Technical Report
RAL-TR-1998-083

CLRC

The EVEREST Pre-Processor:
Version 4.0

€601066-NVIS

© HAALARMIEO

JV Ashby R F Fowler and C Greenough

6" January 1999

COUNCIL FOR THE CENTRAL LABORATORY OF THE RESEARCH COUNCILS

VAINTD ‘SavIaIT NJgo




© Council for the Central Laboratory of the Research Councils 1997

Enquiries about copyright, reproduction and requests for
additional copies of this report should be addressed to:

The Central Laboratory of the Research Councils
Library and Information Services

Rutherford Appleton Laboratory

Chilton

Didcot

Oxfordshire

OX11 0QX

Tel: 01235 445384 Fax: 01235 446403
E-mail library@rl.ac.uk

ISSN 1358-6254

Neither the Council nor the Laboratory accept any responsibility for loss or
damage arising from the use of information contained in any of their
reports or in any communication about their tests or investigations.




The EVEREST Pre-Processor: Version 4.0

JV Ashby, RF Fowler and C Greenough

December 1998

Abstract

In this report we describe the EVEREST Pre-Processor Module which forms part of the EVEREST suite of
programs.

The Pre-Processor Module of the EVEREST Suite provides a straightforward way of defining the geometrical
structure of simple devices. Three basic mechanisms are provide: primitive commands, BLOCKS commands
and STANDARD models. The Pre-Processor also provides commands to define contact surfaces and implant
windows to be used by the Doping Profile Module. The module also includes a basic mesh generator and
appropriate commands to control the mesh density and distribution.

The EVEREST suite is one of the products of the ESPRIT project EVEREST (ESPRIT 962E-17, Three-
Dimensional Algorithms for a Robust and Efficient Semiconductor Simulator with Parameter Extraction).
EVEREST was a four-year project supported by the European Community under the European Strategic Program
for Research in Information Technology (ESPRIT) which is investigating suitable algorithms for the analysis of

semiconductor devices in three dimensions, and developing software implementing the most effective of those
algorithms.

The original authors of the Pre-Processor Module were N.Ferguson and C.Trinity College, Dublin and J.V.Ashby
and C.Greenough of the Rutherford Appleton Laboratory.

A copy of this report can be found at the Department’s web site (http://www.dci.clrc.ac.uk/) under page
Group.asp? DCICSEMSW or anonymous ftp server www.inf. rl.ac.uk under the directory pub/mathsoft/publications

Mathematical Software Group

Department for Computation and Information
Rutherford Appleton Laboratory

Chilton, DIDCOT

Oxfordshire OX11 0QX




Contents

AN wn &

Introduction

........................................ 1
UserInterface . . . . . .. ... ... ... . ... ... 1
Description of Device Geometry . . . . . . . ... .. ... ... ... .. .. .. .. . 3
3.1 Device description using the GEOMETRY commands . . . . . . ... ... ... .. 3
3.2 Device definition using STANDARD Models . . . . . . . . . ... ... ... .... 5
3.3 Device description using BLOCKS commands . . . . . . ... ... .. ....... 6

3.3.1 Volumedefinition . . . . . ... ... ..., 7

332 Windowdefinition . . . . .. ... 7

333 Contactdefinition . . . . . .. ... ..., 8
34 Generationofthe Geometry . . . . . . . . .. ... ... ... ... .. ... ... 9
Mesh Generation . . . . .. ... ... 9
Output fromprepro . . . . . .. .. 10
Installation Details . . . . . . .. ... ... . ... .. .. .. .. .. .. .. .. ... 11
Algorithms . . . . . . ..., 11
Some Examples . . . . . . .. ... 13
8.1 Examplel: AComerDiode . . . . . ... .... . ... ... ... .. .. ... 13
8.2 Example2: A Three-dimensional Diode . . . . .. ... ... ... ....... . 13
83 Example3: AStandard MOSFET . . . . . . .. ... ... ... ... ..., ... 15
References . . . . . . ... . ... 15
Intermal Commands . . . . . ... ... ... .. 17
A.l MORE -todisplay thecontentsafile . . . ... ... ... ..... ... ... . . 19
A2 CHANGE - to change working directory . . . . . . .. .. ... ... ....... 19
A3 RENAME-torenameafile . . ... ...... ... ... ... . ... .. .. 19
A4 COPY-tocopyafile . . .. ... ... ... .. ... .. 20
A5 RM-todelete (remove)afile . . ... .. ... ... ... ... ... .. ... 20
A.6 LIST -to provide directory listing . . . . . ... ... ... ... .. .. ... .. 20
A7 WRITE - to provide monitoringof asession . . . . .. ... ... ... ...... 21
A.8 READ -tospecify acommandinputfile . ... ... ... ... ... ... ... . . 21
A9 SYNTAX - to provide the syntax ofacommand . . . . . . .. ... ... ... .. 22
A.10 HELP -toaccess HELPsystem . . . . . ... . ... ... ... ... ... .... 23
Geometry Command Reference . . . . . . . .. ... ... ... .. ... ... .. 25
B.1 CONTACT -todefineacontact . . . . . .. ... ... ... .. ... ..... .. 27
B.2 GEOM - to process the geometry input . . . . . ... ... .. ... ... ... .. 27
B3 LINE-todefinealine . . . . .. ... ... ... ... .. ... 28
B.4 NEUTRAL - to specify the output file for the geometry . . . . . . .. . ... . ... 28
B.5 POINT-tospecifyapoint. . . . . . ... ... ... .. .. .. . . . ... ... . 29
B.6 QUIT - to leave the geometry input section without data verification . . . . . .. . . 29




