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NULL-SPACE PRECONDITIONERS FOR SADDLE POINT SYSTEMS

JENNIFER PESTANA∗, TYRONE REES†

Abstract. The null-space method is a technique that has been used for many years to reduce
a saddle point system to a smaller, easier to solve, symmetric positive-definite system. This method
can be understood as a block factorization of the system. Here we explore the use of preconditioners
based on incomplete versions of a particular null-space factorization, and compare their performance
with the equivalent Schur-complement based preconditioners. We also describe how to apply the non-
symmetric preconditioners proposed using the conjugate gradient method (CG) with a non-standard
inner product. This requires an exact solve with the (1,1) block, and the resulting algorithm is
applicable in other cases where Bramble-Pasciak CG is used. We verify the efficiency of the newly
proposed preconditioners on a number of test cases from a range of applications.

AMS subject classifications. 65F08, 65F10, 65F50
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1. Introduction. We consider the fast solution of saddle point systems of the
form

Aw =

[
A BT

B 0

] [
x
y

]
=

[
f
g

]
= b, (1.1)

where A ∈ Rn×n, B ∈ Rm×n, m ≤ n. A kernel that solves systems with this structure
is a vital component in numerous scientific computing algorithms; for example, such
systems arise naturally in constrained optimization problems [7, 12, 15, 24], Stokes
and Navier-Stokes equations in fluid mechanics [5, 9, 16], time-harmonic Maxwell
equations [25, 28], and the application of Kirchhoff’s laws in circuit simulation [41, 45].
For an overview of solution methods, see the survey article of Benzi, Golub and Liesen
[4], and the references therein.

Here we focus on the case where A, and consequentlyA, are large, sparse matrices,
such that solving (1.1) by direct methods is infeasible. Furthermore, we suppose that
B is of full rank, and that A is symmetric positive semi-definite, and positive definite
on the kernel of B.

The null-space method is a technique for solving systems of the form (1.1). This
method requires a particular solution x̂ ∈ Rn such that Bx̂ = g, and a matrix Z
whose columns span the null-space of B. Then, since x = Zxn+ x̂, we can solve (1.1)
by first finding xn from

ZTAZxn = ZT (f −Ax̂), (1.2)

and then recovering y from the overdetermined system BTy = f − Ax; see, e.g., [4,
Chapter 6] for more details. There exist many methods for obtaining a null-space
matrix Z but a common choice is the fundamental basis,

Zf :=

[
−B−1

1 B2

I

]
, (1.3)
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where B = [B1 B2] and, without loss of generality, B1 ∈ Rm×m is nonsingular. Note
that because the rank of B is m, we can always permute B to obtain an invertible
B1.

Even for sparse A the symmetric positive definite matrix ZTAZ is often dense,
and forming it could be costly. For larger problems, therefore, it may be better
to solve (1.1) rather than (1.2). It is possible to write down a number of matrix
factorizations that are equivalent to the null-space method—recently Rees and Scott
gave an overview [39]. We can obtain one particular factorization of A which falls
into this category by taking a 3× 3 blocking of A as

A =

A11 A12 BT
1

A21 A22 BT
2

B1 B2 0

 ,

where B1 ∈ Rm×m is, as in (1.3), assumed to be nonsingular. Consider a permuted
version of A,

Â := ΠAΠT =

A11 BT
1 A12

B1 0 B2

A21 BT
2 A22

 =:

[
Â B̂T

B̂ A22

]
, Π =

Im Im
In−m

 , (1.4)

where Im is the identity matrix of dimension m. The matrix Â is invertible with
inverse

Â−1 =

[
0 B−1

1

B−T
1 −B−T

1 A11B
−1
1

]
.

Therefore we can apply the standard block-LDLT factorization for saddle point sys-
tems [4, Equation (3.1)], obtaining

Â =

[
I 0

B̂Â−1 I

] [
Â 0

0 A22 − B̂Â−1B̂T

][
I Â−1B̂T

0 I

]
. (1.5)

This factorization has a connection with standard Schur complement precondi-
tioners and the range-space method. However, because of the permutation, it is also
closely related to the null-space method with the fundamental basis since, using (1.3),
we can re-write (1.5) as

Â =

 I 0 0
0 I 0

BT
2 B

−T
1 XB−1

1 I

A11 BT
1 0

B1 0 0
0 0 N

I 0 B−1
1 B2

0 I B−T
1 XT

0 0 I

 , (1.6)

where

X := ZT
f

[
A11

A21

]
and N := ZT

f AZf = A22 − B̂Â−1B̂T . (1.7)

Our assumption that A is positive definite on the null-space of B means that the null-
space matrix N is symmetric positive definite. The approach in Section 2 of Rees and
Scott [39] applied here shows that solving Â(Πw) = Πb is equivalent to the null-space
method with the fundamental null-space (1.3) and particular solution

x̂ =

[
B−1

1 g
0

]
. (1.8)

2



Applying the inverse permutations Π and ΠT in (1.4) to Â in (1.6) we can easily
recover A.

One interpretation of the null-space method is therefore that the null-space ma-
trix ZT

f AZf is equivalent to the Schur complement of the sub-block Â in Â. Note
that when the block A is invertible, the null-space matrix is equivalent to the Schur
complement of the dual saddle point system of (1.1) [4, page 32].

In this paper we present four preconditioners based on incomplete or approxi-
mate versions of the factorization (1.6). Since these preconditioners are intimately
related to the Schur-complement decomposition we can apply them using conjugate
gradients in a non-standard inner product [10]. However, the usual application of
such preconditioners requires certain quantities to be symmetric positive definite, and
this is typically attained by scaling the blocks appropriately. In our case this is not
possible without destroying the structure that we exploit, since we assume that we
can solve with a certain submatrix of A exactly. Accordingly, we extend the current
theory of conjugate-gradients in a non-standard inner product to allow for the case
where one of the sub-block solves is exact.

The rest of this paper is as follows. In Section 2, we give an eigen-analysis of the
preconditioned systems and show that the eigenvalues of the preconditioned matrices
are clustered when a good approximation to the null-space matrix (1.7) is known.
We describe the non-standard inner product CG method in Section 3, and describe
how our constraint preconditioner can be used within a projected Krylov subspace
method. In Section 4, we compare our preconditioners to standard Schur-complement
based methods based on the factorization[

A BT

B −C

]
=

[
I 0

BA−1 I

] [
A 0
0 −S

] [
I A−1BT

0 I

]
, (1.9)

where S = C +BA−1BT is the Schur complement of A. Note that this factorization
can only be applied if A is invertible, whereas the null-space method may be applied
even when A is singular. The problems we consider range from academic to practi-
cal, and illustrate the merits and limitations of our preconditioners. We give some
conclusions in Section 5.

