Tochnical Repert

RAL-TR-1999-046

Software Quality Assurance for Fortran 90 -
A Survey of Available Tools

R F Fowler and C Greenough

9108066-NVOS ‘IH“”
\UNTO ‘SARIVAArT NJ3D

© Council for the Central Laboratory of the Research Councils 1999

Enquiries about copyright, reproduction and requests for
additional copies of this report should be addressed to:

The Central Laboratory of the Research Councils
Library and Information Services

Rutherford Appleten Laboratory

Chilton

Didcot

Oxfordshire

OX11 0QX

Tel: 01235 445384 Fax: 01235 446403
E-mail library@rl.ac.uk

ISSN 1358-6254

Neither the Council nor the Laboratory accept any responsibility for loss or
damage arising from the use of information contained in any of their
reports or in any communication about their tests or investigations.

Software Quality Assurance for Fortran 90 -
A Survey of Available Tools

R.F. Fowler and C. Greenough

Computational Science and Engineering Department
CLRC Rutherford Appleton Laboratory,
Chilton, Didcot OX11 0QX, UK

Email: r.f.fowler@rl.ac.uk or c.greenough@rl.ac.uk

This report is available from http://www.cse.clrc.ac.uk/Activity/HPCI

July 2, 1999

Abstract

This report provides a survey of some of the software tools currently available to assist in
the development of Fortran programs using the new 1990 and 1995 standards. A few tools
also address the development of High Performance Fortran (HPF). This report is particularly
concerned with tools which will enhance the quality of software developed. We have not looked
at tools which focus on the high level design and requirements analysis, since these are often
common to many languages. Instead we have concentrated on tools that help in the detection of
programming errors and highlight poor practice, such as “spaghetti” style coding. At present,
there appear to be few such tools available for the new Fortran standard. However, many Fortran
90 compilers can provide quite extensive compile and run time checks and some examples of these
are also discussed.

Keywords: software quality, Fortran 90, Fortran 95, High Performance Fortran

© Council for the Central Laboratory of the Research Councils 1999. Neither the
Council nor the Laboratory accept any responsibility for loss or damage arising from the use
of information contained in any of their reports or in any communication about their tests or
investigations.

CONTENTS

Contents

1 Introduction

2 Software Quality

3 Software Tool Capabilities

3.1 Static Error Detectiono e e
3.2 Dynamic Error Detection Lo s
3.3 Code Restructuring and Transformation
3.4 Software Structure Analysis L Lo Lo s e
3.5 Software Metrics o o i e e e e e e e e e

4 Software Tools: Stand-alone Analysis Software

4.1 Polyhedron plusFORT i i e
4.2 Leiden University FORCHECKo
4.3 IPT Corporation Fortran90-Lint e e e e e e e
4.4 NAG Fortran 90 Toolso o e
4.5 Cobalt Blue - FOR.STRUCT, FORSTUDY
4.6 N.A. Software Loft90, FortranPlus« ..o
4.7 Pacific-Sierra Research VAST and DEEP0 v
4.8 Fujitsu Visual Analyzer
4.9 Simulog FORESYS o e e
4.10 LDRA - Testbed o . . e e
411 Programming Research Ltd - QA Fortrano
412 Other QA tools« o o e e e e e e e e e e e

5 Fortran 90 Compiler Support for Analysis and Error Detection

5.1
5.2

Sun Fortran 90 V1.2 e e e e e e e e e e e e e e e e

il

[

10
11
12
13
13
15
16
16
17

17

19
20
21

21

53 DECTFUSE fO0 o o i e e e e e e e i e e e e e e e e e e s
5.4 IBM xIfO0 e e e e e e e e e e e e e e e e e e e
5.5 Fortran 90 subset compilers: F and ELF90 e e e e

6 Acknowledgements

CONTENTS

A Appendix: Fortran Tools listed by STSC

iii

23

I INTRODUCTION 1

1 Introduction

The Fortran 90 standard has been available for many years but its uptake has been rather slow,
perhaps due to the time taken to develop high quality optimising compilers and competition of
other languages such as C++4. This situation is changing now as good compilers are becom-
ing more common and there is a lot of interest in exploiting the parallelism of multiprocessor
machines through High Performance Fortran (HPF) and OpenMP directives.

Fortran 90 offers many significant advantages over the previous standard. Among these dynamic
mermory management, abstract data types, data hiding, array notation and explicit subprogram
interfaces are some of the most important. When used correctly these new features should allow
the development of better quality software, as operations can be expressed more clearly and the
compiler can perform many more checks.

Nevertheless it is just as easy to produce poor quality software in Fortran 90 as in any other
language and some of the added features, such as pointers, have potential to cause new types
of errors. Hence there is a need for software tools to aid the development of scientific and
engineering applications in Fortran 90.

This document contains a short description of some of the more useful software tools that are
currently available to assess and improve the quality of Fortran 90 software. Some tools are also
applicable to Fortran 95, the latest revision of the standard, and to HPF. We have not considered
tools which focus exclusively on the high level design and requirements analysis. These are of
course important in the production of large software packages but, since they are often common
to many languages, it is not appropriate to include them in a review of Fortran tools.

Software quality tools are part of the broader class of software re-engineering tools. A fairly
comprehensive review of such tools, covering many programming languages, has been placed on
the Web [5]. However, the review gives very few details on specific Fortran 90 products as it
was compiled in 1995. Some extracts from this report, mainly about Fortran 77 tools, are listed
in the appendix to this document.

The software tools we shall consider may be roughly divided into three classes, though there is
a degree of overlap between them. These are:

s Analysis tools, which check source code for adherence to standards, consistency of argu-
ment lists and similar problems. They may also provide measures of software complexity;

s Tools which provide some form of reverse engineering and re-documentation capabilities
to extract call graphs and other high level design data from the source code;

o Conversion tools, which restructure the software. This includes converting old software to
use the more readable and safer syntax of Fortran 90;

o Fortran 90 compilers and Integrated Development Environments (IDEs). Many compil-
ers now include sophisticated checks built into them and may offer things such as inter-
procedure analysis which was previcusly only available in separate tools. Debuggers may
also provide checks on memory leaks and variables used before set, which is only fully
possible at run time. Some vendors provide IDEs which clesely couple software analysis
and browsing tools with the compiler.

Since there is such a large number of these tools, this review cannot include them all or even
provide comprehensive details of those that we do discuss. However, it should give an idea of
the range and capabilities of tools available at the time of writing.

2 SOFTWARE QUALITY 2

2 Software Quality

Software guality is not a term that has a precise, “scientific” definition. Nevertheless it is vital
that software developed for research into scientific and engineering problems should strive to be
of high quality for several reasons:

e If the quality of the software used to produce a new computational result is questionable,
then the result must also be treated with caution. Just as results from a poorly designed
experiment are of little use, computational results need to be based on sound theory
coupled with quality software;

® A research code may be developed by several different students or staff at different times.
Poor application of software quality control techniques can lead to programming errors,
wasted development tirne and dubious results;

e High quality software can be made available to other research groups, or included in
commercial products,

Production of high quality software requires systematic design and development coupled with
comprehensive testing. Clearly this can be at odds with scientific investigations which often
require rapid results to prove the usefulness, or otherwise, of a new method. However it is vital
to strike the right balance between the need for rapid development of a prototype code and the
requirement of trustworthy results and re-usable code. Improving the quality of poorly written
code can be a very time consuming process, and it may prove easier to start again from scratch.
It is much more efficient if software quality control is applied from the beginning, rather than
trying to retro fit it to existing code.