B.7 RECAP - to review the geometric dataentered . . . . . ... ... ......... 30
B.8 SURFACE -tospecifyasurface . . .. ... .. ... ... ... ........ 30
B9 VOLUME-tospecifyavolume . .......................... 31
B.10 WINDOW -tospecifyawindow . . . .. ... ... ... ... .......... 31
Standard Models Command Reference . . . . . ... ... ... ..... ... ... . 33
C.1 BIPOLAR - to define a bipolar polysilicon emitter by giving its dimensions . . . . . 35

C.2 MOSFET - to define a MOSFET by giving its dimensions . . . . . . ... .. ... 36

C.3 NEUTRAL - to specify the output file for the geometry . . . . . . .. .. ... ... 38
C.4 ONE.DIODE - to define a one-dimensional diode by giving its dimensions . . . . . 39
C.5 QUIT - to leave the standard input section without data verification . . .. ... . . 40
C.6 STANDARD - to process the standardmodel . . . . . ... ... ... ....... 41
Blocks Command Reference . . . . . .. ... ... ... ... ... .. ... ... .. 43
D.1 NEUTRAL - to define geometry neutral filename . . . ... ... ... ... ... 45

D.2 VOLUME-todefinevolumes. . . . . . . . . . . . . o v i 45
D.3 WINDOW - to define windows

............................ 46
D4 CONTACT -todefinecontacts . . . . . ... ... .. ... ... ......... 47
D.5 END-toleavetoBlockslevel . . . . ... ... ... ... ... ......... 48
D.6  GENERATE - to generate device geometry . . . . . . .. ... .. .. ....... 49
Mesh Command Reference . . . . . .. .. .. ... ... ... ... .. ... . ... 51
E.1 CLEAR - to clear memory and allow user to re-enter meshdata . . . . . ... . .. 53
E2 END-togeneratethemesh . . . . ... ... .. ... ... .. ... ...... 53
E.3 GLOBREF - to specify default mesh refinement . . . . .. ... ... ... ... 53
E4 MESH-togeneratethemesh . . . .. ... ... ... .. ... . ......... 54
E.5 MULREEF - to specify mesh refinement on multipointedlines . . . . . . . ... ... 54
E.6 NEUTRAL - to specify the name for the mesh neutral file . . ... .. ..... .. 55
E.7 QUIT - to leave the mesh input section immediately . . ... ... ......... 56
E.8 RECAP - toreview the meshdataentered . . . . . . . . ... ... ......... 56
E.9 REFINE - to specify meshrefinement . . . . . ... ... ... ........... 57
E.10 SREF - to specify mesh refinement for standard models . . . . . .. .. ... .. .. 58
E.11 QUERY LINE - to find a line name along a givenaxis . . . ... ... ....... 60
Examples . . . . . .. ... 63
F1 Examplel: The ComerDiode . . . . . . . .. .. .. ... ... ... ....... 63
E2 Example 2: The Three-dimensional Diode . . . . . . ... ... ... ....... 66
FE3 Example 3: The Standard MOSFET Structure . . . . . . . . . . . . . . ... 70

il




1 Introduction

This manual describes the fourth version of the EVEREST Pre-Processor. It has two main functions:
to describe the geometry of a device and to generate a finite element mesh based on this geometric
definition.

The pre-processor is a stand-alone package. First, the user provides a geometric description of
the device. This may be done in either of three ways. If the device has a standard shape, which is
stored in the module’s database, then you need only supply the key dimensions of the structure: in
all other instances you define the full geometric structure either using the primitive commands or the
blocks commands. The program validates your description and, providing no errors are detected in
this description, the mesh generator generates a finite element mesh for the problem. The results are
stored in geometry and mesh neutral files ready for use by the other EVEREST Modules.

2 User Interface

The modules use an interactive command decoder, developed at the Rutherford Appleton Laboratory,
with an on-line help facility. This command environment allows you to input the device description
and the mesh refinement either interactively or by means of prepared data files which contain this
information. The second mode of use is strongly recommended, especially if you are describing a
device which will be used repeatedly.

The initial commands available to the user are given by the HELP command as shown below. Full
details of all the commands available in prepro are given in the Appendixes.

Model: Help
The commands currently defined are:

Applications Commands

GEOMETRY - to enter the geometric modeller

MESH - to enter the mesh generator

STANDARD - to define a standard device

BLOCKS - to enter the block geometric modeller
END - to exit the modeller

Internal Commands

MORE - to disply the contents a file

CHANGE - to change working directory

RENAME -~ to rename a file

COPY - to copy a file

ERASE - to delete (remove) a file

LIST - to provide directory listing

WRITE - to provide monitoring of a session

READ - to redirect the input stream to read from a file
SYNTAX - to provide the syntax of a command

HELP - to access HELP system

For further information type: HELP <command name> [<option>],




where <option> is BRIEF or FULL

All the commands can be typed in upper or lower case. The syntax of each command can be
obtained by using the syntax command. For example

Geometry: syntax write
WRIte STAte=<choice> [,FIle=<string>] [,PROmpt=<choice>]

Geometry:

To get full details on a command and its parameters, such as the WRITE command, you can use
HELP WRITE.

Model: help write

Name : WRITE

Purpose : to provide monitoring of a session

Syntax : WRIte STAte=<choice> [,FIle=<string>] [,PROmpt=<choice>]
Keyword Type Status Current Value

STATE choice required on,off,close

FILE string retained MONITOR

PROMPT choice reset on, OFF

A command can be abbreviated, the shortest value being indicated by the uppercase letters in the
syntax section, e.g. the Write command may be shortened to just wri. The system is reasonably
simple to use and working through one or two of the examples below should enable one to get to grips
with it.

Prepro provides a number of internal commands. These commands, such as HELP and COPY,
provide standard information and file handling from within prepro. As with all commands, details of
their usage can be obtained through the HELP command. A summary of these commands is given in
the Appendix A.

Those commands that access the file store do so by invoking the appropriate system command of
the operating system being used. This means that in general if a report or an error on an action is
produced, these will be those of the host operating system.