2. Null-space preconditioners. Taking incomplete versions of the block LDLT

factorization (1.9) has proved to be an effective way of constructing preconditioners
for saddle point problems—see, e.g., [7, 16, 27, 38, 46]. The key component of such
methods is an approximation of the matrix S, which is often dense. In the following we
present, and give theory for, preconditioners based on the alternative decomposition
(1.5). In particular, we use the null-space decomposition

A =

 I 0 0

BT
2 B

−T
1 I XB−1

1

0 0 I


︸ ︷︷ ︸

L

A11 0 BT
1

0 N 0
B1 0 0


︸ ︷︷ ︸

D

I B−1
1 B2 0

0 I 0

0 B−T
1 XT I


︸ ︷︷ ︸

LT

, (2.1)

as the basis of our preconditioners; see [4, Equation 10.35], [39]. We replace N by a

symmetric positive definite approximation Ñ , and possibly drop one or both of L and
LT .
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2.1. The central-null preconditioner. First, we consider the preconditioner
formed by dropping both the L and LT terms from the factorization (2.1),

Pcn =

A11 0 BT
1

0 Ñ 0
B1 0 0

 ,

where Ñ ≈ N = ZT
f AZf . This corresponds to the block diagonal preconditioner

in the decomposition (1.9), because ΠPcnΠ
T is block diagonal. First, we give an

eigen-analysis of the preconditioned system.
Theorem 2.1. Let Ñ be a symmetric positive definite approximation to N . Then

the generalized eigenvalues λ ofA11 A12 BT
1

A21 A22 BT
2

B1 B2 0

x1

x2

y

 = λ

A11 0 BT
1

0 Ñ 0
B1 0 0

x1

x2

y

 , (2.2)

satisfy λ = 1, or

λ =
µ+ σ ±

√
(σ + µ)2 − 4µ

2µ
, (2.3)

where σ = yTA22y/y
TNy and µ = yT Ñy/yTNy.

Proof. Setting

Pcn =

A11 0 BT
1

0 Ñ 0
B1 0 0


it follows that

ΠPcnΠ
T =

A11 BT
1 0

B1 0 0

0 0 Ñ

 =

[
Â

Ñ

]
.

Since Π from (1.4) is orthogonal, the eigenvalues of P−1
cn A are the same as those of

ΠP−1
cn AΠT = (ΠPcnΠ

T )−1(ΠAΠT ), and therefore the eigenvalues needed are those
of the generalized eigenvalue problem[

Â B̂T

B̂ A22

][
x
y

]
= λ

[
Â

Ñ

] [
x
y

]
. (2.4)

The first block row of (2.4) gives B̂Ty = (λ− 1)Âx, which implies that λ = 1 or

x =
1

λ− 1
Â−1B̂Ty.

The second block row of (2.4) gives B̂x+A22y = λÑy. If we assume that λ ̸= 1
then substituting for x gives that

B̂Â−1B̂Ty + (λ− 1)A22y = λ(λ− 1)Ñy.
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Using (1.7) we have that

(λA22 −N)y = λ(λ− 1)Ñy.

Premultiplying by yT and setting µ := yT Ñy/yTNy we get

yTNy − λyTA22y = λ(1− λ)µyTNy,

and hence

λ2 − (1 + σ/µ)λ+ 1/µ = 0,

where σ = yTA22y/y
TNy.

Thus,

λ =
1 + σ/µ±

√
(σ/µ)2 + (2σ − 4)/µ+ 1

2
=

µ+ σ ±
√

(σ + µ)2 − 4µ

2µ
,

as required.
We now present a few results that give a better understanding of the behaviour

of these eigenvalues.
Corollary 2.2. Suppose that λ is a real eigenvalue of the generalized eigenvalue

problem (2.2). Then

1

(µ+ σ)max
≤ λ < 1 + λmax(Ñ

−1A22)

where 0 ≤ λmax(Ñ
−1A22) is the largest eigenvalue of Ñ−1A22 and (µ+ σ)max is the

largest value of µ+ σ.
Proof. For λ to be real we must have that (µ + σ)2 ≥ 4µ. The larger of the

eigenvalues in (2.3), λ+, satisfies

λ+ =
1

2µ

(
µ+ σ +

√
(µ+ σ)2 − 4µ

)
<

1

2µ

(
µ+ σ +

√
(µ+ σ)2

)
= 1 +

σ

µ
.

Now, since

σ

µ
=

yTA22y

yT Ñy
≤ λmax(Ñ

−1A22)

we obtain the upper bound.
Now consider the smaller eigenvalue, λ−. Note that λ− = (γ−

√
γ2 − δ)/2, where

γ = 1 + σ/µ, δ = 4/µ and δ ≤ γ2. For any x ∈ [0, 1], 1−
√
1− x ≥ x/2, and so

λ− ≥ 1

4

δ

γ
=

1

µ+ σ
≥ 1

(µ+ σ)max
.

It is clear from the lower bound that the real eigenvalues are positive.
Remark 2.3. In the ideal case where µmin = µmax = 1, which corresponds

to Ñ = N , the lower bound becomes λ− > 1
1+σmax

. Furthermore, in this case the
eigenvalues are all real if σmin ≥ 1.
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Corollary 2.4. The complex eigenvalues of (2.2) with nonzero imaginary part
satisfy

1

2
≤ Re(λ) <

1
√
µmin

, |Im(λ)| ≤ 1
√
µmin

.

Proof. Since the eigenvalues of N−1A22 are nonnegative, the real part of any
complex eigenvalue λ must be bounded below by 1

2 . Furthermore,

Re(λ) ≤ 1

2

(
1 +

σmax

µmin

)
<

1
√
µmin

,

with the last step holding since µ + σ < 2
√
µ ⇒ (µ + σ)/2µ < 1/

√
µmin. Now, the

imaginary part satisfies

|Im(λ)|2 =
(σ + µ)2 − 4µ

4µ2
≤ (σ + µ)2

4µ2
,

and so we get

|Im(λ)| ≤ 1
√
µmin

.

Note that the bound on the real part only holds for eigenvalues with a non-trivial
imaginary part. For real eigenvalues there may be some λ < 0.5 if any eigenvalue of
N−1A22 is larger than 1.5. It is also worth remarking that complex eigenvalues can
be bounded independently of σ.

One final special case we wish to highlight is when A22 is zero and µmin = µmax =
1. Here the central-null preconditioned matrix has only three distinct eigenvalues,

{1, 1±
√
3i

2 }, and this guarantees fast convergence of certain Krylov subspace meth-
ods. (We could also obtain these same three eigenvalues in this special case by
Schur-complement based arguments, following approaches found in, e.g., [18, 34].)
An example of where this structure arises naturally is in the interior point method
for linear programs [49], where A22 approaches zero at convergence. Note that when

µmin ≈ 1 and µmax ≈ 1, that is, when we have a good approximation Ñ to N , the
above conclusions for the ideal case are approximately satisfied.

2.2. The lower-null and upper-null preconditioners. Next, we drop the
LT -term in (2.1) to form the preconditioner

Pln :=

A11 0 BT
1

A21 Ñ BT
2

B1 0 0

 . (2.5)

Since ΠPlnΠ
T corresponds to a block lower-triangular preconditioner we refer to this

as the lower-null preconditioner. Indeed, this preconditioner is ‘psychologically block-
lower triangular’, in that we can easily identify blocks with which we can solve this
system using a substitution method.

