IST-1999-11748 LIMBER, 17/06/10 1/38

L&

[e Language

N ndependent
| b Metadata
Browsing of
European
Resources

Project ref. no. IST-1999-11748

Project acronym LIMBER

Project full title Language Independent Metadata Browsing of European
Resources

Security (distribution level) Public (report) — Internal (Demonstrator)

Contractual date of delivery M19 July 2001

Actual date of delivery 25 November 2001

Deliverable number D-8.2

Deliverable name LIMBER Server Tools

Type Report & Demonstrator

Status & version Final

Number of pages 38

WP contributing to the WP8

deliverable

WP / Task responsible Intrasoft International

Other contributors CLRC

Author(s) Nikos Giannelos, Michael Wilson

EC Project Officer Mr. Kimmo Rossi

Keywords Cross-language information retrieval, multilingual thesaurus,

Thesaurus Management System, TMS, Text Classification

The overall LIMBER system enables multilingual data retrieval
through a data access system by providing a Thesaurus Management
System (TMS) as a basis for translation and searching over a set of
metadata. The first part of this report describes the server side of the
TMS. This is a development from the report in deliverable D8.1
which included the specification and design details.The second part
of this report includes a description of a tool to add keywords from a
thesaurus to the metadata records to promote both mono-lingual and
multi-lingual retrieval of the metadata records, and subsequently the
data itself.

Abstract (for dissemination)

IST-1999-11748 LIMBER, 17/06/10 2/38

1. Contents

1. CONTENTS 2
2. EXECUTIVE SUMMARY 4
3. THE LIMBER THESAURUS MANAGEMENT SYSTEM SERVER. 5
31 Introduction 5
3.2 Installation 5
33 Using the LIMBER TMS Server — GAIN 5
3.3.1 General Description 5
3.3.2 Queries 8
3.33 Tree Views menu 8
334 Queries menu 10
3.3.5 Retrieval menu 11
33.6 Query Result Presentation 12
3.3.7 Column Textual Display 12
3.3.8 Hierarchical Report Display 13
339 Tree Display 14
3.3.10 Star View 15
33.11 Object Card 16
34 The web API to the TMS Server 16
34.1 Installation 16
35 Using the web API 17
THE LIMBER INDEXING TOOL 19
4. INTRODUCTION 19
5. ARCHITECTURE OF THE INDEXER 20
5.1 The General Machine Learning Approach 21
5.2 Reading and preprocessing the document. 22
5.2.1 Flattening the structure of the metadata record. 23
522 Removing stop words. 23
523 Stemming (optional). 23
53 Indexing the document 23
5.3.1 Term Reduction 24
54 Constructing a classifier 25
54.1 Probabilistic or Bayesian Methods 25
54.2 kth Nearest Neighbour 25
543 Profiling the input files 26
5.5 Classifier Evaluation 29

IST-1999-11748 LIMBER, 17/06/10

5.6 Multilingual Indexing

6. USING THE INDEXING TOOL

6.1 Task Scenarios
6.1.1 Creating a classifier
6.1.2 Classifying a metadata record
6.1.3 Indexing Tool Options

6.2 Installation and Use of the Indexing Tool

6.3 Conclusion and Future Work for the Indexing Tool

REFERENCES.

3/38

30

30
30
31
32
36
37

37

38

IST-1999-11748 LIMBER, 17/06/10 4/38

2. Executive Summary

The overall LIMBER system enables multilingual data retrieval through a data access
system by providing a Thesaurus Management System (TMS) as a basis for
translation and searching over a set of metadata.

The first part of this report describes the server side of the TMS. This is a
development from the report in deliverable D8.1 which included the specification and
design details.

The second part of this report includes a description of a tool to add keywords from a
thesaurus to the metadata records to promote both mono-lingual and multi-lingual
retrieval of the metadata records, and subsequently the data itself.

IST-1999-11748 LIMBER, 17/06/10 5/38

3. The LIMBER Thesaurus Management System Server.

The purpose of this chapter is to present the functionality and usage of the LIMBER
Thesaurus Management System (TMS).

3.1 Introduction

The LIMBER TMS consists of a tool to develop multilingual thesauri and a
terminology server for cataloguers and for distributed access to heterogeneous
electronic collections. The distinct features of the TMS are its capability to store,
develop and access multiple thesauri and their interrelations under one database
schema, to create any relevant view thereon and to specialize dynamically any kind of
relation into new ones.

