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ABSTRACT 

We present a new gauge-independent approach to resonant transition amplitudes with 

non conserved external currents, based on the pinch technique method. In the context of 
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our analysis has mainly focused on the Standard Model gauge bosons, our method can easily 

be extended to the top quark, and be directly applied to the study of unstable particles 

present in renormalizable models of new physics. 
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1 Introduction 

Several years after the first experimental observations of decaying quantum mechan­

ical systems [1], Weisskopf and Wigner [2] formulated a theory for the time evolution of 

decaying states, which has been used with great success for the description of OP violation 

in the Ko ~ Ko and other systems. This theory is however approximate, and deviations 

from its predictions are expected, when observations take place at very short or very long 

times as compared to the lifetime of the unstable particle [3]. Subsequently, Veltman [4] 

showed that an S-matrix theory, where the dynamics of unstable particles is described in 

terms of initial and final asymptotic states, is unitary and causal, despite the presence of 

on-shell particle configurations. 

The correct treatment of unstable particles has received a renewed attention within 

the framework of the S-matrix perturbation theory, mainly because the straightforward 

generalization of the Breit-Wigner (BW) propagator derived from naive scalar field theo­

ries [4] to gauge field theories, violates the gauge symmetry [5-13]. This fact is perhaps 

not so surprising, since the naive resummation of the self-energy graphs takes into account 

higher order corrections, for only certain parts of the tree-level amplitude. Even though, 

as we will show, the amplitude possesses all the desired properties, this unequal treat­

ment of its parts distorts subtle cancellations, resulting in numerous pathologies, which 

are artifacts of the method used. Evidently, a self-consistent calculational scheme needs 

be devised, which will exploit all the healthy field theoretical properties intrinsic in every 

S-matrix element. 

An early attempt in this direction has been based on the observation that the po­

sition of the complex pole is a gauge independent (g.i.) quantity [6-8]. Exploiting this 

fundamental property of the S-matrix, Stuart [7] has developed a perturbative approach 

in terms of three gauge invariant quantities: the constant complex pole position of the 

resonant amplitude, the residue of the pole, and a q2-dependent non-resonant background 

term. Even though this approach, which is based on a Laurent series expansion of the 

resonant transition element [7], may eventually furnish a gauge invariant result, the pertur­

bative treatment of these three g.i. quantities [11] introduces unavoidably residual space-like 

threshold terms, which become more apparent in OP-violating scenarios of new-physics. In 

fact, the precise q2-dependent shape of a resonance [8] is reproduced, to a given loop order, 
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by considering quantum corrections to the three g.i. quantities mentioned above [7,11], 

while the space-like threshold contributions, even though are shifted to higher orders, do 

not disappear completely. 

Within the framework of the S-matrix perturbation theory, it was suggested [5] 

that finite width effects can induce sizeable op violation and resonantly enhance op­

violating observables [14) in supersymmetric theories, and other extensions of the minimal 

Standard Model (SM) [15). The quest of the proper BW form for a resonant Wand 

t propagator [9,10,16] is equally important for processes, such as e+e- -+ W+W- [12], 

e--y -+ fL-v,.",ve [13,17], etc. 

In this paper, we present a new g.i. approach to resonant transition amplitudes imple­

mented by the pinch technique (PT) [18-21}. The PT is an algorithm that systematically 

exploits the known field theoretical properties of the S-matrix, which is the fundamen­

tal physical quantity of interest. Operationally, the PT leads to a rearrangement of the 

Feynman graphs contributing to a gauge-invariant amplitude, in such a way as to define 

individually gj. propagator,vertex, and box-like structures. For example, the PT arranges 

the S-matrix element T for the process qli]2 -+ qli]2, where Ql, Q2 are two on-shell test 

quarks with masses ml and m2, in the form 

where the 1'i (i = 1,2,3) are individually eindependent. The parts of vertex and box 

graphs which are kinematically akin to propagators and enforce the gauge independence 

of 1'l(t), are called propagator-like pinch parts. Similarly, vertex-like pinch parts of boxes 

enforce the gauge independence of T2(t). 

The crucial novel ingredient we introduce in the context of resonant transition am­

plitudes is the proposition that the resummation of graphs must take place only after the 

amplitude of interest has been cast via the PT algorithm into manifestly g.i. sub-amplitudes, 

with distinct kinematic properties, order by order in perturbation theory. For example, it 

is the resummations of the 1'1 which will provide the effective, manifestly g.i., resummed 

propagators. 

The main points of our approach have already presented in a brief communication 

[22}j in this paper we mainly focus on the detailed treatment of several technical issues. 

The outline of the present work is as follows. In Section 2, we define the framework of our 
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perturbative g.i. S-matrix approach by considering the resonant reaction e-ve -+ j.t-vw 

Issues of resummation and the resummation procedure within the PT will be discussed in 

Section 3 and 4, respectively. In Section 5, we show that the position of the pole does not 

get shifted when using the PT resummation algorithm in the stable particle theory -a 

heuristic proof is given in Appendix A. In Section 6, we further show that this is still true 

for the case of unstable particles. Section 7 deals with issues related to unitarity of resonant 

processes. In Section 8, we give an application of our approach to the resonant processes 

,e- -+ j.t-v",ve and QQ' -+ e-vej.t-j.t+, which involve the ,WW and ZWW vertices, 

respectively. Further technical details of such reactions are relegated in Appendices Band 

C. Section 9 contains our conclusions. 

2 	 The process e Ve -;. p,-vj.t 

Despite the fact that the S matrix is well defined, the evaluation of physical pro­

cesses has to rely on its perturbative expansion in the coupling constants of the theory, as 

there is not yet an analytic method to calculate the complete S-matrix amplitude. On the 

other hand, this perturbative approximation of S is not unique, and depends on the form 

of the expansion adopted, and, to some extend, on the renormalization prescription used 

to remove the ultra-violet (UV) divergences. However, the summation of all infinite per­

turbative contributions should formally reproduce the unique expression of the S-matrix 

element of the process under consideration. Although the perturbative expansion itself may 

contain such difficulties, there are some well-defined features that characterize a consistent 

perturbative expansion of S matrix within gauge field theories: 

(i) 	The expansion should obey a number of required properties, including unitarity [or 

equivalently the optical theorem] [4], causality [23], analyticity etc. [24] 

(ii) Since we are interested in renormalizable field theories based on Lagrangians which 

contain operators of dimension no higher than four and so have an inherent predictive 

power, the expansion under consideration should consistently admit renormalization. 

(iii) 	The perturbative S-matrix element should respect the fundamental gauge symme­

tries. In particular, since it represents a physical quantity, it should be independent 
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on the choice of gauge used, which can only be shown to be the case with the help of 

Becchi-Rouet-Stora (BRS) transformations [25]. 

Conditions (i) and (iii) are the main source of problems, when considering resonant S­

matrix transition amplitudes. In what follows, we will discuss some of the crucial differences 

between our approach and the conventional S-matrix perturbation theory. In the context 

of the latter, the one-loop W-boson self-energy has the general form 

(2.1) 


where 

(2.2) 


The self-energy of Eq. (2.1) is a gauge-dependent quantity; in the conventional S-matrix 

approach it depends explicitly on the gauge parameter e. The two-point function for the 

mixing W-G-, e~, and G-G- self-energy, 11, are also e-dependent. Using the general form 

of Eq. (2.1) for the self-energy, the one-loop resummed W propagator is given by 

(~;;-:~e)(q) _ rr~~(q))-l 


where 

1 
(2.3)t~lI(q) q2 _ M2 rr¥)(q2) - l~lI(q) q2 

(2.4) 

In Eq. (2.4), U~1I stands for the free W propagator in the unitary gauge, which has the 

form 

and 

(2.5) 


(2.6) 
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is the tree-level propagator of the associated Goldstone boson G+ in a general egauge. Its 

resummed propagator reads 

(2.7) 

For purposes of illustration, we have only considered the lowest order of resummation, 

where higher order W-G- mixing effects have not been taken into account. However, 

our conclusions will still be valid for the general case. Using the resummed e-dependent 

propagators given in Eqs. (2.3) and (2.7) for the calculation of a resonant process, such as 

e-v" -+ ,CvJ,l., to a given order of perturbation theory, one can then verify easily that the e 
dependence does not disappear. The reason is that rrW(q2) is a edependent quantity in a 

region not far away from the resonant point q2 M2 [only at this point the self-energy is g.i.] 

and the propagators (2.3) and (2.7) induce edependence to all orders, while e-dependent 

terms coming from vertices and box graphs can remove this gauge dependence only to a 

given order of the conventional perturbation theory. Instead, within our framework, the 

above problems associated with the resummed self-energies are absent, because the entire 

edependence has been eliminated via the PT order by order in perturbation theory, before 

resummation takes place. 