The need for quality assurance is underlined by research such as that due to Les Hatton [1].
Hatton has analysed a large number of commercial scientific software packages written in C and
Fortran 77. The Fortran 77 codes had an average of 12 statically detectable faults per 1000
executable statements {these were found using the QA Fortran static analysis program). In
run time tests of nine software packages for seismic data analysis, which nominally implement
exactly the same mathematical algorithms, substantial variations in the results were found.
These differences are sufficient to cast doubt on some new analysis methods which require high
accuracy in the processed data.

Another investigation of software quality in Fortran codes has been made by Hopkins [6]. He has
investigated how the quality metrics of some well known public domain packages and published
algorithms have changed with time. The most worrying aspect of this work is that there seems
to be little improvement in the quality measures of many published Fortran algorithms over the
past twenty years.

Software tools can be useful is the assessment of a software product in several ways:
e Detection of software defects that are not usually reported by compilers, such as argument
mismatch between program units and use of unassigned variables;

» Objective measures of programming style and complexity, e.g. a program unit has an
excessive number of source code lines or has so many independent paths through it to
making testing difficult;

» Instrumentation of the code to identify parts that have not been exercised by a test set;

s Restructuring to improve readability and maintainability;

2 SOFTWARE QUALITY 3

o Extraction of software design and data flow from the source code to aid understanding
and re-documentation.

To be really effective they should be used frequently through the development process so that
errors and deviations from good programming practice can be identified early on. Application
to existing software can be helpful in identifying problems and hidden faults. However, they
cannot be expected to transform poorly-designed software into good software. Careful design
and testing are still vital in the development process.

A useful guide to coding and documenting Fortran 90 software has been placed on the Web by

the UK Meteorological Office, at:
http://www.meto.gov.uk/sec5/NWP/NWP_F90Standards.html

While not all the rules and suggestions in this document will be applicable to every software

developer, it could be useful as the basis of a local coding standard.

Another useful website for Fortran related software is the Fortran Market Place:
http://www.fortran.com/fortran

This has many links to information on Fortran 90 compilers and some public domain software

such as Ftnchek (error checking for Fortran 77} and convert.f90 (converts fixed format to Fortran

90 free format).

3 SOFTWARE TOOL CAPABILITIES 4

3 Software Tool Capabilities

In this section we outline some of the capabilities that are available in software tools that can
be used for quality assurance purposes.

3.1 Static Error Detection

Static errors may be detected by programs which provide lint-like checking for Fortran 77.
Possible tests include:

e Argument checking - are the number and type of arguments consistent between the dec-
laration of a subprogram and each call;

s Common block checking - warnings can be generated for named common blocks of different
lengths, and related potential problems;

o Use of implicit typing - though standard conforming, implicit typing often leads to errors;

e Unused items - variables and sections of code that are never used are reported as these are
at least a source of unnecessary clutter and may indicate programming errors;

s Implicit type truncations, such as copying of real to integer, may lead to unwanted trun-
cation.

In Fortran 90 all the above programming errors can be made since Fortran 77 is a subset of
the language. However careful use of new features, such as explicit interfaces to all subprogram
interfaces and replacing common blocks with modules, should enable the compiler to detect
some of the above problems. On the down side Fortran 90 does allow new errors to occur such
as those associated with memory management. Static analysis should be able to detect some
of these problems, for example allocatable and pointer variables that are used before allocation.
Other errors, like references through a pointer to data that has been deallocated (a “dangling”
pointer), may only be caught by detailed run time checks.

A system such as ftnlint, provided with SGI and Cray Fortran 90 compilers, is able to generate
warnings for many of the common static errors listed for Fortran 77 style codes. It can also make
global checks on module variables and parameters, argument INTENT statements, subroutine
calls where explicit interfaces are requirecd, and related problems.

3.2 Dynamic Error Detection

Many software errors can only be detected at run time, as was mentioned in the previous section.
Some software tools have been developed which will instrument the source code to provide extra
run time checks. Array bound errors and variables used before set could be detected in this way.
However, these checks can often be more conveniently built into the compiler and/or its run
time support system. The majority of Fortran 90 compilers now include array bound checking
as an option. Some also have options to detect variables used before set and memory leaks. In
some cases this additional support requires the use of an interactive debugging tool, which runs
the executable program.

3 SOFTWARE TOOL CAPABILITIES 5

3.3 Code Restructuring and Transformation

A lot of old Fortran software is very poorly structured due to it having been developed originally
as Fortran 66. A number of tools exist to transform and simplify such spaghetti code to Fortran
77 style code. Some tools are now becoming available to further transform Fortran 66 and 77
to take advantage of the new Fortran 90 syntax. Possible transformations include:

e Source code transformation from fixed format to the new free format;

s Reformatting and “pretty printing”;

* Re-structuring to remove spaghetti code and use new constructs such SELECT, EXIT,
CYCLE and array notation;

» Transformation of common blocks into modules, possibly with USE and ONLY statements
to minimise potential name clashes;

e (Generation of interface blocks for subroutines to allow better compile-time argument check-
ing;

e Addition of appropriate INTENT statements to subroutine arguments.

An example of how one particular tool, Vast90, can translate code is shown below. The original
Fortran 77 code is listed first, followed by the Fortran 90. Note that this example was produced
using an old version of Vast90 with the default options, so it may not show the full capabilities
of the current version, in which the transformation tool is now known as Vast77t090.

c £77
SUBROUTINE MATMUL(A,A1,A2,L,N,M,NB)
R
INTEGER NB,L,M,N
DOUBLE PRECISION A(NB,NB),Al1(NB,NB),A2(NB,NB)
[Local
INTEGER I,J.,K
C Aik = Alij . A2jk
DO 10 I=1,L
DO 20 K=1,N
A(I ,K)=0.0
DO 30 J=1,M
ACI,K)=A(T,K)+A1(I,))*A2(J,K)
30 CONTINUE
20 CONTINUE
10 CONTINUE
RETURN
END
' £90

SUBROUTINE MATMUL(A, A1, A2, L, N, M, NB)
'...Translated by Pacific-Sierra Research VAST-90 1.02X
IMPLICIT NONE

INTEGER L, N, M, NB
DOUBLE PRECISION, DIMENSION(NB,NB) :: A, Al, A2

3 SOFTWARE TOOL CAPABILITIES 6

' Aik = A1ij . A2jk

DOI =1, L
DOK=1, N
ACI,K) = 0.0
A(I,K) = A(I,K) + SUMCAL1(I,:M)*A2(:M,K))
END DO
END DO
RETURN

END SUBROUTINE MATMUL

In this case the array notation has been used to remove the inner loop, and the outer two loops

left in place. In this particular case the whole subroutine could better be replaced with the
intrinsic routine MATMUEL.

3.4 Software Structure Analysis

To aid understanding and maintenance of software it is useful to be able to extract call graphs
and other diagrams of the structure. Variable cross referencing tables are also a useful tool for
software maintenance.

A typical cross reference map produced by the Sun Fortran 90 compiler is shown below for one
subroutine.

Cross-reference map: 13 Identifiers (74 References)
Type
Kind Usage EqDSv Dffset Home Name References
Char 1-D Arr 1 Arg ARGNAM 2 8 17- 29=
Int 4 Scalar - 0 Stack IND1 14 20= 21+ 22 23= 24 25 26
Int 4 Scalar - 1 Stack IND2 14 24= 25+ 26= 29 30 32+ 33
Int 4 Intrin INDEX() 20 22 24 25
Int 4 1-D Arr 2 Arg LENARG 2 10 17= 30= 36=
Int 4 Scalar 4 Arg LENST 2 12 20 22 24 25
Int 4 Intrin LEN_TRIM() 17
Int 4 Intrin MINC) 36
Int 4 Scalar - 2 Stack NEWIND 14 22= 23+
Int 4 Scalar 5 Arg NOARG 2 11 17 28= 29 30 36+
Char Scalar 3 Arg STAMNT 2 9 20- 21 22~ 24- 25- 27

Such listings can be used to understand where variables are modified and used and can also form
part of the supporting documentation of the code. Similarly call graphs help to understand and
document the control flow.