For example, on UNIX systems, the RENAME command will use the UNIX command mv. Similarly
LIST uses the UNIX command 1s. Although the parameter types for these commands is string, the
appropriate host systems file expression and options can be used provide any expression that contain
spaces any contained within quotation marks. An example of this is:

LIST "-1 *.MSH"

On a UNIX system this command will list all files with extension .MSH in the current working
directory.




3 Description of Device Geometry

The commands to describe the device geometry and those to specify the mesh refinement are entered
in separate levels within prepro. The commands GEOMETRY, STANDARD and BLOCKS enter the
three levels which provide geometry definition commands.

3.1 Device description using the GEOMETRY commands

The geometry input module reads the geometric description of the device supplied by the user. The
device is described in terms of basic primitives such as points, lines, surfaces and volumes. In addition,
it is possible to describe the position of windows used in the injection of impurities. Contacts are
described as collections of surfaces and windows. At this stage of the program the commands are
checked for syntactic correctness.

The geometry input commands should be used in the description of simple, regular structures only.
Although in principle there is no reason why the commands may not be used in the description of
more complicated, irregular structures this can be very error prone. The commands and examples of
their use are given in Appendix B.

The commands for the geometry level are:

POINT - to define a point used in the device description
LINE - to define a line used in the device description
SURFACE - to define a surface used in the device description
VOLUME - to define a volume used in the device description
WINDOW - to define a window used in the device description

CONTACT - to define a contact used in the device description
NEUTRAL - to specify the output geometry neutral file

RECAP - to review the commands entered so far

CLEAR - to clear all prior geometry commands

GEOM - to verify the geometry data

QUIT - to exit the geometry section without processing the user-supplied
data

END - to end the input and process the data.

A device is described in terms of geometric primitives: points, lines, surfaces and volumes. A
window is a sub-surface which may either be part of a contact or may define a surface area through
which impurities are introduced to the silicon. You can specify lines of symmetry for the profile
description in the definition of the window. A contact is defined as being a non-empty collection of
surfaces and windows,

Below is given some of the commands required to define a simple one-dimensional diode con-

structured from two blocks of silicon as shown in Figure 1. The descriptions are not complete - below
and in Figure 1 but serve to illustrate the method.

geometry

point pl 5 0 0O
point p2 0 0 O
point p3 0 0 2




P11 y
P12
L129

P9

Figure 1: Description on a p-n diode

P9 5 20 0
pl0 0 20 0
pll 0 20 2
pl2 5 20 2

line 112 (pl,p2)
line 123 (p2,p3)
line 134 (p3,p4)
line 141 (p4,pl)

1i
1i
1li
1i

137 (p7,p3)

159 (p5,p9)
1912 (p9,pl2)
11112 (pl2,pll)

surface sl (112,123,134,141)
suface s2 (156,167,178,185)
suface s3 (1910,110121,11112,1129)

su s9 (178,1711,11112,1812)
su s10 (185,1812,1129,159)




su sl11 (156,1610,1109,159)

volume vl (sl,s2,s4,s5,s6,s7) silicon
vol v2 (s2,s3,s8,s9,s10,s11) silicon

contact cl sl
con c2 s3

neutral p-n
geom

Other commands allow you to specify the neutral file to which the information is written and to
recap the commands entered so far. Finally, you may exit the geometric modeller in either of two ways:
first, the device description is validated before proceeding to the mesh generator (GEOM); secondly,
you may choose to exit the modeller and proceed no further with the session (QUIT).

3.2 Device definition using STANDARD Models

You are supplied with a library of standard models. If the device you wish to model has the same
shape as one of the models, all you need do to describe the device is specify the key dimensions of the
device, e.g. the device length, breadth and height. These commands may be accessed by selecting the
STANDARD command level when using the pre-processor.

At the moment there are three models in the library. The first is a MOSFET device; the user
completes its definition by specifying ten distances. The second is a one-dimensional diode, which is
specified by defining four distances. The third is a polysilicon bipolar emitter, which is specified by
defining nine distances. It is possible to augment the contents of the library yourself. In Ferguson and
Fitzsimons (1988), the authors explain how to add another model to the library; they also explain how
the EVEREST code must be modified to include the new model. While it is possible to add to the
library in this manner, the preferred method for adding a model to the library is to specify the model
completely and send the specification to those maintaining the code.

The principle on which the standard models library is based is quite simple. The topological
description of the device in terms of its lines, surfaces, volumes, contacts and windows is pre-
checked and stored in a database. When the user supplies the dimensions, the point co-ordinates are
determined and checked for consistency. Then all other information is retrieved from the database
and the geometric model is complete. This results in a reduction in time spent in the geometry input
phase.

The Standard Models section of the pre-processor provides ready access to a database of standard
device shapes. Instead of providing a full description of the device, you supply the main dimensions of
the structure as defined in the command reference section in Appendix C. The other commands allow
you to specify the neutral file to which the geometric description is written and to exit the standard
modeller, either to finish the session or to proceed to use the mesh generator. The commands for the
standard model generator are:




A
DL

Figure 2: The Standard MOSFET
NEUTRAL - to specify the neutral file to which the output is to be written.
STANDARD - to end the input and process the data.
QUIT » - to exit the Standard Models section without processing the user-

supplied data.

MOSFET - to define a standard MOSFET by giving its dimensions.
ONE_DIODE - to define a standard one-dimensional diode.
BIPOLAR - to define a standard bipolar polysilicon emitter.

Figure 2 show the structure of the standard MOSFET together with the basic control parameters. All
the sizes labled can be specified through the MOSFET commands as shown in the two examples below.