We will now consider an approach implemented by the PT. Within the PT framework, 

the transition amplitude T(s, t, mi) of a 2 -+ 2 process, such as e-v" -+ IC vJ,l. shown in 

Fig. 1, can be decomposed as 

(2.8) 

in terms of three individually g.i. quantities: a propagator-like part (7\), a vertex-like piece 

(1'2), and a part containing box graphs (1'3)' The important observation is that vertex and 

box graphs contain in general pieces, which are kinematically akin to self-energy graphs 

of the transition amplitude. The PT is a systematic way of extracting such pieces and 

appending them to the conventional self-energy graphs. In the same way, effective gauge 

invariant vertices may be constructed, if after subtracting from the conventional vertices 

the propagator-like pinch parts we add the vertex-like pieces coming from boxes. The 

remaining purely box-like contributions are then also g.i. Finally, the entire S-matrix can 

be rearranged in the form of Eq. (2.8). In the specific example e-v" -+ JL-vJ,l., the piece 

1'1 consists of three individually g.i. quantities: The WW self-energy fiJ,l.v (Fig. 1(a)), the 
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W-G- mixing term ep' (Figs. 1(b) and 1(c)),* and the GG self-energy n (Fig. 1(d)). 

Similarly, 1'2(s,mi) consists of two pairs ofg.i. vertices We-ve , Ge-ve (r~l) and .-\(1), given 

in Figs. l(e) and l(f), respectively) and Wp,-vp. and Gp,-vp. (r~) and A(2), in Figs. l(g) 

and 1(h)). In addition to being g.i., the PT self-energies and vertices possess a very crucial 

property, e.g. they satisfy tree-level Ward identities, summarized as follows: 

qp.ql.lfip.1.I 2Mqp.ep. + M 2n 0, (2.9) 

qp.fip.1.I 

qp.ep. 

Mel.l 

Mn 
0, 

0, 

(2.10) 

(2.11) 
~. 

qp.r~ Mk 0, (i = 1,2). (2.12) 

These Ward identities are a direct consequence of the requirement that 1'1 and 1'2 are fully 

eindependent. As explained in detail in [19] and [26], after having cancelled via the PT 

all edependences inside loops, these Ward identities enforce the final cancellations of the e 
dependences stemming from the tree-level propagators. In fact, the derivation of the Ward 

identities does not require knowledge of the closed expressions of the quantities involved. 

To see how the final edependences cancel by virtue of the aforementioned Ward identities 

we turn to 1'1' After the PT process has been completed, 1'1 reads: 

1'1 = 	 r~A~9pr~ + r~A~9p.fip.1.IA~~pr~ + AoD~e)Ao + AoD~e)nD~e)Ao 

+rO"A (e) ep. D(e) A +A D(e) el.lA (e)rp 
o OO"p. 0 0 0 0 I.Ip 0 

r~uO"pr~ + r~uO"p.fip.l.lul.lprg, (2.13) 

where in the second step the Ward identities of Eqs. (2.10) and (2.11) were used. Clearly, 

all edependence has disappeared. We can actually go one step further and rewrite this last 

eindependent expression as a sum of two pieces, one transverse and one longitudinal, by 

employing Eq. (2.5) and the Ward identities of Eqs. (2.10) and (2.11). Indeed, if we write 

fip.1.I in the form of Eq. (2.1), i.e. fip.1.I - tp.l.lfiT + ip.l.lfiL we have 

1 (2.14)-3" (~II~-
M2~

fiL 	 -2il , (2.15) 
q 

"'In fact, we define e;.t(q) fi:;-G-(q) fi;-W-(q) = _fi:;+G+(q) = _fi;+w+(q), where the mo­

mentum always flows from the left to the right in the language of Feynman diagrams. 
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and so 	1'1 may be written as 

tp.vT- rp. 	[ (2.16)
1 0 	 q2 M2 

Let us now assume for a moment that the PT decomposition holds to any order in 

perturbation theory (we will extensively discuss the validity of this assumption in the next 

sections). In such a case, summing up contributions from all orders in perturbation theory 

we obtain for 1'1 (suppressing contraction of Lorentz indices) 

1'1 	 rouro + roufiuro + roufiufiuro + 
roAro, (2.17) 

with 

(2.18) 

It is important to emphasize that the propagator of Eq. (2.17) is process-independent; one 

arrives at exactly the same expression for Ap.v, fiT) and fiL, regardless of the quantum 

numbers of the external particles [27]. In the last step of Eq. (2.17), we have assumed 

that the analytic continuation of the result to the resonant point q2 M2 will not cause 

any theoretical difficulty. In the case of the conventional propagator such an assumption 

is justified, since the resonant propagator can be directly derived as a solution of the 

corresponding Dyson-Schwinger (DS) integral equation, which is well defined, even at the 

singular point q2 = M2. The reason is that the DS integral equations can be deduced 

directly from the action of the theory, through a variational principle [28]. Even though 

the corresponding task has not been yet accomplished for the SD equation governing the 

dynamics of PT Green's functions [29], we will consider the analytic continuation of our 

results as a plausible assumption. We will therefore carry out our diagrammatic approach 

in terms of Feynman graphs and then continue analytically our results to describe the 

physics of unstable particles. 

Issues of resummation in the PT 

Even though the PT has been developed in detail to one-loop, its generalization to 

higher orders has not yet been presented in the literature. In this section we will briefly 

outline how this generalization proceeds; the full presentation will be given elsewhere [30]. 
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Here we will focus particularly on issues of resummation, and show that the gauge­

invariant PT self-energy may be resummed in the same way as one carries out the Dyson 

summation for the conventional self-energy. In other words, the PT self-energies have 

the same resummation properties as regular self-energies. The crucial point is that, even 

though contributions from vertices and boxes are instrumental for the definition of the PT 

self-energies, their resummation does not require a corresponding resummation of vertex 

or box parts. In order to see that, consider the usual Dyson series for the conventional 

self-energy of QCD. The building blocks of this series are strings of the basic self-energy 

n~v(q) = t~v(q)n(q2), computed to a given order in perturbation theory, which repeats 

itself. The net effect of the resummation of all such strings is to bring the quantity n(q2) 

in the denominator of the free gluon propagator Lio~v' 

Let us now see how one can resum, i. e. bring in the denominator the one-loop PT 

self-energy. To that end, consider a string of regular one-loop self-energies (in any gauge) 

in QCD. Clearly, in order to convert the string of self-energies into a string of PT self­

energies one needs to furnish the missing pinch parts (in the same gauge). At one loop 

any pinch contribution has the general form [Li~P(q)J-1V P ( q) (for propagator-like pinch 

parts coming from vertices) and [Li~P(q)]-lB P ( q)[Li~V(q)]-l for propagator-like pinch parts 

coming from boxes). To simplify the picture (without loss of generality) let us work in the 

Feynman gauge e= 1. Then at one-loop the only pinch contribution comes from vertices 

(beyond one loop we have propagator-like pinch parts from boxes, even for e 1). So for 

each conventional n~v(q) we need to supply a factor [Li~V( q)]-l~V P ( q) +~V P ( q)[Li~V(q)]-1. 

Some of the necessary pinch contributions will be provided by graphs containing at least 

one vertex, such as in Fig. 2(b), 2(c), and 2(d). These existing pinch parts are however not 

sufficient for converting all n~v into ft~v. If we add by hand (and subsequently subtract) 

the missing pieces to each n~v 

(a) The string has been converted into a string with n~v ---t ft~v 

(b) The left-overs, due to the presence of the inverse [Li~vJ-l are effectively one-particle 

irreducible. 

To see that in detail, let us turn to the specific example shown in Fig. 2. The original 

string L with two one-loop self-energies reads (there is an overall factor t~v which is factored 
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out) 

L (3.1) 

and is accompanied by the three strings L1, L2 and L3 shown in Figs. 2(b), 2(c), and 2(d), 

respectively. After extracting the pinch contributions from the one-loop vertices of L1 L2 

and L3 as is depicted in Figs. 2(e), 2(f), and 2(g), we receive the following propagator-like 

contributions: 

LP1 1 
q2 [ q2 ~~P (:2) Ill] 1 

q2 

L; 
1 
q2 [ II 1(:2) ~~Pq2] 

1 
q2 

LP 
3 

1 
q2 

[ 21 P (1) 1 P 2]q 2~ q2 2~ q 
1 

q2 (3.2) 

Returning to L, we know that in order for a II to be converted into a fi an amount 

(q2~VP + ~VPq2) must be added. Let us call L the corresponding string containing two 

fi1 instead of two II. Let us see how we can construct it from the existing pieces: 

(q12 ) 

(3.3) 

where 

(3.4) 

We see that in addition to the existing pieces L, Lf, Lf, and Lf, one needs to supply R. As 

advertised, R has the very important property that it is effectively one-particle irreducible. 