The LIMBER TMS graphical user interface (also called Graphical Analysis
Interface - GAIN) allows the unconstrained navigation within and between different
thesauri and the execution of predefined queries and graphical views to identify
concepts for cataloguing or database queries, to identify translations or equivalent
expressions for information access in heterogeneous environments, and to control the
quality and logical consistency of a system of interlined thesauri during the
development.

The LIMBER TMS server can be integrated in a distributed, heterogeneous
environment. As a central, eventually repeated component, it can replace the
cumbersome implementation and population of thesaurus management features in
collection databases and library systems, due to access through its programmatic
interface. It further allows automatic term expansion and translation in distributed
access environment. This use requires consistency of the equivalence relations
established between thesauri.

3.2 Installation

The LIMBER TMS is distributed in a CD. Installation is performed simply, by double
clicking on the “setup.exe” file, located in the CD’s root directory.

After the completion of the installation, the LIMBER TMS, along with the reduced
HASSET thesaurus, is ready for use.

3.3 Using the LIMBER TMS Server — GAIN

3.3.1 General Description

The Graphical Analysis Interface (hereafter called GAIN) will be described in detail in
the next few chapters. Gain is used to access and manipulate the LIMBER TMS
locally (i.e. from the same computer where the TMS is installed).

IST-1999-11748 LIMBER, 17/06/10 6/38

i Thesaurus Management System [_[O] x|
File Edit “iew Tree Views Queties Eetrieval Tools Window:
Guery Target I
Text Wiews ftems: 0
=l
< I

Figure 1 GAIN main window

GAIN cooperates with the query processor of the LIMBER TMS base. Information
can be retrieved from the TMS, by executing one of a set of built-in queries, which
are offered as a menu of choices by the interface. The query processor extracts data
from the TMS base and displays the result on the screen. The result can be seen in two
ways: graphically, on the window of the graphical subsystem or textually, on a text-
window. There are many types of predefined queries; some of them are graphical
(display the result in graphical mode), while others are textual (display the result in
textual mode). The current selection of the query type is displayed by the query type
field, which is always visible (see Figure 1). A query may have one parameter on
which it operates or may have none. This parameter, referenced in the following as
Query Target, must be an object existing in the TMS base. The Query Target is
always visible and can be changed in multiple ways by the user.

The GAIN main window is divided in three basic areas (see Figure 1):

e the Menu-bar, which provides all the built-in queries and a set of operations
on the visual representation of the query results.

o the Query Info area, which includes the Query Target area and a toolbar for
the most frequently used operations.

o the Query Results area, which displays the results (graphical or textual) of
the queries to the LIMBER base (hereafter referred as “Text Area” and
“Graph Area”)

Except of the main window a number of pop-up windows are triggered by the
menubar or the toolbar selections:

IST-1999-11748 LIMBER, 17/06/10 7/38

e the Object Card window, which displays the textual description of an
object.

e the Global View window, which displays the global view of the graph
presented in the graphical window.

e the Options window, which enables the user to set its preferences for the
fonts, colors and text messages of the user interface area.

e the History window, which includes a list of the last executed queries.

IST-1999-11748 LIMBER, 17/06/10 8/38

3.3.2 Queries

The LIMBER TMS provides three menus of built-in queries: a) the Tree Views, a
menu of queries whose results are displayed in graphical mode, b) the Queries, a
menu of queries whose results are displayed in textual mode and c) the Retrieval, a
menu of queries by classification facets, whose results are displayed in textual mode.

3.3.3 Tree Views menu

The graphical queries are performing search in depth, and they are performed on a
specific target. They provide visual information about connection between objects.
The query StarView is an equivalent graphical representation of an Object Card.

Figure 2 shows the Tree View menu. Figure 3 shows the Global View window, which
displays the global view of the graph presented in the Graph Area in Figure 2.

i Thesaurus Management System [_ (O] x|
File Edit “iew T 3 Queties Retrieval Tools Window:
1
Star Yiew
Guery Target |T81 ﬁ @ Q} |
[Clagsification Tree | ﬁ'h
Marroraeer Term Tre ' i A EEEEIST UEm e ftems: 32
Superclases Tree AAT Marroweer Term Tree
Broader Term Tree AAT Relsted Terms Tree ;I
Marroweer Term Tree AAT Term Position in Hierarchy
Term Position in Hierarchy RCHMWE Broader Term Tree
Related Term Tree RCHME Marrowver Term Tree
Equivalert Terms Tree RCHME Relsted Terms Tres
Marrower-Equivalent Terms Tree RCHME Term Position in Hierarchey
Marroweer-Synonym Terms Tree I
GRANGE MONASTIQLE
GRANGE ——=——— GRANGE ALK DIMES
FERME
EDIFICE AGRICOLE
FEMIL
FAISAMNDERIE PORCHERIE
ETABLE & % ACHES
ETABLE
ETABLE A CHEY ALK
BERERIE
=
A4 | i

Figure 2 Tree View menu displays graphical query results

IST-1999-11748 LIMBER, 17/06/10 9/38

! Global Yiew Card M=]

<

| "

Close |

Figure 3 Global View window shows which part of the graph is visible.

