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One obstacle in plasma accelerator development is the limitation of techniques to diagnose and
to measure plasma wakefield parameters. In this paper, we present a density measurement of a
wakefield using photon acceleration. A measurement is performed by sending a long laser pulse
to move along with a wakefield. The technique can measure the perturbed electron density in
the laser’s reference frame, averaged over the propagation distance. From simulation, we expect a
measurement to be accurate to within 10% for some propagation distance. We discuss the limitations
and effects that would affect the measurement: a small frequency change, photon trapping, and laser
displacement effect. By considering these effects, we can determine the optimal frequency of the
laser pulse and its propagation distance for a given set of experimental parameters.

I. INTRODUCTION

Plasma acceleration has been receiving interest re-
cently since it can accelerate electrons up to GeV energy
with a length much shorter than conventional accelera-
tors [1–4]. In a plasma accelerator, a driver beam dis-
turbs the plasma and generates wakefields. The driver
can be a short laser pulse [5], beat wave [6], electron
beam [7], or proton beam [8].

Longitudinal electric fields generated in the plasma can
reach up to tens or hundreds of GeV/m [9–11]. However,
there is still no adequate technique to measure and diag-
nose the perturbed density in the plasma. One of the ear-
liest methods to diagnose the plasma wave is frequency
domain interferometry (FDI) [12]. FDI uses two short
laser pulses and measures their phase difference caused
by a different refractive index and density of plasma at
certain positions. By using the FDI technique, we can
only determine the density of plasma at certain single
points. Therefore, to make a density profile, it needs
painstakingly many shots of short probe pulses at differ-
ent positions.

The more sophisticated technique is using frequency
domain holography (FDH) [12, 13]. The FDH technique
needs one short reference pulse and one long probe pulse
for measurement. However, in order to diagnose plasma
wakefield with order of µm, one needs a very short refer-
ence pulse with order of fs, which is much less than the
wakefield wavelength. The other FDH technique is by us-
ing two long chirped pulses [14, 15]. By providing quite a
wide frequency span of the chirped pulse, this technique
could give more accurate results than the previous one
that uses one short and one long pulse.

Another plasma imaging technique is using shadow-
graph technique [16]. With this technique, the second
derivation of the density with respect to the position is
obtained. However, it is hard to extract quantitative data
from the result of this technique because it needs small

density perturbation to get the precise data.
One promising technique to measure the density profile

of plasma wakefield is using photon acceleration [17–19].
In photon acceleration, we send long probe pulse to move
along with the plasma wave and measure the change in
frequency of the pulse. The frequency change of the pulse
is caused by the slope of the plasma density profile. From
the information, we can extract the density profile from
the probe’s frequency.

In this paper, we present the simulation results of mea-
surement using photon acceleration in plasma wakefield.
The measurement results are then compared with actual
simulated value to see the accuracy of the measurement.

II. PHOTON ACCELERATION

When a photon moves in a medium which has a refrac-
tive index varying with time, the photon will undergo
a change in frequency. Plasma wakefields generated in
plasma accelerators propagate along the plasma and have
a different refractive index in every position. Thus, if a
laser propagates together with the wakefield, the laser
frequency will change after some propagation distance.

Using photon ray theory by Mendonça [20], we can
obtain the frequency change of a laser co-propagating
with plasma wakefield as:
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where ∆ω denotes the frequency change of the laser, ω0

the central frequency of the laser, n and n0, respectively,
the perturbed and initial plasma density, ωp ≈ kpc the
plasma frequency, s the propagation distance of the laser,
and ζ = z− ct denotes the position relative to the laser’s
frame of reference. This expression is also discussed by
Dias et al. [17].
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In order to get the density profile, we need a long laser
pulse that covers several plasma wavelengths. By doing
so, we can obtain the average density over the propaga-
tion distance for every position in the laser’s frame of
reference.

In a real experiment, it is possible to measure the fre-
quency change of a laser in every position using frequency
resolved optical gating (FROG) equipment. Schreiber et
al. [21] have used the second harmonic generation (SHG)
FROG to get the complete temporal characterisation of
a laser pulse: amplitude and phase.