So, R has the same structure as the one-particle irreducible two-loop self-energy graphs 

shown in Fig. 3. Evidently, - R together with the genuine two-loop vertex and box pinch 

contributions displayed in Fig. 4 will then convert the conventional two-loop self-energy 

into the g.i. two-loop PT self-energy. So, the general form of the QeD propagator-like 

pinch contributions in the Feynman gauge, to a given loop order n in perturbation theory, 

has the form t~v(q)II~(q2), with 

(3.5) 
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For example, propagator-like pinch contributions from one-loop vertex graphs have the 

general form of the first term in the r.h.s of Eq. (3.5), whereas one-loop contributions from 

boxes have the general form of the second term. The 14.(q2) contains contributions of all 

terms described in (b). Clearly, Rl(q2) 0, but 14.(q2) =f 0 for n > 1. For example, for 

n = 2 we have that Rf is the negative of R of Eq. (3.4). In this notation, Rf reads 

Rf{q2) = -R = - (II1Vt + ~q2vtVt) . (3.6) 

Obviously, the R~ terms consist in general of products of lower order conventional self­

energies IIk ( q2), and lower order pinch contributions vt and/or BI', with k + .e n. 

We emphasize that the procedure described above has not been tailored for the par­

ticular needs of the present problem, but it is of general validity. In fact, this is the way 

how the PT must be generalized to higher orders: one has to first convert subset of di­

agrams locally into the corresponding PT subsets using the results of the previous order, 

by adding (and subsequently subtracting) the appropriate pinch parts, every time they are 

not present. Due to their characteristic structure the extra pieces give rise to diagrams 

which then can (and they should) be allotted to the remaining graphs, and they are crucial 

for their gauge independence. In this way, one can rewrite the S matrix at each order in 

perturbation theory, into manifestly g.i. sub-amplitudes, with the characteristic properties 

one knows from one loop. In fact, it is of particular importance to explicitly demonstrate 

that the procedure described above will indeed give rise to a g.i. two-loop self-energy, whose 

divergent part will coincide with the g.i. two-loop QCD f3 function. Results in this direction 

will be presented in detail in [30J. 

We conclude this section with some technical remarks. It has been known for years 

that when computing the PT Green's functions any convenient gauge may be chosen, as long 

as one properly accounts for the pinch contributions within that gauge [18J. In the context 

of the "renormalizable" Re gauges the most convenient gauge-fixing choice is the Feynman 

gauge (e 1). This is so because the longitudinal parts of the gauge boson propagators, 

which can pinch, vanish for e 1, and the only possibility for pinching stems from the 

tree-boson vertices. As was recently realized [31J, the task of the PT re-arrangement of 

the S matrix can be further facilitated, if one quantizes the theory in the context of the 

Background Field Method (BFM) [32]. Even though the Feynman rules obtained via the 

BFM are rather involved, they become particularly convenient for one-loop pinching, if one 
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chooses the Feynman gauge (eQ = 1) inside the quantum loops. In fact, all possible one­

loop pinch contribution are zero in this gauge, e.g. vtleQ=l = BileQ=l O. Consequently, 

the one-loop PT Green's functions (which one can obtain for every gauge) are identical 

to the conventional Green's functions, calculated in the Feynman gauge of the BFM. This 

correspondence between PT and BFM at eQ 1 breaks down for the two-loop purely 

bosonic part [33]. Therefore, V,;leQ=l 0 and B!'leQ=l =I- 0, for n > 1. The technical 

details leading to these conclusions will be presented in [30]. 

PT resummation with non-conserved currents 

We now describe how to generalize the form of 1'1, presented in Eq (2.13) for the 

one-loop case, to higher orders. In particular we want to show that when the external 

currents are non-conserved, all possible g.i. propagator-like strings assume the form of 

Eq. (2.16). For definiteness, we concentrate on the case where the external currents are 

charged. Exactly analogous arguments hold for neutral currents. To accomplish that we 

must follow a three-step procedure: 

(a) 	As described in the previous section, if we work at loop order n in perturbation theory, 

the strings containing conventional IIJ.tI.l' 8J.t and n self-energies (of individual order 

less that n, but of combined order n) must be converted to the corresponding PT 

strings containing ll:J.t1.l1 8J.t, and n, i.e. we must replace conventional with "hatted" 

quantities. In doing so we use the formulas and methodology developed in [19]. As in 

the previous section, we assume that the necessary pinch parts form the lower orders 

are known; in particular, the missing pinch contributions are supplied by hand, and 

subsequently subtracted. The left-overs are effectively one-particle irreducible and 

will be added to the corresponding IIJ.tI.l' 8J.t and n of order n. All such terms, 

together with the normal pinch parts from box and vertex graphs of order n, will 

finally give rise to the ll:J.tv 8J.t, and nof that order. 

(b) 	By close analogy to Eq. (3.5), the general form of the transverse propagator-like pinch 

contribution to the massive gauge boson is given by 
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The generic form of R~ is also very similar; the R2 for example is simply 

R2 ( III v;,P + ~(q2 - m~)v;,Pv;,p) (4.2) 

Of course, the closed expressions of the individual V:, B;:, and R~ are in general 

different from the QeD case. It is important to notice that Rn contains a non-zero 

number of terms which are not explicitly proportional to (q2 - m5); this is so because, 

as explained above, the explicit [8~vrl in front of the Ilk (q2) cancels against one of 

the 8~v of the string. 

(c) When all possible strings have been converted to PT strings, one can show that due 

to the Ward identities in Eqs. (2.9)-(2.11), they finally reorganize themselves into 

two different types of g.i. strings, Ti and Tf of the form 

( 4.3) 

and 
~L 1 ~ . 1 ~ . 1 1 ~ ill: 1 ~ . 1 

[TI1JLV = lJLv[M21Ili M2 IlZ M2 { ... } M2 ilL -1[M21Il~[M21. (4.4) 

Here, Do = D~e=l) = (q2 - M2)-1 defined in Eq. (2.6), ft~ is the PT transverse WW 

self-energy of loop order ij, fi~ is the PT G-G- self-energy, and L:J=l(ij) = n. Of 

course, for resummation purposes to a given loop order n, we have to identify all the 

possible combinatorial strings of self-energies in Eqs. (4.3) and (4.4), which will yield 

the resummed propagator of order n. 

To give a concrete example, let us consider the entire set of possible strings at n = 2, 

for the process e-ve ~ jL-vJL shown in Fig. 5. Their explicit expressions are: 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

(h) (4.5) 
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It is now straightforward to prove that due to the Ward identities of Eqs. (2.10) and (2.11) 

all remaining e-dependences cancel. To see that we can simply isolate powers of DW 

and verify that their cofactors, by virtue of the Ward identities add up to zero (this is 

essentially the approach presented in [26]). Equivalently, we notice that the above strings 

may be combined pairwise [(a) with (b), (c) with (d), (e) with (f), and (g) with (h)], to 

yield, (after using Eqs. (2.10) and (2.11)): 

(a) + (b) 

(c) +(d) 

(e) + (f) 

(g) +(h) (4.6) 

We can then further combine (a)+(b) with (g)+(h) and (c)+(d) with (e)+(f): 

U ftpO'[u. _ qO'q)' DWlft),7"U(a) + (b) + (g) + (h) j.l.p 0' ), M2 0 7"V 

(c) + (d) + (e) + (f) Uj.l.p8 PD~e)87"U7"v 

which finally gives 

(4.7) 


(4.8) 


We may now write the [1\tv of Eq. (4.8) as the sum of two pieces, [Tilj.l.v and [Tftv' of the 

general form advertised in Eqs. (4.3) and (4.4), respectively. Indeed, using the identity of 

Eq. (2.5), and the Ward identities, we obtain 

( 4.9) 

It is obvious how to generalize the above arguments to an arbitrary loop order n, which will 

formally lead to the resummed propagator, flj.l.Vl stated in Eq. (2.18) in the limit n --+ 00. 

The position of the pole in the PT 

Another important issue in the context of the PT is the following. It is known that 

even though the conventional gauge boson self-energy is gauge dependent, the position of 

14 


5 

http:flj.l.Vl


the pole is a gj. quantity [6,7]. On the other hand, the PT self-energy is by construction gj. 

for all values of q2, and therefore its pole is also guaranteed to be gj. Given the fact that 

the pole position of the conventional propagator is related to physical quantities (mass and 

width) it is important to inquire, whether or not the PT pole position is different from that 

of the conventional one. It turns out that, to any order in perturbation theory the two poles 

are identical. Put in different words, if one works at loop order n in perturbation theory, 

the two poles differ by a gauge independent amount, which is of order n + 1. This fact 

may come as no surprise since the PT seems to have the general property of not affecting 

quantities which are already g.i. 