IST-1999-11748 LIMBER, 17/06/10

3.3.4 Queries menu

The results of the Queries are displayed in the Text area in columns (see Figure 4).

10/38

This menu provides queries about all facets, or all facets by a specific parameter
(QueryTarget). The queries about all facets (do not apply on a specific Query Target)
have the prefix “List All”.

i Thezauruz Management System

=

File Edit Wiew Tree Views W Retrieval Tools Window

By T IiTermeFr‘EDIFICE A Hierarchical Report ﬁ @Q ﬁ}ll

General Queries 3
X . 5 Thesauri 4
List &1l MERIMEE Hierarchies ftems: 20
Facets 3

LT [} List & AAT Hierarchies EEREEETY

<architecture agricoles Terms 4 Lizt Al MERIMEE Hierarchies architecture agricolesx ﬂ
“architecture artisanale= Consistency Checking » List &1l RCHME Hierarchies mrchitecture artisanales
<architectures commerciale p B q architecture commerciale>

. . List Al ICCD Hierarchies .

“architecture de oulture recherche sport loisir i § i architecture de culture rechs
<architecture de culture recherche sport loisir List Al DAMD Higrarchies architecture de culture rechs
<architecture de jardins= architecture de jardins
<architecture de l'adwinistration ou de la collectiwités <architecture de 1'administrat
“architecture domesticues <architecture domestiguex
<architecture fiscale ou financiéresr <architecture fiscale ou finar
<architecture funéraire ou commémorative ou wotives <architecture funéraire ou cor
<architecture hospitaliére ou d'assistance ou de protection sociale <architecture hospitaliére ou
<architecture industriellex =architecture industrielle=
<architecture judiciaire ou pénitentiaire ou de polices= <architecture judiciajre ou ps
<architecture militaire» =architecture militaires
“architecture religieuse> <architecture religisuse>
“architecture scolaires <architecture scolaires=
<descripteurs communs & toutes les oeuvress <descripteurs communs & toute:
“génie ciwils <génie civils

=urbanisme et aménagement du territoire et aménagement du territoires “urbhanisme et aménagement dua t
<urbanisme et aménagement du territoires “urbanisme et aménagement du t

Il

4| 3|

Figure 4 Queries menu displays textual results

10

IST-1999-11748 LIMBER, 17/06/10 11/38

3.3.5 Retrieval menu
This menu provides queries about all facets by combinations of all others. The user
can "fill" the specified facet from the QueryTarget.

i Thesaurus M anagement System P[]
File Edit ‘Wiews Tree YWiews Queties Retrieval Tools Window

By Tered ITermeFr‘EDIFICE AGRICOLE gl @ ¥y

Conditional Search ftetms: 9

ACIERIE ;I
CONCIERGERIE

DEVERSOIR DE SUPERFICIE

ETAELIZZEMENT FINANCIER

GLACIERE

MINE & CIEL OUVERT

IHADMACIE

SCIERIE

USINE DE FIERES ARTIFICIELLES ET SYNTHETIQUES

] =
JMame Search !Eﬁ
Type IMERIMEEDescriptor Fill |

Name I’tC"E’t

Execute | Close |

Figure 5 Retrieval menu displays textual results.

11

IST-1999-11748 LIMBER, 17/06/10 12/38

3.3.6 Query Result Presentation

The LIMBER-TMS provides various presentations for the information retrieved from
the LIMBER base. Selecting a query from the Queries menu or the Retrieval menu
the textual results are displayed in columns, while selecting a query from the Tree
View menu the results are displayed as graphs. A specific Tree View query, called Star
View, presents all the information associated with an object (designated in the Query
Target) in the form of a tree-graph, while the same information is presented in textual
form in a pop-up window, called Object Card.