The following result holds for the eigenvalues.
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Theorem 2.5. Let Ñ be an invertible approximation to N . Consider the gener-
alized eigenvalue problemA11 A12 BT

1

A21 A22 BT
2

B1 B2 0

x1

x2

y

 = λ

A11 0 BT
1

A21 Ñ BT
2

B1 0 0

x1

x2

y

 .

Then either λ = 1, or λ satisfies Nx = λÑx.
Proof. As in the proof of Theorem 2.1, we use the fact that the required eigen-

values are the same as those of (ΠPlnΠ
T )−1ΠAΠT . Recalling (1.7) we have that

(ΠPlnΠ
T )−1ΠAΠ =

[
I Â−1B̂

0 Ñ−1(A22 − B̂Â−1B̂T )

]
=

[
I Â−1B̂

0 Ñ−1N

]
.

The result follows.
An apparent drawback of this preconditioner is that Pln is a non-symmetric pre-

conditioner for a symmetric problem, and hence we have to use a non-symmetric
iterative method, such as GMRES [43] or BiCGStab [48]. However, Theorem 2.5

shows that if N = Ñ , GMRES applied to (1.1) with preconditioner Pln converges

in two steps. When Ñ ̸= N the eigenvalues may not tell us everything about con-
vergence [23] although it is commonly observed that tightly clustered eigenvalues do
predict convergence of GMRES in non-pathological cases—see, e.g., Pestana and Wa-
then [36] for a discussion. An additional benefit of using Ñ within a preconditioner
for the whole matrix A, and not explicitly for the null-space matrix, is that we never
have to perform the (often costly) procedure of forming N .

If we instead drop the L term from (2.1) we get

Pun :=

A11 A12 BT
1

0 Ñ 0
B1 B2 0

 .

For reasons analogous to those given above we refer to this as the upper-null precon-
ditioner, and we have the following result.

Theorem 2.6. Let Ñ be an invertible approximation to N . Consider the gener-
alized eigenvalue problemA11 A12 BT

1

A21 A22 BT
2

B1 B2 0

x1

x2

y

 = λ

A11 A12 BT
1

0 Ñ 0
B1 B2 0

x1

x2

y

 .

Then either λ = 1, or λ satisfies Nx = λÑx.
Proof. Since (ΠPunΠ

T )−1(ΠAΠT ) is similar to (ΠAΠT )(ΠPunΠ
T )−1, a similar

argument to that in the proof of Theorem 2.5 gives the result.
The preconditioner Pun therefore has the same eigenvalues, with the same mul-

tiplicity, as Pln. In spite of possible effects of non-normality, in practice upper and
lower block triangular preconditioners often exhibit similar behaviour (see [35] and
the references therein), and this was our experience in the tests reported in Section 4.

2.3. A constraint preconditioner. Now consider the preconditioner obtained
by taking the entire factorization (2.1) with the null space matrix replaced by Ñ ,

7



namely

Pcon =

A11 0 BT
1

A21 Ñ BT
2

B1 0 0

I B−1
1 B2 0

0 I 0

0 B−T
1 XT I

 .

Theorem 2.7. The preconditioner Pcon is a constraint preconditioner.
Proof. Direct computation shows that

ΠPconΠ
T =

[
Â B̂T

B̂ A22 −N + Ñ

]
(2.6)

or that

Pcon =

A11 A12 BT
1

A21 A22 −N + Ñ BT
2

B1 B2 0

 .

We can show the following result about the eigenvalues for the constraint precon-
ditioner here:

Theorem 2.8. Let Ñ be an invertible approximation to N . Consider the general-
ized eigenvalue problem Az = λPconz. Then either λ = 1, or λ satisfies Nx = λÑx.

Proof. As in previous sections, we can compute the eigenvalues of P−1
conA by solv-

ing a generalized eigenvalue problem to find the eigenvalues of (ΠPconΠ
T )−1(ΠAΠT ).

In particular, using (2.6), we have that[
Â B̂T

B̂ A22

][
x
y

]
= λ

[
Â B̂T

B̂ A22 −N + Ñ

] [
x
y

]
.

The first equation shows that λ = 1 or that Âx+ B̂Ty = 0. Since Â is invertible,
in the latter case we have that x = −Â−1B̂Ty.

The second equation gives that (1− λ)B̂x+ (1− λ)A22y = λ(Ñ −N)y. If λ ̸= 1
then after substituting for x we find that

−(1− λ)B̂Â−1B̂Ty + (1− λ)A22y = λ(Ñ −N)y.

Using (1.7) and simplifying shows that Ny = λÑy as required.
Comparison with Theorems 2.5 and 2.6 shows that all three preconditioned matri-

ces P−1
ln A,P−1

unA and P−1
conA have the same eigenvalues, with the same multiplicities.

The constraint preconditioner is more expensive to apply than the lower and upper
null preconditioners, but it benefits from the advantages of constraint preconditioners;
we expand on this point in Sections 2.4 and 3.4 below.

Note that this preconditioner is numerically the same as the preconditioner defined
by the GALAHAD [20] subroutine SBLS, namely

PSBLS =

A11 0 I

A21 I BT
2 B

−T
1

B1 0 0

0 0 I

0 Ñ 0
I 0 −A11

A11 A12 BT
1

0 I 0
I B−1

1 B2 0

 .

The authors are not aware of an eigen-analysis of this preconditioner in the literature.
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2.4. Discussion. The preconditioners described above are the result of thinking
about the null-space method in terms of a matrix factorization. The preconditioners
Pln and Pun are particularly promising. They have the drawback that applying
them requires solves with B1 and BT

1 , as well as the solve with Ñ and a number of
matrix-vector multiplications. It is also somewhat jarring that we are proposing non-
symmetric preconditioners for a symmetric problem (although a short-term recurrence
method in a non-standard inner product can be applied as discussed in Section 3.3).
Balancing these issues is the fact that the eigenvalue clustering is as good as possible.

Constraint preconditioners possess favourable properties, such as the iterates stay-
ing on a certain manifold [42], which can be useful in certain applications. If such
properties are desired then Pcon provides them, even with an approximate Ñ , at
the expense of extra solves with B1 and BT

1 . This is in contrast to the equivalent
Schur-complement formulation [7], which gives an inexact constraint preconditioner.
As such, null-space preconditioners could be useful in optimization, where solution
methods that remain on the constraint manifold are often required; see, e.g., [1]. Ad-
ditionally, it is possible to use a projected CG or MINRES method in this case, as
described in Section 3.4. We envisage that this preconditioner will be particularly
useful in fields where many systems have to be solved with the same B block, possi-
bly with A changing; an important example that generates linear systems with this
structure is the interior point method in optimization [49].

Null-space preconditioners require us to find an invertible subset of the constraint
matrix B, which is an additional computational cost that is not present in, for in-
stance, Schur-complement based approaches. However, there are a number of appli-
cations we are aware of where this is not problematic; we discuss a few of these in
more detail in Section 4.

We note that for problems with maximally rank-deficient A, i.e., problems for
which rank(A) = n − m, alternative block diagonal preconditioners were recently
proposed by Estrin and Greif [17] that rely on a matrix C whose columns span the null-
space of A. Estrin and Greif show that under certain conditions, the preconditioned
systems can be solved by (standard) conjugate gradients; otherwise a standard non-
symmetric Krylov method can be used.