In order to gain some intuition, let us first concentrate on the simpler case of a 

stable particle, and show that its mass does not get shifted by the PT. The conventional 

propagator ~~v(q) (computed at some gauge), and the PT propagator ..&.~v(q) have the 

form: 

(5.1) 

and 

----'--'----::~;;::--- + ... , -zg~ 
(5.2)

q2 _ m~ - II(q2) 

where the ellipses denote the omission of terms proportional to q~qv. The corresponding 

masses m and rh, respectively, are defined as the solution of the following two equations 

(5.3) 

and 

(5.4) 

In perturbation theory clearly m 2 m~ + Er' g2nCn and rh2 

zeroth order m 2 rh2 m~. Therefore 

(5.5) 

At one loop it is easy to see what happens. To begin with, to any order in perturbation 

theory 

(5.6) 

The general form of the one-loop IIi(q2), in any gauge, is given by 

(5.7) 
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and of course Rf = 0 for every gauge; in addition, in the Feynman gauge Bf = 0 So, from 

Eqs. (5.3)-(5.7) and assuming that vt(rh2) and Bf(rh2) are non-singular, we have that 

rhi = m~ IIl(rh2
) + 0(g4) (5.8) 

= mi 0(g4) (5.9) 

from which follows that 0 1 = C1 . 

The non-trivial step in generalizing this proof to higher orders is to observe that not 

all pinch contributions in the previous equation contribute terms of higher order. Indeed, as 

already mentioned in Section 4, the RP terms of Eq. (4.1) do not always have a characteristic 

factor (q2 - m~) in front, because it has been cancelled by an internal propagator of the 

string. Such terms are not of higher order, as is the case with the graphs which are of the 

form given in Eq. (5.7). To see why such contributions are instrumental for our proof, let 

us repeat the previous calculation, in the two-loop case. At the two-loop order, m 2 and rh2 

are given by: 

(5.10) 

and 

m " 2 2 II ( • m 2) + II2( • m 2) + lIP1 + lIP2 (5.11)= mo + 1 

where 

(rh2 - m~)[vt(rh2) vt(rh2)] + (rh2- m~)2[Bi(rh2) Bf(rh2)] 

+Rf(rh2). (5.12) 

We want to show that IIi(rh2)+IIf(rh2
) 0(g6); substituting rh2 m~ = IIl(rh2)+0(g4) 

into Eq. (5.12), and neglecting terms of 0(g6) or higher, we find 

(5.13) 

In the final step we have used Eq. (4.2) at q2 = rh2, i. e. 

-IIl(rh2)Vt(rh2) ~(m2 - m~)V't(rh2rvt(rh2) 
-IIl(rh2)Vt(rh2) + O(l) (5.14) 

The generalization of the previous proof to an arbitrary loop order n in perturbation 

theory proceeds by induction. First of all, to simplify things we will work in the Feynman 
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gauge. In that case, the general form of the RP terms becomes 

(5.15) 

where il~ is the part of R~ which is of O(g2n) at q2 m~, whereas the rest is O(g2(n+l»). 

For example, from Rf of Eq. (4.2), or equivalently Eq. (5.14), we have that ilf(q) = 
-I1l (q)vt(q). Finally, we define V! and B~ as follows: 

V
p 
n v:Pn + VnP , 

(5.16) 

2Let us now assume that 1h2 m , up to order n - 1, i.e. Ok ek , for every k ::; n - 1. 

The expression for 1h2 to order n is 

n n n n 

1h2 = m~ + I: Ilk + (1h2 m~) I:Ve + (1h2 - m~)2 I: Be + I: ilf . (5.17) 
k=l k=l k=l k=l 

Using the fact that 1h2 m~ = L:~-l Ilk + O(g2n) (from the previous order), and that, 

as before, both (1h2 m~)V! and (1h2 m~)2B~ are of O(g2n+2) and higher, Eq. (5.17) 

becomes 

n n-l n-l n-l n-l 

m~ + I: Ilk + I: Ilk I: V~ + [I: IlkrI: B~ 
k=l k=l m;::;l k=l m=l k=l 

(5.18) 

It is a matter of careful counting to convince oneself that each term of the series in the 

r.h.s. of the last Eq. (5.18) vanishes, i.e. 

k k j 

ilf + I: IIIVe-l + I: I: IIlIIj-lBf_i 0, (5.19) 
l=1 j;::;1l=1 

2which means that to order n, 1h2 = m , or equivalently, an = en, for every n. In Ap­

pendix A, we present a proof of Eq. (5.19). It is interesting to see that it is precisely the 

left-over contributions we obtain when we convert conventional strings into g.i. strings, 

which enforce the equality between the conventional and PT poles. 
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6 The case of the unstable particle 

We now proceed to the case of an unstable particle; we want to show that both the 

mass and the width remain unshifted in the context of the PT. We will adopt the definitions 

and methodology introduced by Sirlin [8]. Calling 8 = q2, the pole position s is defined as 

the solution of the following equation: 

s m~ + ll(s) (6.1) 

We adopt the following definition of mass m and width r in terms of s: 

(6.2) 

m2Similarly, in the context of the PT we define the pole position s imI' as the solution 

of 

(6.3) 

We want to show that s = s -or equivalently, m = mand r = r- to every order in 

perturbation theory. Since both r and r are of 0(g2), at one loop we have just the result 

of the previous section, i. e. m = m, for n 1. Going to the next order, we expand 

Eqs. (6.1) and (6.3) up to terms of 0(g4), 

(6.4) 

and 

(6.5) 

where ll/(m2
) = dll(q2)/dq2Iq2=m2. Separating real and imaginary parts (we omit the 

arguments m 2 and m2 
, respectively) we have 

m~ + ~ell +mrS:mll l 
, (6.6) 

m~ + ~efi +mrS:mfi' , (6.7) 

for the real parts, and 

mr S:mll +mr~elll , (6.8) 

mI' -S:mfi + mI'~efi' , (6.9) 
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for the imaginary parts. Let us write rh2 and rhr as follows: 

rh2 - 2m + €1, (6.10) 

rhr mr + €2, (6.11) 

where 

€1 - ~eIIP + rhr~mIIPI, (6.12) 

€2 - ~mIIP + rhr~eIIpi . (6.13) 

In Eqs. (6.12) and (6.13), lIP is the total pinch contribution to order g\ i.e. lIP = IIf +IIf, 

with the general form given in Eq. (5.12). We now want to show that both €1 and €2 are of 

0(g6). Using again Eq. (5.12) we have that 

and 

-. pi
rhr~mII 	 [~mvt + 0(l)][-~mII1 +O(l)] 

-~mVt~mII1 +O(l) 

Therefore, up to terms of 0(g6) 

€1 	 ~eRf + ~eVt~eII1 - ~mVt~mIIl 

~e(Rf + IIIvt) 
0, 

where we used Eq. (5.14). Similarly, using the fact that to 0(g4) 

~mIIP 	 ~mRf + ~m[(rh2 m~rvt + O(l)] 

~mRf + ~m[v't~eII1 + O(l)] 

~mRf + ~eII1~mVt 

and 

rhr~eIIPI = -~eVt~mII1 + O(l) 

we have 

€2 ~mRf ~eIIl~mVt - ~eVr~mII1 

-~m(Rf II1Vt) 

0 

(6.14) 


(6.15) 

(6.16) 

(6.17) 

(6.18) 

(6.19) 
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where again Eq. (4.2) was used. 

It is straightforward to generalize this result to an arbitrary order n in perturbation 

theory. One should simply notice that the formula of Eq. (4.2) and its generalization to 

higher orders given by Eq. (5.19) is crucial to obtain a general proof. In particular, we have 

seen in Section 3 that the extension of the PT to higher orders has given rise to new PT 

terms, R~, which guarantee that the position of the pole remains unchanged. 

U nitarity and related properties 

In this section, we will analyze issues of unitarity pertinent to a consistent S-matrix 

perturbation theory involving unstable particles. In particular, we will mainly focus on 

the optical theorem, which is a direct consequence of the unitarity of the S matrix, and 

prescribes the form of the perturbative expansion for the transition operator T. 

The T-matrix element of a reaction i --+ f is defined via the relation 

(7.1) 

where Pi (Pf) is the sum of all initial (final) momenta of the Ii) (If)) state. Furthermore, 

imposing the unitarity relation stS 1 leads to the optical theorem: 

UITli) - (iITlf)* = iL::(27r)46(4)(ll, Pi)(i/ITlf)*(i/ITli). (7.2) 
i/ 

In Eq. (7.2), the sum Lit should be understood to be over the whole phase space and spins 

of all possible on-shell intermediate particles i'. A corollary of this theorem is obtained if 

'l, f. In this particular case, we have 

s<m{iITli) (7.3) 

In the conventional S-matrix theory with stable particles, Eqs. (7.2) and (7.3) hold also 

perturbatively. To be precise, if one expands the transition operator in power series of the 

coupling constants, say g, as T = T(l) +T(2) + ... + T(n) +.. " in a given order n one has 

T (n) T(n)* ."'(2 )4 C(4)(p. p.) '" 
n 

T(k)*T(n-k)
fi if 'l, L...J 7r a l' - l L...J itf i'i . (7.4) 

i' k",l 
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In a scalar model containing an unstable particle, Veltman showed [4] that unitarity can 

be preserved by suitably modifying the S-matrix perturbation theory, in which unstable 

particles should always appear as intermediate states. Obviously, the S-matrix perturbation 

expansion arising from the truncation of the unstable particles as asymptotic states should 

be reformulated accordingly. A convincing example of how the PT algorithm gives rise to 

amplitudes which, in addition to being g.i. also respect unitarity, is the calculation of the 

magnetic dipole moment f.tw and the electric quadruple Qw for the W boson [21]. Such 

quantities are of particular interest in view of the upcoming experiments of the type e+ e- -t 

W+W- [34] that will be studied at the CERN Large Electron Positron collider (LEP2), 

which is planned to operate at a centre of mass system (c.m.s.) energy s 200 GeV. 