3.3.7 Column Textual Display

The result of textual queries is the names of the objects existing in the answer set.
This information may be presented in columns, as shown in Figure 6. Each column
corresponds to an attribute of the objects in the answer set. The kind of each attribute
appears as a label above the corresponding column.

i Thesaurus Management System [_ (O] =]
File: Edit Miew Tree YWiews Queries Retriewval Tools Wincoww
By T ITermeFr‘AEIRI ﬁ @ S Iggﬂ ﬁ‘l
List &l Broader Terms of tems: 3
ET ET
<architecture domesticues :I
<édifice domesticues Zarchitecture domestigques>
ARRI <édifice domestigquesr
I
< I

Figure 6 Text Area displays the results in columns

12

IST-1999-11748 LIMBER, 17/06/10 13/38

3.3.8 Hierarchical Report Display
The result of a hierarchical report is the textual representation of a tree graph query
(e.g. Narrower Term Tree) as shown in Figure 7.

When splitting has been done for a node the symbol M is added in front of this node
and the number N (declaring the repetition) is also added in front of the repeated node
(see PIGEONNIER node in Figure 7).

i Thesaurus Management System =] E
File: Edit iew Tree Yiews Eetriewal

Query Target ITermeFr‘qarchﬂec’[L . :
General Queries

Tools Window

A @Y @ ol

»
. . i »
Hierarchical Report S ftems: 0
Facets 3
Hierarchiss 4
+architecture agricoles= Terms 4 ;I
- <ensemble agricoele® Consistency Checking *
- - TERRALZSE AGE

- EDIFICE AGRICOLE

- - CELLIER

- - CUTAGE

- - DEPENDANCE

- - ENTREPOT AGRICOLE

- - - COOPERATIVE AGRICOLE

- - - - COOPERATIVE VINICOLE
- - - HANGAL AGRICOLE

- - - REMISE AGRICOLE

- - - - CHARRETERIE

- - - EERGERIE

- - - ETAELE A CHEVAITA
- - - ETAELE A VACHES
- - - DPORCHERIE

- - FATISANDERIE

- - FENIL

- - FERME

- - GRANGE

- - - CRANGE AU DIMES
- - GRANGE MONASTIQUE

- - HARAS
- - MAGHNAMNERIE
- PIGEOHMMIER
- - - COLOMEIER
- - SECHOIR
- - - PIECE D'AFFIMAGE
- - - SECHOIR & CHATATGNES
- - - SECHOIR & CHICOREE
- - - SECHOIPR & HOUEBLON
- - - SECHOIPR & MATSE
- - - SECHOIR & PEATIH
- - - SECHOIPR & TAEBAC
- =édicule agricole
- - ABRREUTVOIER

- - ATIRE A BATTRE

- - - ATIRE A BATTRE COUVERTE
- - AIRE A SECHER

- - GARENME

- - POULATLLEER

- - DUCHER

- - STLO

- - VIVIER

1 - PIGEOMNNIER

- ENZEMELE AGRICOLE hd|

Figure 7 Text Area displays the result of the hierarchy report

13

IST-1999-11748 LIMBER, 17/06/10 14/38

3.3.9 Tree Display

The choices of the Tree Views menu are recursive queries, displayed as graphs (see
Figure 8). Some of them require a specified kind of target. A checking is performed
when the menu is mapped on screen in order to verify that the given query target is of
the kind that the queries require. All queries that require a different kind of target that
the one presented in the Query Target area automatically become inactive.

i+ Thesaurus Management System [_[O] x|
File Edit “iew Tree Views Queries Retriewval Tools Window:
e e ITermeFr‘AEIRI gl @ W 5—;” o
Marroweer-Equivalent Terms Tree tems: 29
T -~
sc-uterrainfl
rock cut dyvelling GROTTE ORMEE
ABR| SOUS ROCHE rock shetter
AR cave dwelhng
Shieing ronciavels|
bnrleg
b-:th|eﬂ
hnvelﬂ
CABARNE
weonchworkers hut
btk peclers hut
shatt= |
ht circle
bt platform
shepherds hut
tran=sbmancs bt ;I
Kl | i

Figure 8 Tree graph results

IST-1999-11748 LIMBER, 17/06/10 15/38

3.3.10 Star View

By selecting StarView from the menu, a graphical query is executed which displays
the query target as a central object (see Figure 9). The superclasses and subclasses of
the central object are shown top-right and bottom-right respectively. The classes of
which the central object is an instance of, are shown top-left, while if it has instances
a box with the label " INSTANCES" appears bottom-left.

i Thesaurus Management System [_[O] x|
File Edit “iew Tree Views Queties Eetrieval Tools Window:
Query Target ITermeFr‘EDIFICE AGRICOLE ﬁ @ W §|| o
Star Wiew ftetns: *
=

