that three
components of the structure must always be set by the user (on all processors) before a
call with JOB=-1. These are

e mumps_par%COMM,

e mumps_par%SYM, and

e mumps_par%PAR.

JOB=-2 destroys an instance of the package. All data structures associated with the instance,
except those provided by the user in mumps_par, are deallocated. It should be called by
the user only when no further calls to MUMPS with this instance are required. It should be
called before a further JOB=-1 call on the same instance.

JOB=1 performs the analysis. It uses the pattern of the matrix A input by the user. The
following components of the structure define the matrix pattern and must be set by the
user (on the host only) before a call with JOB=1:

e mumps_par%N, mumps_par%NZ, mumps_par%IRN, and mumps_par%JCN if the user
wishes to input the structure of the matrix in assembled format (ICNTL(5)=0, and
ICNTL(18) # 3),

e mumps_par%N, mumps_par%NELT, mumps_par%ELTPTR, and

mumps_par%HELTVAR if the user wishes to input the matrix in elemental format
(ICNTL(5)=1).

44

INCLUDE ’mumps_root.h’
TYPE STRUC_MUMPS
SEQUENCE

C This structure contains all parameters for the
C interface to the user, plus internal information
C sokesokokdok ko ok ok
C INPUT PARAMETERS
C okokokdokok ok ook ook
C __________________
C Problem definition
C __________________
C Solver (SYM=0 Unsymmetric, SYM=1 Sym. Positive Definite, SYM=2 General Symmetric)
C Type of parallelism (PAR=1 host working, PAR=0 host not working)
INTEGER SYM, PAR, JOB
[+
C Control parameters
c __________________
INTEGER ICNTL(20)
DOUBLE PRECISION CNTL(5)
C
C Order of Input matrix
C
INTEGER N
C
C Assembled input matrix : User interface
C
INTEGER NZ
DOUBLE PRECISION, DIMENSION(:), POINTER :: A
INTEGER, DIMENSION(:), POINTER :: IRN, JCN
C
C Case of distributed matrix entry
C
INTEGER NZ_loc
INTEGER, DIMENSION(:), POINTER :: IRN_loc, JCN_loc
DOUBLE PRECISION, DIMENSION(:), POINTER :: A_loc
C
C Unassembled input matrix: User interface
C
INTEGER NELT
INTEGER, DIMENSION(:), POINTER :: ELTPTR, ELTVAR
DOUBLE PRECISION, DIMENSION(:), POINTER :: A_ELT
c _________________
C MPI Communicator
o ——
INTEGER COMM
C
C Ordering and scaling, if given by user (optional)
C
INTEGER, DIMENSION(:), POINTER :: PERM_IN
DOUBLE PRECISION, DIMENSION(:), POINTER :: COLSCA, ROWSCA
C koo koo ok ok
C INPUT/OUTPUT data
C koo koo sk ok ok
C
C RHS : on input it holds the right hand side
C on output it always holds the assembled solution
C

DOUBLE PRECISION, DIMENSION(:), POINTER :: RHS

Q

C OUTPUT data and Statistics

INTEGER INF0(20)
DOUBLE PRECISION RINFO0(20)

C Global information -— host only
DOUBLE PRECISION RINFOG(20)
INTEGER INFOG(20)

C
C Deficiency and null space basis (optional
C
INTEGER Deficiency
DOUBLE PRECISION, DIMENSION(:,:), POINTER :: NULL_SPACE
o ——
C Schur
c ______
INTEGER SIZE_SCHUR
INTEGER, DIMENSION(:), POINTER :: LISTVAR_SCHUR
DOUBLE PRECISION, DIMENSION(:), POINTER :: SCHUR
C

C Mapping potentially provided by MUMPS

INTEGER, DIMENSION(:), POINTER :: MAPPING 45
END TYPE STRUC_MUMPS

Figure 18: The components of the structure STRUC_MUMPS defined in mumps_struc.h that are of interest
to the user.

(See Sections B.1.1-B.1.2.) These components should be passed unchanged when later
calling the factorization (JOB=2) and solve (JOB=3) phases.
In the case of distributed assembled matrix,
e If ICNTL(18) =1 or 2, the previous requirements hold except that IRN and JCN need
not be passed unchanged to factorization phase.
e If ICNTL(18) = 3, the user should provide
— N on the host
— mumps_par%NZ_loc, mumps_par%IRN_loc and mumps_par%JCN_loc on all slave
processors. Those should be passed unchanged to the factorization (JOB=2) and
solve (JOB=3) phases.
See Section B.1.3 for more details and options for the distributed matrix entry.
In the analysis, MUMPS chooses pivots from the diagonal using a selection criterion to
preserve sparsity. It uses the pattern of A + AT but ignores numerical values. It
subsequently constructs subsidiary information for the numerical factorization (a JOB=2
call).
An option exists for the user to input the pivotal sequence (in array PERM_IN,
ICNTL(7)=1, see below) in which case only the necessary information for a JOB=2 call
will be generated.
For a call with JOB=1 on an assembled matrix, an integer array of size 2*NZ + 3*N + 1 is
used as a temporary workspace for the analysis on the host. (For an elemental matrix, the
size of this array is not known a priori, nut is generally smaller.) An integer component
array IS1, of size 12*N;, is allocated dynamically. It is transmitted to the factorization and
solution phases (JOB=2 and JOB=3, respectively), and deallocated with JOB=-2.
A call to MUMPS with JOB=1 must be preceded by a call with JOB=-1 on the same instance.
JOB=2 performs the factorization. It uses the numerical values of the matrix A provided by
the user and the information from the analysis phase (JOB=1) to factorize the matrix A.
If the matrix is centralized on the host (ICNTL(18)=0), the pattern of the matrix
should be passed unchanged since the last call to the analysis phase (see JOB=1); the
following components of the structure define the numerical values and must be set by the
user (on the host only) before a call with JOB=2:
e mumps_par%A if the matrix is in assembled format (ICNTL(5)=0), or
e mumps_par%A_ELT if the matrix is in elemental format (ICNTL(5)=1).
If the initial matrix is distributed (ICNTL(5)=0 and ICNTL(18) # 0), then the
following components of the structure must be set by the user on all slave processors
before a call with JOB=2:
e mumps_par%A loc on all slave processors, and
e mumps_par%NZ_loc, mumps_par%IRN _loc and mumps_par%JCN_loc if ICNTL(18)=1
or 2. (For ICNTL(18)=3, NZloc, IRN_loc and JCN_loc have already been passed to
the analysis step and must be passed unchanged.)
(See Sections B.1.1-B.1.2-B.1.3.) The actual pivot sequence used during the factorization
may differ slightly from the sequence returned by the analysis if the matrix A is not
diagonally dominant.
An option exists for the user to input scaling vectors or let MUMPS compute such vectors
automatically (in arrays COLSCA/ROWSCA, ICNTL(8) # 0, see below).
A call to MUMPS with JOB=2 must be preceded by a call with JOB=1 on the same instance.
JOB=3 performs the solution. It uses the right-hand side x provided by the user and the
factors generated by the factorization (JOB=2) to solve a system of equations Ax = b or
ATx =b. The pattern and values of the matrix should be passed unchanged since the last
call to the factorization phase (see JOB=2). The structure component mumps_par%RHS
must be set by the user (on the host only) before a call with JOB=3. (See Section B.1.4.)
A call to MUMPS with JOB=3 must be preceded by a call with JOB=2 (or JOB=4) on the
same instance.
JOB=4 combines the actions of JOB=1 with those of JOB=2. It must be preceded by a call
to MUMPS with JOB=-1 on the same instance.