In order to understand under what conditions an expansion based on resummed prop­

agators can respect the unitarity relation of Eq. (7.3), let us first consider the toy model 

of Ref. [4]. This model is a superrenormalizable 4>3-scalar theory, which contains a light 

scalar, 4>, and a heavy one, <I>, having a mass Mil? > 2M¢>. In order to provide a decay mode 

for the heavy scalar into two 4>'s, one introduces the interaction term in the Lagrangian 

,\ 2 
Lint = 24> (x)<I>(x), (7.5) 

where'\ is a non-zero coupling constant. For concreteness, we consider the reaction 4>4>-t 

4>4> at c.m.s. energies s c::: Mi. This process proceeds via three graphs; one resonant s­

channel graph, and two nonresonant t and u graphs. After performing a Dyson summation 

for the s-, t-, and u-channel propagators, we arrive at the following expression for the 

transition amplitude: 

T(s,t,u) = -,\2(-S--~----_1--------­ 1 

Mi + ~eIIil?(s) + i~mIIil?(s) t Mi + IIil?(t) 

(7.6)+ u Mi~ IIil?(U») ' 

where IIil?(q2) is the irreducible two-point function of the <I><I> self-energy at the one-loop 

order. It is easy to verify from Eq. (7.6), that the amplitude T(s, t, u) is endowed with the 

analyticity property of crossing symmetry. In other words, the various processes can be 

obtained by appropriately interchanging the Mandelstam variables s, t, and Uj obviously 

T( s, t, u) = T(t, s, u) = .... These crossing properties can be naturally implemented, 

when the resummed self-energies appearing in Eq. (7.6) are momentum-dependent. When 

crossing is applied in such a case, the unphysical absorptive parts are killed by the kinematic 
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efunctions, whereas the new physical absorptive contributions, which emerge after crossing, 

will regulate the resulting resonant channels. This feature persists even if vertex and box 

graphs are included. A qualitatively similar behaviour is expected in gauge theories; since 

the resummed self-energy derived from the PT depends on q2, we conclude that our PT 

approach to gauge theories with unstable particles respects the crossing symmetry. 

We will now discuss the main reason which clearly advocates for a q2-dependent 

regulator, rather than a constant one. If we consider the l.h.s. of Eq. (7.3), we have for the 

process q)(P --+ 1>1> 

(7.7) 

which is related to the amplitude squared of the resonant s-exchange graph, say TJI' In 

fact, one finds that 

~T(s,t,u) = ~ / dLIPS jT,,(s)j2, (7.8) 

where LIPS stands for the Lorentz-invariant phase space for the two on-shell 1> particles. 

Eq. (7.8) is consistent with Eq. (7.4) in a perturbative sense. At this point it is important to 

notice that the unitarity relation ofEq. (7.8) is only valid when the resummation involves an 

s-dependent two-point function and width for the unstable scalar «P. If a constant width for 

«P had been considered instead, unitarity would have been violated through Eq. (7.8), when 

s =I- M.j. It is therefore evident that the regulator of a resummed propagator should be 

s-dependent in this scalar theory. The above problem is expected to appear if one attempts 

to use a constant pole expansion in the context of a gauge field theory. Indeed, there is no 

fundamental reason to believe that one could consistently describe gauge theories using a 

resummation procedure which is not well justified even for scalar theories. On the other 

hand, the reordering of Feynman graphs via the PT and the resummation of the momentum 

dependent PT self-energies provides a g.i. solution to the problem at hand, while, at the 

same time, does not introduce residual unitarity-violating terms in the resonant matrix 

element. 

In what follows we will analyze some crucial aspects of the PT algorithm in relation 

to the unitarity, and underline the analogies between the PT results in gauge theories and 

some known facts from the 1>3 scalar theory. In the 1>3 model, the transition amplitude of 

Eq. (7.6) exhibits a clear separation of the dependence on the Mandelstam variables s, t 

and u. In this way, resummation can be applied to each channel independently. Because of 
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this property, T(s,t,u) displays the correct high-energy unitarity behaviour, and vanishes 

as s, t -+ 00. In gauge theories, this is generally not the case. For example, consider the 

process I-vI -+ W- H shown in Fig. 6, where the charged lepton (I) is massive. In the Born 

approximation, there exist two graphs: an s- and t-mediated graph in the unitary gauge 

(see, also, Figs. 6(a) and 6(c)). Taking the infinite limit of sand t for the s-channel graph, 

one can verify that this amplitude alone does not vanish. On the other hand, the total 

matrix element tends to zero in the high-energy unitarity limit. Evidently, the t-exchange 

graph contains terms, which, when properly taken into account, conspire in such a way so 

as to give the correct high-energy unitarity limit. The PT algorithm accomplishes, via the 

decomposition. given in Eq. (2.8), the same clear kinematic separation one knows from the 

scalar theory. 

The above discussion becomes more transparent if one employs the Ward identities 

which relate the Feynman graphs of Fig. 6(a) to those of Fig. 6(b), and the diagram of 

Fig. 6( c) to that of Fig. 6( d). For the process lVI -+ W-(p_ )H(PH), we have in an arbitrary 

~ gauge 

(7.9) 

(7.10) 

In the high-energy limit where p_ -+ 00, the polarization vector, ci(p-), of the longitudinal 

W boson approaches to F-.-/Mw. In the Feynman gauge, the amplitudes T(d) and T(b) vanish 

in the limit s -+ 00. In this limit, it is easy to see that the remaining constant term in 

Eq. (7.9) is responsible for the bad high-energy behaviour, and can only be cancelled if 

a corresponding term coming from Eq. (7.10) is added. It turns out that, when loop 

corrections are considered, this latter term is furnished by the relevant PT part thus leading 

to a proper s-dependent propagator [19]. 

An issue related to the discussion of unitarity is whether the PT self-energy which reg­

ularizes the singular propagator contains any unphysical absorptive parts. From Eq. (7.4), 

one has to show that the propagator-like part Tl of a reaction should contain imaginary 

parts associated with physical Landau singularities only, whereas the unphysical poles re­

lated to Goldstone bosons and ghosts must vanish in the loop. Although the PT algorithm 

produces a g.i. result for T1 ) there would still have been a problem if this procedure had 

introduced some fixed unphysical poles. A qualitative argument suggesting that this is 
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not the case, is that the PT results can be obtained equally well by working directly in the 

unitary gauge [20], where only physical Landau poles are present. We will also demonstrate 

this fact by an explicit calculation of the r;smTl of the process eVe ---+ JLvfJ. at the one-loop 

electroweak order. We will assume that only the Wand H particles can come kinemat­

ically on the mass shell, as shown in Fig. 7. Then, the absorptive amplitude, r;smM, for 

the aforementioned process may be conveniently written as (suppressing contraction over 

Lorentz indices) 

r;smM ii (pH) [r*)iiW(p0 - - (1)) 0 (a)OH )r(a)
2ce) +T1WfJW(p0 )r2W +T1WiiW(p - )T2(€)(a) (1)) (e) 

+ T 1(€)iice)(p )T2(€) + r*) fJW(p )T2W +r*)fJW(p )r2(e) 
(a) 0 - (e) (d) 0 - (1)) (1)) 0 - (d) 

+T1(e)iiW(p )T2W + T 1(e)fJW(p )T2(e)] (7.11)(e) 0 - (e) (d) 0 - (d) , 

where T1 (T2) denotes the electron (muon) mediated amplitude present in Fig. 7, and the 

tilde acting on the tree-level propagators simply projects out the corresponding absorptive 

parts, as these are effectively obtained after applying the Cutkosky rules. More explicitly, 

we have 

iiOH(PH) 211'i 5+(pir - MiI) (7.12) 

fJ~e)(p) 211'i 5+(l - eM~ ) (7.13) 

ii~e211(p) 211'i [ ( -gfJ.lI + ~ ) 5+(p2 - M~) - ~ 5+(p2 - eM~)] 
- PfJ.Pll - W UfJ.lI(p) - M} Do (p), (7.14) 

with 5+(p2 - M2) = 5(p2 M2)B(pO). After identifying the PT piece [T~ = gwA~i) /2Mw , 

with i 1(: e),2{: JL)], which is obtained from Eq. (7.10) each time the p~p~ -dependent 

part of ~~~11 gets contracted with Tt~i), we find that the imaginary propagator-like part is 