3. Using conjugate gradients and MINRES with the null-space pre-
conditioners. As discussed in Section 2.4, although P−1

ln A, P−1
unA and P−1

conA have

nice spectra when Ñ is a good approximation of N , the preconditioners are not sym-
metric positive definite. Accordingly, they cannot be used with standard MINRES
or CG. However, since Pcon is a constraint preconditioner, it can be used with the
projected conjugate gradient [21] or projected MINRES [19] methods. On the other
hand, although Pln is non-symmetric, it can be used in conjunction with the conjugate
gradient method in a non-standard inner product. We discuss both these approaches
in this section.

3.1. Non-standard inner products. In this section, we show that it is possible
to use the conjugate gradient method in a non-standard inner product to solve (1.1)
with the preconditioner (2.5). We consider general equations of the form[

A BT

B C

]
︸ ︷︷ ︸

A

[
u
v

]
=

[
c
d

]
(3.1)

9



where we assume that A is invertible, A ∈ Rn×n is symmetric and invertible, B ∈
Rm×n, m ≤ n, and C ∈ Rm×m is symmetric. We additionally assume that the Schur
complement C−BA−1BT is positive definite, although our results extend trivially to
the case where C − BA−1BT is negative definite. Note that the proceeding results
hold for A = Â, B = B̂, C = A22 in (1.4), as we show in Section 3.3, but are more
generally applicable.

Although the saddle point matrix A is indefinite, so that the standard conju-
gate gradient method cannot be reliably applied to solve (1.1), a judicious choice of
preconditioner can make A self-adjoint and positive definite with respect to a non-
standard inner product. A number of preconditioners that achieve this goal have
been proposed [6, 10, 14, 15, 29, 46]. Many, although not all, fall into the class of
preconditioners and inner products discussed by Krzyżanowski [27], who showed the
following:

Proposition 3.1 (Krzyżanowski [27], Proposition 2.1). Suppose we wish to solve
the system (3.1). Consider the preconditioner given by

P−1 =

[
I −dA−1

0 BT

0 I

] [
A−1

0 0
0 S−1

0

] [
I 0

−cBA−1
0 I

]
, (3.2)

for fixed scalars c, d, and where A0 and S0 are symmetric and nonsingular. Let
δ ∈ {−1,+1} and H be the block diagonal matrix

H = δ

[
A0 − cA 0

0 S0 + cdBA−1
0 BT − dC

]
. (3.3)

Then HP−1A is symmetric.
This means that, even though P−1A is non-symmetric, it is self-adjoint with

respect to the bilinear form ⟨·, ·⟩H, where ⟨x,y⟩H = yTHx. If A0, S0 and δ are
chosen so that H is symmetric positive definite, and inner products are understood
to be H-inner products, then we can apply CG to solve (1.1). Algorithm 1, adapted
from Algorithm 3.2 of Dollar, Gould, Stoll and Wathen [15], is one such method which
does this.

Given x0, set r0 = b−Ax0, z0 = P−1r0 and p0 = z0;
for k = 0, 1, . . . do

α =
zT
kHzk

pT
kHP−1Apk

;

xk+1 = xk + αpk;
rk+1 = rk − αApk;
zk+1 = P−1rk+1;

β =
zT
k+1Hzk+1

zT
kHzk

;

pk+1 = zk+1 + βpk;

end
Algorithm 1: CG in the scalar product defined by H.

If c = 0, then H can only be symmetric positive definite if the approximation A0

is as well. If c is non-zero we may need to scale the approximation A0 so that A0−cA
is symmetric positive definite. In particular, this means that if we require a positive
definite H we cannot use the exact A0 = A, even if it is readily available, despite
scaling adversely affecting eigenvalue clustering [34].
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3.2. Semidefinite H. Let us consider the use of a non-standard CG method
for (1.1) with the lower-null preconditioner Pln in (2.5). Although Pln is not block

lower triangular, ΠPlnΠ
T is, while Â = ΠAΠT is a generalized saddle point matrix

of the form in (3.1). Accordingly, we can apply the results of Krzyżanowski to this
permuted matrix and preconditioner. Since the (1,1) block of ΠPlnΠ

T is identical to

that of Â, we are in precisely the situation that c = 1, d = 0 and A0 = A in (3.2).
This may indicate that Pln is a good preconditioner but it also means that H in (3.3)
is singular. Despite this, a more careful examination of Algorithm 1 will reveal that
this singularity causes no difficulties for computing the solution of (3.1).

Accordingly, we will consider the case A0 = A, c = 1 and d = 0 in (3.2) and (3.3)
in more detail, which arises in our application, but also more widely when solving, e.g.,
problems in PDE constrained optimization [37, 40]. We assume that S0 is symmetric
positive definite, giving

H1,0 =

[
0 0
0 S0

]
, P1,0 =

[
A 0
B S0

]
. (3.4)

Thus, the matrix H1,0 is semidefinite with rank m.
We now show that we can apply Algorithm 1 with H1,0, P1,0 and A to solve (3.1).

Let us first consider the initialization phase. With x0 =
[
(x

(1)
0 )T (x

(2)
0 )T

]
, x

(1)
0 ∈ Rn,

it follows from Algorithm 1 that

r0 =

[
c−Ax

(1)
0 −BTx

(2)
0

d−Bx
(1)
0 − Cx

(2)
0

]
and p0 = z0 =

[
A−1(c−BTx

(2)
0 )− x

(1)
0

S−1
0

(
d−BA−1c− (C −BA−1BT )x

(2)
0

)] .
Let us move to the for loop. Given

xk =

[
x
(1)
k

x
(2)
k

]
, rk =

[
r
(1)
k

r
(2)
k

]
, pk =

[
p
(1)
k

p
(2)
k

]

and zk = P−1
1,0rk, where x

(1)
k , r

(1)
k ,p

(1)
k ∈ Rn, the choice of inner product means that

α =
(z

(2)
k )TS0(z

(2)
k )

(p
(2)
k )T (C −BA−1BT )p

(2)
k

and β =
(z

(2)
k+1)

TS0(z
(2)
k+1)

(z
(2)
k )TS0(z

(2)
k )

.

Additionally, since zk+1 = zk − αP−1
1,0Apk,

zk+1 =

[
z
(1)
k − α(p

(1)
k +A−1BTp

(2)
k )

z
(2)
k − αS−1

0 (C −BA−1BT )p
(2)
k

]
.

Putting this together gives the equivalent Algorithm 2.
It is not yet clear that the iterates generated by Algorithms 1 and 2 converge to

the solution of (3.1). To show that Algorithm 2 does indeed solve (3.1) we compare
Algorithm 2 to the preconditioned conjugate gradient method applied to the sys-
tem obtained from the range-space method, i.e, the method based on a factorization
like (1.9).