46

JOB=5 combines the actions of JOB=2 and JOB=3. It must be preceded by a call to MUMPS
with JOB=1 on the same instance.

JOB=6 combines the actions of calls with JOB=1, 2, and 3. It must be preceded by a call to
MUMPS with JOB=-1 on the same instance.

Consecutive calls with JOB=2 and consecutive calls with JOB=3 on the same instance are
possible.

mumps_par%COMM (integer) must be set by the user on all processors before the initialization
phase (JOB=-1) and must not be changed. It must be set to a valid MPI communicator that
will be used for message passing inside MUMPS. It is not altered by MUMPS. The processor with
rank 0 in this communicator is used by MUMPS as the host processor.

mumps_par%SYM (integer) must be initialized by the user on all processors and is accessed by
MUMPS only during the initialization phase (JOB=-1). It is not altered by MUMPS. Possible
values for SYM are:

0 A is unsymmetric
1 A is symmetric positive definite
2 A is general symmetric

mumps_par%PAR (integer) must be initialized by the user on all processors and is accessed by
MUMPS only during the initialization phase (JOB=-1). It is not altered by MUMPS. Possible
values for PAR are:

0 host is not involved in factorization/solve phases
1 host is involved in factorization/solve phases

If set to 0, the host will only hold the initial problem, perform symbolic computations during
the analysis phase, distribute data, and collect results from other processors. If set to 1, the
host will also participate in the factorization and solve phases. If the initial problem is large
and memory is an issue, PAR = 1 is not recommended if the matrix is centralized on processor
0 because this can lead to memory imbalance, with processor 0 having a larger memory load
than the other processors. Note that setting PAR to 1, and using only 1 processor, leads to a
sequential code.

B.1.1 Centralized assembled matrix input

mumps_par%N (integer), mumps.par%NZ (integer), mumps_par%IRN (integer array pointer,
dimension NZ), mumps_par%JCN (integer array pointer, dimension NZ), and mumps_par%A
(double precision array pointer, dimension NZ) hold the matrix in assembled format. These
components should be set by the user only on the host and only when ICNTL(5)=0:

e N is the order of the matrix A, N > 0. It is not altered by MUMPS.

e NZ is the number of entries being input, NZ > 0. It is not altered by MUMPS.

e IRN, JCN are integer arrays of length NZ containing the row and column indices,
respectively, for the matrix entries. IRN and JCN are unchanged unless ICNTL(6)=1,
in which case the original matrix is permuted to have a zero-free diagonal.

e A is a double precision array of length NZ. The user must set A(k) to the value of the
entry in row IRN(k) and column JCN(k) of the matrix. A is not accessed when JOB=1.
Duplicate entries are summed and any with IRN(k) or JCN(k) out-of-range are ignored.
Note that, in the case of the symmetric solver, a diagonal nonzero a;; is held as A(k)=aj;,
IRN(k)=JCN(k)=%, and a pair of off-diagonal nonzeros a;; = aj; is held as A(k)=a;; and
IRN(k)=4, JCN(k)=j or vice-versa. Again, duplicate entries are summed and entries with
IRN(k) or JCN(k) out-of-range are ignored.

The components N, NZ, IRN, and JCN describe the pattern of the matrix and must be set by
the user before the analysis phase (JOB=1). Component A must be set before the factorization
phase (JOB=2).

47

B.1.2 Element matrix input

mumps_par%N (integer), mumps par%ANELT (integer), mumps par%ELTPTR (integer array
pointer, dimension NELT+1), mumpspar%ELTVAR (integer array pointer, dimension
ELTPTR(NELT+1)-1), and mumps_par%A_ELT (double precision array pointer) hold the
matrix in elemental format. These components should be set by the user only on the host and
only when ICNTL(5)=1:

N is the order of the matrix A, N > 0. It is not altered by MUMPS.
NELT is the number of elements being input, NELT > 0. It is not altered by MUMPS.
ELTPTR is an integer array of length NELT+1. ELTPTR(j) points to the position in
ELTVAR of the first variable in element j, and ELTPTR(NELT+1) must be set to the
position after the last variable of the last element. It is not altered by MUMPS.
ELTVAR is an integer array of length ELTPTR(NELT+1)-1 and must be set to the lists
of variables of the elements. It is not altered by MUMPS. Those for element j are stored in
positions ELTPTR(j), ..., ELTPTR(j+1)-1. Out-of-range variables are ignored.
A_ELT is a double precision array. If N, denotes ELTPTR(p+1)-ELTPTR(p), then the
values for element j are stored in positions Kj + 1, ..., Kj + L;, where

- K;= J;:ll Np?, and Lj = Nj in the unsymmetric case (SYM = 0)

- K;= Ei);ll (Np - (Np +1))/2, and L = (INj - (N; + 1))/2 in the symmetric case (SYM
0). Only the lower triangular part is stored.

Values within each element are stored column-wise. Values corresponding to out-of-range
variables are ignored and values corresponding to duplicate variables within an element
are summed. A_ELT is not accessed when JOB = 1. Note that, although the elemental
matrix may be symmetric or unsymmetric in value, its structure is always symmetric.

The components N, NELT, ELTPTR, and ELTVAR describe the pattern of the matrix and
must be set by the user before the analysis phase (JOB=1). Component A_ELT must be set
before the factorization phase (JOB=2).

B.1.3 Distributed assembled matrix input

We offer several options, defined by the control parameter ICNTL(18) described in Section B.1.5.
The following components of the structure define the distributed assembled matrix input. They are
valid for nonzero values of ICNTL(18), otherwise the user should refer to Section B.1.1.

mumps_par%N (integer), mumps_par’%NZ (integer), mumps_par%IRN (integer array pointer,
dimension NZ), mumps_par%JCN (integer array pointer, dimension NZ), mumps_par%IRN _loc
(integer array pointer, dimension NZloc), mumps_par%JCN_loc (integer array pointer,
dimension NZoc), mumps_par%A _loc (double precision array pointer, dimension NZ_loc), and
mumps_par%MAPPING (integer array, dimension NZ).