MOSFET GL = 2, GW = 1.5, DD = 2, GX = 0.2, FX = 0.05, XJ = 0.3,
SL = 0.5, SW= 0.2, DLL = 1, FW = 0.5
MOS 3 1 4 0.05 0.0 0.81 0.3 0.25 0.25

3.3 Device description using BLOCKS commands

This section describes the user interface for the BLOCKS module of the EVEREST geometric modeller.
The prime consideration in developing the interface has been to generate a set of commands, which is
capable of defining geometries of most semiconductor devices with a minimum of input, yet with the
flexibility to define more complex geometries.

The commands which define a device geometry are limited to VOLUME, CONTACT and WINDOW.
Each of these uses simple right angled primitives, HEXAHEDRON, PRISM and TETRAHEDRON in the
VOLUME command and RECTANGLE and TRIANGLE in the CONTACT and WINDOW commands, all
of which are defined by cartesian coordinates of two or three points. All complex geometries, even
non right angled, can be defined by combinations of these primitives. The commands and examples
of their use are given in Appendix D.




3.3.1 Volume definition

The VOLUME command is used to define volumes in space by specifying their shape, position, extent,
material and, where necessary, orientation. The BLOCKS module automatically generates all the
relevant points, lines and surfaces to translate this specification into the hierarchical description used
by the GEOMETRY module, the neutral files and the subsequent modules of the EVEREST suite.

Three volume primitives are recognised: brick, prism and tetrahedron. In suitable combinations
these can be used to build most device geometries. They are limited to right-angled forms of these
shapes with the (solid) right-angles oriented parallel to the coordinate axes. This may mean that some
ingenuity is required to specify particularly complex geometries but for most structures used in device
modelling this will be adequate.

Each of the volumes is given a name and a material. These must be specified as parameters to the
VOLUME command. All the subsidiary entities (points., lines and surfaces) will have names generated
automatically using the convention Pxxx, Lxxx and Sxxx where xxx is a three digit number with
leading zeroes where necessary.

The brick primitive is a simple cuboid oriented parallel to the axes. It is described by the position of
any of its vertices and the (signed) distances to each of the three neighbouring vertices. An alternative
way of looking at these distances is as the body diagonal vector from that vertex (see Figure 3).

S c,

o
=4

Figure 3: The BRICK volume primitive

The prism primitive is a right-triangular prism with its triangle lying in one of the principal planes
(z-y, x-z or y-z). It is described by the position of either of its right-angled vertices and the (signed)
distances to each of the three neighbouring vertices. This alone is not enough to specify a prism
completely. To complete the definition the orientation must also be given. This is the name of the axis
parallel to which the major axis of the prism lies. Thus a prism with z-orientation has its triangles
lying in the y-z plane (see Figure 4).

The tetrahedron primitive is a tetrahedron, three of whose triangles are right-angled with the three
right-angles meeting at the same vertex. In addition each of the right-angled triangles lies in a principal
plane. It is described by the position of the single right-angled vertex and the (signed) distances to
each of the three neighbouring vertices (see Figure 5).

3.3.2 Window definition

The pre-processor recognises two types of windows; those used for dopant definition and those used
in the specification of contacts. Since the CONTACT command does away with the need for the user




(%0, Yo, 20 + 21)

((L‘(), Yo + Y1, 20)

(l‘(), ?/0,20) (330+$1,y0,20)

Figure 4: The PRISM volume primitive

(z0, Yo, 20 + 21)

(:L'(), Yo + y11 ZO)

(z0, %0, 20 (o + 21, Y0, 20)

Figure 5: The TETRAHEDRON volume primitive

to know about which surfaces and parts of surfaces a contact covers the WINDOW command is used
only to define the former type.

A window is a plane region coincident with some surfaces of the device. It can be either arectangle
or a triangle. In either case it is specified by three points whose coordinates are given in a real list of
nine entries. See Figure 6 for details of this.

The doping profile generator requires information on how to treat the boundaries of windows,
either as lines of symmetry or not. This information is passed through the LSYMM parameter to the
WINDOW command. Figure 6 illustrates the convention used by this parameter.

3.3.3 Contact definition

A contact is a plane region coincident with some surfaces of the device. It can be either a rectangle
or a triangle. In either case it is specified by three points whose coordinates are given in a real list of
nine entries. See Figure 6 for details of this.

It is not necessary for a contact to lie within a single surface. If it overlaps more than one BLOCKS
will automatically generate points and lines for the intersections and windows for any partially covered




e

r Ly T3+ 1171 Lp
NS
" Lq "3 ) 3 3

Figure 6: Two windows, one rectangular and one triangular. Note a) the positions of ,, r, and T3 0N
the rectangular window and b) the order of the lines L1-14 for the use of LSYMM

surfaces. These automatically generated windows cannot be used for doping purposes except where
they coincide with a window defined with the WINDOW command.

3.4 Generation of the Geometry

The GENERATE command is used to combine all the geometric data for the primitives into a single,
consistent description of the whole device. The first operation is to eliminate redundant points; for
instance, defining two unit cubes, one at (0,0,0) and the other at (1,0,0) will result in the initial
definition of twelve points, four pairs of which coincide (at z = 1). The later ones will be eliminated.

Then the lines will be similarly checked. Again, in the case of the two cubes four pairs of lines
coincide. Then the surfaces are checked and the single pair of coincident surfaces will be reduced to
one surface. Finally in this phase the windows are checked and redundancies eliminated.

The next phase checks the contacts for redundancy and then proceeds to generate any new windows
which may be required (together with their associated points and lines). It also matches contacts to
surfaces. Following this the first phase is repeated to remove any new redundancies which might have
been introduced.

4 Mesh Generation

The commands necessary to generate and refine a mesh for a valid geometry are listed below. Some
of these are useful if you are entering the commands interactively. The RECAP command allows you
to check on the commands entered so far. If you have made a mistake then the CLEAR and QUIT
commands allow you either to restart entering the data or to leave the mesh generator.