~ H{PH){T1(e)~(€){p )T2(€) +T1(e) fJ(e){p )T2(e) + (211'i) [T1 p~ T 2ce)o (a) 0 - (a) (1)) 0 - (I» P Mw (a)lI 

+Tta)tl ~~ Tj, +TftTj,] [5+(p~ - M~) 5+{p~ - eM~)]} 
~ { ){T1(OO)(j( )T2(oo) + (211") [Tl p~ r2(oo)OH PH (a) P- (a) Z P Mw (a)lI 

+T(~):;) ~~ Tj, + TftTj,]5+(P~ - M~)} + 51'1' (7,15) 
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In the last step of Eq. (7.15), we have separated contributions originating from the physical 

poles at Pk M2 and p2 Ma, from those that occur at P: eMa, and are included in H ­

8Tl, where 

(7.16) 

Obviously, the imaginary parts coming from the physical Landau singularities are 

manifestly g.i., whereas the term 8T1 not only should be g.i. because of the PT reordering, 

but it should vanish identically. With the help of Eq. (7.9), it is a matter of simple algebra 

to show that indeed 81'1 = o. 

It is therefore important to emphasize the conclusions of this section. The PT algo­

rithm can effectively disentangle the different kinematic dependences on the Mandelstam 

variables sand t via the decomposition given in Eq. (2.8), when radiative corrections are 

considered. Furthermore, this algorithm yields a proper q2-dependent propagator display­

ing the desired unitarity behaviour in the high-energy limit. The PT method not only 

produces g.i. analytic results but also gives rise to a well-defined self-energy, in which all 

possible physical absorptive parts are present, while unphysical Landau singularities origi­

nating from ghosts and Goldstone bosons do not survive. This latter property is particularly 

advantageous, since we wish to resum the q2-dependent PT self-energy in order to unitarize 

the singular resonant amplitude, and, at the same time, avoid the presence of unphysical 

residual absorptive phases, which could be generated if a constant pole expansion had been 

used instead. 

We will study the process "Ye- - f.t-vJ.l-ve, in which two gauge W bosons are involved. 

This process is of potential interest at the LEP2. Furthermore, the collider TEVATRON 

at Fermilab offers the possibility to study the scattering process qq' - "Yf.t- vJ.I- [13]. 

In the Born approximation, the process "Ye- - f.t-vJ.l-ve consists of three Feynman 

graphs shown in Fig. 8, with the gauge bosons in the unitary gauge. The transition ampli­
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tude then reads 

(8.1) 

with 

Tol-' roput;(p-) r'J::'~w+ (q,p-, p+) U{;;(p+)rou 

rOps~e)rJl-'ut;(p+)rOIl + roput;(p-)rJl-'s~l-')rOIl' (8.2) 

wIn Eq. (8.2), S~f) (p - mf)-l denotes the free i-fermion propagator, rJw- + (rJI-') is 

the tree-level,WW (l-l+,) coupling, and p_ (p+) is the momentum of the W- (W+) 

boson flowing into the ,W-W+ vertex. The form of the amplitude given in (8.1) is gauge 

invariant, in the sense that it does not depend on the gauge fixing procedure nor the 

gauge-fixing parameter chosen. In the Re gauges, for example, additional graphs with 

Goldstone bosons must be included, but at the end, the expression of (8.1) will emerge 

again. In addition, since the action of the photonic momentum on the tree-level,WW 

vertex triggers the elementary Ward identity 

1 I-'r1'W-w+ _ U-1 ( )- q Ol-'IIA - Will. p+ (8.3) 
e 

the electromagnetic gauge invariance of the tree-level amplitude is evident, i.e. ql-'Tol-' = O. 

In Eq. (8.3), UW~II is the inverse free propagator, of the W boson in the unitary gauge. In 

general, the inverse free propagator of a vector boson, V, including massless gauge bosons, 

such as photons and gluons, may be obtained from Eq. (2.5) in the same gauge. Its explicit 

form is given by 

(8.4) 

However, since the Tol-' of (8.2) exhibits a physical pole at p~ = M~, the use of a resummed 

propagator is needed. As we have discussed in Section 2, the naive form of a BW propagator 

for the singular amplitudes violates U(l)em and Re gauge invariance. On the other hand, 

the PT method used to reorder the Feynman graphs, restores both the U(l)em and the Re 

invariance of the amplitude, which are present at the tree level. 

To see that, let us concentrate on the part T11-' of the amplitude, shown in Fig. 8, 

which contains the trilinear ,WW vertex. Applying the PT, and then resumming the PT 

self-energies following a procedure exactly analogous to the one described in Section 2, we 

arrive at the resonant transition amplitude (suppressing all the contracted Lorentz indices 
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except of the photonic one): 

The PT procedure renders all hatted quantities in the above expression independent of the 

gauge-fixing parameter e; .6.w is given in Eq. (2.18). The final ingredient which enforces 

the full Re-invariance of the resonant amplitude TIp., and allows it to be cast in the form 

of Eq (8.5), is a number of Ward identities, satisfied by the PT vertices. These identities 

can be summarized as follows (all momenta flow into the vertex, i. e., q +p_ +P+ = 0): 

(8.6) 

8 11 (p- ) + 0 11 (p+) , (8.7) 

O(p_) - O(p+) , (8.8) 

(8.9) 

(8.10) 

-8~lp+), (8.11) 

-0p.(p_) , (8.12) 


Mw0p.(p+) - Mw 0 p.(p_) 


- p~ [fi~A(q) + Cw fi~f(q)] . (8.13) 

Sw 

In the derivation of the above equations, we have used the fact that 

qP.fi~A(q) 0, (8.14) 

qIl-fi~f (q) 0, (8.15) 

which implies that fi~II(O) 0 and fi~(O) O. 

The one-loop PT self-energy [19] and the one-loop ,WW vertex [21] are respectively 

given by: 

(8.16) 

r'Yw - w+(e=I)( ) [U-1 C«) ( )P.IIA q,p-,p+ gwsw "'(p. q BC<IIA q,p-,p+ 

+Uw~C«p_ )B:C<A(q, p_ ,p+) + Uw\ C«p+ )B;IIC« q, p_, p+)] 
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- 2g!rri:::~w+ (q,p_,p+)[ lww{q) + s!lw-y{p_) + s~lw-y{p+) 

+c~lwz{p_) + c~lwz{p+)] + gwsw [gwp+>.M-{q,p_,p+) 

+ g~>.p_"M+(q,p_,p+)], (8.17) 

where rr:.,a=l) [35] and r:~-W+a=l) [36] are the conventional one-loop WW self-energy 

and I'WW coupling, respectively, evaluated in the Feynman gauge, and the functions l ij ) 

B~,,>.) B::V>"1 and M± are defined in Appendix B. 

If we now contract 1\.1. of Eq. (8.5) with qJ.l., it is elementary to verify, that by virtue 

of the Ward identity of Eq. (8.6), qJ.l.TIJ.l. = O. So we conclude that the resonant amplitude 

obtained by the PT satisfies both Re and U(1)em invariance. 

Note finally, that all PT Green's functions defined thus far satisfy QED-like Ward 

identities (for example, Eqs. (8.6)-{8.13)). This feature not only enforces the Re and U(l)em 

invariance, but it constitutes a sufficient condition that our approach admits multiplicative 

renormalization [37J. 

Another process that is of particular interest in testing the electroweak theory at 

TEVATRON is QQ' ---? e-veP-p+; there, in addition to the I'WW, the ZWW coupling 

appears also. The phenomenological relevance of the ZWW coupling becomes important 

as soon as the invariant-mass cut m(p-p+) ~ Mz is imposed. In a similar way, one can 

analytically derive the Tl amplitude for this process, which is more involved due to the 

presence of ZI'-mixing effects [38]. As an example, we consider the g.i. amplitude Tl, 
~z

which, as can be seen from Fig. 9, does not contain tree-level photonic contributions. Tl 

can be cast into the form 

(8.18) 

where r~ stands for the Z coupling to fermions at the tree level. The PT Ward identities, 

which are necessary for maintaining gauge invariance, are listed in Appendix C. It should 

be noted that the inclusion of the ZI' mixing in Eq. (8.18) proceeds in a straightforward 

way, since in the PT framework these additional contributions form a distinct g.i. subset 
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of graphs. Indeed, both nzlI(q) and nZ~(q) are by construction independent of the gauge­

fixing parameter! and the final gauge cancellations proceed by virtue of the transversality 

properties of nZ)q) and nZ~(q), as explicitly stated in Eqs. (8.14) and (8.15). By analogy, 

the Higgs-mixing terms, which become significant for external heavy fermions, also form a 

g.i. subset; possible additional refinements necessary for their proper inclusion in 1'1 will 

be studied elsewhere. 