3.5 Software Metrics

Some software analysis tools go beyond checking the correctness and overall structure of a
program and look at the complexity of the code within subprograms. Many different metrics
have been defined which can be used to measure the quality of programs. These include things
such as the static path count, the number of ways through a given subprogram (related to
the Npath metric [2]) and the cyclomatic complexity metric due to McCabe [3]. Based on

3 SOFTWARE TOOL CAPABILITIES 7

programming experience, there are recommended maximum values for these measures, which
indicate when a subprogram is poorly structured or is too convoluted to understand or test.

Using such metrics during the course of software development. is important in highlighting exces-
sively complex subprograms as they are belng developed. The programmer can then restructure
the code, perhaps splitting it into more modules. Application of a metrics analysis to existing
software can also identify poorly designed routines, but correcting them is then more difficult.

Some examples of how quality measures can identify excessively complex routines in Fortran
software are given in [8].

4 SOFTWARE TOOLS: STAND-ALONE ANALYSIS SOFTWARE 8

4 Software Tools: Stand-alone Analysis Software

This section lists a number of software tools, most of which are commercial, which can be used to
detect faults, report on standard conformance, measure software complexity and/or restructure
Fortran software. A few of these are actually only applicable to Fortran 77 software. They are
included because they offer some features which are not common in the Fortran 90 tools and
may be useful in analysis of legacy code. In some cases an indication of cost is given, though
many vendors do not put this information on their websites.

Also included here are some tools for the conversion of Fortran 77 to Fortran 90. These can help
improve software quality through increased readability and maintainability.

4.1 Polyhedron plusFORT
Vendor

Polyhedron Software

Linden House

93 High Street

Standlake

Witney, OX8 TRH, UK

Website: http://www.polyhedron.co.uk

Description

The plusFORT product consists of a set of tools for Fortran analysis checking. The tools
currently available in Version 6 are:

plusFORT SPAG. As well as F66 to F77 conversions, this tool is able to convert F77 code to
use some F90 constructs, such as DO-WHILE, ENDDO, CYCLE, EXIT, etc. SPAG can
also remave dead code and unused variables as well as code “polishing” and standardisation
of declarations. The intent of all arguments can also be added to the reformatted code.

Global symbol tables can be produced for further analysis, using GXCHK (see next sec-
tion). Complexity metrics can be determined for each subprogram. The measures reported
are: (1) logical content (number of decision points, comparable to McCabe), (2) all con-
trol jumps, where control is transfered to another point, and (3) unstructured jumps. The
restructuring of SPAG can often reduce the last two measures.

plusFORT Static Analysis. A full global static analysis can be performed using GXCHK.
This uses the symbol tables which are generated by SPAG. It provides checking for variables
used before set, argument mismatch, common block problems, etc. It can also generate
interface specifications for each subprogram. Call trees and charts showing where variables
are used may be produced.

plusFORT Dynamic Analysis Dynamic analysis is made possible by using SPAG to add
run time checking statements to the code. Used before set errors, including tests on array
elements, are checked in the modified code. The instrumented code is run in the normal

way and produces a log file of any faults.

plusFORT Coverage Analysis. The program CVRANAL can be used to instrument Fortran
software for coverage analysis. A report is produced as to how often each block has been

4 SOFTWARE TOOLS: STAND-ALONE ANALYSIS SOFTWARE 9

executed in the test runs. A cumulative count of the times each block is executed can be
made over several runs. CPU time profiling can also be performed.

plusFORT Automake. This automatically checks for dependencies via INCLUDE and USE
statements to rebuild an executable file. It is Fortran 90 aware.

Cost

The plusFORT set of tools costs between £1400 and £6990, depending on platform and number
of users. A 40% educational or non-commercial discount is available.

Fortran 90 Features

While many Fortran 90 features are mentioned in the documentation, the emphasis is on Fortran
77 code. The documents do not discuss the use of MODULEs, TYPEs or POINTERs. The
introduction to the software describes it a converter to structured Fortran 77 with Fortran 90
extensions. It does, however, support F90 source form, declarations and operators.

4.2 Leiden University FORCHECK
Vendor

Forcheck Group

Leiden University

P.O. Box 9604

2300 RC Leiden

Netherlands

Website: http://www.medfac.leidenuniv.nl/forchek

Description

FORCHECK supports Fortran 77, Fortran 90 and High Performance Fortran. It also supports
many popular extensions. The tool provides:

e Call tree generation,;

e Cross reference tables for variables, subprograms, common blocks, etc.;

#» Source code listing with error and warning messages inserted.

» Inter-procedure argument. checks;

o Static checks for variables used before set, unused variables, etc.;

A summary report of the code analysis;

A wide range of compilers (and most of their extensions) are supported. These include Cray,
IBM, DEC, SGI and SUN Fortran 90 compilers. Several Fortran 95 compilers, such as those
from Lahey and Salford, are also supported. The software runs on many different Unix systems
as well as DOS and Windows NT/95. A graphical user interface is available on some systems
and a command line interface on all systems.

4 SOFTWARE TQOLS: STAND-ALONE ANALYSIS SOFTWARE 10

Cost

The software runs on many systems and prices range from 432 Euros on a DOS-based PC to
5864 Euros for a site license. A 40% academic discount is available.

4.3 IPT Corporation Fortran90-Lint
Vendor

IPY Corporation,

1076 East Meadow Circle,

Palo Alto,

California, 94303, USA.

Website: http://www.iptweb.com

Descripiion

Details of IPT Fortran 90 can be obtained from the web site. FORTRAN-lint includes a source
code analyser that can detect a wide range of potential problems, including:

» Inappropriate arguments passed to functions;

Inconsistencies in common block declarations;

¢ Non-portable code;

* Type usage conflicts between different subprograms;

* Unused functions, subroutines, and variables;

¢ Variables which are referenced but not set.
FORTRAN-lint can be used to:

s Check source files before they are compiled;

e Map out unfamiliar programs. This would include call graph generation and cross refer-
encing;

» Enforce programming standards.

As well as standard Fortran 90, the tool also supports many of the vendor extensions to Fortran
77 and 90. In particular, there is support for for DEC, Cray, MIPS and EPC ¥90 compiler
extensions. The tool can also check details of HPF “comments”, if requested to do so.

To make identification of important errors easier, selected warnings can be suppressed. A graph-
ical interface is also included (under X-windows) which can be used to browse the source along
with the warning messages and call tree.

4 SOFTWARE TOOLS: STAND-ALONE ANALYSIS SOFTWARE 11

4.4 NAG Fortran 90 Tools
Vendor

NAG Ltd,

Wilkinson House,

Jordan Hill Road,

Oxford, OX2 8DR, UK.
Website: http://www.nag.co.uk

Description

In the past NAG has provided software tools for analysis and transformation of Fortran 77
software. They offer a similar set of tools for Fortran 90. These can be run through a GUI
which allows easy selection of the source files and operations to perform on them.

The individual tools available include the following.

Polish — for “pretty printing” source code. This includes consistent indentation of loops and
conditional statements. Keywords and variables can be individually mapped to upper
or lower case to enhance readability. A graphical interface allows simple editing of the
formatting options.

Declaration standardisation — this splits up the declarations into groups for easier under-
standing. Clear comment sections separate scalar arguments from array arguments, local
scalars, etc.

Name changer — to alter variable and subprogram names. This allows variable names to be
changed to more meaningful strings. It offers a safer conversion process than global edits
which might change unintended substrings.