The first steps are to use the GLOBREF and REFINE commands to specify the point density within
the geometry and on specific lines. The mesh of the device is then generated with the END and the
MESH commands. The MESH command returns to the input section and preserves the previously

defined refinements, allowing you to modify them if necessary. The commands for the mesh generator
are:




CLEAR - to clear memory and allow the user to re-enter mesh data.

END - to end the mesh input, generate the mesh and exit.

GLOBREF - to specify the default mesh refinement.

MESH - to end the mesh input, generate the mesh and return to the mesh
input section.

MULREF - to specify refinement on multi-pointed lines.

NEUTRAL - to specify the name of the mesh neutral file.

QUIT - to leave the mesh input section immediately.

RECAP - to review the mesh data entered.

REFINE - to specify mesh refinement.

SREF - to specify mesh refinement for standard models.

QUERY.LINE - to find line names along a given axis.

Before a mesh can be generated the level of mesh refinement should be specificied. This can be
done by using the GLOBREF or REFINE commands. GLOBREF defines a default mesh refinement.
For example GLOBREF 5 would specify 5 subdivisions on all lines. The REFINE command allows
more careful descriptions of refinement.

The REFINE command is used to refine a line, which you have already defined in the geometry or
block section. You specify the number of subdivisions on the line and a weighting of the subdivisions,
this is a real number in the range —1 to +1. If the weighting is negative then the points will be
weighted towards the first defining point of the line. If the weighting is positive then the points will be
weighted towards the second defining point of the line. If the weighting is zero then the points will be
generated uniformly on the line. A similar command, MULREF, is used to refine multi-pointed lines.
The number of subdivisions and their weighting are entered in list form, with the i-th entry in each list
defining the refinement on the i-th section of the line. For geometries generated by the BLOCKS level
the QUERY_LINE command can be used to find the line name to refine.

After the refinement commands have been entered and validated, control passes to the mesh
generation routines. This part of the program contains the following components :

¢ Adding and possibly modifying refinement to all lines in the device.
¢ Orienting the volumes so that they are consistent.

e Generating nodes on lines and surfaces.

¢ Generating nodes inside volumes.

¢ Generating hexahedral elements.

5 Output from prepro

To facilitate the post-processor it is useful to know which elements lie on which surfaces. For each
face of the generated hexahedra the system stores a pointer to the geometric surface containing that
face, provided the face is on a surface. At this stage of the program this information is reordered to
produce for each surface, a list of elements and their faces lying on that surface. This is then written
to the neutral file in a $SSURF group. Note that there will be one $SURF group for each surface.

As part of the post-processing, the monitor statistics are collated and output at the end of the
reference file MESH.TIM.

10




After completion of the geometry and mesh generation routines, the data is output to the neutral
files. You may specify the name of the neutral files in the geometry and mesh input sections.
The following groups are output to the neutral file in the geometry section: $POIN, $LINE, $FACE,
$VOLU, $COGE, $CONT and $WIND. In the mesh section the following groups are output : $NODE,
SNTYP, $ELEM, $SURF and $NBVO.

6 Installation Details

The Geometry and Mesh Modules requires certain information about the host computer to function
properly. The geometry routines use the same I/O streams as the command decoder. The parameters
which govern the complexity of device description which the code can handle are in the insert file
param. common. They are

NPONT - the maximum number of points allowed.
NLINE - the maximum number of lines allowed.
NSRFC - the maximum number of surfaces allowed.
NVLME - the maximum number of volumes allowed.
NCNTC - the maximum number of contacts allowed.
NWNDW - the maximum number of windows allowed.

The other parameter of which the installer should be aware, is the parameter EPS. This is contained
in the file geom.param and is used as the error tolerance when checking the numerical data, e.g. to
determine whether two line segments intersect.

The mesh routines require that the following parameters (presently stored in the insert file,
mesh.param) be given values consistent with your system and mesh generation requirements.
These parameters are:

MAXNOD - the maximum number of nodes allowed.

MAXELT - the maximum number of tetrahedral elements allowed. This must
have a value in excess of S(M AXNOD'/3 — 1)3,

MAXDIV - the maximum number of subdivisions allowed with the REFINE,

GLOBREF and SREF commands.
REFILE - unit number of the file MESH . REFER.

INTERM - unit number of terminal input.
OUTERM - unit number of terminal output.
EPS - smallest positive number such that 1 + EPS # 1.

The two machine dependent functions, CPUTIM and DATTIM, may need to be changed. The double
precision function CPUTIM returns the current CPU time. The character function DATTIM returns the
current date and time in CHARACTER*20 format.

7 Algorithms

Many of the checks for consistency of the user’s geometry specification involve the comparison of all
pairs of elements in a set of data. This need not be detailed further. The routines for checking the
consistency of the point and line data use algorithms of this type only. There is nothing of interest in

11




the routines which read in your input and write out the results. The other routines are discussed in
turn.

The routine to check the surface definitions tests that the boundary of the surface is simply
connected. This is done by testing each pair of line segments in the definition of the boundary and
seeing if they intersect at a point other than an end-point. This involves calculating the parametric

equation of each line segment and comparing the parametric equations. The parametric equation used
is
T =y*‘y1=2—21=t (5.1.1)
T2—%1 Y—U 22—z
for a line through the two points (2,1, 1) and (z2, ¥, 2,). Special care must be exercised in the
event of any of the denominators vanishing. Although in general this seldom happens, owing to the
restrictions on the geometry in the first phase of the code development, this is the norm rather than
the exception. The program also checks that the surface is planar. Given three points, a, b, ¢, in

three-space the equation of the plane they define is given by

(x—a). =0 (5.1.2)

where
P=bxc+ecxataxh

When validating the volume input checks are made for holes in the device. This is done by
computing Euler’s formula for the device. The formula is

No— N+ N, - N3=1 (513)

where [V; denotes the number of i-dimensional entities. (See Finney, 1979.) If any windows are used
in the description of the device, it is no longer a simple matter of using the total number of points,
lines, surfaces and volumes defined, because the window definition uses points and lines to define
subsets of surfaces. Thus it is necessary to determine the number of points used in the definition of
windows only, and the number of lines used in the definition of windows only. If these two quantities
are denoted by M, and M, respectively, then the modified Euler formula becomes

(No—Mo)—(Nl—M1)+N2—N3=1 (5.1.4)

where N; is understood to mean the total number of ;-dimensional quantities defined by the user.