N is the order of the matrix A, N > 0. It must be set on the host before analysis. It is
not altered by MUMPS.

NZ is the number of entries being input in the definition of A, NZ > 0. It must be defined
on the host before analysis if ICNTL(18) = 1, or 2.

IRN, JCN are integer arrays of length NZ containing the row and column indices,
respectively, for the matrix entries. They must be defined on the host before analysis
if ICNTL(18) = 1, or 2. They can be deallocated by the user just after the analysis.
NZloc is the number of entries local to a processor. It must be defined on all processors in
the case of the working host model of parallelism (PAR=1), and on all processors except
the host in the case of the non-working host model of parallelism (PAR=0), before analysis
if ICNTL(18) = 3, and before factorization if ICNTL(18) = 1 or 2.

IRNldoc, JCN._loc are integer arrays of length NZ_loc containing the row and column
indices, respectively, for the matrix entries. They must be defined on all processors if
PAR=1, and on all processors except the host if PAR=0, before analysis if ICNTL(18) =
3, and before factorization if ICNTL(18) = 1 or 2.

48

e Aloc is a double precision array of dimension NZ loc that must be defined before the
factorization phase (JOB=2) on all processors if PAR = 1, and on all processors except
the host if PAR = 0. The user must set Aloc(k) to the value in row IRNloc(k) and
column JCN_loc(k).

e MAPPING is an integer array of size NZ which is returned by MUMPS on the host after the
analysis phase as an indication of a preferred mapping if ICNTL(18) = 1. In that case,
MAPPING(i) = IPROC means that entry IRN(i), JCN(i) should be provided on processor
with rank IPROC in the MUMPS communicator.

We recommend the use of option ICNTL(18)=3 because it is the simplest and most flexible option
and because it is in general almost as efficient as the more sophisticated (but more complicated for
the user) option ICNTL(18)=1.

B.1.4 Right-hand side and solution vector

mumps_par%RHS (double precision array pointer, dimension N) is a double precision array that
must be set by the user on the host only, before a call to MUMPS with JOB = 3, 5, or 6. On entry,
RHS(i) must hold the i-th component of the right-hand side of the equations being solved. On
exit, RHS(i) will hold the i-th component of the solution vector.

B.1.5 Control parameters

On exit from the initialization call (JOB=-1), the control parameters are set to default values. If the
user wishes to use values other than the defaults, the corresponding entries in mumps_par%ICNTL
and mumps_par%CNTL should be reset after this initial call and before the call in which they are
used.

mumps_par%ICNTL is an integer array of dimension 20.

ICNTL(1) is the output stream for error messages. If it is negative or zero, these messages will be
suppressed. Default value is 6.

ICNTL(2) is the output stream for diagnostic printing, statistics, and warning messages. If it is
negative or zero, these messages will be suppressed. Default value is 0.

ICNTL(3) is the output stream for global information, collected on the host. If it is negative or
zero, these messages will be suppressed. Default value is 6.

ICNTL(4) is the level of printing for error, warning, and diagnostic messages. Maximum value is 4
and default value is 2 (errors and warnings printed).

ICNTL(5) has default value 0 and is only accessed by the host and only during the analysis phase. If
ICNTL(5) =0, the input matrix must be given in assembled format in the structure components
N, NZ, IRN, JCN, and A (or NZloc, IRNloc, JCNoc, A loc, see Section B.1.3). If ICNTL(5)
=1, the input matrix must be given in elemental format in the structure components N, NELT,
ELTPTR, ELTVAR, and A_ELT.

ICNTL(6) has default value 0 and is only accessed by the host and only during the analysis phase.
If ICNTL(6) = 1, a maximum transversal algorithm is performed. Column permutations are
then applied to the original matrix to get a zero-free diagonal. The user is advised to set
ICNTL(6)=1 only when the matrix is very unsymmetric. If the input matrix is symmetric
(SYM # 0), or in elemental format (ICNTL(5)=1), or distributed (ICNTL(18) # 0), or if the
ordering is provided by the user (ICNTL(7)=1), then the value of ICNTL(6) is ignored.

ICNTL(7) has default value 0 and is only accessed by the host and only during the analysis phase.
If ICNTL(7) = 1, the pivot order in PERM_IN (set by the user) is used. Otherwise, the pivot
order will be chosen automatically.

ICNTL(8) has default value 0 and is only accessed by the host and only during the factorization
phase. It is used to describe the scaling strategy. If the initial matrix is distributed (ICNTL(18)
0 and ICNTL(5) = 0), then the value of ICNTL(8) is ignored (no scaling). If ICNTL(8) = -1,
the user must provide scaling vectors in the arrays COLSCA and ROWSCA. If ICNTL(8) = 0,

49

no scaling is performed, and arrays COLSCA/ROWSCA are not used. If ICNTL(8) # 0, the
package allocates the arrays COLSCA/ROWSCA and computes one of the following scalings:

e ICNTL(8)=1: Diagonal scaling,

e ICNTL(8)=2: Scaling based on Harwell Subroutine Library code MC29,
e ICNTL(8)=3: Column scaling,

e ICNTL(8)=4: Row and column scaling,

e ICNTL(8)=5: Scaling based on MC29 followed by column scaling,

e ICNTL(8)=6: Scaling based on MC29 followed by row and column scaling.

If the input matrix is symmetric (SYM # 0), then only options -1, 0, and 1 are allowed and
other options are treated as 0; if ICNTL(8)=-1, the user should ensure that the array ROWSCA
is equal to the array COLSCA. If the input matrix is in elemental format (ICNTL(5) = 1),
then only option -1 is allowed and other options are treated as 0.

ICNTL(9) has default value 1 and is used only by the host during the solve phase. If ICNTL(9) =
1, Ax = b is solved, otherwise, ATx = b is solved.

ICNTL(10) has default value 0 and is only accessed by the host and only during the solve phase.
It corresponds to the maximum number of steps of iterative refinement. If ICNTL(10) = 0,
iterative refinement is not performed.

ICNTL(11) has default value 0 and is only accessed by the host and only during the solve phase.
A positive value will return (on the host) the infinite norm of the input matrix, the computed
solution, and the scaled residual in RINFOG(4) to RINFOG(6), respectively, a backward error
estimate in RINFOG(7) and RINFOG(8), and an estimate for the error in the solution in
RINFOG (9).