Dependency analysis —~ generates makefiles for a set of Fortran 90 files. With the addition
of modules to the language, combined with the existing problem of “include” files, it is a
complex task to include all file dependencies in a makefile. This can lead to difficult-to-
find problems when out of date modules are used by mistake. This tool generates a full
set of dependency rules from the selected Fortran files.

Call graph generator - this generates a traditional call tree for a given set of Fortran 90 files,
as an aid to documentation and understanding of the software.

Interface builder - this creates explicit interface blocks for Fortran routines which currently
only use implicit ones. This enables the Fortran 90 compiler to do much more argument
checking of procedure calls. A new module file containing the interface blocks can be
generated and appropriate USE statermnents are inserted in the calling routines. The ONLY
qualifier is added to the interface block USE so that it is clear which routine(s) have been
defined. In the case of calls to library routines, which are not defined in the code, interface
blocks can still be generated, though the user must check that these are indeed correct.

USE statement annotator — this can add appropriate ONLY clauses to USE statements.
This makes the way data is imported more explicit to anyone reading the code. It also
reduces the chances of subsequent updates to the software using module variables by
mistake.

4 SOFTWARE TOOLS: STAND-ALONE ANALYSIS SOFTWARE 12

A similar set of NAG tools is available for Fortran 77 software. These include a restructuring
tool, similar in operation to SPAG, which attempts to replace old style coding with more readable
structures such IF-THEN-ELSE blocks. With the two sets of Fortran tools comes a converter
from Fortran 77 to Fortran 90. This includes a graphical user interface and takes advantage of
the new free format and declaration style of Fortran 90. The translation tool dees not currently
try to convert common blocks to modules or map loops onto the new vector notation, as done
by Vast77to90. The documentation indicates that a tool for converting commons to modules is
under development, along with restructuring and cross reference tools for Fortran 90.

These tools should provide a good path for transforming old Fortran software to Fortran 90 using
a well structured and easy to read format. The addition of explicit interfaces to all subprogram
calls should significantly increase the confidence in the quality of the software, as it allows
immediate detection of linkage errors. The addition of restructuring and common conversion
tools should enhance the usefulness of this product.

4.5 Cobalt Blue - FOR_STRUCT, FOR_STUDY
Vendor

Cobalt Blue Inc,

11585 Jones Bridge Road

Suite 420-306

Alpharetta,

Georgia 30005, USA

Website: http://www.cobalt-blue.com

Description

Cobalt Blue have two products which can be used for Fortran software analysis. There is some
support for Fortran 90, but most of the documentation refers to Fortran 77. The tools available
are:

FOR_STRUCT. This product is mainly described in terms of it capabilities to restructure old
Fortran 66 code, removing spaghetti code and replacing VAX extensions with standard
Fortran 77. However, it also has some support for Fortran 90, including SELECT CASE
and relational operators. A demo version is available, limited to 100 lines of code.

The extent of Fortran 90 support in the demo version is very limited. While it accepts
SELECT statements and also generates ENDDO for loops, it rejects all MODULE state-
ments.

FOR_STUDY. This tool provides analysis of Fortran software. it includes global argument
checking, common block checks and various other potential problems. Call graphs may
also be generated. The output reports of FOR_STUDY can be generated in HTML format.

Though there is explicit mention of Fortran 90 feature support, it seems that these does
not extend to many import new features such as modules. This makes it of limited use in
new Fortran 90 development work.

4 SOFTWARE TOOLS: STAND-ALONE ANALYSIS SOFTWARE 13

4.6 N.A. Software Loft90, FortranPlus

N.A. Software Ltd

Roscoe House

62 Roscoe Street

Liverpool L1 9DW

Website: http://wuw.nasoftware.co.uk

Description

N.A. Software have in the past marketed a conversion tool (F77 to F90), and currently sell a
Fortran 95 compiler which includes some global analysis and error checking. These tools are:

Loft90. This product was used to convert Fortran 77 code to Fortran 90 format and to take
advantage of the new and safer features of the more recent standard. However, N.A.
Software have stopped development of this product and no longer actively sell it.

FortranPlus This is a Fortran 95 compiler for Sparc, Intel and Power PC systems. It supports
a number of useful features including interface checking, even when implicit interfaces have
been used, and generation of cross reference listings of all variables. A graphical debugger
is also part of the system and a program development system keeps track of which files
have been recompiled and the options used. New features such as IEEE arithmetic and
exceptions and the ISO varying string module are supported.

4.7 Pacific-Sierra Research VAST and DEEP
Vendor

Pacific-Sierra Research

1400 Key Boulevard,

Suite 700.

Arlington,

VA 22209-2369, USA.

Website: http://www.psrw.com

VAST tools

Pacific-Sierra Research sell several software tools under the title VAST. These include translators
such as VAST/77t090 and VAST/77tcHPF, compiler systems such as VAST/f90 and VAST-
HPF and the code optimiser and parallelisation systems VAST /Parallel, VAST/Superscalar
and VAST /toOpenMP. While much of the emphasis of these products is on extraction of the
maximum performance of existing serial codes on parallel and vector architectures, some can also
be useful from the point of view of software quality. The translation tools like VAST/77t090
allow old software to be transformed into the newer format with enhanced readability and
maintainability. The optimisation tools could also be useful in transforming existing serial codes
of known quality into higher performance versions without the usual level of risks associated
with extensive “hand coded” optimisation.

4 SOFTWARE TOOLS: STAND-ALONE ANALYSIS SOFTWARE 14

VAST/77t090 Capabilities

This software tool provides translation of Fortran 77 software to Fortran 90. In addition to
the relatively simple conversion of fixed form to the new free form, a number of more complex
operations can be performed including:

¢ Addition of INTENT statements to subprogram arguments;
s Removal of obsolete features such as arithmetic IF, etc.;

e Elimination or reduction in the number of GOTO’s. In the same way that SPAG restruc-
tures Fortran 77, VAST/77to90 attempts to simplify code. This is useful in understanding
old software and making future maintenance easier. Unnecessary labels are also removed
from DO loaops;

¢ Use of vector notation where possible. Many Fortran 77 loops over vector and matrix
subscripts can be reduced to the new and compact array notation available in Fortran
90. As well as often making the code easier to read, this can help optimising compilers
identify potentially parallel operations. The tool has options for conservative or aggressive
transformation to array notation. In the latter case the code may be harder to read but
offer more potential opportunities for parallelism;

¢ Creation of modules to replace commeon blocks. Modules offer a safer mechanism for shar-
ing data and VAST/77t090 can automatically generate separate module files. Commons
that are in “include” files are also correctly converted;

* Automatic generation of interface blocks. Using explicit interfaces for all subroutine and
function calls allows the Fortran compiler to catch errors in argument lists. As well as
creating the necessary interface details in a module, appropriate USE statements can be
inserted into each calling subprogram;

e Fortran “lint” type diagnostics are generated during the conversion process. This includes
warnings about variables used but never set, unused variables and unused code.

Under Windows NT, VAST/77to90 includes a graphical user interface which makes all the
processing options easily available for user customisation. In other versions all the options are
set via command line switches.

Using VAST/77to90

An older version of this software tool (V1.02X) was available to the authors on an IBM AIX
system. It has been successfully used to translate a semiconductor device modelling program
from Fortran 77 to Fortran 90. The conversion process was quite straightforward.

A simple example of the translated code was shown in Section 3.3. The ability of this version
of Vast to restructure code to remove unnecessary GOTOs was not as good as that of the
plusFORT version of SPAG. On two complex Fortran 66 style subroutines, SPAG reduced the
GOTO counts from 149 and 67 to 74 and 30 respectively. Vast V1.02X could only restructure
these to use 133 and 53 GOTOs. The current version of VAST /77t090 may well be improved in

this area.

