





POSSIBLE INSTABILITIES IN THE
BEAT WAVE ACCELERATOR*

R Bingham
Rutherford Appleton Laboratory

Abstract

In this article the concept of the beat wave accelerator is studied with
emphasis put on the plasma physics. An important effect is the relativistic
nature of the electrons oscillating in the electric field of the beat wave.
Various instabilities are presented which could limit the overall efficiency of

the accelerating process.

* This work was carried out as a contribution to the RAL study group on the

Beat-Wave Accelerator.

August 1983



e st
W o
Bt

:

5
o

e
El
)

R
s
i
T

Bl n gl Pt
- il o= {1‘11:,‘.: LR
G A0S




Introduction

The study of generating beat waves in plasmas has been going on for more
than ten years, with the first experiments being done in 1971 (Stansfield,
Nodwell and Meyer (1971)). Kaufmann et. al., (1972) and Rosenbluth et. al.,
(1973) considered theoretically the generation of Langmuir waves in Tokomaks bv
beating two laser beams whose frequency difference matched the plasma frequency.
The aim was to heat the plasma with the resultant plasma wave, which decaved by
collisional damping or Landau damping. The problem naturally arnse in the study
of Laser fusion with Stimulated Raman and Brillouin scattering. The production
of very high energy electrons was a result. In an article by Lin and Dawson
(1974) describing the generation of fast particles in laser plasma experiments
the concept of beat wave generation was discussed. Modification experiments in
the ionosphere (Wong et. al., 1978) have also used the beat wave concept to
create large amplitude plasma waves with a full theory being developed for
production of ion sound waves by Fried et. al., (1979). Recently the idea for
using such a plasma process as an alternative method of high energy acceleration
has been proposed by Tajima and Dawson (1979), Joshi et. al., (1981) and Ruth and
Chao (1982) and is now commonly called the laser beat wave accelerator (Lawson
(1983)).

The beat wave accelerator depends on the generation of a large amplitude
plasma mode with a phase velocity close to the velocity of light. The generation
of such a plasma mode is possible by beating together two laser beams of
frequencies and wavenumbers (wl,_El) and (wz’.EZ) such that the beat wave has w =
w; —wp and k = k; - kp. The process is related to stimulated forward Raman
scattering which can be considered as the single pump treatment. The general
equations describing the beat wave mechanism and stimulated Raman scattering are
therefore the same.

The plasma mode generated by the beat process grows linearly at first
whereas it grows exponentially from noise in the Raman process, these two
processes will therefore compete with each other if the Raman process is
sufficiently fast. The saturation level of the plasma mode will, however, be
determined by nonlinear processes which have still to be fully investigated.

Similar nonlinear saturation processes will operate in both the beat wave
process and the Raman process. The Raman process, however, can be detrimental to

the operation of the beat wave accelerator since in the Raman process different
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modes can be excited resulting in laser light being scattered out of the
interaction region. The beat wave process is intrinsically non-linear because of
the large amplitude waves involved. There are nonlinear problems associated with
the laser beams as well as the large amplitude plasma wave. A study of the beat
wave accelerator will therefore involve the development of nonlinear methods in

both analytic and computational treatments.

Model and derivation of the nonlinear Equations

The beat wave accelerator concept using laser beams to generate large
amplitude Langmuir waves in a plasma is very similar to the four wave Raman
forward scattering in an under—dense plasma. Stimulated Raman scattering is
normally considered as a three wave process where the incident transverse (laser
beam) decays into another transverse wave and a Langmuir wave. The beat wave
accelerator relies on two laser beams beating together in a plasma, producing a

beat disturbance at the local plasma frequency. In an under—dense plasma where

Wl IR RO aaE W
0 pe 0
Raman scattering becomes important. For phase matching the wavenumber Ke of the

is the laser frequency and wpe is the plasma frequency, the forward

Langmuir mode is much smaller than the laser wavenumber FZ << k,, under these
conditions we must consider an up-shifted or anti-Stokes transverse component as
well as the down shifted Stokes component, since both can be considered to be
resonant with the initial laser wave and the Langmuir wave. The instability then
becomes a "four wave" process with the incident laser beam (wo, E_) decaying into
a Stokes wave (w;, k;) and an anti-Stokes wave (mZ,.Ez) together Sith a density
disturbance at (Qé, k[). To describe this effect we will consider the coupling
process to conserve momentum exactly and energy only approximately with the

relations

k =k _+k -
VLD Siabaall suayy-SE0e

In writing these relations we assume there is a frequency mismatch in the system,
this allows coupling to both the upper and lower sidebands.