The range-space method—which is equivalent to solving (3.1)—proceeds in two
stages; first we seek a solution to

(C −BA−1BT )v = d−BA−1c, (3.5)
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Given x0 =

[
x
(1)
0

x
(2)
0

]
, set z0 =[

A−1(c−BTx
(2)
0 )− x

(1)
0

S−1
0 (d−BA−1c− (C −BA−1BT )x

(2)
0 )

]
and p0 = z0;

for k = 0, 1, . . . do

α =
(z

(2)
k )TS0(z

(2)
k )

(p
(2)
k )T (C −BA−1BT )p

(2)
k

;[
x
(1)
k+1

x
(1)
k+1

]
=

[
x
(1)
k + αp

(1)
k

x
(2)
k + αp

(2)
k

]
;[

z
(1)
k+1

z
(2)
k+1

]
=

[
z
(1)
k − α(p

(1)
k +A−1BTp

(2)
k )

z
(2)
k − αS−1

0 (C −BA−1BT )p
(2)
k

]
;

β =
(z

(2)
k+1)

TS0(z
(2)
k+1)

(z
(2)
k )TS0(z

(2)
k )

;[
p
(1)
k+1

p
(2)
k+1

]
=

[
z
(1)
k+1 + βp

(1)
k

z
(2)
k+1 + βp

(2)
k

]
;

end
Algorithm 2: Simplified CG in the scalar product defined by H1,0.

before recovering u by solving

u = A−1(c−BTv). (3.6)

More details can be found in e.g., [4, Chapter 5].
Since C − BA−1BT is positive definite we can solve (3.5) by a preconditioned

conjugate gradient method with a symmetric positive definite preconditioner S0 as
in Algorithm 3. Note that when applied to (1.2), our Schur complement approach is
actually a null-space method, as we show in Section 3.3 (cf. Algorithm 2.1 in Gould,
Hribar and Nocedal [21]).

Given v0, set z0 = S−1
0 (d−BA−1c− (C −BA−1BT )v0) and p0 = z0;

for k = 0, 1, . . . do

α =
zT
k S0zk

pT
k (C −BA−1BT )pk

;

vk+1 = vk + αpk;

zk+1 = zk − αS−1
0 (C −BA−1BT )pk;

β =
zT
k+1S0zk+1

zT
k S0zk

;

pk+1 = zk+1 + βpk;

end
Algorithm 3: CG for the reduced system (3.5).

Comparison of Algorithms 2 and 3 show that whenever x
(2)
0 = v0, the vectors

z
(2)
0 and p

(2)
0 in Algorithm 2 are the same as z0 and p0 in Algorithm 3. Moreover,

since the scalars α and β in the two algorithms are equivalent, x
(2)
k , z

(2)
k and p

(2)
k in

12



Algorithm 2 are the same as vk, zk and pk in Algorithm 3 for all iterations k ≥ 0.

It follows from the convergence theory for Algorithm 3 that α, β, x
(2)
k , z

(2)
k and p

(2)
k

are all well defined and that the iterates x
(2)
k in Algorithm 2 are approximations of v.

However, Algorithm 2 also yields approximations of u as the next result shows.

Lemma 3.2. Let x
(1)
k , x

(2)
k and z

(1)
k be as in Algorithm 2, k ≥ 0. Additionally,

let

uk = A−1(c−BTx
(2)
k ). (3.7)

Then uk = x
(1)
k + z

(1)
k .

Proof. We show that z
(1)
k = uk − x

(1)
k by induction. First, since z

(1)
0 = A−1(c−

BTx
(2)
0 )− x

(1)
0 , we see from (3.7) that z

(1)
0 = u0 − x

(1)
0 .

Now assume that for some j ≥ 0,

z
(1)
j = uj − x

(1)
j . (3.8)

From the updates for x
(1)
j+1 and x

(2)
j+1 in Algorithm 2 we see that αp

(1)
j = x

(1)
j+1 − x

(1)
j

and αp
(2)
j = x

(2)
j+1 − x

(2)
j . Substituting these formulae into the equation for z

(1)
j+1 and

using (3.7) gives that

z
(1)
j+1 = z

(1)
j + (x

(1)
j − x

(1)
j+1) + (uj+1 − uj).

This shows that whenever (3.8) holds, z
(1)
j+1 = uj+1 −x

(1)
j+1. Since z0 = u0 +x

(1)
0 , the

stated result is proved.

Now, because x
(2)
k approximates v, the vector x

(1)
k + z

(1)
k approximates u and so

we obtain approximations of both u and v from Algorithm 2. Thus, Algorithm 2 is
well defined and can be used to solve (3.1).

As a final point, since to solve (3.1) we only need uk = x
(1)
k + z

(1)
k and pk, it

is straightforward to show that nothing is lost in Algorithm 2 by setting p
(1)
k = 0,

k > 0, and that some computational savings are made by avoiding the vector update.
Additionally, in our experience such a step can be useful for reducing the effect of
rounding errors.

3.3. A non-standard conjugate gradient method for Pln. Now let us ap-
ply the results of this section to our system (1.1) with preconditioner (2.5). Recall
from (1.4) and (2.5) that

Â := ΠAΠT =

A11 BT
1 A12

B1 0 B2

A21 BT
2 A22

 =:

[
Â B̂T

B̂ A22

]
, ΠPlnΠ

T =

[
Â

B̂ A22

]
,

where N = A22 − B̂Â−1B̂T is the null-space matrix with the fundamental basis Zf

(see (1.3) and (1.7)). Letting

ΠHlnΠ
T =

[
0

Ñ

]
,

we see that ΠHlnΠ
T , ΠPlnΠ

T and ΠAΠT are in the form of H1,0 and P1,0 in (3.4) and
A in (3.1). Accordingly, we can apply the non-standard conjugate gradient method
in Algorithm 2 to

Π(HlnPT
lnA)ΠT (Πw) = ΠHlnPlnb, (3.9)
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where

w =

x1

x2

y

 and b =

f1

f2

g

 ,

with x = [xT
1 , xT

2 ]
T and f = [fT

1 , fT
2 ]

T and x1,f1 ∈ Rm. As shown in the previous
section, this is equivalent to applying preconditioned CG to the reduced system (3.5),
given by

Nv = (A22 − B̂Â−1B̂T )v = d− B̂Â−1c

where, because of the permutation matrix Π, v = x2, d = f2 and c = [fT
1 , gT ]T .

The vector u in (3.6) is u = [xT
1 , yT ]T .

Comparison with the null-space method shows that solving this reduced system is
the same as using the null-space method with the fundamental basis Zf and the par-
ticular solution (1.8). It follows that applying non-standard CG to (3.9) is equivalent
to applying the null-space method using the fundamental basis (1.3).

3.4. The constraint preconditioner, Pcn. Finally for this section, we mention
the preconditioner Pcn. As this is a constraint preconditioner, we can apply it with
projected conjugate gradients [21], provided that the (1,1) block is symmetric positive
definite on the nullspace of B. If A is indefinite, or if we require a method that
minimizes the residual, then we can still utilize a short-term recurrence method by
using projected MINRES [19]. Therefore standard methods work out-of-the-box, and
no extra theory is needed in this case.