The Fortran 77 semiconductor code has been developed over a number of years by different
people, but has been ported to a range of systems. In the past FTNCHEK and various compiler
cross checking tools have been used on it so it was not expected that any significant errors should

4 SOFTWARE TOOLS: STAND-ALONE ANALYSIS SOFTWARE 15

be caught. A fault that was found was one where a variable used as an array subscript had been
declared double precision instead of integer. In these tests interface blocks were not generated
for the code. These would have allowed fuller linkage checking, but may lead to problems where
array sections have been passed as arguments in non-standard ways.

The transformed code was tested using the Sun f90 (V1.2) compiler and the DEC QOSF/1 90
comptler {V1.3). Both compiled and ran the transformed code without problems, giving the
same answers as the original Fortran 77 version. Performance was unchanged on the DEC
machine, not unexpectedly as aggressive optimisation {(at the expensive of readability) was not
requested. The performance of the Sun f90 version was inferior to the original f77 version, but
this is due to the poor performance of this compiler version which has been replaced by V2.0.

DEEP

Pacific-Sierra Research also market DEEP (Development Environment for Parallel Program-
ming). This is a type of Integrated Development Environment (IDE} for parallel programs in
Fortran (77, 90, 95) and C. It includes various analysis and debugging tools to help understand
the behaviour of parallel codes. While this tool is mainly aimed at parallel optimisation, it
also includes call graph display, source code browsing and debugging features useful in software
quality assurance.

Cost

VAST/77t090 now comes with a metered license, with cost based on the number of lines con-
verted. For up to 2500 lines the US cost is $125 (May 1999). A 10% academic discount is
available. VAST/77toHPF is licensed in a similar way, starting at $250 for 2500 lines.

4.8 Fujitsu Visual Analyzer
Vendor

Lahey Computer Systems,

865 Tahoe Blvd.

Box 6091

Incline Village

NV 89450 USA

Website: http://www.lahey.com

Description

Lahey have recently released the Fujitsu Visual Analyzer. This product provides flow graph anal-
ysis for Fortran 95 (and C) software. It can also provide global tracking of common and module
usage. An error checking option allows global analysis to detect static errors. Conformance to
the Fortran 95 standard is also checked.

This product is only available for Windows NT/95, though it does include a graphical user
interface. The single user license is $395 in the USA. The product is included with LF95/Pro
compiler.

4 SOFTWARE TOOLS: STAND-ALONE ANALYSIS SOFTWARE 16

4.9 Simulog FORESYS
Vendor

Simulog,

1 rue James Joule,

78286 Guyancourt Cedex,

France.

Website: http://www.simulog.fr/foresys

Description

The FORESYS product (FORtran Engineering SYStem) is a set of five tools that cover anal-
ysis, inspection, restructuring, parallelisation and interfacing to CASE tools. The individual
components are:

ADMIN - a Fortran 77 analyser. This tool provides global checking of subprogram interfaces
and commmon blocks. The use of un-initialised variables and sections of unused code are
reported. It also creates a database of the analysed program for use by other tools.

IDCM - a tool to examine Fortran source code. This allows the user to browse the Fortran
77 source code, highlighting errors detected by the ADMIN tool. It also allows interactive
generation of restructured source in either Fortran 77 or Fortran 90 forms using FOREST.

FOREST - a restructuring tool, including Fortran 77 to 90 conversion. This allows code
to be restructured to either Fortran 77 of Fortran 90. Conversion includes use of new
declarations, SELECT-CASE, etc. Explicit interfaces can be generated in a separate
module. Argument INTENT statements can also be added.

PARTITA - a parallelisation tool. This includes analysis of data flow within existing Fortran
77 code to generate Fortran 90 {or 77) code with good parallel and vector performance.

FORESYS/REV — an interface to the Teamwork/SD CASE tool. This allows high level

structural analysis of the source code, including generation of call graphs, etc.

All these tools can make use of a graphical user interface. Though they can be used to convert
old code to the new standard, the documentation seems to indicate that the analysis tool can
only be used on Fortran 77 code. Supported systems include Sun Solaris, SGI IRIX, IBM AIX,
HP-UX and DEC Alpha OSF/1.

4.10 LDRA - Testbed
Vendor

LDRA Ltd,

131 Mount Pleasant,

Liverpool, L3 5TF, UK.
Website: http://www.ldra.com

4 SOFTWARE TOOLS: STAND-ALONE ANALYSIS SOFTWARE 17

Description

The LDRA software tool Testbed is available on a wide range of platforms and for many pro-
gramming languages including Fortran. The two main areas of quality that Testbed addresses
are static analysis and coverage analysis. However, LDRA have no plans for a Fortran 90 version,
so it is included here only for comparison with Fortran 90 tools.

Static analysis

The functions provided by the static analysis tool include:

Adherence to language and user defined programming standard;

Level of structures programming used;

Complexity metrics such as McCabe;

Static data flow analysis and procedure interface analysis;

Code re-formatting and variable cross referencing.

Coverage analysis

After static analysis, Testbed can be used to insert instrumenting statements into the software.
The modified version of the software can then be run on standard test cases to find which paths
through the software have not been tried out. Detailed reports on how often each block of code
is executed can be produced.

4.11 Programming Research Ltd — QA Fortran
Vendor

Programming Research Ltd,
Glenbrook House

1/11 Molesey Road

Hersham, Surrey KT12 4RN, UK
Website: http://www.prqga.co.uk

Description

QA Fortran provides a deep flow static analyser to detect errors and inconsistencies. It also
provides many measures which can be used to monitor software quality. The software checks
for adherence to local programming standards. Fortran 90 is not supported by QA Fortran, and
they do not have plans to add it at the present time.

4.12 Other QA tools

There are a number of QA tools providing similar functionality to QA Fortran and LDRA
Testbed for Fortran 77 software, such as Logiscope (from Verilog, France), Analysis of Complexity

4 SOFTWARE TOOLS: STAND-ALONE ANALYSIS SOFTWARE 18

Tool (from McCabe and Associates, USA)}, and MALPAS {from TACS, UK). A lot of these are
listed in the Appendix of this report. However, as for the above two products, we are unaware
of any of these which have yet added full Fortran 90 support.

5 FORTRAN 90 COMPILER SUPPORT FOR ANALYSIS AND ERROR DETECTION 19

5 Fortran 90 Compiler Support for Analysis and Error Detec-
tion

Many of the global error checking capabilities that in the past have only been available in separate
software tools are now being built into commercial compilers. This process is assisted by some of
the changes to Fortran, in particular the move towards explicit interfaces to subprograms. Where
the user employs such interfaces, along with argument INTENT specifications, the compiler can
be expected to catch a whole set of potential errors in argument lists and their use. Some
compilers offer more detailed global analysis including warning about variables that are unused,
ones used before set and similar problems. Generation of call trees and cross reference maps of
symbol names may also be provided.

Run time checks are another important area where many compilers can provide additional
checking beyond that of any static analysis tool. Array bound checking is perhaps the most
important example, supported by most compilers. Variables that are used before set, particularly
in arrays, can also be fully checked by some compilers with run time debugger support. The
addition of dynamic memory features to the language, has made the ability to detect potential
memory leaks in a code important. This type of check is supported by some run time systems.

Polyhedron have produced a chart comparing a range of Fortran 77 and 90 compilers which
is available on their Web site: http://www.polyhedron.co.uk. These results are exclusively
for compilers that run on Windows NT/95. A selection of results comparing the debugger and
Interactive Development Environment (IDE) support of some compilers are listed in Table 1.