Conclusions 

We have presented a new g.i. approach to resonant transition amplitudes with external 

nonconserved currents, based on the PT method. We have explicitly demonstrated how 

our analytic approach bypasses the theoretical difficulties existing in the present literature, 

by considering the resonant processes e-ve ~ p,-v~ and ,e- ~ p,-vJ-Lve in the SM, with 

massive external charged leptons. In particular, it has been found that our approach defines 

a consistent g.i. perturbative expansion of the S matrix, where singular propagators are 

regularized by resumming PT self-energies. Through an explicit proof, particular emphasis 

has been put on the fact that the PT resummed propagator does not shift the complex 

pole position of the resonant amplitude. Furthermore, it has been demonstrated that the 

so-derived propagator does not give rise to fixed unphysical Landau poles. The main points 

of our approach can be summarized as follows: 

(i) 	The analytic expressions derived with our approach are, by construction, independent 

of the gauge-fixing parameter, in every gauge-fixing scheme (Re gauges, axial gauges, 

background field method, etc.). In addition, by virtue of the tree-level Ward identities 

satisfied by the PT Green's functions, the U(1 )em invariance can be enforced, without 

introducing residual gauge-dependent terms of higher orders. 

(ii) 	 As can be noticed from Section 9 and Appendix 0, the two- and three-point PT 

functions satisfy abelian-type Ward identities. This is a sufficient condition in order 

that multiplicative renormalization is admissible within our approach. 

(iii) We treat, on equal footing, bosonic and fermionic contributions to the resummed prop­

agator of the W-, Z-boson, t quark or other unstable particle. This feature is highly 
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desirable when confronting the predictions of extensions of the SM with data from 

high energy colliders, such as the planned Large Hadron Collider at CERN (LHC). 

Most noticeably, extra gauge bosons, such as the Z', W', ZR predicted in S0(10) or 

E6 unified models [39], can have widths predominantly due to bosonic channels; the 

same would be true for the standard Higgs boson (H) within the minimal SM, if it 

turned out to be heavy. In such cases it becomes particularly apparent that prescrip­

tions based on resumming only g.i. subsets of fermionic contributions are bound to 

be inadequate. 

(iv) 	The main drawback of using an expansion of the resonant matrix element in terms of 

a constant complex pole is that this approach introduces space-like threshold terms 

to all orders, whereas non-resonant corrections can remove such terms only up to a 

given order. These space-like terms manifest themselves when the c.m.s. energy of 

the process does not coincide with the position of the resonant pole. As we showed 

in Section 7, these terms explicitly violate the unitarity of the amplitude. On the 

contrary, our approach avoids this kind of problems by yielding an energy-dependent 

complex-pole regulator. For instance, for channels below their production threshold, 

such residual unitarity-violating terms coming from unphysical absorptive parts have 

already been killed by the corresponding kinematic () functions. 

(v) Finally, our approach provides a good high-energy unitarity behaviour to our ampli­

tude, as the c.m.s. energy s -+ 00. In fact, far away from the resonance, the resonant 

amplitude tends to the usual PT amplitude, showing up the correct high-energy uni­

tarity limit of the entire tree-level process. 

Although more attention has been paid to the unstable Wand Z gauge particles, our 

considerations will also apply to the case of the heavy top quark discovered recently [40]. 

Our formalism is particularly suited for a systematic study of the CP properties of the 

top quark [5] at LHC. Our method may find important applications in the context of 

supersymmetric theories, especially when resonant CP effects in the production and decay 

of heavy gluinos and scalar quarks are studied [9]. It may also be interesting to consider our 

g.i. approach as an appealing alternative to the conventional formulation of supergravity 

theories in the background field gauges, where, in addition to the regular Fadeev-Popov 

ghosts [41], the Nielsen-Kallosh ghosts [42] may appear. Finally, our analysis could be of 
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relevance for the study of nonperturbative or Coulomb-like phenomena, which may appear 

in the production of unstable particles [43], and are currently estimated by using special 

forms of DS integral equation [44,43]. 
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A The structure of the ilP terms 

In order to understand the structure of the RP , we study in detail the three-loop case. 
P BP B PTo avoid notational clutter we remove the superscript "P" from V P , V P , v , , , and 

bP . 

For k 	 3, Eq. (5.19) gives 

(A.1) 

where we used that B1 = B1 0 in the Feynman gauge. 

We now proceed to derive Eq. (A.1). To that end, we first express a string with the 

three ITl self-energies in terms of conventional strings, and the necessary pinch contribu­

tions. We have: 

L1 	 DOIT1 DOIT1 DoIT1 DO 

Do [II1 + VIDol]Do[II1 + VIDol]Do[II1 + V1DOI] Do 

Do [II~D~ + 3II~V1Do + 3IIIvi + V;DOI]Do 

LI + Do [3II~VIDo + 3IIIvi + v;DOl] Do. 	 (A.2) 

In a similar way, we have for the string containing a ITI and IT2 : 

L2 	 2DoIT1DoIT2DO 

2Do[III + V1Dol]Do[IIz + V2DoI + BzDoz + Rz]Do 

2Do [II1IIzDo + (III V2+ II2VI - IIIvi) - II~V1Do 

+(IIIBz + VI Vz)Dol + VIBzDo2]Do 

L2 + 2Do [(II1V2+ IIzV1 - IIIvi) - II~VIDo + (IIIBz + VIV2)Dol 

+VIBzDoZ]Do , (A.3) 

where we used that Rz = -IIIVI. iFrom the graphs depicted in Fig. 10, we receive the 

propagator-like pinch contributions Ls, L4 , L51 Ls, and L7 respectively, given by 

DoII1DOV2 Do [III Y;] Do, (A.4) 

DoII2DOVi Do [IIzVi] Do , (A.5) 

DoIIIDoIIIDo Vi = Do [II~ViDo] Do, (A.6) 
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(A.7) 

(A.8) 

We now add by parts the hatted and unhatted quantities from Eq. (A.l) - (A.8); 

their difference represents the contributions one has to add (and subsequently subtract, as 

described in Section 2) in order to convert "unhatted" strings into "hatted" strings. Using 

the fact that VI = Vi, V2 = -~V?, and 

3 2v:2 --v, (A.9)4 I 

we finally have: 

(A. 10) 
i=l j=1 

with 

R3 - [ 5 3 3] I - 2VIB2Do2 - [IIIV2 + II2VI1 .2IIIB2 + "8 VI + 2" VIV2 Do (A.ll) 

From Eq. (A.ll), we obtain 

V3 (A.12) 

(A.13) 

and 

(A.14) 

We notice that all unwanted terms proportional to II~VIDo have canceled against each 

other as they should. R3 of Eq. (A.14) is precisely what Eq.(5.19) predicts for k = 3, 

namely Eq (A.l). As we explained in section 3, the R3 terms, together with the V3 and B3 

propagator-like pinch terms will eventually convert II3 to IT3 . 

Having gained enough insight on the structure of the RP terms through the study of 

explicit examples, we can now generalize our arguments to obtain Eq.(5.19). For the rest 

of this Appendix we restore the superscript "P" 

The basic observation is that the conversion of regular strings of order n into "hatted" 

strings gives rise to R~ terms only when: 

(a) The regular string is of the form DoITIeDOITlDol with k + l = n, or 
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(b) The regular string is of the form Doll",DoII"DolljDo, with k + i +j n. 