To check that a window lies on a given surface (5.1.2) is used, where a, b, ¢ are chosen to be
three, non-collinear, points defining the surface in question. Each defining point of the window is
plugged into the equation to complete the test. When checking the window definitions, the defining
lines are put into cyclical order. They must also be in anti-clockwise order when viewed from outside
the device. This last condition is satisfied by finding a point on the side of the volume opposite the
window and viewing the window from there; if the lines are in anti-clockwise order then reverse them.
(Remember that you’re viewing from inside the device.)

Checking that a contact is connected is not as straightforward as it might seem. It is not just a
case of testing that each defining surface has a line in common with at least one other surface. The
matter is complicated by the fact that contact definitions may comprise both surfaces and windows. A
line which defines a window is usually a subset of a line defining a surface. Therefore the test for line
intersection must be performed on a new collection of lines. To check that two contacts don’t touch,
it suffices to determine their defining points and ensure that they have no points in common.

12




In the ‘post-processing’ of this data there is nothing remarkable about the way in which the
neighbour table of volumes is built up. The order in which material types is assigned to the user-
defined entities is important. First, all entities used in the definition of contacts are labelled. Then
all unlabelled entities which are on interfaces between different materials are labelled as being on the
given interface. Finally, all unlabelled entities are labelled as being of the same material type as the
volume they help to define.

8 Some Examples

Three examples are discussed. These show the versatility of the preprocessor in this release.

8.1 Example 1: A Corner Diode

The first example is that of a ‘corner’ diode, i.e. one in which a small region of p-doped silicon is inset
in a block of n-doped silicon (or vice versa). This example is chosen because, although the device
structure is simple, with the present restrictions on the descriptions of devices it is necessary to use
eight volumes to describe the device. Also the example uses the window command to define one of
the contacts. The device is shown in Figure 7 and its geometric description is given in Appendix F.
The refinement commands for meshing the structure are also given in that appendix.

8.2 Example 2: A Three-dimensional Diode

This example is the device defined as one of the benchmark problems for the code. The device is
simpler to describe geometrically than the first example because not all the regions have constant
doping. However, in order to facilitate the mesh generator, the block of silicon has been split into three
layers in the definition. From the point of view of geometric description, the interest in this device lies
in the non-planar contact and the oxide region.

Figure 7: The Corner Diode

13




Figure 8: The Three-Dimensional Diode

14




The non-planar contact is interesting because it requires many surfaces for its definition. The
device is shown in Figure 8 and its geometric description is given in Appendix F; this appendix also
contains the refinement commands for meshing the structure.

8.3 Example 3: A Standard MOSFET

A standard MOSFET has been chosen as the third example. All you need supply are the dimensions
of the device using the MOSFET command in the STANDARD section of the pre-processor. Given
these dimensions, all the points are generated automatically by the code and all data is retrieved from
the database regardiess of the dimensions of the device. The program automatically accounts for a
field oxide of zero thickness by discarding the volume, surface, and line commands which describe
the field oxide region.

The shape of the device is shown in Appendix C, in Figure 10 and the geometric description of
the device is given in Appendix F, along with the commands for meshing the structure.

9. References

Ferguson N., Fitzsimons C.J.“On the Use of Standard Models in EVEREST” ESPRIT Project 962
Report April (1988)

Finney J.L. “Random packings and the structure of simple liquids. I. The geometry of random close
packing” Proc. Roy. Soc. Lond. A. 319 479-493 (1970)

15




16




A Internal Commands

Al MORE to display the contents a file
A2  CHANGE to change working directory
A3 RENAME torename a file

A4 COPY to copy a file

AS RM to delete (remove) a file

A6 LIST to provide directory listing

A7 WRITE to provide monitoring of a session

A8 READ to redirect the input stream to read from a file
A9 SYNTAX to provide the syntax of a command

A.10 HELP to access HELP system

17




18




A.1 MORE - to display the contents a file
Syntax
MORe FILe=<string>

Description

Displays the contents of the specified file in the current window.

Parameters
FILE Required string
A string giving the name of the file to be displayed.
Examples

more file=ANODE
MOR CATHODE

A.2 CHANGE - to change working directory
Syntax

CHAnge DIRectory=<string>
Description

Changes the current working directory.

Parameters
DIRECTORY Required string
A string giving the name of the new working directory.
Examples

change directory=results
CHA MODELS

A.3 RENAME - to rename a file
Syntax

REName FILel=<string> FILe2=<string>
Description

Renames a given file to a new name.

Parameters
FILE1 Required string
A string giving the current file name.
FILE2 Required string
A string giving the new file name.
Examples

RENAME FILEl1=RESULT1 FILE2=RESULT.SAVE
ren outputl output2

19




A4 COPY - to copy a file
Syntax

COPy FILel=<string> FILe2=<string>
Description

Copies a given file to a new file.

Parameters
FILE1 Required string
A string giving the source file name.
FILE2 Required string
A string giving the destination file name.
Examples

COPY FILE1=RESULT1 FILE2=RESULT.SAVE
cop outputl output2

A5 RM - to delete (remove) a file

Syntax
RM FILe=<string>

Description

Removes (deletes) the given file from the file system.