IDE/Debugger Feature APFEF | DVF | LF90 | LF95 | FI'N77 | FTN95
Fully Integrated Editor Nol Yes Yes Yes No! No!
Fully Integrated Profiler Yes? | Nod No No Yes Yes
F90 Module Compatible Build* No Yes Yes Yes No No
Debug DLLs called from VB/Delphi | No Yes Yes Yes No No
Value on Hover Yes® | Yes | Yes® | Yes® Yes Yes
In Scope Variable Window Yes Yes Yes Yes Yes Yes
Display Array Sections Yes Yes Yes Yes Yes Yes
Display PARAMETER values No No Yes Yes Yes Yes
Break on Access Yes No No No Yes Yes
Break on Change Yes Yes Yes Yes Yes Yes
Conditional Break Yes Yes Yes Yes Yes Yes
Change Value Yes Yes Yes Yes Yes Yes
Evaluate Yes Yes No No Yes Yes
Call Stack Yes Yes No No Yes Yes
Step Over Yes Yes Yes Yes Yes Yes
Step Out of Yes Yes No No No No
Run to Yes Yes Yes Yes Yes Yes

Table 1: The comparison of IDEs for win32 Fortran compilers, as produced by Polyhedron. @Polyhedron
Software Ltd. {1998). APF is the Absoft Pro Fortran 90 compiler, V6.0, DVF is the Digital Visual Fortran
90 compiler, V6.0. LF90 and LF95 are the Lahey Fortran 90 (V4.50) and Fortran 95 compilers (V5.50).
FTN77 and FTN90 (V1.50) are the Salford Fortran compilers. The Fortran 90 compiler from Edinburgh
Portable Compilers (EPS) makes use of the Microsoft Developer Studio and debugger. Notes: (1) Editor
and Debugger are separate applications. (2) Subprogram level profiler. (3) External Profiler can be
started from IDE. (4) Build should compile minimal set of source files, in the right order, taking account
of F90 module dependencies. (5) Bouble-click on variable - then hover. {6) Right-click on variable.

Polyhedron have have also published some results comparing the ability of PC Fortran compilers
to detect common programming errors. A total of 38 tests have currently been collected covering

5 FORTRAN 90 COMPILER SUPPORT FOR ANALYSIS AND ERROR DETECTION 20

areas such as argument mismatch, array bound errors, use of uninitialised variables, various
illegal assignments and operations on deallocated pointers. The full details and source code for
these tests is available on the Polyhedron website. Table 2 just gives the percentage of these
errors that each compiler managed to detect correctly.

Compiler || APF77 | APF90 | DVF | EPC | G77 | LF90 L¥95 | FTN77 | FTNgGs | WAT
Passes 22% 11% 61% | 63% | 15% | 50% | 79% 96% 97% 37%

Table 2: The percentage of errors correctly diagnosed on the Polyhedron test set for Fortran 90 and
Fortran 77 Windows based compilers. The Foriran 77 compliers pass mark is based on a subset of the
tests. The compilers are as described in Table 1 plus EPC, Edinburgh Portable Compilers epcf90 V2.04,
G77, Gnu g77 V0.5.22, and WAT, Watcom F77 V10.5.

The Polyhedron results show that the Salford compilers continue to provide excellent error
detection. The Lahey, Edinburgh and Digital (Compaq} compilers are also quite effective,
though not yet up to the Salford level.

There are many Fortran 90 compilers available on Unix-based computers in addition to those
offered by the main vendors for their own platforms. It is not possible to review all of these
products in this report, but a short description will be given of some selected ones to highlight
the type of compile and run time support which can be available.

5.1 Sun Fortran 90 V1.2

The SUN Fortran 90 compiler is based on the Cray/SGI compiler. The 1.2 version does not have
a good reputation for performance but the latest version (V2.0) is claimed to be much improved
in this and other areas. We have not used the new version and so all the following comments
only apply to the V1.2 compiler.

In common with SUN’s f77 product, the f90 compiler supports global checking of subroutine
interfaces with the —X1ist option. This creates listing files for each source code file with error and
warning messages inserted. The global analysis can be performed even if source files are compiled
independently. Cross reference tables for all variables and subroutines are also produced with
this option.

One major deficiency of this compiler is the lack of array bound checks. This should be addressed
by the new version. The SUN source code browser, which allows interactive examination of call
graphs and program flow, appears not to work with f90 V1.2, though V2.0 should add this.

The SUN debugger (dbx) can be used to catch variables that are used before set at run time,
though not for variables in common or module storage. It can also detect some illegal memory
accesses such as those arising from array bound errors, its ability only partly compensating for
the lack of run time checking in V1.2. Another important feature of the debugger is to report
on memory leaks. As well as reporting memory that is allocated and not freed, it reports the
line at which the allocation occurred.

Using Polyhedron’s set of diagnostic problems with the Sun f90 compiler (V1.2) and the dbx
debugger, a total of 18 out of 38 errors were detected, about 47%. For comparison, the Sun
77 compiler (V4.2) correctly reported 20 out of 27 errors, a 74% success rate. Much of the
difference is due to the lack of array bound checking in f80 (V1.2}.

5 FORTRAN 90 COMPILER SUPPORT FOR ANALYSIS AND ERROR DETECTION 21

5.2 SGI 90

The SGI Fortran 90 compiler, not surprisingly, offers a very similar global analysis capability to
the SUN f90. In this case the analysis is performed by two separate tools, ftnlist and ftnlint,
though in both cases the f90 compiler has to be run first.

The SGI compiler does provide full array bound checking as an option. It also can be used to
detect use of unassigned variables at run time via a compiler flag. The standard debugger, dbx,
does not appear to support memory leak checks. However, there is a new debugging environment
called cvd which includes many tools, one one of which checks for memory leaks. This did not
appear to work with f90 on one system we had access to, but this was without the latest version
of the compiler.

The SGI 90 compiler (V7.20) identified 55% of the errors in the Polyhedron diagnostic test set.

5.3 DEC FUSE 90

The Digital (Alpha Unix) Fortran 90 compiler can be used with the support environment called
FUSE. This integrates make and source code control programs together the debugger and other
tools such as a call graph browser. The call graph browser allows interactive examination of
software structures. A cross reference tool is also available, again offering interactive capabilities
to examine where and how variables are used and updated. The DEC f90 compiler (V1.3)
correctly reported 47% of the errors in the Polyhedron test set.

The FUSE program Visualizer is another tool which can be used to produce diagrams of program
structure. It can also take output from other tools such as the Heap Analyzer, which can be
used to identify memory errors.

54 IBM xI1f90

The IBM xIf90 compiler supports Fortran 90 and 95 as well as some OpenMP directives. A
HPF compiler is also available from IBM for AIX systems.

XIf90 includes most of the standard options for error detection and analysis, including array
bound checks and variable cross referencing. It can also perform global checking of implicit
procedure interfaces and common block usage. Various options are supported to initialise both
variables and pointers to enable detection of used before set errors. The x1f90 compiler detected
53% of the errors in the Polyhedron diagnostic set, using an older version of the compiler (V3.2}.
IBM sells the VisualAge system to support software development in a number of languages, but
Fortran 90 is not currently menticned.

More information on threads programming using this compiler is provided in a separate re-
port [4].

5.5 Fortran 90 subset compilers: F and ELF90

These two compilers have been developed to accept only a limited subset of the Fortran 90
language. They essentially ignore most of the old free form Fortran 77 syntax and require the
programmer use new features, such as modules, explicit interfaces and subprogram argument
intent statements. By forcing the use of the new and safer features, these languages should help
improve the quality of newly developed software.

6 ACKNOWLEDGEMENTS 22

The F compiler is produced by Imagine Inc. and full details can be found on their Web site,
http://www.imagine.com.

The EIf90 compiler is available from Lahey, http://www.lahey.com.

6 Acknowledgements

The preparation of this report was funded by EPSRC partly through a grant GR/K82635 to the
CLRC HPCI Centre and partly through its Service Level Agreement with the CSE Department.