III. METHODS

A. Simulation parameters

Simulations were performed using OSIRIS 1D relativis-
tic code [22] on the SCARF-LEXICON machine at STFC
Rutherford Appleton Laboratory. OSIRIS uses particle
in cell (PIC) [23] algorithm to solve differential equa-
tions to determine electromagnetic fields and the phase
space of particles. Particles in PIC codes are modelled
in super-particles model. A super-particle is a computa-
tional particle which represents many real particles. Elec-
tromagnetic fields in PIC codes are determined from the
positions and momenta of the particles and thus will act
on the particles changing their positions and momenta.

In this paper, we present a case for the use of a di-
agnostic based on photon acceleration. In the baseline
set up, we send a short pump pulse with wavelength of
800 nm and with duration of 39 fs to a plasma with den-
sity of 2 × 1018 cm−3. The intensity of the pump pulse
is 2.1 × 1018 W/cm2, which gives a normalised poten-
tial of a0 = 1.0, to drive non-linear wakefield. In the
plasma, the pump pulse generates a plasma wakefield
which will be diagnosed using a probe pulse. The probe
pulse is sent behind the pump pulse with the same wave-
length but with a longer duration, 300 fs. The intensity
of the probe pulse is much lower than the pump pulse,
2.1 × 1016 W/cm2, which corresponds to a0 = 0.1. We
make the intensity of the probe pulse as small as possi-
ble so that it does not disturb the wakefield generated
by the pump pulse. These pulses propagates through the
plasma for distance about 7 mm.

B. Getting the local frequency

The simulation produces the actual density profile and
the transverse electric field of the pump and probe pulse.
We apply a transformation to the probe pulse’s elec-
tric field to get its Wigner distribution [24] to represent
the wave energy distribution in phase space or in time-
frequency space. The Wigner distribution of a signal is

represented by:

WE(ζ, k) =

∫ ∞
−∞

E(ζ+ζ ′/2)E∗(ζ−ζ ′/2)e−2πikζ
′
dζ ′ (2)

where E(ζ) is electric field of the signal at position ζ
relative to the laser’s frame of reference and k = 2πf/c
is wavenumber of the laser. Because there are two terms
of the signal multiplied together, there are cross-terms in
the distribution [25].

By taking the average and weighted average of the
Wigner distribution, we can get local intensity and local
frequency of the probe pulse, as shown in the equations
below,
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The denominator in the second equation indicates that
we can make a good measurement at the positions where
the probe’s intensity is not too small.

C. Integration filter

Equation 1 shows that we obtain the average value of
∂n/∂ζ if we measure the frequency change. Thus, in
order to get the electron density distribution, we need
to integrate the term once with respect to position in
laser’s frame of reference, ζ. However, if the integration
is done by getting the cumulative sum of ∂n/∂ζ, a small
DC offset could cause the result being tilted.

In order to suppress the DC offset error, we apply a
filter to do the integration. Figure 1 shows the amplitude
and phase response of our filter. For normal integral, the
amplitude response at low frequency is very high. Thus in
our filter, we suppress the amplitude response at the low
frequency to avoid the result being tilted. We also cut the
high frequency terms in our filter to avoid unwanted noise
in the signal. Figure 2 shows the comparison between the
integration using our filter and cumulative sum.

IV. RESULTS AND DISCUSSION

A. Measurement results

From the simulation results, we obtain the electric field
of the probe pulse. Applying equation 2 produces the
Wigner distribution of the signal in phase space. One ex-
ample of the Wigner distribution of a signal is shown in
figure 3. In the distribution, we observe the photon accel-
eration effect. The frequency at some positions increases
and the frequency at the other positions decreases.

From the Wigner distribution of the electric field, we
can get the local frequency for every position in the laser’s
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FIG. 1. Amplitude and phase response of our integration
filter. Amplitude response is shown in solid line and phase
response is shown in dashed line.

FIG. 2. Comparison of integration results using designed filter
(solid line) and cumulative sum (dashed line).

FIG. 3. (Color online) Wigner distribution of electric field of
the probe after propagated 1.9mm in the plasma. Alternating
values in the distribution are caused by the cross-terms.

reference frame using equation 3. By using equation 1
and the integration of ∂n/∂ζ once, we obtain the electron
density profile of the plasma.

According to equation 3, accuracy of the measurement
would be good if the intensity at that point is not very
small or not too far from the probe’s centre. Because of
that, we did the measurements only at positions where
the intensity is more than 0.5% of the maximum intensity.
At the other positions, we take the frequency change as
zero to avoid large inaccuracy. The lower we choose the
threshold value, the wider measurement result we can
obtain, but the inaccuracy also increases.