4. Numerical Results. In this section we apply null-space preconditioners to
matrices arising in a number of applications, each chosen to highlight a specific feature
of the proposed preconditioners. We compare their behaviour with Schur-complement
based preconditioners

Pus :=

[
A BT

0 −S0

]
, Pls :=

[
A 0
B −S0

]
, Pcs :=

[
A 0
0 S0

]
, Pcons :=

[
A BT

B BTA−1B − S0

]
,

(4.1)
and use a similar approximation to the Schur complement and the null-space matrix
in each case.

With Schur complement preconditioners it is often the case that an ideal approx-
imation can be derived by considering the analytic setting of the problem; see, e.g.,
[30]. It is likely that for certain applications a similar derivation of an ideal precondi-
tioner will be available for the null-space matrix. However, it is beyond the scope of
this work to develop corresponding approximations here, as these will be necessarily
problem-specific.

Unless otherwise stated we apply right-preconditioned GMRES or non-standard
CG, which we terminate when the relative residual satisfies ∥rk∥2/∥r0∥2 < 10−8, or
when min{n + m,maxit} iterations are reached, where maxit is specified for each
example below.

For some problems we approximate N and S by incomplete Cholesky factoriza-
tions. These we compute by the Matlab routine ichol with a default drop tolerance
of 10−2. For both N and S, if ichol fails we reduce the drop tolerance by a factor of
10 until a factorization is computed. The smallest drop tolerance used is 10−8.
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4.1. Random saddle point matrices. Example 4.1. Consider the pseudo-
random sparse matrix generated by the Matlab code
A = sprandsym(n,0.1,1e-2,1);

B = sprand(m,n,0.5);

K = [A B’; B sparse(m,m)];

We take n = 100 and m = 10, 50, 90. For these problems maxit = 200.
In this example we test values of n − m that are small, moderate, and large

in comparison with n. We compare the null-space preconditioners Pcn, Pln, Pun,
Pcon and the Schur complement preconditioners in (4.1). For our approximations
to the Schur complement and the null-space matrix we take the identity matrix of
the appropriate dimension. We apply these preconditioners using Matlab’s inbuilt
GMRES routine, and report the results in Figure 4.1.

Here, by choosing a weak approximation of the Schur complement and the null-
space matrix (namely, the identity matrix), convergence depends entirely on how
important this component piece is to the overall approximation. Therefore the null
space based preconditioners do well for small n − m, the Schur complement based
preconditioners do well for n−m close to n, and there is no clear winner in the inter-
mediate case when n = m/2. This suggests that null-space preconditioners may be a
better choice over Schur complement preconditioners if we have an application where
n−m is small, particularly if we do not have a good Schur complement approximation.

It is also useful to compare the different null-space preconditioners with each
other, and the different Schur complement preconditioners with each other. In all
cases, the constraint, upper, and lower preconditioners take about the same number of
iterations, and so which one of these we use will depend on the specific requirements
of the application. The central approximations take roughly twice the number of
iterations, but are cheaper to apply.

Example 4.2. Consider now the sparse matrix generated by the Matlab code
A = 10*speye(n,n);

B = sprand(m,n,0.5);

K = [A B’; B sparse(m,m)];

We take n = 100 and m = 10, 50, 90. In Example 4.2 we have the same B as
in Example 4.1, but instead take a scaled identity matrix for A. We test the same
preconditioners that we used in Example 4.1, namely using an identity matrix as
the Schur complement/null space approximation. We give the results in Figure 4.2.
Again, maxit = 200.

Here, in contrast to Example 4.1, the null-space preconditioners perform well for
both large and small values of n−m. This is because the (1,1) block in A is a scaled
identity matrix here and, as a consequence of Theorem 2.1, the eigenvalues of P−1

cn A
are well clustered. Again, the pattern that the central-based preconditioners take
about twice the iterations of the others is in evidence.

4.2. Optimization and interior point methods. Here we consider quadratic
programming problems of the form

min
1

2
xTHx+ fTx

s.t. Bx = g,

x ≥ 0
¯
.

(4.2)

If we solve such a problem using a primal-dual interior point method [49] then at
iteration k of the optimization algorithm we must solve a system of the form (1.1),
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Fig. 4.1: Comparison: Schur complement and null space preconditioners, pseudo-
random example from Example 4.1
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Fig. 4.2: Comparison: Schur complement and null space preconditioners, pseudo-
random example from Example 4.2
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Matrix n m Matrix n m
AUG3DC 3873 1000 GOULDQP3 699 349
AUG3DCQP 3873 1000 HUES-MOD 10000 2
CONT-050 2597 2401 HUESTIS 10000 2
CONT-100 10197 9801 LASER 1002 1000
CONT-101 10197 10098 LISWET1 10002 10000
CONT-200 40397 39601 LOTSCHD 12 7
CVXQP3 S 100 75 MOSARQP1 2500 700
DPKLO1 133 77 MOSARQP2 900 600
DTOC3 14999 9998 PRIMAL1 325 85
DUAL1 85 1 QPCSTAIR 467 356
DUAL2 96 1 STCQP2 4097 2052
DUAL3 111 1 YAO 2002 2000
DUAL4 75 1

Table 4.1: Problem sizes, CUTEst set matrices from Example 4.2. Matrices for which
A is singular are denoted by an asterisk.

where A = H +X−1
k Zk for diagonal matrices Xk, Zk.

In this context it is common to solve the linear system (1.1) by reducing it to
the null-space matrix N , which the optimization community refer to as the reduced
Hessian [8], [33, Section 16.2]. Since forming the matrix N is expensive, it is common
in optimization to approximate this, e.g., by missing out cross terms [11, 32].

In this setting we need to solve a sequence of linear systems as the interior point
method converges, but the ‘constraint’ blocks B do not change. Therefore we may
justify the cost of using a direct method such as LUSOL [44], say, to find a basis of B,
since we can reuse this splitting over all interior point iterations. Although we do not
explore the possibility here, it is also possible to use the interior point method itself
to predict an invertible sub-block B1—see, e.g., Al-Jeiroudi, Gondzio, and Hall [2].

A thorough analysis of these methods, and subsequent development of a domain-
specific approximation Ñ , is beyond the scope of this work. However, to give a
flavour of how we can expect such methods to work we run through some problems
from the CUTEst test set [22], comparing standard Schur-complement preconditioners
and null-space preconditioners. These problems, and their dimensions, are listed in
Table 4.1. We highlight that, as described in a previous section, in optimization it is
often important that the inexact solution of this subproblem remains on the constraint
manifold. This is a property afforded by constraint preconditioners, and the only true
constraint preconditioner tested here is Pcon.

In our experiments we choose Xk and Zk so that X−1
k Zk = I, the identity matrix

of dimension n; a system of this form may be used in practice to find an initial guess
for the interior point method. Additionally, we set maxit = 1000.