Note that, although the following ICNTL entries (12 to 17) control the efficiency of the
factorization and solve phases, they involve preprocessing work performed during analysis and must
thus be set at the analysis phase.

ICNTL(12) has default value 0 and is only accessed by the host and only during the analysis phase.
If ICNTL(12) = 0, node level parallelism is switched on, otherwise only tree parallelism will be
used during factorization/solve phases.

ICNTL(13) has default value 0 and is only accessed by the host and only during the analysis phase.
If ICNTL(13) = 0, use of ScaLAPACK will be made for the root node if the size of the root
node of the assembly tree is larger than a machine-dependent minimum size. Otherwise, the
root node of the tree will be processed sequentially.

ICNTL(14) is accessed by the host both during the analysis and the factorization phases. It
corresponds to the percentage increase in the estimated working space. When significant extra
fill-in is caused by numerical pivoting, larger values of ICNTL(14) may help use the real working
space more efficiently. Default value is 20 % except for symmetric positive definite matrices
(SYM=1) where default value is 10 %.

ICNTL(15) has default value 0 and is only accessed by the host during the analysis phase. If
ICNTL(15) = 0, the criterion for mapping the top of the tree to the processors is based on
memory balance only. Otherwise, mapping is based on the number of flops.

ICNTL(16) has default value 0 and is only accessed by the host. During the analysis phase, a valid
positive value prepares the data for later use of the null space functionality. If ICNTL(16) is
negative or zero, the null space feature will be disabled during the factorization phase.

During the factorization phase, if ICNTL(16) was positive for analysis, values of ICNTL(16)
have the following meaning.

0 : no null space analysis is performed

1,3,5,7,9 : rank detection only

2,4,6,8,10 : rank detection and null space basis.

50

The deficiency of the matrix is returned in mumps_par%Deficiency (on all processors) after
the factorization phase. If a null space basis was required, it is returned on the host in
mumps_par%NULL_SPACE, a double precision array pointer of size N x Deficiency.

The following strategies have been implemented (see [9]):
1,2 : QR with partial pivoting,
3,4 : QR with partial pivoting improved by Chan algorithm,
5,6 : LU with partial pivoting,
7,8 : an improved strategy based on LU with partial pivoting.
9,10 : ICNTL(17) is used as the exact size of the (pseudo-)null space.

Options 3 to 8 although implemented and ready for experimentation are not currently available
to the user, and are treated as 0.

ICNTL(17) has default value 0 and is only accessed by the host during the factorization phase if
rank detection is effective (ICNTL(16) # 0). In such cases,

e if 0 < ICNTL(16) < 8, ICNTL(17) should hold an estimate of the maximum size of the null
space. If ICNTL(17) is negative or zero, MUMPS assumes that the user has no information
about the null space size.

e if ICNTL(16) is 9 or 10, ICNTL(17) should hold the exact size of the null space (or
pseudo-null space).

ICNTL(18) has default value 0 and is only accessed by the host during the analysis phase, if the
matrix format is assembled (ICNTL(5) = 0). ICNTL(18) defines the strategy for the distributed
input matrix. Possible values are:

e (: input matrix is centralized on the host. This is the default, see Section B.1.1.

e 1: user provides the structure of the matrix on the host at analysis, MUMPS returns a
mapping and user should provide the matrix distributed according to the mapping.

e 2: user provides the structure of the matrix on the host at analysis, and the distributed
matrix on all slave processors at factorization. Any distribution is allowed.

e 3: user directly provides the distributed matrix input both for analysis and factorization.

For options 1, 2, 3, see Section B.1.3 for more details on the input/output parameters to MUMPS.
For flexibility and performance issues, option 3 is recommended.

ICNTL(19) has default value 0 and is only accessed by the host during the analysis phase. If
ICNTL(19) # 0 then the Schur matrix will be returned to the user. The user must set on entry
on the host node (before analysis):

o the integer variable SIZE_SCHUR to the size of the Schur matrix,

e the integer array pointer LISTVAR_SCHUR to the list of indices of the Schur matrix.

On output to the factorization phase, and on the host node, the 1-dimensional pointer array
SCHUR, of length SIZE_SCHUR?, holds the (dense) Schur matrix of order SIZE_.SCHUR. Note
that the order of the indices in the Schur matrix is identical to the order provided by the user
in LISTVAR_SCHUR and that the Schur matrix is stored by rows. It the matrix is symmetric
then the lower triangular part of the Schur matrix is provided (by rows).
The partial factorization of the interior variables can then be exploited to perform a solve
phase (transposed matrix or not). Note that the right-hand side (RHS) provided on input
must still be of size N even if only the N-SIZE_SCHUR indices will be considered and if only
N-SIZE_SCHUR indices of the solution will be relevant to the user.

Finally note that since the Schur complement can be viewed as a partial factorization of the
global matrix (with partial ordering of the variables provided by the user) the following options
of MUMPS are incompatible with the Schur option: null space, maximum transversal, ordering
given, scaling, iterative refinement, error analysis.

ICNTL(20) is not used in the current version.

mumps_par%CNTL is a double precision array of dimension 5.

51

CNTL(1) is the relative threshold for numerical pivoting. It forms a trade-off between preserving
sparsity and ensuring numerical stability during the factorization. In general, a larger value of
CNTL(1) increases fill-in but leads to a more accurate factorization. If CNTL(1) is nonzero,
numerical pivoting will be performed. If CNTL(1) is zero, no such pivoting will be performed
and the subroutine will fail if a zero pivot is encountered. If the matrix is diagonally dominant,
then setting CNTL(1) to zero will decrease the factorization time while still providing a
stable decomposition. If the code is called for unsymmetric or general symmetric matrices,
CNTL(1) has default value 0.01. For symmetric positive definite matrices, numerical pivoting
is suppressed and the default value is 0.0. Values less than 0.0 are treated as 0.0, values greater
than 1.0 are treated as 1.0.

CNTL(2) - CNTL(5) are not used in the current version.