Figure 4 shows the comparison between the measured
electron density and the actual density over the distance.
At z−ct < 0.1 mm, we see some noise in the actual values.
The noise is caused by the probe’s electric field. Over the
propagation distance less than 6 mm, the measurement
agrees well with the actual average value. However, if the
laser pulse propagates too far, the measurement fails to
match with the actual value. This is because of photon
trapping effect, which we will explain in section IV B 2.

In order to determine the accuracy of the measure-
ment, we provide the normalised root mean square error
(NRMSE) between measurement and actual values. The
NRMSE is defined by

NRMSE =
RMSE

max(na)−min(na)

RMSE =

√
1

ζ0

∫
[nm(ζ)− na(ζ)]

2
dζ

(4)

where ζ0 denotes the range in position where the NRMSE
would be calculated, nm(ζ) and na(ζ) respectively denote
the measured and the actual values as function of position
in the laser’s reference frame, ζ. Before calculating the
NRMSE values, we remove the noise at z − ct < 0.1 mm
from actual density values by applying a low pass filter.

The NRMSE of the measurement is shown in figure 5
for several propagation distance. As shown in the graph,
the measurement achieves less than 10% NRMSE over
the propagation distance less than 6 mm. After propa-
gates 6 mm, the error increases and becomes unstable.
This is where the photon trapping effect occurs.

B. Measurement constraints

In doing measurements using the photon acceleration
technique, there are several constraints and limitations
that we need to take into account. In this paper, we
discuss three constraints and limitations: the small fre-
quency change, photon trapping, and displacement of the
laser.
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(a) (b)

(c) (d)

FIG. 4. (Color online) Comparison of measured longitudinal electric field (red line) and the actual longitudinal electric field
averaged over the distance (blue line) when the laser has propagated (a) 0.8 mm, (b) 1.9 mm, (c) 3.8 mm, and (d) 6.3 mm.
The measurement only takes place from about −0.1 mm to 0.1 mm relative to the centre of the pulse.

FIG. 5. Normalised root mean square error (NRMSE) be-
tween measured and actual values from the simulation, shown
in percentage. The NRMSE values were calculated from the
position −50 µm to 50 µm relative to the probe’s centre.

1. Small frequency change

The first limitation is when the frequency change is not
observable. The frequency change in photon acceleration
in some cases is very small and thus very hard to measure
precisely. As an example, for the AWAKE experiment
[29], the frequency change would be ∼ 3%. Thus we need

an equipment with precision up to ∼ 0.03% to make a
good measurement.

Moreover, a short pulse can have a broad frequency
spectrum. If the pulse is too short and the frequency
change is too small, it would be also too hard to ob-
serve the frequency change. In order to make the mea-
surement easier, the laser’s frequency change should be
greater than bandwidth of the pulse or ∆ω > ωbw. By
considering the Gabor limit [30], τpulse(ωbw/2π) ≥ 1/2,
and equation 1, the minimum duration of the probe pulse
should be

τpulse >
2πω0n0
ω2
ps

(
∂n

∂ζ

)−1
, (5)

where ω0 is the central frequency of the pulse, n0 is the
density of the plasma, ωp is frequency of the plasma wake-
field, s is the propagation distance, and ∂n/∂ζ is partial
derivative of electron density to the position in the laser’s
frame of reference.

In this case, the minimum pulse duration is about 3
fs, much smaller than the plasma wavelength which is
around 80 fs. Therefore this limitation is not significant
in this case. However, this limitation should be consid-
ered when doing measurement at low density plasma.
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2. Photon trapping

In photon acceleration, the frequency of some photons
increase and some decrease. Based on the plasma dis-
persion relation, ω2 = ω2

p + k2c2, the photons whose fre-
quency increases will acquire higher group velocity and
the others will acquire lower group velocity. The differ-
ence of this group velocity causes some photons to be
gathered in the troughs and be away from the peaks of
the wakefield. This mechanism is called photon trapping
[20], which is one form of modulation instabilities [26–28].

Photon trapping could cause trouble in doing measure-
ments with photon acceleration technique. As the inten-
sity of the laser at some points approaches zero, the error
in obtaining the frequency will be very high and could
cause high inaccuracy.