The authors wish to thank Dr. Robert Allan for providing many useful comments and suggestions
about this report,

References

[1] L. Hatton, The T FEzxperiments: Errors in scientific software, IEEE Comp. Sci. & Eng,., 4,
No. 2, (April-June 1997), 27.

[2] B.A. Nejmeh, NPATH: A measure of execution path complexity and its applications, Comm.
ACM., 31, No.2, (1988), 188-200.

[3] T.J. McCabe A complexity measure, IEEE Trans. Soft. Eng., SE-2, No. 4, (1976}, 308-320.

{4] RJ. Allan & C.J. Miiller, SMP Programming, Technical Report, (CLRC Daresbury Labo-
ratory, 1999).

[5] Re-engineering Technical Report, Volume 2, US Air Force Software Technology Support
Center (1995) http://stsc.hil.af .mil/RENG/REENGv2.html.

[6] T.R. Hopkins, Is the quality of numerical subroutine code improving? in “Modern Soft-
ware Tools for Scientific Computing”, E. Arge, A.M. Bruaset and H.P. Langtangen (eds.)
{Birkh&user, 1997) ISBN (-8176-3974-8.

A APPENDIX: FORTRAN TOOLS LISTED BY STSC 23

A Appendix: Fortran Tools listed by STSC

In this appendix we list some data extracted from the report on software re-engineering tools
produced by the US Air force Software Technology Support Center (STSC) !. The full report is
available on the web [5].

The STSC report contains data gathered up to 1995, and hence most of the products are related
to Fortran 77 rather than Fortran 90. However, some of these products do now support Fortran
90 and in future more may do so. The ones which are known to support the new standard are
discussed in more detail in the main text. Some vendors, such as those of QA Fortran, have
indicated that they have no current plans to develop Fortran 90 versions of their products. This
is due to limited demand in relation to that for C and C++ tools.

This survey was conducted in the USA and hence most contact addresses are for US vendors,
even when the developers may be European. We have just extracted those tools which both
treat Fortran and provide functions which may be useful in developing quality software in this
language, as opposed to translating it into another language for example. The full report also
gives indications of the cost of these products in the USA, which for commercial use is often in
the range $2000 to $20000.

Vendor: +1 Software Engineering
Address: 2510-G Las Posas Rd., Ste. {38 Camarillo, CA 93011

Product: Treed{Fortran)
Description: Treed4(Fortran) reads in existing Fortran source code and generates
the TreeSoft files needed for modelling the existing code. It displays hierarchical

representation of the code and allows the user to enhance and maintain the existing
source code.

Vendor: Accelr8 Technology Corp.
Address: 5530 5. W. Kelly Portland, OR 97201

Product: Open ACCLIMS
Description: Automated FORTRAN porting tool for moving VAX/VMS FORTRAN

applications onto UNTX systems. Its purpose is to reduce time and cost of moving

FORTRAN applications.

Vendor: Advanced Software Automation, Inc.
Address: 31304 Coronado Drive Santa Clara, CA 95054

Product: ASA 20/20

Description: ASA 20/20 is a member of the Hindsight product family. It allows
developers to identify potential problem areas early in the development process.

1STSC, OO-ALC/TISEC, 278 4th Street, Hill Air Force Base, UT 84056-5205, USA.

A APPENDIX: FORTRAN TOOLS LISTED BY STSC

Product: AutoAnalyzer

Description: AutoAnalyzer provides a testing and software maintenance environment
for software engineers. Builds an interactive structure chart of source code, traces
use of global variables, measures and displays test coverage analysis, performance
information.

Product: AutoDiagrammer

Description: AutoDiagrammer is straight from source code, generates a low-level
detailed procedural logic diagram and a high-level program tree diagram — AutoDi-
agrammer also will link these together.

Product: AutoStructureChart
Description: AutoStructureChart provides an interactive development environment

for software re-engineering and maintenance; it generates a full and organised hier-
archical structure chart directly from source code.

Product: Code Generator

Description: The Code Generator includes the following features: language indepen-
dence, user understandable commands and rules, and syntax checking, and is menu
or command driven and user friendly.

Product: Structure & Logic Analysis Module

Description: Structure & Logic Analysis Module generates a hierarchical structure
chart directly from source code. This chart helps you understand the calling rela-
tionships between parent and child functions. From this high level structure display,
you can open diagrams and trace the logic flow.

Vendor: Advanced Systems Technology Corp.

Address: 2200 Defense Highway.,Suite 203, Crofton, MD 21114-2404

Product: Revengg

Description: Revengg abstracts the structure and interactions of ill-documented pro-
gramming code into the CaMERA dictionary. Code is interpreted from entry into a
specification language and dictionary system for possible re-engineering.

Vendor: Advanced Technology Intl. Corp.

Address: 1501 Broadway Avenue, Suite 1314, New York, NY 10036

A APPENDIX: FORTRAN TOOLS LISTED BY STSC

Product: superCASE (SCI)

Description: SuperCASE is an integrated environment supporting top-level design
to maintenance., It creates design abstractions from code and facilitates ongoing
maintenance and enhancement. It is a reverse engineering tool that extracts design
information.

Vendor: ASTA, Inc.

Address: 1 Chestnut St., STe. 205-208, Nashua, NH 03060

Product: QA FORTRAN

Deseription: QA FORTRAN is a toolset for analysing, improving, and maintaining
FORTRAN programs. It checks for hundreds of reliability, portability, and mainte-
nance issues and computes 28 quality metrics about the code.

Vendor: Cadre Technologies, Inc.

Address: 2880 Lakeside Dr., STe. 231, Santa Clara, CA 9505}

Product: Teamwork/FORTRAN

Description: This product automatically creates structure charts using the Team-
work/SD graphical editor from FORTRAN source libraries. The charts can be cut
and pasted into other systems for reuse. The code can be browsed from the structure
chart.

Product: Teamwork/IM

Deseription: Teamwork/IM provides the capability to draw, edit, and check entity
relationship diagrams. It is tightly integrated with the data dictionary within the
Teamwork environment, and used for database design.

Vendor: Cobalt Blue, Inc.

Address: 875 Old Roswell Rd., Ste. D-400, Roswell, GA 30076

Product: FOR_STRUCT

Description: Transforms spaghetti FORTRAN-IV and FORTRAN-77 into struc-
tured code. Five structuring levels are offered with dozens of output style options.
Preserves the original code logic and can remove dead code. Dead code is removed.

Product: FOR_STUDY

Description: FORSTUDY is a FORTRAN code analysis tool to detect hidden bugs,
locate excess code and to generate valuable programmer’s documentation for clear
and thorough understanding of FORTRAN programs.

A APPENDIX: FORTRAN TOOLS LISTED BY STSC

Vendor: Digital Equipment Corp. (Now part of Compaq).

Address: 146 Mawrr 5t., Maynard, MA 01754-2571

Product: DEC FUSE
Description: The DEC FUSE provides code analysis, forward/reverse engineering,

re-documentation, and restructuring of several languages. It also provides calling
trees and cross reference diagrams.

Product: VAXset/Program Design Facility (VAXset/PDF)

Description: VAXset contains software engineering tools for the development, test-

ing, and maintenance of application programs. The six components include, SCA,
LSE, CMS, MMS, PCA, and DTM. VAXset with Program Design Facility also sup-

ports re-engineering.

Vendor: Excel Software

Address: P.0. Box 1414, Marshalltown, IA 50158

Product: Translator

Description: The Translator automates the generation of diagrams within MacAna-
lyst and MacDesigner CASE tools from existing source code from many computers
written in C, C++, Pascal, Basic, or Fortran.