B.1.6 Optional input parameters

mumps_par%COLSCA, mumps_par%AROWSCA (double precision array pointers, dimension N)
are optional scaling arrays required only by the host. If a scaling is provided by the user
(ICNTL(8)=-1), it must be allocated and initialized by the user on the host, before a call to
the factorization phase (JOB=2). It should be passed unchanged to the solve phase (JOB=3).
If the initial matrix is symmetric in value, ROWSCA must be equal to COLSCA to preserve
the symmetry.

mumps_par%APERM_IN (integer array pointer, dimension N) must be allocated and initialized by the
user on the host if ICNTL(7)=1. It is accessed during the analysis (JOB=1) and PERM_IN(i),

i=1, ..., N must hold the position of variable i in the pivot order. Note that, even when
the ordering is provided by the user, the analysis must still be performed before numerical
factorization.

mumps_par%LISTVAR_SCHUR (integer array pointer, dimension mumps_par%SIZE_SCHUR must
be allocated and initialized by the user on the host if ICNTL(19)# 0. It is not altered by MUMPS.
It is accessed during analysis (JOB=1) and LISTVAR_SCHUR(i), i=1, ..., SIZE_SCHUR must
hold the ** index of the Schur matrix.

mumps_par%MAXIS and mumps_par%MAXS (integers) are defined, for each processor, as the size
of the integer and the real workspaces respectively required for factorization and/or solve. On
return from analysis (JOB = 1), INFO(7) (resp. INFO(8)) returns the minimum value for
MAXIS to the user. If the user has reason to believe that significant numerical pivoting will
be required, it may be desirable to choose a higher value for MAXIS (resp. MAXS) than
output from the analysis. At the beginning of the factorization, MAXIS (resp. MAXS) is
set to the maximum of the estimate computed by the analysis and the value supplied by the
user. An integer array IS of size MAXIS and a double precision array S of size MAXS are then
dynamically allocated and used during the factorization and solve phases to hold the factors
and various contribution blocks.

B.1.7 Information parameters

The parameters described in this section are returned by MUMPS and hold information that may be
of interest to the user. Some of the information is available on each processor and some only on the
host. If an error is detected (see Section B.2), the information may be incomplete.

Information available on each processor

The arrays mumps_par%RINFO and mumps_par%INFO are available on each process.

mumps_par%RINFO is a double precision array of dimension 20. It contains the following local
information on the execution of MUMPS:

RINFO(1) - after analysis: The estimated number of floating-point operations on the processor for
the elimination process.

52

RINFO(2) - after factorization: The number of floating-point operations on the processor for the
assembly process.

RINFO(3) - after factorization: The number of floating-point operations on the processor for the
elimination process.

RINFO(4) - RINFO(20) are not used in the current version.

mumps_par%INFO is an integer array of dimension 20. It contains the following local information
on the execution of MUMPS:

INFO(1) is 0 if the call to MUMPS was successful, negative if an error occurred (see Section B.2).

INFO(2) holds additional information about the error. If INFO(1)=-1, INFO(2) is the processor
number (in communicator mumps_par%COMM) on which the error was detected.

INFO(3) - after analysis: Estimated real space needed on the processor for factors.
INFO(4) - after analysis: Estimated integer space needed on the processor for factors.
INFO(5) - after analysis: Estimated maximum front size on the processor.

INFO(6) - after analysis: Number of nodes in the complete tree. The same value is returned on all
processors.

INFO(7) - after analysis: Minimum value of MAXIS estimated by the analysis phase to run the
numerical factorization successfully.

INFO(8) - after analysis: Minimum value of MAXS estimated by the analysis phase to run the
numerical factorization successfully.

INFO(9) - after factorization: Size of the real space used on the processor to store the LU factors.

INFO(10) - after factorization: Size of the integer space used on the processor to store the LU
factors.

INFO(11) - after factorization: Order of the largest frontal matrix processed on the processor.
INFO(12) - after factorization: Number of off-diagonal pivots encountered on the processor.

INFO(13) - after factorization: The number of uneliminated variables, corresponding to delayed
pivots, sent to the father. If a delayed pivot is subsequently passed to the father of the father,
it is counted a second time.

INFO(14) - after factorization: Number of memory compresses on the processor.

INFO(15) - after analysis: estimated total size (in millions of bytes) of all MUMPS internal data for
running numerical factorization.

INFO(16) - after factorization: total size (in millions of bytes) of all MUMPS internal data used during
numerical factorization.

INFO(17) - INFO(20) are not used in the current version.
Information available on the host

The arrays mumps_par%RINFOG and mumps_par%INFOG are significant only on the host.
mumps_par%RINFOG is a double precision array of dimension 20. It contains the following global
information on the execution of MUMPS:

RINFOG(1) - after analysis: The estimated number of floating-point operations (on all processors)
for the elimination process.

RINFOG(2) - after factorization: The total number of floating-point operations (on all processors)
for the assembly process.

RINFOG(3) - after factorization: The total number of floating-point operations (on all processors)
for the elimination process.

53

RINFOG(4) to RINFOG(9) - after solve with error analysis: Only returned on the host process if
ICNTL(11) # 0. See description of ICNTL(11).

RINFOG(10) - RINFOG(20) are not used in the current version.

mumps_parHINFOG is an integer array of dimension 20. It contains the following global information
on the execution of MUMPS:

INFOG(1) is 0 if the call to MUMPS was successful, negative if an error occurred (see Section B.2).
INFOG(2) holds additional information about the error.

The difference between INFOG(1:2) and INFO(1:2) is that INFOG(1:2) is the same on all processors.
It has the value of INFO(1:2) of the processor which returned with smallest INFO(1) value. For
example, if processor p returns with INFO(1)=-13, and INFO(2)=10000, then all other processors
will return with INFOG(1)=-13 and INFOG(2)=10000, but still INFO(1)=-1 and INFO(2)=p.

INFOG(3) - after analysis: Total estimated real workspace for factors on all processors.
INFOG(4) - after analysis: Total estimated integer workspace for factors on all processors.
INFOG(5) - after analysis: Estimated maximum front size in the complete tree.
INFOG(6) - after analysis: Number of nodes in the complete tree.
INFOG(7:9) : not significant.
INFOG(10) - after factorization: Total integer space to store LU factors.
INFOG(
INFOG(12) - after factorization: Total number of off-diagonal pivots.
INFOG(13) - after factorization: Total number of delayed pivots.

(

(

11) - after factorization: Order of largest frontal matrix.

INFOG(14) - after factorization: Total number of memory compresses.
INFOG(15) - after solution: Number of steps of iterative refinement.

INFOG(16) - after analysis: Estimated size (in million of bytes) of all MUMPS internal data for
running factorization: value on the most memory consuming processor.

INFOG(17) - after analysis: Estimated size (in millions of bytes) of all MUMPS internal data for
running factorization: sum over all processors.

INFOG(18) - after factorization: Size in millions of bytes of all MUMPS internal data during
factorization: value on the most memory consuming processor.

INFOG(19) - after factorization: Size in millions of bytes of all MUMPS internal data during
factorization: sum over all processors.

INFOG(20) - after analysis: Estimated number of entries in the factors.