The photon trapping mechanism starts when the laser
enters the plasma. However, this effect is negligible at
the beginning and would become significant after propa-
gating some distance. We can estimate the propagation
distance scale length in which the photon trapping would
be significant. The propagation distance scale length is
approximately

strap ≈ λp
(
ω0

ωp

)2(
δn

n0

)−0.5
, (6)

where λp is the plasma wavelength and δn/n0 is the rel-
ative perturbation of the wakefield.

For the laser and plasma parameters considered here,
the propagation distance scale length of photon trapping
is about ∼ 30 mm. And from figure 5, we observe the
photon trapping effect at 6 mm. Therefore, the pho-
ton trapping effect should be considered after propagated
20% of strap in this case.

One way to determine if the photon trapping should be
taken into account is by looking at the intensity distribu-
tion of the laser obtained by equation 3. Figure 6 shows
the laser’s intensity distribution at several propagation
distances. As shown in the figures, the laser intensity
gets modulated as it travels along the plasma. And at
some distance, the laser intensity at some points go to
zero and intensity at some points become very high as
shown on figure 6d. This shows that the photon trap-
ping has occurred.

3. Laser displacement

Up to this point, we assumed that the laser is always
moving along with the wakefield. However, this may not
be true for all cases. If the group velocity of the probe
pulse is not same as the phase velocity of the wakefield,
the laser could be displaced with respect to the wakefield.

In this case, the pump pulse and the probe pulse have
the same frequency, thus the group velocity of the probe
pulse and phase velocity of the wakefield should be the
same. However, in some cases it is very hard to get the

right frequency of probe pulse to get the same velocity. In
those cases, the laser displacement should be considered
because it changes the measurement values.

To show the effect of laser displacement, we performed
a simulation with the same conditions but with a probe
wavelength of 1600 nm. Figure 7 shows the measurement
result using this probe compared with the actual average
density after it travels 1.4 mm. As shown in the figure,
the measurement result is shifted backward by 1.6 µm
and slightly smaller than the actual value. This shift is
caused by the difference of group velocity of the probe
pulse and phase velocity of the wakefield.

Using equation 1 and by considering that the pulse is
moving relative to the wakefield, we obtain a total shift
of the measurement as,

∆s ≈ s

2vp
(vg − vp), (7)

where vg and vp are group velocity of the laser probe
pulse and phase velocity of the plasma, respectively,
and s is the propagation distance. Equation 7 also as-
sumes that the wakefield amplitude is constant and not
changing over the time. For the case with probe wave-
length of 1600 nm, equation 7 gives ∆s = −1.2 µm with
s = 1.4 mm, while the simulation result gives −1.6 µm.

Besides the horizontal shifting, the laser displacement
effect also caused the measurement values to be scaled
down slightly. By doing the same derivation with equa-
tion 7, we can get the decrement of the measured values
because of laser displacement as below,

∆n

n− n0
≈ − 1

24
k2ps

2(vg − vp)2/c2. (8)

Thus, if the laser propagates for long distance, the cor-
rection above should be taken into account to increase
the measurement accuracy.

V. CONCLUSIONS

Results from our simulation show that the measure-
ment of a density profile in a plasma wakefield can be
performed using photon acceleration. The measurement
is done by sending a long laser probe pulse behind the
short pump pulse which generates the wakefield. From
our simulation results, the measurement values achieve
a normalised root mean square error of less than 10%,
although the exact region needs to be determined for a
given set of experimental parameters.

There are also limitations and constraints to be con-
sidered before doing a photon acceleration measurement.
Those are small frequency changes, photon trapping ef-
fects, and laser displacement. If the propagation distance
is too small, then the frequency change could be unde-
tectable. However, if the propagation distance is too far,
the photon trapping effect could spoil the measurement
result. Also, if the probe’s group velocity is not same
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(a) (b) (c) (d)

FIG. 6. Distribution of the laser intensity when the laser has propagated (a) 0.8 mm, (b) 1.9 mm, (c) 3.8 mm, and (d) 6.3 mm.
The measurement only takes place from about −0.1 mm to 0.1 mm relative to the centre of the pulse. The last picture shows
that the photon trapping occurs and causes intensity at some points go to zero.

FIG. 7. Measurement result of longitudinal average electric
field with probe wavelength of 1600 nm after travelling 1.4
mm. The measurement result (dashed line) is shifted back-
ward by 1.6 µm relative to the actual value (solid line).

with the phase velocity of the wakefield, the inaccuracy
of the measurement could also increase. By considering
these effects, we can determine the optimal frequency of
the probe and propagation distance for a given set of
experimental parameters.
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