Parameters
FILE Required string
A string giving the name of the file to be removed (deleted).
Examples

RM FILE=RESULT
rm output

A.6 LIST - to provide directory listing
Syntax

LISt [FILe=<string>]
Description

Provide a listing of the current or specified directory.

Parameters
FILE Optional string : initial =" "
A string giving the name of the file.
Examples
LIST
lis *.MSH

20




A.7 WRITE - to provide monitoring of a session
Syntax
WRIte STAte=<choice> [FIle=<string>]
[PROmpt=<choice>]
Description
Redirects the command decoder echo output to the file specified by the FILE parameter.

The information flow is controlled by the STATE parameter. This command can enable
the constructions of command files to drive the program in a background mode.

The echoing of the command prompt can be controlled using the PROMPT parameter.

Parameters
STATE required choice
Controls the flow of information to the monitoring file It has
values NO, OFF or CLOSE. ON switches on monitoring. OFF
suspends it but does not close the file and CLLOSE ends moni-
toring and closes the file.
FILE : retained string : initial = MONITOR
Output file name to receive the monitoring stream.
PROMPT reset choice : initial = OFF
Allows you to select whether the command prompt is echoed
in the monitoring file. It has values ON or OFF.
Examples

WRITE STATE=ON FILE=MONITOR PROMPT=0OFF
wri on junk on

A.8 READ - to specify a command input file

Syntax
REad FIle=<string> [ECHO=<choice>]

Description

Redirects the command decoder to take its input from a file specified by the FILE pa-
rameter. However, if FILE is given as TERMINAL, input returns to the standard input
stream.

The echoing of the commands being read by the decoder can be controlled using the
ECHO parameter.

21




Parameters

FILE

ECHO

Examples

required string
Input file name containing program commands.

reset choice : initial = OFF
Echo control option. Values can be ON or OFF.

In this example a sequence of commands are read from the file NAIL and ECHOed to the
standard output device:

Everest:
Everest:
Everest:
Everest:
Everest:
Everest:
Everest:
Everest:

read nail echo=on

GEQO * >DATA>NAIL.GEO
MES * >DATA>OXNAIL .MSH
DOP * >DATA>NAIL.DOP
RES NAIL.OUT R

PHY NAIL.PHY

BIAS LEFT-CNT O

A.9 SYNTAX - td provide the syntax of a command

Syntax

SYNtax [COMmand=<string>]

Description

Displays the formal syntax of all the currently defined commands. If the syntax of a specific
command name is required then that name is given as a parameter to the command.

Parameters

COMMAND

Examples

The following
program.

Doc: synt
The comma

SYNtax [C

retained string : initial = ALL

Specifies the commands name for which the syntax is required.
If the syntax of all the currently defined commands is required,
then the special command name ALL should be used.

example obtains the syntax of all the commands in the DOCUMENT

ax
nds currently defined are:

OMmand=<string>]

Help [KEY=<string>] [OPTion=<string>]

22




FILe INput=<string>, OUTput=<string>

PROcess

Quit

TItle TEXT=<string>

AUthor TEXT=<string>

Date TEXT=<string>

OPtions [SORT=<choice>] [CONtents=<choice>]
[RUNoff=<choice>] [FRont_page=<choice>]

For further information type: HELP <command name> [<option>],

where <option> is BRIEF or FULL

Doc:

A.10 HELP - to access HELP system

Syntax

Help [KEY=<string>] [OPTion=<choice>]

Description

Accesses to the inbuilt HELP system within the command decoder, HELP is one of the
internal commands of the command processor and has a companion command SYNTAX.

HELP has two parameters allowing the selection of help on a specific command and the
level of help required (SUMMARY, BRIEF, FULL and SYNTAX). If no command name
is given summary help is given on all the commands currently defined.

If an ambiguous or invalid command name is given a warning or error message is given.

BRIEF help gives information on the purpose, syntax and the current state of the se-
lected command. A table of command keywords, their type, status and current value (if
applicable) is printed.

When the FULL option is used the Help System uses the inbuilt free text retrieval system
to access the help data base. This allows the display of the full command description and
the searching for specific keywords. This option is not supported in the current release.

Parameters

KEY reset string : initial =
Either the global command name SUMMARY, or the specific
command name on which help is sought.

OPTION reset choice : initial = BRIEF

The level of help required. This can be SUMMARY, BRIEE,
FULL or SYNTAX.

23




Examples

Everest: help output
Name : OUTPUT

Purpose : to specify results file

Syntax : OUTput FILE=<string> [REPLACE=<choice>]

Keyword Type Status Current Value

FILE string regquired undefined

REPLACE choice reset replace, NOREPLACE

24




B Geometry Command Reference

B.1 CONTACT

B2 GEOM

B3 LINE

B4 NEUTRAL
B.5 POINT

B.6 QUIT

B.7 RECAP

B.8 SURFACE
B9 VOLUME
B.10  WINDOW

to define a contact

to process the geometry input

to define a line

to specify the output file for the geometry

to specify a point

to leave the geometry input sections without data verification
to review the geometric data entered

to specify a surface

to specify a volume

to specify a window

25




26




B.1 CONTACT - to define a contact
Syntax

CONtact NAME=<string> SURFACES=<string list>

Description

Defines the geometric properties of a contact. The contact is defined in terms of surfaces
and windows which the user defines also.

Parameters
NAME Required string
A string giving the name of the contact as used in the Solution
Module.
SURFACES Required string list
A string list giving the names of the surfaces and windows
which define the contact. It is not necessary for both contacts
and windows to be used in the definition.
Examples

CONTACT NAME=ANODE, SURFACES=(SURF1,SURFS5,WIND3)
CON CATHODE (SURF4)

B.2 GEOM - to process the geometry input
Syntax

GEom

Description

Ends your geometric input. The data is then checked for consistency by the geometry
code. Any errors detected are announced.