B.2 Error diagnostics

MUMPS uses the following mechanism to process errors that may occur during the parallel execution
of the code. If, during a call to MUMPS, an error occurred on a processor, this processor informs
all the other processors before they return from the call. In parts of the code where messages are
sent asynchronously (for example factorization and solve phases), the processor on which the error
occurred sends a message to the other processors with a specific error tag. On the other hand,
if the error occurs in a subroutine that does not use asynchronous communication, the processor
propagates the error to the other processors after the subroutine call via the subroutine

MUMPS_PROPINFO(ICNTL, INFO, COMM, MYID).
This routine is called in a SPMD way by all processors.

On successful completion, a call to MUMPS will exit with the parameter mumps_par%INFO(1) set
to zero. A negative value for mumps_par%INFO(1) indicates that an error has been detected on
one of the processors. For example, if processor s returns with INFO(1)=-8 and INFO(2)=1000,
then processor s ran out of integer workspace during the factorization and the size of the workspace

54

MAXIS should be increased by 1000 at least. The other processors are informed about this error and
return with INFO(1) = -1 (i.e., an error occurred on another processor) and INFO(2)=s (i.e., the
error occurred on processor s). Processors that detected a local error, do not overwrite INFO(1), i.e.,
only processors that did not produce an error will set INFO(1) to —1 and INFO(2) to the processor
having the smallest error code.

The behaviour is slightly different for INFOG(1) and INFOG(2): in the previous example, all
processors would return with INFOG(1)=-8 and INFOG(2)=1000.

The possible error codes returned in INFO(1) (and INFOG(1)) have the following meaning:

—1 An error occurred on processor INFO(2).

—2 NZ is out of range. INFO(2)=NZ.

—3 MUMPS was called with an invalid value for JOB. This may happen for example if the analysis
(JOB=1) was not performed before the factorization (JOB=2), or the factorization was not

performed before the solve (JOB=3). See item for JOB in Section B. This error also occurs if
JOB does not contain the same value on all processes on entry to MUMPS.

—4 Error in user-provided permutation array PERM_IN in position INFO(2). This error occurs on
the host only.

—5 Not enough real space (MAXS) to preprocess the matrix (for scaling or arrowhead calculation).

—6 Matrix is singular in structure.

—7 Problem of workspace allocation during analysis.

—8 MAXIS too small for factorization. This may happen, for example, if numerical pivoting leads
to significantly more fill-in than was predicted by the analysis. The user should increase the
value of ICNTL(14) or the value of MAXIS before entering the factorization (JOB=2).

—9 MAXS too small for factorization. The user should increase the value of ICNTL(14) or MAXS
before entering the factorization (JOB=2).

—10 Numerically singular matrix.

—11 MAXS too small for solution. See error INFO(1)=-9.

—12 MAXS too small for iterative refinement. See error INFO(1)=-9.

—18 Error in a Fortran ALLOCATE statement. INFO(2) contains the size that was asked for.

—14 MAXIS too small for solution. See error INFO(1)=-8.

—15 MAXIS too small for iterative refinement and/or error analysis. See error INFO(1)=-8.

—16 N is out of range. INFO(2)=N.

—17 The internal send buffer that was allocated dynamically by MUMPS on the processor is too small.
The user should increase the value of ICNTL(14) before entering the analysis (JOB=1).

—18 MAXIS too small to process root node. See error INFO(1)=-8.

—19 MAXS too small to process root node. See error INFO(1)=-9.

—20 The internal reception buffer that was allocated dynamically by MUMPS on the processor is too

small. INFO(2) holds the minimum size of the reception buffer required (in bytes). The user
should increase the value of ICNTL(14) before entering the analysis (JOB=1).

—21 Incompatible values of PAR=0 and NPROCS=1. INFO(2)=NPROCS. Running MUMPS in host-
node mode (the host is not a slave processor itself) requires at least two processors. The user
should either set PAR to 1 or increase the number of processors.

—22 A pointer array is provided by the user that is not associated or that has insufficient size.
INFO(2) points to the pointer array having the wrong format:
INFO(2) array
1 IRN or ELTPTR
JCN or ELTVAR
PERM_IN
A or A ELT
ROWSCA
COLSCA
RHS

~N OO W N

55

—23 MPI was not initialized by the user prior to a call to MUMPS with JOB=-1.
—24 NELT is out of range. INFO(2)=NELT.

B.3 Examples of use of MUMPS
B.3.1 An assembled problem

An example program to use MUMPS on assembled problems is given in Figure 19. Two files must be
included in the program: mpif.h for MPI and mumps_struc.h for MUMPS. The file mumps_root.h must
also be available because it is included in mumps_struc.h. The initialization and termination of MPI
are performed in the user program via the calls to MPI_INIT and MPI_FINALIZE.

The MUMPS package is initialized by calling MUMPS with JOB=-1, the problem is read in by the
host (in the components N, NZ, IRN, JCN, A, and RHS), and the solution is computed in RHS with
a call on all processors to MUMPS with JOB=6. Finally, a call to MUMPS with JOB=-2 is performed
to deallocate the data structures used by the instance of the package.

Thus for the assembled 5 x 5 matrix and right-hand side

2 3 4 20
3 -3 6 24
-1 1 2 , 9
2 6
4 1 13
we could have as input
5
12
124521532313
233511245233
3.0 -3.0 2.0 1.0 3.0 2.0 4.0 2.0 6.0 -1.0 4.0 1.0

20.0 24.0 9.0 6.0 13.0
and we obtain the solution RHS(i) =i,i=1, ..., 5.

B.3.2 An elemental problem

An example of the use of MUMPS for element problems is given in Figure 20. The calling sequence is
similar to that for the assembled problem in Section B.3.1 but now the host reads the problem in
components N, NELT, ELTPTR, ELTVAR, A_ELT, and RHS. Note also that for elemental problems
ICNTL(5) must be set to 1. For the two-element matrix and right hand side

12
1 /-1 2 3 3 /2 -1 3 7
2(2 1 1), 4(1 2 —1>, 23
3 11 1 5 \3 2 1 6

22

we could have as input

5

2

6

18

147

123345

-1.0 2.01.02.01.01.03.01.01.02.01.03.0-1.02.02.03.0-1.01.0
12.0 7.0 23.0 6.0 22.0

and we obtain the solution RHS(i) =i,i=1, ..., 5.