In other words, only strings with two or three self-energy bubbles give rise to R~ 

terms. To understand the reason for that, let us consider a string of order n, consisting of 

more than three self-energy insertions, i.e. 

where k > 3, and L::J=1 (i j ) = n. As discussed in section 3, in order to convert any of the 

self-energy bubbles llit into flit we must supply the appropriate pinch terms of order it (see 

Eq. (4.1)), and subsequently subtract them from other appropriately chosen graphs. These 

extra vertex-like pinch terms, of the form vCDOl, cancel one of the Do in the string, and 

give rise to strings of the form 

DoIIil Dolli2 Do {...}Dollit_2 Do [llit_l VC] Do{' ..}DolliAt _1DolliA: Do , 

Dollil DoIIi2 Do{' ..}DoIIit_ l Do [VitIIit+1 ]Do{' ..}DoIIi"_l Do IIi" Do , 

whereas the Dol BI'Dol box-like terms cancel two of the internal Do, thus leading to a 

string of the type 

The terms inside square brackets in the above expressions contribute to the quantities 
-p -p -p

R(it_l+it ), R(it+it+d' and RCit_l+it+it+I} , respectively. They will correspondingly be added 

to the strings 

DoIIil DoIIi2Do{' ..}DoIIit_zDo [II(it_dit)]Do{' ..}DoIIi"_l Do IIi/; Do , 

Dolli1DoIIizDo{' ..}DoIIit_1Do [II(it+it+d] Do{' ..}DoIIi/.:_1 Do IIi/.: Do , 

DoIIil DoIIi2 Do{' ..}Dollit_2 Do [II(it_l+it+it+d]Do{ ...}DoIIiAt_1 DoIIik Do, 

III order to eventually convert II(it_l+it), II(it+it+1)' and II(it-l+it+it+d into fi(il_l+it)' 

fi(il+it+d, and fi(it_1+idit+d, respectively. For example, the vertex-like piece Viz Dol will 

give rise to a string of the form 

which will be added to the string DoIIilDOIIUz+i3)Do{" .}DoIIi"_lDolli"Do, as part of the 

R~2+i3) term, whereas the box-like piece Bi2 D02 will produce a string 
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We see therefore that the terms that one needs to add to a string of order n, which 

contains more than three self-energy bubbles, will be absorbed by other strings of the 

same order, containing a smaller number of bubbles. Therefore, the only time that one 

will obtain terms which must be added to the string containing the single self-energy 

II(il +i2 +.. -+i,,_t+i ,,) TIn, e.g. they are part of R~, is if the string has a maximum number 

of three self-energies [(a) or (b) above]. A string of type (a) has the form L~:~n_k) = 
-p . -P 1 P P 

DoIIkDoTIn-kDO and produces a R(k,n-k) term, gIven by R(k,n-k) = -2[IIkVn _ k +Vk IIn - k ]. 

Of course, for every L~:~n_k) there is a L~:~k,k)' giving rise to R(k,n-k) = R(n-k,n). So, the 

total contribution of strings of type (a) to R~ is 

~,(a) 	 (A.15) 

We now turn to the strings of type (b); their general structure IS L~~:n_j,j_l) ­

DoTIlDOIIn-jDOIIj-lDo, and the contribution to R~ comes from the box-like pinch con­

tribution 8 n- j to the self-energy TIn- j , in the middle of the string. So, the contribution 
- P (b).. - P 	 P 

R(l,n-j,j-l) from L(l,n_j,j_l) IS gIven by R(l,n-j,j-l) -IItIIj-t8n_j, and the total contribu­

tion from strings of type (b) is 

n j 	 n j 
-p 

Rn,(b) 	 LLRft,n-j,j-l) = - LLIIt IIj- l 8:_j . (A.16) 
j=ll=I j=Il=I 

-p -p -p ..
Clearly, Rn = Rn,(a) + Rn,(b)l whIch IS Eq (5.19) (for k = n). 

B One-loop functions 

U sing the sum convention of the momenta q+PI +P2 0, we first define the following 

useful integrals: 

(B.l) 

(B.2) 

(B.3) 
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where the loop integrals are analytically continued in dimensions n = 4 - 2€. Armed 

with the one-loop functions given in Eqs. (B.1)-(B.3), we can now present the analytic 

expressions for the functions B, B±, and M± [21]. They are given by 

2(S! c! - S! J + 1J + 1 ) ( )M-(q,p_,p+) gw c;, Jww-y + 2c;, wwz 2" WWH 2c;, JZHW , BA 

M+(q,p_,p+) M-(q,p+,p-), (B.5) 

BIW>.(q,p-,p+) v~z 9~{9.'[P-.(Jwwv - ~Jwwv)+ p+.(Jit-wv + ~Jwwv)l 
-glW(3p->.Jwwv + 3p+>.Jit-wv +2q>.Jwwv) 

-glL>.(3p-vJwwv +3p+vJltwv 2qvJwwv)} , (B.6) 

v~z9~{9.' [3p-.(Jwwv + Jwwv) +P+.(3Jit-wv 2Jwwv )1 

+glL>' [p-v(3Jwwv + Jwwv) + 3p+v Jltwv - 2qvJwwv] 

-gvli' [p->.(Jwwv +2Jwwv ) +p+>.Jltwv - 2q>.Jwwv] }, (B.7) 

(B.8) 

where the coupling constants have been abbreviated by g-y = gwsw e and gz = gwCw, and 

the arguments of the functions J, Jijk, and Jl}k should be evaluated at (q,p_,p+). 

The one-loop functions I ij , Jijk, and Jijk defined in Eqs. (B.1 )-(B.3) are closely related 

to the Passarino-Veltman [45] integrals. In this way, if we adopt the Minskowskian metric 

glW = diag(1, -1, 1, -1) in our conventions, very similar to Ref. [46], we can make the 

following identifications: 

1 (2 2 2)--2(1 + 2dn21rp)Bo q ,M;. ,Mj ) (B.g)
161r 

1 C 
0 
(2 22M2k , M2 M2) (B.lO)- 161r2 PI' q ,P2' i' j , 

1 [ILC (2 22M2 M2 M2) Ii'C (2 22M2 M2 M2)]- 161r2 PI 11 Pllq ,P2) k' i' j + q 12 ppq ,P2) k) i' j . 

(B.ll) 

l.From Eq. (B.ll), it is then easy to derive that 

-1:1r2 [Cll(p~, l,p~, M:, Ml, MJ) 


1 C (2 22M2 M2 M2) 
 (B.13)161r2 12Pllq,P2' k' i' j' 
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C Ward identities for the ZWW vertex 


Using the PT, one can derive all the relevant Ward identities related to the ZWW 

vertex, which warrant an analytic g.i. result. These identities are listed below 

-w -wIIvA(p-) - IIvA(p+), (C.1) 

8 v(p_) +8 v(p+) , (C.2) 

n(p_) n(p+) , (C.3) 

-w - z Sw ~Z"Y
II~A(p+) II~A(q) - -II~A(q), (C.4)

Cw 
-w -z Sw ~ Z )

-II~)p_) + II~(q) + -II~(q , (C.5)
Cw 

-8p(p+) , (C.6) 

-8~(p_), (C.7) 

Cw8 A(p_) +Cw8A(p+) + fifGo(q), (C.8) 

Cw8v(p_) +Cw8v(p+) + fi~Go (q) , (C.9) 

Mw8~(p+) Mw8~(p_) 

-!(p+ p_)A[fi!A(q) + SWfi!I(q)].(C.lO)
2 Cw 

The PT three-point function for the ZWW coupling is related to the conventional 

vertex in the Feynman gauge via the following expression: 

r!~-w+ (q, p_, p+) = r!~-W+(e=l)(q, p_, p+) - gwCw [Uz~ a(q)BavA(q, p_, p+) 

+Ulj,.1va(P-)B:aA(q,P-,P+) +Uw\a(p+)B;va(q,p-,p+)] 

- 2g!ri!;w+ (q,p_,p+)[ Iww{q) + s!Iw"Y(p-) s!Iw"Y(p+) 

+c!Iwz(p_) c!Iwz(p+)] + gwcw[M~g~VP+AM (q,p-,p+) 

+ M~g~AP-vM+(q,p_,p+) + M;q~gVAM(q,p_,p+)]. (C.11) 

In Eq. (C.11), r!~-w+(e=l) is the conventional one-loop ZWW vertex calculated in the 

Feynman gauge. The loop functions Iij , B±, M± are given in Appendix B, except of M. 

37 


http:SWfi!I(q)].(C.lO


The analytic result for the latter may be obtained by 

M(q,p_,p+) - ~ g![JHZW(q,p-,p+) + JZHW(q,p-,p+)]. (C.12) 
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Figure Captions 

Fig. 1: The PT decomposition of the process e-ve -+ J.cvjJ. (the arrow of time shows 

downwards) . 

Fig. 2: The PT method applied to the scattering qij -+ qlijl at the two-loop QCD 

order. 

Fig. 3: Two-loop PT contributions to the gluon vacuum polarization. 

Fig. 4: Typical two-loop vertex and box graphs giving PT contributions to the two­

loop PT self-energy 

Fig. 5: The propagator-like part 1'1 of the transition element for the process e-ve -+ 

",-vjJ. at the two-loop electroweak order. 

Fig. 6: The process IVI -+ HW- in an arbitrary Re gauge 

Fig. 7: The one-loop absorptive graphs ofthe reaction e-ve -+ ",-vjJ. involving the on­

shell intermediate bosons W- and H (the arrow of time shows downwards). 

Feynman lines with Goldstone bosons are not displayed. 

Fig. 8: The process e-, -+ ",-vjJ.ve • The bubbles denote PT self-energies and three­

point functions. Goldstone boson lines are not shown. 

Fig. 9: The process QQI -+ ",+",- e-ve1 where Z,-mixing effects and other photonic 

contributions are not shown. Crossed Z-boson exchange graphs are also 

implied. 

Fig. 10: Structures of Feynman graphs responsible for the vanishing of the shift of 

the pole at the three-loop case -see, also, Appendix A. 
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