The plasma model we use to analyse the problem is the relativistic two fluid
equations together with Maxwell's equations and Poisson's equations. The use of
a relativistic treatment is necessary when we come to examine the longitudinal

beat wave which is driven to very large amplitudes such that the quiver velocity
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in the longitudinal electric field approaches the velocity of light. We will
show later that the relativistic corrections ultimately saturate the growth of
the beat wave.

Starting from the equations:

on ;
e g =0 -(1)
d ' Kl ;
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where J = N R R
I R T R
and j = i,e, we obtain the following equations for a plane polarized
electromagnetic wave Eq and an electrostatic density perturbation dn.
Luﬁg 3
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where Vei is the electron ion collision frequency. The left hand side of
equation (7) contains the relativistic mass correction term-%wpi %;— 8n which
results in a frequency shift and the pondermotive force due to the high frequency
transverse field and also the nonlinear coupling to the low frequency ion sound
modes which can give rise to the Langmuir modulational instability (Bingham and
Lashmore-Davies (1979)). The relativistic correction term is important whenever
the quiver velocity in the longitudinal field approaches c, the quiver velocity

in the transverse fields is always much less than c¢ for the case considered.
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Beat Wave Generation

The equation describing the generation of a longitudinal beat wavs produced
hy two high frequency transverse waves is obtained from equation (7). Assuming
that the wave fields (electromagnetic and electrostatic) are given by products of
a slowly varying amplitude, {on the time scale of the pump frequency) times the
plane wave determined by t!i linear dispersion relation. The transverse waves E

are represented hv:

ET = Re {é} (x,t) emp i(gj.g = wjt)} S 4. 38000 2,
and the density perturbation én by: 6n = Re {N(x,t) exp i(gg.g = e[t)}
Using the small amplitude approximation and neglecting damping, velativistic

effects, pump depletion and other non-linear processes the equation for the

longitudinal plasma wave becomes

2 k2
N (t) o -(8)
e T o &
e 4m? w2 g
™ £
Letting N/nO = A(t)elq)t we find the longitudinal plasma wave grows linearly in
time with
z
%€,
A(t) = A(0) + ——— ot =49’
4m?w wlcz P
e o
In this approximation the wave amplitude would grow until A(t) = 1 i.e. when the

electron quiver velocity in the longitudinal wave equals c. The amplitude
however will saturate well before reaching this level by pump depletion and
non-linear effects such as the relativistic correction to the plasma frequency.
If we include the relativistic effects the equation for the density perturbation

can be written as:

s
w n _e<k
P BE-|widn aviluanf, €€« -(10)
ot 16 2 4m2www ol
0 e o lpe

If we include spatial variation as well as temporal variation the equation

becomes a driven non-linear Schrodinger equation. From equation (10) the wave

amplitude saturates when-gg = 0, thus wave growth stops when:
1
& &
4 : 6561 2
A= (3 —— -(11)
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- e ol



For the parameters given in the Ruth and Chao design model and also in the first
RAL study report Lawson (1983) (see Table 1) the wave is found to saturate well

before tha wav2 breaking limit, at a value given by:

—G_H'.: e
i 0.15 (12)

therefore wave breaking as a thermalization process is not a problem in this
model., This saturation level for the Langmuir feld sets the upper limit for the
effective peak accelerating field to be 1.8GV/m. Although other processes such
as the modulational instability and filamentation of the Langmuir wave due to the
relativistic effect must be taken into account. These will produce a bhroadening
in frequency and the creation of spikes in space and the formation of solitonms.
To describe the modulational instability we write the density disturbance on
as the sum of a pump wave and two other components the Stokes and anti-Stokes
waves & = Re {N (x,t) ext 1(k X T oW t) + N (x,t) exp 1(k o X wl,zt)}
where NJ(x o) determined by the non—linear lnteraction. U51ng a perturbation

procedure on equation (7) and neglecting pondermotive force effects we obtain the

following equations for these waves:

g e
- - 2 2 25750 ]
(at A Tf) N0 M [lNot No : lN1| No J IN2|2No S 2N0*N]N2 % hos o
a ! -1 6 +6 L
(-a—t- * Yl) N1 =1l [|NOI2N1 & lNlIZN‘] = |N2|2N1 g N02N2*e s : 2) ] ki

ot A

. 2 2 2 2 “3(6 . +8,)5
lr[lNoI R N L R T

Y[ B \)Ei/29

w
I = %E-—gg-is the coupling coefficient and 61 §%) %7 B3 is the
b

where
frequency mismatch A fuller derivation of these equations will be presented in
a future publication. Solving these equations for N = a constant and assuming

161t

the amplitudes Ny e and Ng é-162tvary as exp (—iwt) results in the following

dispersion velation for N, >> N;,N;,

(w - (S]_ +‘iY[) (w + 62 F 1Y[) = ((31 + (52) K=20 =(14)

where K = I‘|No|2
Solving this equation we obtain the following threshold for instability:
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K = -[‘Y[?— + A2] /A

where A = §; + 6, i.e. we have instability only when A< 0. However, from the

definitions of &; and &y we find rhat:

2 2
Wy kyop!* Ve
W
0
and so A is negative definite, k =k +k is the modulation wavenumber.

MOD o 1.2
The growth rate resulting from (14) can be expressed as:

o
- Lk (—Z—K-KZ)% -(15)

w W w 5
0 o o)
1 5 MoD Vv
where K _/f e "=, and the threshold can be expressed as
0
3 2 "¢
16 [/“mc 4w

where RY = %eo ?elz. This threshold is much less than amplitude levels reached
in most laboratory experiments. The Langmuir modulational instability (Bingham
and Taqh1ore—Dav1es (1979)) due to pondermotive effects becomes important for
E#L—7>a@» ;E- which is a much smaller threshold than the relativistic value.
fiowever, the pondermotive effects involve the ions motion and so time scales for
this process to occur will be the ion time scaleS'bl/wpi, where wpi.is ion plasma
frequency, which is much longer than the time for the relativisitic effects to
occur. For short time scales the relativistic term can be the dominant one.
Modulational type instabilities indicate the onset of strong Langmuir turbulence
with the generation of a broad frequency spectrum and cavity formation.
Parametrlc three wave decay processes are forbidden when the condition k A DE S
(m /m. )2 is satisfied (Bingham and Lashmore-Davies (1979)). For the parameters
con51dered in the Ruth and Chao design this condition is satisfied.

Saturation by particle trapping can also contribute to the final level of
the Langmuir wave field. Coffey (1971) has shown that the amplitude of the

Langmuir wave saturates at a level given by:

E ,
_[ — 1 8 L : %

= - = e A
fmmvz - (1 -3B-g8+ 280
o e ph

where B = 3V£i /vpi. For the Ruth and Chao model the wave saturates at the level
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én/n = 0.8, for a plasma temperature of 10 eV, which is much higher than that
determined by relativistic effects., In determining the saturation due to
particle trapping the plasma temperature must be determined. The plasma
temperature can change due to non-linear heating by the large amplitude Langmuir

wave, this will be discussed in a later report.

