
Quantitative Analysis of

an Application of Formal Methods

Juan Bicarregui� Jeremy Dick� Eoin Woods�

� Rutherford Appleton Laboratory� Oxfordshire� UK�
� Now at B�Core UK� Work done whilst at Bull Information Systems�

� Now at Sybase� Work done whilst at Bull Information Systems�

Abstract� This paper reports on the experience gained in the MaFMeth
project� which undertook a formal development with tool support for
several parts of the life cycle from requirements capture through to C
code generation� We explore the hypotheses that formal methods enable
the early detection of faults in design by examining the development
process in the light of the stages at which faults were introduced and
discovered�

� Introduction

One of the major planks of the argument for formal methods is that they allow
fewer design errors to be introduced in to software and allow remaining errors
to be identi�ed early in the development process� so minimising the cost of
correcting them�

The process of formalising the speci�cation encourages certain kinds of ques�
tion to be asked of the requirements� raising issues which may not otherwise
have been manifest until later in development� Having a machine�processable
description at an early stage allows certain validation and veri�cation activities
not otherwise available� such as animation which serves to validate the speci�
�cation against intended requirements� and proof of consistency which veri�es
the internal coherence of the speci�cation� The ability to have precise discussion
about the relationship of the speci�cation to an implementation is an important
enabling factor� since both descriptions are formalised� each design layer can be
compared and veri�ed against the layer above�

The longer a fault in design goes undiscovered� the more rework is necessary
when it is found� and so the more expensive it is to correct� In the worst case�
when a fault in the original speci�cation is not found until after the product
is delivered� in order to ensure the integrity of the product� the speci�cation�
design� implementation� testing� integration and delivery stages all have to be
reworked� If that fault had been discovered early on the design phase� far less
expense would have been involved in its recti�cation�

Very little quantitative evidence has been published to substantiate the sup�
posed bene�ts of the formal approach� This paper reports quantitative aspects

of the experience gained in the MaFMeth project� which used a combination
of VDM and the B�Method and kept certain metrics with the aim of showing
evidence for the early detection of errors and assessing the relative e�ectness of
various activities in the overall process� These metrics amount to fault counts
correlated against the activities during which the corresponding errors were in�
troduced and discovered� For further descriptions of the system developed� the
techniques used and a qualitative description of the problems encountered see
��	� �
�	 and �
	�

� The Application

The project in question was the development of the second release of Groupe
Bull�s FlowBusTM product� FlowBus is an application integration product
of
the type often known as �middleware�� which allows applications to commu�
nicate in a number of ways via a single application programming interface� Its
primary function is to provide distributed� multi�platform� inter�application mes�
sage handling services involving message routing� storage� transformation and
enrichment� all under administrator control� transparently to the applications�

FlowBus is intended to serve the needs of corporations with requirements
driven by business in the area of inter�application communication� or wishing to
restructure their business processes� Such environments are characterised by the
need for extensive� �exible� inter�application communications that can be altered
with the minimum of disruption� FlowBus is intended to provide the integration
services to allow new applications� legacy applications and package software to
be integrated to meet the needs of these environments�

FlowBus allows applications to communicate without explicit knowledge of
each other�s existence� form or function� Interaction between applications and
FlowBus is via the sending and receiving of messages� Messages within FlowBus
are typed and FlowBus routes messages between applications according to this
type and possibly the message contents� FlowBus is also capable of message
enrichment� transformation and conversion and is accessed using a single high�
level API across all the supported platforms� Other FlowBus facilities include
deferred message delivery
i�e� message queuing� and centralised administration
facilities allowing large multi�platform FlowBus networks to be administered
from a single workstation�

This development project was centred in the area of control and administra�
tion� particularly of queues� The Queue Administration Tool
QAT� is able to list
the queues in the system� monitor the status of each queue and report it on de�
mand� list the messages within a queue and view or update individual messages
when required� When messages are updated� it must allow the administrator to
reroute them given certain system�wide integrity constraints� The QAT is also