Vendor: GPP Ges fur Prozessrechnerprogrammierung

Address: Kolpingring 18a, Oberhaching, D-8024, Germany

Product: RE-DOC
Description: RE-DOC will create a variety of different, predominantly graphical

documents from the original source code for an overview of the software’s interrela-
tionships automatically.

Vendor: Iconix Software Engineering, Inc.

Address: 9300 Lee Hwy., Fairfaz, VA 22031-1207

Product: PowerTools

Description: PowerTools consists of seven programs: FreeFlow, FastTask, AdaFlow,
ASCII Bridge, SmartChart, PowerPDL, CoCoPro.

A APPENDIX: FORTRAN TOOLS LISTED BY STSC

Vendor: International Logic Corp.

Address: 100 Pine St., Ste. 2760, San Francisco, CA 94111

Product: F-SCAN

Description: F-SCAN is a static analyser of FORTRAN source programs that pro-
vides call trees, cross references, and analysis of code interfaces.

Vendor: TPT Corp.

Address: 1076 E. Meadow Circle, Palo Alto, CA 94303

Product: FORTRAN-lint

Description: FORTRAN-lint is a static analyser that detects coding problems similar
to what lint utilities do for C programs. The tool does parameter checking and type
checking of variables. Other checks include the use of variables before declaration
and non-use.

Vendor: Leverage Technologists

Address: P O Box {638, Rockuille, MD 20849-4{638

Product: FORTRANgen

Description: FORTRANgen is a suite of four tools for revitalising legacy FORTRAN
software. It provides a graphical representation which displays system components
relationships, and design elements in a single consistent style.

?

Vendor: McCabe & Assoc., Inc.
Address: 5501 Twin Knolls Rd., Suite 111, Columbia, MD 21045

Product: Battlemap Analysis Tool (BAT)

Description: BAT is a reverse engineering and maintenance tool that analyses source
code at the system level and computes the MeCabe essential complexity metric.
Monitors the effect that changes to modules and insertion of new modules have on
a system.

Vendor: Meta Systems for LBMS

Address: 3025 Boardwalk Dr., Suile 140, Ann Arbor, MI 48018-1771

27

A APPENDIX: FORTRAN TOOLS LISTED BY STSC

Product: Reveng

Description: Reveng provides automated reverse engineering by analysing individual
programs and producing reports on their structure, data structures, and data usage,
and by analysing code and modeling whole systems as related objects.

Vendor: MicroTools

Address: P O Box 27{5, Santa Clarae, CA 95055-2745

Product: FORTRAN 77 Programmer’s Assistant IIX
Description: FORTRAN conversion tool and FORTRAN to C/C++ translator. Al-
lows conversion of FORTRAN programs to fully-structured GOTQO-less code.

Vendor: NASA Johnson Space Center
Address: Mail Code PT4, Houston, TX 77058

Product: REengineering APplications (REAP)

Descripiton: The REAP provides significant maintenance capabilities for FORTRAN
programs and support for reengineering. It includes a set of proven tools of FOR-
TRAN analysis, maintenance, and documentation, and a commeon user interface.

Vendor: OTG Systems, Inc.
Address: Route 106, Suite 300, PO Bozx 239, Clifford, PA 18413-0239

Product: Blue Four

Description: Blue Four structures FORTRAN code. It replaces GOTOs with newer
constructs and provides pretty printing.

Product: plusFORT

Description: plusFORT is a multipurpose suite of tools for analysing and improving
FORTRAN programs.

Product: SPAG

Description: SPAG is a FORTRAN reconditioning tool. SPAG rejuvenates spaghetti
code into structured FORTRAN. SPAG can be customised to support house style
FORTRAN pretty printing,.

Vendor: QED Software Inc.

Address: 343 South 1{th St., San Jose, CA 85112

28

A APPENDIX: FORTRAN TOOLS LISTED BY STSC

Product: Eagle

Description: Eagle provides facilities to deal with changing software at a project
level. Is navigation and browsing facilities operate within an editing environment.
It also provides the ability to interactively view files, function and data.

Vendor: Quibus Enterprises, Inc.

Address: 19672 Stevens Creek Blvd., Ste 307, Cupertino, CA 95014

Product: Fortran Development Tools

Description: Fortran Development Tools is a package of utilities for cleaning up
Fortran source code and aiding in program development maintenance, and porting.
It also produces listings with DOs and 1Es graphically highlighted, extract routines
from files, and support conditional compilation.

Product: FORWARN

Description: FORWARN is a static analysis tool designed for FORTRAN programs.
Using this product improves the reliability, documentation quality, and portability
of FORTRAN systerns. It furnishes detailed cross reference listings and calling-trees.

Vendor: Reasoning Systems, Inc.

Address: 2260 Hillview Ave., Palo Alto, CA 94304

Product: Refine/Fortran

Description: Refine/Fortran is an interactive, graphical reengineering tool that lets
programmers assess, re-document, quality-check, and convert existing FORTRAN
applications.

Product: Software Refinery

Description: Software Refinery is a family of products for building automated soft-
ware processing tools that analyses and re-documents old code, converts to new
languages, checks code against programming standards, and generates test cases
from source code.

Vendor: Software AG of North America, Inc.
Address: 11190 Sunrise Valley Dr., Reston, VA 22091

Product: Predict

Desceription: PREDICT is an online active data dictionary system that provides
integrated operational support for information resource management, software man-
agement, and central documentation.

A APPENDIX: FORTRAN TOOLS LISTED BY STSC

Vendor: Software Business Management Inc.

Address: 234 Litileton Rd., Ste. 2F, Wesiford, MA 01886

Product: DPecisionVision 1 (DV1)

Description: DecisionVision 1 (DV1) collects and reports measurement information
for managing the quality, cost, and schedules of software development projects. It
captures code statistics at preset intervals for calculating, graphing and reporting
volatility (code changes), reliability and complexity information.

Vendor: Software Systems Design, Inc.

Address: 3627 Padua Ave., Claremoni, CA 91711

Product: FORTRAN Reverse Eng & Document System (FREDoc)

Description: The FREDoc tools give the ability to reverse engineer existing FOR-
TRAN code and to understand the design. It helps make sure comment headers are
correct and provides two ways of looking at the system-top level or detailed.

Product: GrafBrowse
Description: GrafBrowse is a graphical reverse engineering system and interactive

browser for Ada, C, and FORTRAN source codes and design. It analyses codes for
certain metrics.

Vendor: Verilog, Inc.

Address: 3010 LBJ Freeway, Suite 900, Dallas, TX 75234

Product: Logiscope

Deseription: Logiscope is an automated source code analyser that provides complex-
ity analysis and a dynamic analyser that provide test coverage analysis. Logiscope
calculates over 30 different metrics and supports over 35 languages on a variety of
platforms. It does graphic test coverage analysis.

Vendor: Vitro Corp.

Address: 1000 Georgia Ave., Silver Spring, MD 20906-2972

Product: Vitro Automated Structured Testing Tool (VASTT)

Description: VASTT reduces development and maintenance costs, results in higher
software quality, and features evaluation of software complexity, testability and main-
tainability, and evaluation of software risk factors. It is available as a result of the
service.

A APPENDIX: FORTRAN TOOLS LISTED BY STSC

Vendor: Wayne State University

Address: Department of Computer Science, Detroit, MI {8202

Product: Visual Interactive FORtran (VIFOR)
Descripiion: VIFOR contains transformation tools for both directions, from code to

visual form and from visual form to skeletons of code. This makes it suitable for
reverse engineering and for maintenance of existing code.

Vendor: XA Systems Corp.

Address: 983 University Ave., Los Gatos, CA 95030

Product: DATATEC-DS

Description: The DATATEC-DS is designed to analyse and standardise inconsistent
data definitions through a methodology and automated tools. It provides tracing
capabilities, impact analysis, formatting and re-formatting capabilities, and more.

31