Our first tests are for the ideal case where we take the exact matrices S or N ;
these are not practical, but give an idea of the best we can expect the respective
method to work in practice. We give the results of these tests in Table 4.2. The
fast convergence rates for both the Schur-complement and null-space precondition-
ers, with the exception of the central-null preconditioner, are to be expected from
theoretical spectral results (see Theorems 2.5, 2.6 and 2.8 for the null space pre-
conditioners and [26, 31] for the Schur complement preconditioners). Note that the
performance of the central-null preconditioner, in contrast to the other null-space
and Schur-complement preconditioners, depends on the eigenvalues of N−1A22 (see
Theorem 2.1), which are not necessarily clustered. We find that iteration counts are
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Matrix Pus Pls Pcs Pcons Pls (NSCG) Pun Pln Pcn Pconn Pln (NSCG)
AUG3DC 2 2 3 1 1 2 2 27 1 1
AUG3DCQP 2 2 3 1 1 2 2 27 1 1
CONT-050 2 2 3 1 1 2 2 20 1 1
CONT-100 2 2 3 1 1 2 2 23 1 1
CONT-101 2 4 5 1 1 4 4 30 2 *
CONT-200 2 4 5 1 1 2 8 25 1 1
CVXQP3 S 1 2 2 1 1 2 2 34 1 1
DPKLO1 1 2 2 1 1 2 2 27 1 1
DTOC3 1 2 2 1 1 2 2 8 1 1
DUAL1 2 2 3 1 1 2 2 5 1 1
DUAL2 2 2 3 1 1 2 2 5 1 1
DUAL3 2 2 3 1 1 2 2 5 1 1
DUAL4 2 2 3 1 1 2 2 5 1 1
GOULDQP3 2 2 3 1 1 2 2 27 1 1
HUES-MOD 1 2 2 1 1 2 2 4 1 1
HUESTIS 1 2 2 1 1 2 3 4 2 2
LASER 1 2 2 1 1 2 2 3 1 1
LISWET1 2 4 3 1 2 2 2 4 1 1
LOTSCHD 1 2 2 1 1 2 2 11 1 1
MOSARQP1 2 2 3 1 1 2 2 21 1 1
MOSARQP2 2 2 3 1 1 2 2 19 1 1
PRIMAL1 1 2 2 1 1 2 2 22 1 1
QPCSTAIR 1 2 2 1 1 2 2 31 1 1
STCQP2 1 2 2 1 1 2 2 3 1 1
YAO 2 3 3 1 2 2 2 5 1 1

Table 4.2: Iteration counts for the Schur complement preconditioners with S0 = S
and the null-space preconditioners with N0 = N for the CUTEst set matrices from
Example 4.2. * stands for did not converge after 1000 iterations.

slightly higher for CONT-101 and CONT-200 than the theory predicts. However, for
these matrices N and S are quite ill-conditioned.

In a further test we consider the simplest approximation to the matrices S and N ,
namely the identity matrix of appropriate size. These results are given in Table 4.2.
Since the identity is generally a poor approximation of S and N we find that, similarly
to Example 4.1, the size of n−m relative to m plays an important role in determining
whether the null-space-based preconditioners are more, or less, effective than the
Schur-complement-based preconditioners. In particular, when m is large the Schur-
complement preconditioned iterative methods do not always converge to the desired
tolerance within 1000 iterations but the null-space preconditioners are somewhat more
robust. Both the central-null and central-Schur preconditioners tend to require twice
as many iterations as the other preconditioners.

Considering now the null-space preconditioners in more detail, we find that the
upper-null preconditioner performs better than the lower-null preconditioner for some
problems, but the difference tends to be small. The constraint preconditioner Pcon also
requires higher iteration counts for some problems, and is not effective for DUAL1–
DUAL4, since for these problems Pcon is very ill-conditioned. More generally, our
experiments indicate that this constraint preconditioner may be less effective when
the approximation to the null-space matrix is poor, although it does have the benefit
of being an exact constraint preconditioner. Additionally, the non-standard inner
product CG method can require more iterations than using the lower-, upper- or
constraint-preconditioners with GMRES. On the other hand, the CG method uses
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short-term recurrences.

Matrix Pus Pls Pcs Pcons Pls (NSCG) Pun Pln Pcn Pconn Pln (NSCG)
AUG3DC 35 37 71 35 35 87 88 166 91 100
AUG3DCQP 36 38 73 36 36 87 88 166 91 100
CONT-050 * * * * * 16 16 30 15 16
CONT-100 * * * * * 21 21 41 21 21
CONT-101 * * * * * 21 21 40 31 *
CONT-200 * * * * * 28 56 55 28 29
CVXQP3 S 82 83 150 83 * 26 26 44 26 29
DPKLO1 51 53 102 51 88 24 24 50 25 30
DTOC3 * * * * * 6 5 10 6 7
DUAL1 2 2 3 2 1 66 67 71 * *
DUAL2 2 2 3 2 1 59 63 66 * 81
DUAL3 2 2 3 2 1 59 62 64 * 71
DUAL4 2 2 3 2 1 36 38 39 * 36
GOULDQP3 20 21 39 19 19 40 40 71 41 38
HUES-MOD 3 4 4 3 2 3 3 4 9 2
HUESTIS 3 4 4 3 2 3 3 4 11 3
LASER 65 66 130 65 67 2 2 3 2 1
LISWET1 * * * * * 3 3 5 4 2
LOTSCHD 7 8 14 7 7 6 6 11 6 5
MOSARQP1 464 467 927 464 550 15 15 29 15 14
MOSARQP2 444 447 889 444 614 17 17 38 17 15
PRIMAL1 77 79 154 77 137 40 41 79 41 71
QPCSTAIR 247 249 490 247 551 51 53 93 53 69
STCQP2 267 269 528 267 615 85 94 95 93 93
YAO * * * * * 3 3 5 4 2

Table 4.3: Iteration counts for the Schur complement preconditioners with S0 = I
and the null-space preconditioners with N0 = I for the CUTEst set matrices from
Example 4.2. * stands for did not converge after 1000 iterations.

Finally, we give results (Table 4.4) for the same tests with a more accurate ap-
proximation of S or N , namely the incomplete Cholesky factorization described at
the start of this section. Generally, using these better approximations of N and S
improves the iteration counts for the Schur-complement preconditioners and the null-
space preconditioners. Again, the null-space preconditioners are more robust than
their Schur-complement counterparts, and for no problems do we see the high itera-
tion counts that the Schur-complement preconditioners give for CONT-100, CONT-
101 and COND-200.

4.3. F−matrices. Let A be a saddle point matrix of the form (1.1) where A is
symmetric positive definite and B is a gradient matrix, i.e., B has at most two entries
per row, and if there are two entries they sum to zero; we call such a matrix A an
F−matrix [47]. Such matrices arise naturally in, e.g., discretizations of fluid-flow [3],
or in electrical networks [45].

Due to the special structure of B it is possible to find an invertible sub-block
B1 without performing any arithmetic—see, e.g., [39, 45]. This property makes
F−matrices an ideal candidate for null-space preconditioning. We test our precondi-
tioners for a number of F−matrices1, listed in Table 4.5. We set maxit = 1000.