56

PROGRAM MUMPS
INCLUDE ’mpif.h’
INCLUDE ’mumps_struc.h’
TYPE (STRUC_MUMPS) mumps_par
INTEGER IERR
CALL MPI_INIT(IERR)
Define a communicator for the package
mumps _par}COMM = MPI_COMM_WORLD
Ask for unsymmetric code
mumps_par%4SYM = 0
Host working
mumps_par%4PAR = 1
Initialize an instance of the package
mumps_par%4J0B = -1
CALL MUMPS (mumps_par)
Define problem on the host (processor 0)
IF (mumps_parMYID .eq. O) THEN
READ(5,*) mumps_paryN
READ(5,*) mumps_par/NZ
ALLOCATE(mumps_par%IRN (mumps_par%NZ))
ALLOCATE(mumps_par}JCN (mumps_pariNZ))
ALLOCATE(mumps_par}A(mumps_par}NZ))
ALLOCATE(mumps_par}RHS (mumps_paryN))
READ(5,*) (mumps_par%IRN(I) ,I=1, mumps_par}NZ)

READ(5,*) (mumps_par%JCN(I) ,I=1, mumps_par}NZ)

READ(5,*) (mumps_par%A(I),I=1, mumps_par’NZ)

READ(5,*) (mumps_par%RHS(I) ,I=1, mumps_par)N)
END IF

Call package for solutiomn
mumps_par%J0B = 6
CALL MUMPS (mumps_par)
Solution has been assembled on the host
IF (mumps_par%MYID .eq. O) THEN
WRITE(6, *) ’ Solution is °’, (mumps_par%RHS(I),I=1,mumps_pariN)
END IF
Deallocate user data
IF (mumps_par/MYID .eq. O)THEN
DEALLOCATE(mumps_par%IRN)
DEALLOCATE(mumps_par%JCN)
DEALLOCATE(mumps_parA)
DEALLOCATE(mumps_parRHS)
END IF
Destroy the instance (deallocate internal data structures)
mumps_par%4J0B = -2
CALL MUMPS (mumps_par)
CALL MPI_FINALIZE(IERR)
STOP
END

Figure 19: Example program using MUMPS on an assembled problem

57

PROGRAM MUMPS
INCLUDE ’mpif.h’
INCLUDE ’mumps_struc.h’
TYPE (STRUC_MUMPS) mumps_par
INTEGER IERR, LELTVAR, NA_ELT
CALL MPI_INIT(IERR)
Define a communicator for the package
mumps_par%4COMM = MPI_COMM_WORLD
Ask for unsymmetric code
mumps_par%4SYM = 0
Host working
mumps_par%PAR = 1
Initialize an instance of the package
mumps_par%J0B = -1
CALL MUMPS (mumps_par)
Define problem on the host (processor 0)
IF (mumps_par%MYID .eq. O) THEN
READ(5,*) mumps_parN
READ(5,*) mumps_par%NELT
READ(5,*) LELTVAR
READ(5,*) NA_ELT
ALLOCATE(mumps_par}ELTPTR (mumps_par}NELT+1))
ALLOCATE(mumps_par4ELTVAR (LELTVAR))
ALLOCATE(mumps_par/%A_ELT(NA_ELT))
ALLOCATE(mumps_par}RHS (mumps_par)N))
READ(5,*) (mumps_parELTPTR(I) ,I=1, mumps_par’NELT+1)
READ(5,*) (mumps_par%ELTVAR(I) ,I=1, LELTVAR)
READ(5,*) (mumps_par%A_ELT(I),I=1, NA_ELT)
READ(5,*) (mumps_par%RHS(I) ,I=1, mumps_par})N)
END IF
Specify element entry
mumps_par}ICNTL(5) = 1
Call package for solutiomn
mumps_par%J0B = 6
CALL MUMPS (mumps_par)
Solution has been assembled on the host
IF (mumps_par%MYID .eq. O) THEN
WRITE(6, *) ’ Solution is ’, (mumps_par%RHS(I),I=1,mumps_pariN)
END IF
Deallocate user data
DEALLOCATE (mumps_par}ELTPTR)
DEALLOCATE(mumps_par%ELTVAR)
DEALLOCATE (mumps_par}%A_ELT)
DEALLOCATE (mumps_par%RHS)
Destroy the instance (deallocate internal data structures)
mumps_par%J0B = -2
CALL MUMPS (mumps_par)
CALL MPI_FINALIZE(IERR)
STOP
END

Figure 20: Example program using MUMPS on an element problem

58

References

[1]
2]
(3]
[4]
[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]
[18]

[19]

P. R. Amestoy, T. A. Davis, and I. S. Duff. An approximate minimum degree ordering algorithm.
SIAM Journal on Matriz Analysis and Applications, 17:886-905, 1996.

P. R. Amestoy, M. J. Daydé, 1. S. Duff, and P. Morére. Linear algebra calculations on a virtual
shared memory computer. Int Journal of High Speed Computing, 7:21-43, 1995.

P. R. Amestoy and I. S. Duff. Vectorization of a multiprocessor multifrontal code. Int. J. of
Supercomputer Applics., 3:41-59, 1989.

P. R. Amestoy and I. S. Duff. Memory management issues in sparse multifrontal methods on
multiprocessors. Int. J. of Supercomputer Applics., 7:64-82, 1993.

P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent. A fully asynchronous multifrontal
solver using distributed dynamic scheduling. Technical Report RT/APO/99/2, ENSEEIHT-
IRIT, 1999. (submited to STAM Journal on Matrix Analysis and Application).

P. R. Amestoy, I. S. Duff, and J.-Y. L’Excellent. Multifrontal solvers within the PARASOL
environment. In B. Kagstrom, J. Dongarra, E. Elmroth, and J. Wasniewski, editors, Applied
Parallel Computing, PARA’98, Lecture Notes in Computer Science, No. 1541, pages 7-11,
Berlin, 1998. Springer-Verlag.

P. R. Amestoy, I. S. Duff, and J.-Y. L’Excellent. Parallélisation d’un solveur direct creux pour
architectures & mémoire distribuée. In Proceedings de la 3¢ Ecole d’Informatique des Systémes
Paralléles et Répartis, ISYPAR 98, IRIT, Toulouse, 1998.

P. R. Amestoy, I. S. Duff, and J.-Y. L’Excellent. Multifrontal parallel distributed symmetric
and unsymmetric solvers. To appear in special issue of Comput. Methods in Appl. Mech. Eng.
on Domain Decomposition and Parallel Computing, 1999.

P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and M. Tuma. Rank detection strategies in MUMPS.
Technical Report TR/PA/98/57, CERFACS, Toulouse, France, 1998.

P.R. Amestoy, I.S. Duff, and J.-Y. L’Excellent. Parallélisation de la factorisation LU de matrices
creuses non-symétriques pour des architectures a mémoire distribuée. Calculateurs Paralléles
Réseaux et Systémes Répartis, 10(5):509-520, 1998.

E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. DuCroz, A. Greenbaum,
S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users’ Guide, second
edition. STAM Press, 1995.

M. Arioli, J. Demmel, and I. S. Duff. Solving sparse linear systems with sparse backward error.
SIAM Journal on Matriz Analysis and Applications, 10:165-190, 1989.