� The MaFMeth project is an application experiment funded under the EC ESSI pro�
gramme� It is a collaboration between the Bull development centre �Hemel Hemp�
stead�� Bull S�A� �Paris�� B�Core Limited �Oxford� and the Rutherford Appleton
Laboratory�

capable of generating alarms when certain types of messages arrive on certain
queues� Which combinations of message types and queues raise which alarms is
con�gurable�

� The Development Environment

The project was undertaken in a conventional system software development en�
vironment consisting of a department of some sixty software developers engaged
in all aspects of system software supporting three Unix based software products�
The development process used was relatively mature for a Unix system software
development process� having been certi�ed as ISO���

TickIt� ��	 compliant
for its quality management system and operating at a point close to level � of
the SEI Capability Maturity Model ��	� Some use was being made of structured
approaches� speci�cally the Yourdon Structured Method �

	� although much of
the development was still utilising a less rigorous approach using natural lan�
guage augmented with informal diagrams� There was no general awareness or
understanding of formal methods throughout the development sta��

The FlowBus project involved about twelve software developers� of whom
three were involved directly in the development of the QAT subsystem�s func�
tional engine using formal methods�� Of these three sta�� two had previous
experience in applying formal methods� but one of these� the primary devel�
oper with responsibility for delivery of the �nished component� had worked with
formal speci�cation only on trial projects and had not previously used formal
approaches for product development� In particular he had no prior knowledge
of the B Method or its associated tools which were critical to the development
process used�

� The Method

The development process adopted used was in�uenced by

� the desire to cover as much of the development life cycle as possible by formal
techniques in order to test the �faults discovered early� hypothesis�

�� the nature of the tool support available for each stage of development� and
�� the fact that the resulting code had to be closely integrated with other code

both supplied by a third party as an existing package and developed in�house
using more traditional techniques�

These three requirements immediately posed potential problems due to unavail�
ability of a single tool supporting all the required features� In order to cover as
much of the life�cycle as possible� from requirements capture to integration test�
ing of code� and faced with the lack of a single tool providing all these facilities�

� Some consultancy on formal techniques used was also brought in under the ESSI
project�

we found it necessary to use a number of di�erent notations� each with their own
forms of tool support�

The use of C as a target language was imposed by the development or�
ganisation� The B�Toolkit was chosen for its support of development from the
design phase to C code generation� The decision to employ VDM rather than
the Abstract Machine Notation
AMN� of the B method to capture the initial
speci�cation was motivated by three reasons�

� previous experience ��	 that AMN encourages the speci�er to think very much
in terms of assignments to state variables� whereas VDM�SL facilitates the
capture of the initial speci�cation at a more abstract level�

� the desire to evaluate the diagrammatic approach to formal speci�cation
o�ered by the �VDM through Pictures� tool ��	� and the style of speci�cation
imposed by this approach� and

� the desire to evaluate and take advantage of the ability to generate test cases
from the VDM speci�cation using the VDM Analysis Tool ��	�

Naturally� using di�erent notations introduced concerns about the training
of sta� and the co�existence and interaction of the various formalisms and tools
however this could not be avoided if we were to cover the desired breadth of
activities�

For the purpose of the assessing the development process� we identi�ed
�
activities� with varying degrees of tool support� These are depicted in Figure
�
Measurements relating to these activities were taken for two purposes�

� to compare a formal development process with a conventional one�
�� to compare the relative e�ectiveness of various stages of the formal process�

To meet the �rst of these objectives� the results of a number of develop�
ment projects� all producing sub�products with similar characteristics� were
compared�� The measurements were made according to the departments ex�
isting metrics programme which� for development projects� consists primarily of
the following standard metrics being collected�

� number of faults per thousand lines of code found during unit tests and
integration tests�

� number of faults per thousand lines of code found during validation test�
� number of faults per thousand lines of code found during customer use�
� person months of e�ort per thousand lines of code produced�

For these purposes a fault is recorded when a change is required to an design
decision made at an earlier development stage� A design made and changed
within one stage is not considered a fault�

� Though it would have made a more scienti�cally thorough trial� it was not considered
economical to conduct a parallel development of the same component under the
di�erent methodologies�

VDM
VtP/VEmacs/VAT

B
B-Toolkit

C

A3

Test Generation

Spec Refinement

A4

A2
Spec Enrichment

Spec Creation
A1

Translation to B

Animation

B1

B2

Implementation
B3

B4
Auto-proof

B5
Manual Proof

B6
C Generation Unit Test

C1

C2
2nd Unit Test

C3
Integration Test

Fig� �� Development activities identi�ed in the MaFMeth project

To meet the second objective� counts of faults discovered were kept during
each of the stages named above� Since some of the activities in the formal process
took place in parallel� some faults were discovered at more than one stage� For
this reason� each fault discovery was given a unique identity� and for each of
these a record was made the stage it was �rst discovered� and the stage it was
introduced� From these metrics� it was possible to estimate the e�ectiveness
of each stage of the process in terms of the numbers of faults introduced and
detected� though no attempt was made to assess the severity of each fault�

� Overall Fault count

Despite the di�ering notations and the lack of integrated tool support described
above� quantitative analysis of the overall fault count shows the approach to be
very e�ective both in cost and quality�

Figure � compares data from this project with three others undertaken by
the user partner using structured design�

The four projects were all developed in the same environment over a period
of about � years and all used a similar development process apart from the
technology involved� All projects were undertaken by engineers from the same
development group and all were fragments of much larger developments� All� bar
project �� were new developments� whereas project � was a complex modi�cation
to an already heavily maintained system software component
hence� perhaps�
the low productivity and quality of that development��

Faults / KLOC 5.59 15.5 0.9

Effort / KLOC 20.521.5 72.5 12.5

Faults at unit test 727 17 3

Approach

Size (LOC)

Effort (days)

Application

1300

27

application

System
software

System
software

VDM / YourdonYourdon

3000

65

utilities

System
software

80

1100

Yourdon

modifications
monitor

Transaction

Project 1 Project 2 MaFMethProject 3

middleware

VDM / AMN

** 3500

43

** Normalised against amount of library code used. (Total was 8000).

Fig� �� Comparison of overall fault count

The LOC �gure
Lines of Code� is clearly central to the metrics and for
projects
 to � refers to C language statements� For MaFMeth� in all ���� lines
of code were generated� however much of this arose from library components�
The �gure of ���� lines of code is the developer�s estimate of the amount of code
that would have been produced to implement the same functionality without
attempting any reuse� In fact�
��� lines of implementation level B notation
were produced to generate the �nal C code�

None of the e�ort �gures include the learning and technology transfer time
which is inevitable in applying new approaches�

The �gures show that the MaFMeth project produced� on average� more
code per day than any of the previous projects� Of course� this result must be
tempered by the di�erent application areas and the possible inaccuracy in the
estimate of the equivalent number of lines of code� However� the improvement
of nearly
��� is noteworthy�

Even more signi�cant are the results concerning the number of faults at unit
test� The unit testing used aimed at
��� functional black box test coverage and

��� branch level white box coverage� This was achieved by identifying test cases
using techniques including equivalence partitioning� boundary value analysis and
a judicious amount of error guessing� The MaFMeth project produced less than
��� of the faults of the next best project�

Unfortunately� no �gures for faults found during validation testing and cus�
tomer use are available�

� Early detection of Faults

To explore the �faults found early� hypothesis� we analysed the process adopted
according to the time taken� in terms of process stages� to discover faults in the
system� We present this data using �Fault Grids� ��� �	 which display the faults
found according to the stages at which they were introduced and detected�

��� Fault grids

Fault grids provide a means of presenting fault counts against process stages so
as to

� highlight the e�ectiveness of each process stage in terms of the faults intro�
duced and detected�

� assess the overall e�ectiveness of the process in terms of the number process
stages between the introduction and discovery of faults�

The �rst requirement is to have a well�de�ned development process� Of in�
terest here is the sequence
temporal and logical� of activities that make up the
process� The temporal sequence of activities corresponds to the order in which
the activities are carried out� The logical sequence corresponds the dependency
of activities on each other� for instance� High�Level Design may be logically de�
pendent on Requirements Capture� but not logically depend on Speci�cation
Animation
although animation may take place earlier��

For each fault found� a record is made of

� the activity that enabled the fault to be found�
� the estimate of which previous activity introduced the fault�

For each activity� a record is made of the cost of running that activity�
Figure
 shows the general scheme for the presentation of fault counts� It

shows a hypothetical but typical process consisting of � activities from spec�
i�cation through to production� The diagonal grid is used to record numbers
of faults found during each activity against the originating activity� Thus� for
example� the highlighted lines show that � faults were found during Integration
Testing that were introduced during Design� adjacent top that we see that
�
faults originated from Coding were found at integration test�

Although hypothetical� the groupings of �gures on the grid are typical� The
group of �gures near the top of the grid re�ects the exploratory phases of develop�
ment were requirements are understood and di�erent speci�cations are proposed
and assessed� The group in the middle correspond to those errors introduced in
design and coding� The lonely ��� at the peak of the fault grid should cause
concern� it took too long to �nd these faults�

The diagonals from top�left to bottom�right show the total number of faults
introduced at each development stage� for example ����
� faults were intro�
duced during coding� The diagonals from top�right to bottom�left show the total
faults found at each review state� here ��� faults were found at unit test�

*
found during Integration testing
introduced in Design

For example, 2 faults
6

3

13
12

2

Specification

Validation

Design

Coding

Unit test

Integration test

System test

Production

2

0

13
31

0

0
2

2
16

Verification

4

2

2

8

10

Fig� �� Hypothetical example of fault grid

The vertical columns in the grid� indicated by the dotted lines� show faults
that were found
� �� �� etc� temporal stages down the process� The �gures
at the bottom of the grid show� therefore� that
� errors were found after one
stage� �
 after two� and so on� However� it may be more interesting to consider
at how many logical stages were taken to discover faults� The logical ordering
for our example process is shown in Figure �� With this dependency between
activities� for instance� Veri�cation and Design is only one stage down the line
from Speci�cation�

Verification

System test

Validation

Unit test

Specification

Design

Coding

Production

Integration test

Fig� �� Hypothetical activities dependences

The number of stages taken to discover faults in our hypothetical develop�
ment are presented as bar charts in Figure �� A comparison between the temporal
and logical orderings may suggest that a change in the order of the activities
would allow faults to be discovered more quickly� Here the activities Validation�
Veri�cation and Design all discovered a large number of faults and could all be
done immediately aft the initial speci�cation� Note how almost all faults are
found after a single logical stage�

1 2 3 4 5 6 8 97

introduction and discovery
Number of temporal stages between

5

10

15

20

25

30

35 _

_

_

_

_

_

_

_

_

_

40

45

50

N
um

be
r

of
 fa

ul
ts

1 2 3 4 5 6 8 97

introduction and discovery
Number of logical stages between

5

10

15

20

25

30

35 _

_

_

_

_

_

_

_

_

_

40

45

50

N
um

be
r

of
 fa

ul
ts

Fig� �� Bar charts for number of stages between fault introduction and discovery

Of course� some caution must be exercised when considering these charts�
Firstly� the columns do not represent the sum of like quantities� each step of
the process is not equivalent in magnitude� Secondly� it is not meaningful to
compare di�erent project processes by their resulting bar charts as there may be
a di�erence in the granularity of the process decomposition used in each project�

��� MaFMeth Results

Figure ��� shows the fault grid for the MaFMeth project��

Many faults found early� Signi�cant is the tiny number of faults that were dis�
covered during unit and integration testing� The single positive value in the lower
part of the grid re�ects that only three errors picked up by the testing stages�

� Note that in practice the three testing stages were amalgamated into one test suite

A1: VDM specification creation:

A2: VDM specification enrichment:

A3: VDM refinement:

A4: Test case generation:

B1: Hand translation into AMN:

B3: AMN development:

B4: Auto-proof of AMN obligations:

B5: Manual proof of AMN obligations:

B6: Translation into C:

C1: First unit test:

C2: Second unit test:

2

2

3 1
1

6

13
1

7
4

3

C3: Integration test:

4
6

B2: AMN animation:

3

Fig� �� MaFMeth fault grid

This could well be a consequence of the e�ort expended in the earlier validation
and veri�cation stages�

The �gures con�rm the tenet of formal methods that formal analysis reduces
the number found late in the day� Though several faults were introduced in the
early stages� these stages are typically were requirements are being explored and
alternative approaches being tried in design� It can be seen as a good thing to
introduce and discover faults here� In particular� no faults from the early VDM
speci�cations persisted beyond stage B
�

Faults found quickly� The complete absence of any positive values on the right
hand side of the grid is encouraging� It is revealing to note that nearly half
the total number of faults were found immediately after their introduction� The
number of stages taken to discover faults is summarised in Figure ��

In this case there is no great di�erence between the two bar charts� What
di�erence there is can be largely attributed to the temporal ordering of animation
and proof stages
B ��� and ��� In fact� the logical independence of animation
and proof was recognised in advance and these stages were actually carried out
in parallel�

When faults were introduced� Highlighted by the diagonal ����� is the relatively
large number of faults introduced by the manual activity of translation from
VDM into AMN�
� out of the total �� faults were introduced at this stage�

Number of temporal stages between
introduction and discovery

_

_

_

_5

10

15

20

introduction and discovery
Number of logical stages between

_

_

_

_5

10

15

20

1 2 3 4 5 6 8 9 107

N
um

be
r

of
 fa

ul
ts

11 1 2 3 4 5 6 8 9 10 117

N
um

be
r

of
 fa

ul
ts

Fig� 	� Bar charts for MaFMeth

With hindsight� we realise that� although we had made a point of trying to keep
this step as simple as possible� we were in fact simultaneously undertaking a
change of data model� a change from implicit to explicit operation de�nitions�
and the introduction of more structure into the speci�cation �
	� It is clear that�
in a tool supported development� the unsupported stages are likely to be the
most error prone and it is imperative therefore to minimise the complexity of
the unsupported stages�

It is sobering to note that all stages where development took place introduced
faults�

� E�ort by stages

The distribution of e�ort by project stage is shown in Figure �� As might have
been expected� the bulk of the design e�ort was in the main development in B�
A substantial component was also expended on the early speci�cations in VDM�
Very little e�ort was required during the testing stage�

Some activities� for example the initial B speci�cation and its animation� are
grouped together as they were carried out simultaneously and no separate e�ort
�gures were kept�

The faults found can be plotted against these e�orts as a histogram with
the width of columns representing the relative e�ort expended in each stage�
However� when inspecting this it must be remembered that some stages involved
development whereas others purely involved review�

8%

8%

8%

4%

19%

10%

4%

12%

27%

B1-2B3

B6

C1-3 A1

A2

A3

A4

B4-5

Fig�
� Pie chart of e�ort by project stages

1

2

3

A1 A4A3A2 B1-2 B3 B4-5B6 C1-3

Fig� �� Faults found per day by project stages

For stages B
��� one cannot assess how much e�ort was expended in �nding
faults through animation and how much on development� but if one assumes
that approximately one half of this e�ort was spent on each activity� then the
dotted line applies�

Note how the most e�cient fault �nding occurs during test generation� ani�
mation and proof� Although this can perhaps be attributed to the fact that most
faults were found before testing occurred� the test generation and proof stages
allow a di�erent perspective on the speci�cation and highlight problems which
might otherwise be invisible to the developer�

	 Conclusions

Conclusions drawn from this experiment should be moderated by the small size
of the development and the correspondingly small number of faults detected� The
development team was also small and sta�ed by self�selected individuals who�
being keen to make a success of the experiment� were perhaps better motivated
than average� It would not be wise therefore to extrapolate these results to
larger projects� The lead partner will� however� be repeating the experiment
with another development team�

An underlying assumption of the �Fault Grid� style of presentation is that
activities in the development process are carried out in a linear fashion� it is
di�cult to present the results of performing activities in parallel� where the
same faults may be discovered by more than one activity� Another feature of
the �Fault Grid� presentation is that there is no record of faults found and
introduced at the same stage� This is not considered to be a serious drawback�
since� by their very nature� the cost of correcting such errors is low�

No attempt was made to moderate the e�ectiveness of fault �nding by the
severity of the faults found� Such an analysis could contribute to an estimate
of the cost�e�ectiveness of each activity� None of the diagrams emphasise the
fact that early fault detection saves money� It might be possible to estimate how
much e�ort a process has saved in relation to how soon faults are discovered by
keeping a record of how much e�ort is required to repair each faults found� and
estimating how much e�ort would have been required to �x that fault if it had
not been discovered until the last stage� The appropriate facts were not recorded
in this project�

Unfortunately� due to some large�scale restructuring in the lead organisa�
tion� the code developed in this project never reached the production stage� and
so no data is available on validation test and customer use� In particular� it re�
mains unknown whether any types of error� perhaps peculiar to the use of formal
methods� remained undetected by the development process�

Despite these quali�cations� there is evidence in these results in favour of
formal methods� Faults are inevitable and there detection is aided by formalisa�
tion� Amongst other things it is noted that all early stages� whether testing or
development� found faults� It seems that any analysis � whether animation� PO
generation� proof� or testing� is worthwhile� These activities are only possible
once the objects involved are formalised�

This project has contributed to the beginnings of an accumulation of evidence
for the bene�ts of formal methods� It has raised awareness of the need to gather
such evidence for larger projects and suggested some techniques for doing so�

References

	� J�C� Bicarregui� J� Dick and E� Woods� Supporting the length of formal develop�
ment
 from diagrams to VDM to B to C Proceedings� �th International Conference
on
 Putting into practice method and tools for information system design� Nantes
�France�� October �
�� IUT de Nantes� H� Habrias �Editor� 	

��

�� J�C� Bicarregui and B� Ritchie� Invariants� frames and postconditions
 a compari�
son of the VDM and B notations� In Proceedings of Formal Methods Europe ����
Lecture Notes in Computer Science� Springer�Verlag� 	

��

�� Jeremy Dick and Jerome Loubersac� A Visual Approach to VDM
 Entity�Structure
Diagrams� Technical Report DE�DRPA�
	��	� Bull� ��� Route de Versailles�
����� Louveciennes �France�� January 	

	�

�� Jeremy Dick and Alain Faivre� Automating the generation and sequencing of test
cases from model�based speci�cations� In J�C�P� Woodcock and P�G� Larsen� edi�
tors� FME���� Industrial�Strength Formal Methods� pages �������� Formal Meth�
ods Europe� Springer�Verlag� April 	

�� Lecture Notes in Computer Science ����

�� J�Dick� Fault grids
 another way of presenting fault counts� Software Reliability
and Metrics Club Newsletter� Issue 	�� July 	

�� p ���� �published by the Centre
for Software Reliability� University of Newcastle upon Tyne��

�� Des Maisey and Jeremy Dick� Measuring the quality of the development life cycle
process� Submitted to SQM
�� Software Quality Measurement�

�� U�K� Department of Trade and Industry� TickIT
 Guide to Software Quality Man�
agement� System Construction and Certi�cation using ISO
��	�EN�
��	�BS����
Part 	� February 	

�� TickIT Project O�ce� �� Newman Street� London� W	A
�SE� UK�

�� M�C� Paulk� W� Curtis� M�B� Chrissis� C�V� Weber� Capability Maturity Model for
Software� Version 	�	� Carnegie Mellon University Software Engineering Institute
Technical Report� CME�SEI�
��TR���� February 	

��

� E� Woods� The Development of a Software Subsystem Using VDM and B� Uni�
versity of Manchester� Board for Continuing Education� Department of Computer
Science� MSc Thesis� 	

��

	�� J� Dick and E� Woods� Lessons Learned Applying Formal Methods to System
Software Development� submitted �July 	

�� to IEEE Software�

		� Yourdon Inc�� The Yourdon Systems Method
 Model Driven Systems Development�
Prentice Hall� Englewood Cli�s� NJ� USA� 	

�� ISBN ��	������	���

This article was processed using the LaTEX macro package with LLNCS style