When we use the cheap, but inaccurate, approximations S0 = I and N0 = I (see
Table 4.6) the iteration counts can be quite high for all preconditioners. However,

1We would like to thank Miroslav Tůma for providing these test matrices.
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Matrix Pus Pls Pcs Pcons Pls (NSCG) Pun Pln Pcn Pconn Pln (NSCG)
AUG3DC 10 11 21 9 10 16 16 33 16 16
AUG3DCQP 10 11 21 9 9 16 16 33 16 16
CONT-050 85 86 170 85 86 18 18 34 17 17
CONT-100 376 377 752 376 417 40 40 59 39 44
CONT-101 418 419 837 418 536 26 26 48 25 *
CONT-200 * * * * * 24 57 43 23 23
CVXQP3 S 7 9 14 7 7 6 6 33 5 5
DPKLO1 15 17 30 15 16 8 8 28 7 7
DTOC3 6 9 12 6 7 5 5 10 5 4
DUAL1 2 2 3 1 1 9 8 12 8 8
DUAL2 2 2 3 1 1 8 7 10 7 7
DUAL3 2 2 3 1 1 9 8 11 8 8
DUAL4 2 2 3 1 1 17 16 18 16 16
GOULDQP3 7 7 13 6 6 6 7 27 6 6
HUES-MOD 1 2 2 1 1 8 7 9 7 7
HUESTIS 1 2 2 1 1 8 7 10 7 *
LASER 10 12 20 10 10 2 2 3 1 1
LISWET1 6 6 9 4 6 2 2 4 1 1
LOTSCHD 3 4 6 3 3 4 4 11 3 3
MOSARQP1 25 26 51 25 25 8 7 22 7 7
MOSARQP2 26 28 53 26 26 7 7 19 6 6
PRIMAL1 4 5 8 4 4 13 13 25 12 12
QPCSTAIR 10 11 20 10 10 20 20 40 19 20
STCQP2 13 16 26 13 13 21 21 22 20 20
YAO 5 5 9 4 4 2 2 5 1 1

Table 4.4: Iteration counts for the Schur complement preconditioners and the null-
space preconditioners, with incomplete Cholesky preconditioners for S0 and N0, for
the CUTEst set matrices from Example 4.2. * stands for did not converge after 1000
iterations.

Matrix n m Matrix n m
DORT 13360 9607 M3P 2160 1584
DORT2 7515 5477 S3P 270 207
L3P 17280 12384 dan2 63750 46661

Table 4.5: Problem sizes, F-matrices in Example 4.3.

the null-space based preconditioners consistently give lower iteration counts; this can
partly be explained by the dimensions of the problems, since in general n−m is sig-
nificantly smaller than m. As in the previous example, the non-standard CG method
with Pls or Pln seems to be less robust than right-preconditioned GMRES, while
the upper-null preconditioner performs slightly better than the lower-null precondi-
tioner. Similarly to other examples in this section, the central-Schur and central-null
preconditioners tend to take twice as many iterations as the other preconditioners.
When N0 and S0 are replaced by incomplete Cholesky preconditioners, the iteration
counts drop for all preconditioners, but the same trends are evident. In particular,
the null-space preconditioners are particularly well-suited to these F−matrices.

4.4. University of Florida matrices. Finally, we examine a subset of prob-
lems from the University of Florida sparse matrix collection [13] (see Table 4.8). For
these problems we set maxit = 1000.
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Matrix Pus Pls Pcs Pcons Pls (NSCG) Pun Pln Pcn Pconn Pln (NSCG)
DORT * * * * * 750 763 * 750 *
DORT2 * * * * * 473 481 946 473 *
L3P 359 360 717 373 375 218 223 441 217 288
M3P 204 205 407 224 207 89 91 177 89 108
S3P 113 114 225 126 115 36 36 65 36 34
dan2 * * * * * * * * * *

Table 4.6: Iteration counts for the Schur complement preconditioners with S0 = I
and the null-space preconditioners with N0 = I for the F-matrices in Example 4.3.
* stands for did not converge after 1000 iterations.

Matrix Pus Pls Pcs Pcons Pls (NSCG) Pun Pln Pcn Pconn Pln (NSCG)
DORT 121 121 237 120 125 12 14 32 12 12
DORT2 117 117 233 116 120 8 10 30 8 8
L3P 44 44 87 43 43 16 18 36 15 15
M3P 24 24 47 23 23 12 15 31 11 11
S3P 12 12 23 11 11 10 12 28 9 9
dan2 7 7 13 6 6 9 11 48 8 8

Table 4.7: Iteration counts for the Schur complement preconditioners and the null-
space preconditioners, with incomplete Cholesky preconditioners for S0 and N0, for
the F-matrices in Example 4.3.

We see from Tables 4.9 and 4.10 similar results to those in previous examples. For
all problems except qpband, n−m < m, so that it is unsurprising that the null-space
preconditioners perform better in general. However, even for qpband, the null-space
preconditioners are competitive. Similarly to previous examples, the central-null and
central-Schur preconditioners require approximately twice as many iterations as the
other preconditioners, while the constraint preconditioner Pcon is less robust when a
poor approximation to N is used.

5. Conclusion. We have presented a new paradigm for preconditioning based
on a null-space factorization. By dropping, or approximating, different terms in the
null-space factorization, in a similar manner to standard Schur complement precon-
ditioners, we arrived at four different null-space preconditioners.

We have given eigenvalue bounds for these preconditioners, and have shown that
the eigenvalues of the upper-null, lower-null and constraint preconditioners are clus-
tered when a good approximation to the null-space matrix can be found. Additionally,
two of the preconditioners, although indefinite and non-symmetric, can be applied
with a Krylov method with a short term recurrence.

Finally, we investigated the effectiveness of these preconditioners at reducing the
number of iterations of Krylov subspace methods. We found that the preconditioners
were more robust than equivalent Schur-complement based preconditioners, and were
more effective when a reasonable approximation to the null-space matrix was available
or when the dimension of n−m was small.

Acknowledgements. The authors extend their thanks to Jennifer Scott and
Nick Gould for reading an earlier version of this manuscript, and for their valuable
comments and suggestions.
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Matrix n m Matrix n m
brainpc2 13807 13800 tuma1 13360 9607
mario001 23130 15304 tuma2 7515 5477
qpband 15000 5000

Table 4.8: Problem sizes, University of Florida matrices in Example 4.4.

Matrix Pus Pls Pcs Pcons Pls (NSCG) Pun Pln Pcn Pconn Pln (NSCG)
brainpc2 * * * * * 8 8 13 8 10
mario001 * * * * * 296 296 571 * 781
qpband 3 3 5 3 2 6 6 9 6 5
tuma1 * * * * * 744 755 * * *
tuma2 * * * * * 458 465 917 * *

Table 4.9: Iteration counts for the Schur complement preconditioners with S0 = I
and the null-space preconditioners with N0 = I for the University of Florida matrices
in Example 4.4. * stands for did not converge after 1000 iterations.
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[23] A. Greenbaum, V. Pták, and Z. Strakoš, Any nonincreasing convergence curve is possible
for GMRES, SIAM Journal on Matrix Analysis and Applications, 17 (1996), pp. 465–469.

[24] C. Greif, E. Moulding, and D. Orban, Bounds on eigenvalues of matrices arising from
interior-point methods, SIAM Journal on Optimization, 24 (2014), pp. 49–83.
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