C. Ashcraft. The fan-both family of column-based distributed Cholesky factorisation algorithm.
In J.R. Gilbert and J.W.H Liu, editors, Graph theory and Sparse matriz Computations, pages
159-190. Springer-Verlag NY, 1993.

C. Ashcraft. Compressed graphs and the minimum degree algorithm. SIAM J. Sci. Comput.,
16(6):1404-1411, 1995.

L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra,
S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. ScaLAPACK
Users’ Guide. SIAM Press, 1997.

T. Blank, R. Lucas, and J. Tiemann. A parallel solution method for large sparse systems of
equations. IEEE Tran. on Comput., 6(6):981-991, 1989.

L.M. Carvalho. Preconditioned Schur complement methods in distributed memory environments.
PhD thesis, INPT/CERFACS, France, october 1997. TH/PA/97/41, CERFACS.

L.M. Carvalho, L. Giraud, and G. Meurant. Local preconditioners for two-level non-overlapping
domain decomposition methods. Tech. Rep. in preparation, CERFACS, France, 1999.

L.M. Carvalho, L. Giraud, and P. Le Tallec. Algebraic two-level preconditioners for the schur
complement method. Tech. Rep. TR/PA/98/18, CERFACS, France, 1998. submitted to SIAM
SISC.

59

[20]

[21]

[22]
[23]
[24]
[25]

[26]

27]

28]

[29]

[30]

[31]

32]

[33]

[34]

[35]

[36]

(37]

(38]

(39]

S. Chandrasekaran and I. Ipsen. On rank-revealing factorizations. SIAM J. Matriz Anal. Appl.,
15:592-622, 1994.

M. J. Daydé and I. S. Duff. Use of level 3 BLAS in LU factorization in a multiprocessing
environment on three vector multiprocessors, the ALLIANT FX/80, the CRAY-2, and the IBM
3090/VF. Int. J. of Supercomputer Applics., 5:92-110, 1991.

M. J. Daydé and I. S. Duff. A block implementation of level 3 BLAS for RISC processors.
Technical Report RT/APO/96/1, ENSEEIHT-IRIT, 1996.

J. W. Demmel and X. S. Li. Making sparse Gaussian elimination scalable by static pivoting. In
Proceedings of Supercomputing, Orlando, Florida, November 1998.

J. Dongarra, R. Hempel, A. J. G. Hey, and D. W. Walker. MPI : A message passing interface
standard. Int Journal of Supercomputer Applications, 8:(3/4), 1995.

J. Dongarra and R. C. Whaley. A users’ guide to the blacs. Technical Report CS-95-281,
University of Tennessee, Knoxville, Tennessee, USA, 1995.

J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling. Algorithm 679. A set of Level
3 Basic Linear Algebra Subprograms. ACM Transactions on Mathematical Software, 16:1-17,
1990.

J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling. Algorithm 679. A set of Level 3 Basic
Linear Algebra Subprograms: model implementation and test programs. ACM Transactions on
Mathematical Software, 16:18-28, 1990.

I. Duff; R. G. Grimes, and J. G. Lewis. The Rutherford-Boeing Sparse Matrix
Collection. Technical Report RAL-TR-97-031, Rutherford Appleton Laboratory, 1997. Also
Technical Report ISSTECH-97-017 from Boeing Information & Support Services and Report
TR/PA/97/36 from CERFACS, Toulouse.

I. S. Duff. Algorithm 575. Permutations for a zero-free diagonal. ACM Transactions on
Mathematical Software, 7:387-390, 1981.

I. S. Duff and J. K. Reid. The multifrontal solution of indefinite sparse symmetric linear systems.
ACM Transactions on Mathematical Software, 9:302-325, 1983.

I. S. Duff and J. K. Reid. The multifrontal solution of unsymmetric sets of linear systems. STAM
Journal on Scientific and Statistical Computing, 5:633-641, 1984.

A. Supalov (ed). PARASOL Interface Specification, version 2.1. Technical report, GMD SCAI,
Sankt Augustin, Germany, January 1998.

V. Espirat. Développement d’une approche multifrontale pour machines & mémoire distribuée
et réseau hétérogene de stations de travail. Technical report, ENSEEITHT-IRIT, 1996. Rapport
de stage 3ieme Année.

A. Geist and E. Ng. Task scheduling for parallel sparse Cholesky factorization. Int J. Parallel
Programming, 18:291-314, 1989.

A. George, M. T. Heath, J. W. H. Liu, and E. G.-Y. Ng. Sparse Cholesky factorization on a
local memory multiprocessor. STAM Journal on Scientific and Statistical Computing, 9:327-340,
1988.

A. Gupta, F. Gustavson, M. Joshi, G. Karypis, and V. Kumar. Pspases: An efficient and
scalable parallel sparse direct solver. Technical Report (to appear), Department of Computer
Science, University of Minnesota and IBM T.J. Watson Research center, 1999.

A. Gupta, G. Karypis, and V. Kumar. Highly scalable parallel algorithms for sparse matrix
factorization. TR 94-063, University of Minnesota, 1994. To appear in IEEE Trans. on Parallel
and Distributed Systems, 1997.

M. T. Heath, E. Ng, and B. W. Peyton. Parallel algorithms for sparse linear systems. SIAM
review, 33:420-460, 1991.

F. Hecht and A. Marrocco. Mixed finite element simulation of heterojonction structures
including a boundary layer model for the quasi-fermi levels. COMPEL, 13:757-770, 1995.

60

[40]
[41]

[42]

[43]
[44]

[45]

B. Hendrickson and E. Rothberg. Improving the runtime and quality of nested dissection
ordering. SIAM J. Sci. Comput., 20(2):468-489, 1998.

G. Karypis and V. Kumar. MENS - Unstructured Graph Partitioning and Sparse Matriz
Ordering System — Version 2.0. University of Minnesota, June 1995.

G. Karypis and V. Kumar. MEDIS — A Software Package for Partitioning Unstructured Graphs,
Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices — Version 4.0.
University of Minnesota, September 1998.

W. E. Nagel, A. Arnold, M. Weber, H.-C. Hoppe, and K. Solchenbach. VAMPIR: Visualization
and analysis of MPI resources. Supercomputer, 12(1):69-80, January 1996.

F. Pellegrini. ScorcH 3.1 User’s guide. Technical Report 1137-96, LaBRI, Université
Bordeaux I, August 1996.

F. Pellegrini, J. Roman, and P. R. Amestoy. Hybridizing nested dissection and halo approximate
minimum degree for efficient sparse matrix ordering. In Proceedings of Irreqular’99, Puerto Rico,
1999.

61