Stimulated Raman Scattering

One of the drawbacks in the beat wave accelerator scheme is the fact that
the high powered laser beams can under—go non-linear scattering processes which
result in some of the laser energy being scattered out of the interaction zone.
Stimulated Raman scattering is one such non-linear process, as mentioned before
the beat wave process is a special case of stimulated Raman forward scattering.
To describe stimulated Raman scattering, we can use the same set of equations (6)
and (7), however, instead of dealing with two pump waves we will consider only
one pump and two high frequency scattered waves. When the frequency of the
plasma is much less than the laser frequency we need to consider coupling to both
upper and lower sidebands, this inherently produces a frequency mismatch in the
system with the result that the low frequency density perturbation is a driven
response with its frequency being determined by the laser parameters. As before
we assume that the waves can be described by a linear phase times a slowly

varying amplitude in space and time,

M50,1,2 " %'Cq, 2887 OTCE, 1008 T LN

én = Re{N(x,t) exp i(kl.g)}

0 represents the pump wave and ETl’ ET2 are the Stokes and anti-Stokes

waves respectively. The density perturbation is assumed to be a driven response,

where ET

its frequency of oscillation will be determined from the dispersion relation.
Expanding the distribution function for the transverse waves about their
linear values we obtain the following reduced equations for the Stokes and

anti-Stokes waves:

_3__ _a__ sy _idlt
<8t *Yex t YT>€1 (x,t) = ~ic € Nxe ~$1%>
_@__ : a_ _ —i62t
(ac s s YT>€1 (x,8) = -ic € Nre R -(17)
where Vv, v, are the group velocities, Cp = zﬁiggmg is the coupling
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c?k

coefficient and ¢ = w -w is the frequency mismatch with § =kgp.v - =—
1§52 o4 sili2 2 1 -[ o 2ug
09 = -5['20 - CZKE/ZMO and, b i - is the group velocity of the pump wave.
The equation for the density peréﬁrbation is given by:
e ) 2 3 agl p ni paveypad
Qﬂ?—— Vg9 e + Yﬁ G B%é?e 1 -+€Zé}e 2 ] «{18)

272
where ¢ = ;2%;2% is the coupling coefficient and”@ represents dampiag
collisiqnal of Tandau damping. Introducing the new amplitudes a, = ?e—lélt and

s aldrst
%y =é2€ 2" and assuming s oy and N vary as exp (iwt)we obtain the following
dispersion relation for]§[<< E*)from equations (16), (17) and (18).

o
- : et e D . Vosc
[ (w 5['20 + 1YT) §4] [w wsz - sz 52 + 1mye]—%62w§2 —fz—-= 0 =(19)
c

_ngé
2wo
This dispersion relation is well known and has been solved for a number of

different cases (Nishikawa (1968), Bingham and Lashmore-Davies (1976)). For

where v .. is the quiver velocity in the pump field, § =

L[I[yo we have forward scatter, with the short wavelength pump wave being
modulated by the long wavelength electrostatic wave resulting in the generation
of high frequency transverse sidebands and bunching of the plasma particles.
This is the single pump analogue of the beat wave process the growth rate and

threshold obtained from equation (19) are given by:

A |
L pe osc
= P 7 =(20)
W7 Ve G
2
QSC n 8y wo 21)
= .~ a
C2 i wpe

2

w
The plasma wave frequency is given by the real part of w i.e. Rew = E[(I- &ES)%C
(0]

~ klc i.e. the same as in the beat process.
This "four—wave” modulational instability results in the broadening of the
laser frequency and generation of broad-band plasma oscillations.
For the parameters used in the Ruth and Chao model y =~ 5 x 108sec™!, ILASER:
10 ItyrespoLp Where I;AsER 18 the laser intensity.
For k, , k, we have a purely growing instability with a standing
longitudinal wave set up whose wavenumber is perpendicular to the laser

propagation direction resulting in the break—up of the beam into filaments with a

e
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w 7 v Y
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growth ratey = 7%— C and threshold —%32- = zwpe. For the parameters given in
o 1. i 1 x
the Ruth and Chao design y ~ 2.5 x 10" “sec” -, ILASER 9ITHRESH0LD'

The above processes are "four wave" modulational type instabilities
resulting when_&zis either parallel or perpendicular to.EO, for intermediate
cases where Eleo = keko cosf, 6 #0,"/2 , the process becomes a three wave
resonant side-scatter instability with the following resonance condition for

forward side scattering:

TN
Eg = ko CosH — (kg cos?9 - —%?;42)2

5
Lt
Ke

P “pe Vosc
i & lez¥pen? ; Vel
This results in a scattering angle GS sinl % Ywith a growth rate 5

v Y 0
and threshold —%;E < 551}- . This corresponds to a scattering angle GS:

e

5°, growth rate ¥ * 2.5 x Iopesec_1 and a threshold level ITHRESHOLD =
ILASER/IOOO for the Ruth and Chao model. This instability results in the laser
light being scattered out of the interaction column and poses a serious threat to
the laser beat-wave accelerator scheme. Other instabilities associated with the
laser beams are the filamentation and self-focusing instabilities (Bingham and
Lashmore-Davies (1976), Max et al (1974)) these cause the incident plane wave to
break up into a number of filaments of higher laser intensity. The laser
intensity used in the Ruth and Chao design is 16 times the threshold intensity
and the growth length is of the order of 5cm. A summary of the different types
of instabilities can be found in Table 2. The parameters used to prepare table 2
correspond to those used in the design study (Lawson (1983)). The three wave
forward Raman process is the most serious instability since it has the fastest
growth rate. For laser pulse lengths greater than about 50 psec the loss of
energy from the laser through this process becomes the dominant loss process,
with the light being scattered at an angle of 5° out of the main beam. The four
wave processes are not quite so serious, however, over a long propagation path
frequency broadening due to these processes could become a serious problem, also

the possibility of large radial electric fields being set up by the
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perpendicularly standing Langmuir wave could disrupt the electron beam. The
filamentation process is also seen to be important for propagation lengths
greater than 5Scm. This process will amplify any spatial non-uniformities on the

laser beam.

Conclusion

In this report we have discussed some of the plasma physics problems
associated with the beat wave accelerator. We have shown that an important
effect is the frequency shift, due to the relativistic mass correction of the
Langmuir wave. This relativistic term determines the saturation level of
Langmuir wave {(én/n = 0.15), this limits the effective peak accelerating field

B, to 1.8GV/m, it also contributes to frequency broadening and cavity

Z
formation (breaking the beam up into smaller wavepackets). The different type of
instabilities associated with the large amplitude Langmuir wave and the laser
beams have been discussed and are shown to lead to important effects which
require further investigation.

Effects such as plasma heating due to either the Langmuir wave or the laser

beam will be treated in a future report.
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Table 1

List of laser and plasma parameters used in Ruth and Chao design and also in

the Lawson (1983) report.

LASER - Neodymium

WAVELENGTH A_ = 1.06um

FREQUENCY ©_ = 1.78 x 10'° Rad/sec
POWER, P = 8.5 x 10'3 waTTS
PULSE DURATION, T = 100 psec

SPOT SIZE, © = 110,09 cm

INTENSITY, I = 3.3 x 10> Wen?

PLASMA - HYDROGEN

DENSITY, n_ = 1.6 x 10'%nm
FREQUENCY, @, = 7.2 x 10'% Rad/sec
SECTION LENGTH, L = 5m
PLASMA TEMP., T, 2 . 1-10 eV
COLLISTON FREQUENCY,V_ . = 1.5 x 10'%sec '
LASER DAMPING, Y = 5.9 x 10’sec '
INVERSE BREMSSTRAHLUNG, Tp = 16 nsec
(TIME SCALE)
ABSORPTION LENGTH, L = 5m
QUIVER VELOCITY, Vosc 4.9 x 10 °c

PEAK ACCELERATING FIELD E

1.8 GV/m
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Table 2

Summary of growth rates and thresholds for the various laser—plasma
interactions. The plasma and laser parameters used are given in Table 1, they

correspond to those used in the design study (Lawson (1983)).

Threshold Growth rates
=
W/m s
Beat-Wave process = 4.3 x 10°
3-Wave Forward Raman i i1
Scattering 3.3 'x 10 2w x 0
4-Wave Forward Raman ‘i .
Scattering (3{}!_50) 3.6 x 10 5 2 A0
4-Wave Forward Raman
Scattering (kz AL EO) 3.6 x 101" 2.5 x 1011
Filamentation 2 x 101* 5 em
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