Parameters
This command has no parameters.
Examples

GEOM
GE

27




B.3 LINE - to define a line
Syntax
LIne NAME=<string> POINTS=<string\_list>

Description

Defines a line which is used in the definition of either a surface or a window. The
line, which must be straight, is defined by a collection of two or more points. The
ability to include more than two points permits greater flexibility in the definition of mesh
refinements on a given line.

Parameters
NAME Required string
A string giving the name of the line as used in the definition
of a surface or a window.
POINTS Required string list
A string list giving the names of the points which define the
line. They must be given in the order in which they are met
travelling from one end of the line to the other; the direction
itself is irrelevant.
Examples

LINE NAME=L12 , POINTS=( Pl
LIN L45 (P17 P19 P22 Pl)

. P2 )

B.4 NEUTRAL - to specify the output file for the geometry
Syntax
NEutral NAME=<string>

Description

Specifies the name of the output file for the geometric data. This file will contain the
geometric records of the neutral file.

Parameters
NAME Required string
A string giving the name of the file to which the geometric data
is to be written.
Examples

NEUTRAL NAME=FIASCO
NE MOS_TEST1

28




B.5 POINT - to specify a point

Syntax

POint NAME=<string> X=<real> Y=<real> Z=<real>

Description

Defines a point which is used in the definition of a line.

Parameters

NAME

Examples

POINT NAME=P12
PO P4 10 5 5

Required string

A string giving the name of the point as used in definition of a
line.

Required real
A real giving the z co-ordinate of the point. The unit is um.

Required real
A real giving the y co-ordinate of the point. The unit is um.

Required real
A real giving the z co-ordinate of the point. The unit is gm.

, X=12.0 , ¥Y=14.2 , 2=0.0

B.6 QUIT - to leave the geometry input section without data verification

Syntax
QUit

Description

Allows you to leave the geometry input section without verifying the data. This sets a
flag in the program to prevent you from submitting this model to the mesh generator for

meshing.

Examples

QUIT
QU

29




B.7 RECAP - to review the geometric data entered
Syntax
RECAP
Description
Enables you to see the commands entered to-date when you are entering data interactively.
Parameters
This command has no parameters.
Examples
RECAP

RE

B.8 SURFACE - to specify a surface
Syntax

SUrface NAME=<string> LINES=<string\_list>
Description

Defines a surface which is used in the definition of a volume. The surface may also
form part of the definition of a contact. Currently the surface must be rectangular and
aligned with two of the major axes. In the second phase of the software development the
alignment restriction will be lifted. Later, the definition of irregular, simply-connected
planar, surfaces will be permitted.

Parameters
NAME Required string
A string giving the name of the surface as used in definition of
a volume.
LINES Required string list
A string list giving the names of the points which define the
line. They need not be in any particular order but each must be
defined by a LINE command (cf. B.3).
Examples
SURFACE NAME=INTERFACE , ( L12 , L34 , L9110 , L45 )

SU s47 ( L12 , L23 , L34 , L45 , L51 )

30




B.9 VOLUME - to specify a volume
Syntax

VOlume NAME=<string> SURFACES=<string\_list>,
MATERIAL=<string>

Description

Defines a volume which forms part or all of a semiconductor device. In the current release
of the code the volumes must be regular hexahedra whose sides are aligned with the major
axes. In the next release of the software non-rectilinear hexahedra will be permitted.
Eventually the definition of general three-dimensional shapes will be permitted.

Parameters
NAME Required string.
A string giving the name of the volume as used in definition of
a device structure.
LINES Required string list.
A string list giving the names of the surfaces which define the
volume. They need not be in any particular order but each must
be defined by a SURFACE command (cf. B.8).
MATERIAL Required string.
A string giving the name of the material of which the volume
is constituted. The recognised material types are silicon, oxide,
nitride and air. This list may be augmented in the future.
Examples

VOLUME NAME=P_REGION, SURFACES=(S12,S47,JUNCTION, S1,S3,S85),
MATERIAL=SILICON
Vo v4a (s1 , sS4, S19 , S22 , S23 , 834 , 82 ) sI

B.10 WINDOW - to specify a window
Syntax

WIndow NAME=<string> LINES=<string\_list> SURFACE=<string>
[LSYMM=<string\_list>]

Description

Defines a rectangular window on the surface of the device; this may be considered as
a sub-surface. The window may be used in the definition of a contact or may be used
as a window through which impurities are injected into the device in the calculation of
the impurity profile. You may use the LSYMM option to specify any lines of symmetry
required in the definition of the impurity profile. In this release of the code the window
must be aligned with two of the major axes.

31




Parameters

NAME

LINES

SURFACE

LSYMM

Examples

Required string.
A string giving the name of the window as used in the definition
of a contact or in the generation of an impurity profile.

Required string list.
A string list giving the names of the lines used to define the

window. They need not be in any particular order but each of
these must be defined by a LINE command (cf. B.3).

Required string.
A string giving the name of the surface of which this is a

sub-surface. This surface must be defined by a SURFACE
command (cf. B.8).

Optional string list.

A string list giving the names of the defining lines which coin-
cide with lines of doping symmetry. If a window definition has
no such lines it is omitted from the definition of the window. It
is reset to null after use.

WINDOW NAME=ANODE, LINES=(L12, L23, L34, L41), SURF2,
LSYMM=(L.12, L41)

WI GAUSS1

( L47

, L75 , L52 , L24 ) s2

32




C Standard Models Command Reference

D.1
D.2
D3
D4
D.5
D.6

BIPOLAR
MOSFET
NEUTRAL
ONE_DIODE
QUIT
STANDARD

to define a bipolar polysilicon emitter by giving its dimensions
to define a MOSFET by giving its dimensions

to specify the output file for the geometry or mesh

to define a one-dimensional diode by giving its dimensions

to leave the standard input section without data verification

to process the standard model

33




34