=architecture agricole=
MERIMEED &= crigtor

MERIMEE_BT =grchitecture agri

MERIMEE_RT EDIFICES AGRICO
MERIMEE_BT — MERIMEE_BT — EDIFICE AGRICOLE

MERIMEE _exact_equivalence, ta_RCHME — agricultural buildin

MERIMEE _exact_equivalence, to_AAT — agriculiural buildin

Figure 9 Star View result display

15

IST-1999-11748 LIMBER, 17/06/10 16/38

3.3.11 Object Card

The Object Card of an object contains the textual description for this object. The
object card shows the complete information that is immediately related to this object
(see Figure 10). The Object Card window is popped-up by clicking the right button
on the object (its box in the graph or its name on the display, even on another Object

Card).

i TermeFr'EDIFICE AGRICOLE M= &

bz i

[SIMPLE ﬁiJ @E ﬂ

Belunzz 1o, MERIMEE Class" =~ chilecin & ayrivoke:-
MERIMEEDescriptor
comments
sCope_rote
Edifice a fonction agricole.
Propeties:

MFRIW=F_RT

TermeFr <architecture agricole>
MERIM=E_EI

TermeFr FRIFICFS AGRICOI FR
MERIM=E_exact_scuivaence, tc_RCHME

EnTerm*agricultural building
MERIMZE_exact_ecuivaence, tc_ALT

EnTerm agricultural buildings
The okject is refarenced:
Az MERIMEE_BT kv the MERIMEEFIierarcI'lyTerms:

Termefr CELLIER

TermeFr CUVAGE

TermeFr'DEPENDANCE

i TermeFrFERME - [O] =]

bcin

rave vk S| E %

TermeFr EDIFICE AGRICOLE Ay

TermeFr ENTREPOT AGRICOLE ol
TormcFr'ETABLE

TermeFr FAISAHDERIE

TermeFrFEHIL 7

TermeFr FERME

Delones to: MIRIMLLClass™<architecture domestique=
MERIMEEClass ™ <architecture agricole>
MERIMEEDescriptor

comiments

=sCOpE rote

Edifice comprenant un logis et des dépendances

pum Fexpluilativn gy icule.

Propetties:

MERIMZE_BT
TermeFr'DEMBURE
TermeFr"EDIFICE AGRICOLE

MERIMZE_RT
TermeFr'FERMES

MERIM=E _exact_ecuivaence, tc_RCHME
EnTerm Tarmhouse ;
EnTerm*farm

MERIM=E _exact_ecuivdencs, tc_ALT
EnTerm Tarms ;

MFRIM=F _| IF
TermeFr <exploitation agricole>

The okject iz not referenced:

Terme(r TIRML
Term%m\mﬁf x|

\— right mouse opens an

Object Card

Figure 10 Object Card windows
Note: If a user tries to open an already opened object card the previous one closes and

the new one is built.

3.4 The web API to the TMS Server

The functionality of the LIMBER TMS Application Programming Interface (API) has
been detailed in deliverable D8.1. In this chapter we will present the functionality and
usage of the web API, i.e. the module that was developed in order to allow over-the-

web access (HTML) to the TMS.

3.4.1 Installation

The installation of the web API is performed by copying the directory called “web
API” from the CD to a directory of a web server. Since this may also require
adjustments on the web server’s directories, it is advised that only experienced

personnel performs the installation.

16

IST-1999-11748 LIMBER, 17/06/10 17/38

After copying the files to the web server, the configuration file called “config.txt”,
which resides in the web API directory, has to be edited. More specifically, the first
line of the configuration file has to include the IP address of the PC where th TMS is
installed.

3.5 Using the web API

The web API functions as a medium between the LIMBER client and the TMS. Each
time the client needs data from the TMS, it issues a request to the web API, passing
the parameters of the request in the URL.

The web API parses the parameters and issues a request to the TMS. This request is
issued using WINDOWS sockets (i.e. it is not over-the-web). As soon as the answer is
received, the web API translates the results to a web page (HTML format) and
forwards it to the client.

In the case of a command that alters the TMS base (i.e. deletion or addition of a term,
etc.), the returned HTML page contains the results of the command.

The following table presents the various commands that may be issued by the client to
the web API, as well as the parameters required.

Command Description Parameters

glst Returns a list of all the hierarchies None

trsl Returns the translation of a term to a number | Term, source language, list of target

of languages languages

hrch Returns the hierarchy tree of a term Term, source language, levels of the
tree

scpn Returns the scope note of a term Term, source language

star Returns a term’s relations (BT, NT, RT, etc.) Term, source language

newt Creates a new term Term, language, broader term

adlk Creates a new relation between two terms Term1, term2, source languages, type
of relation

renm Renames a term Term, language, new name

dnod Deletes a term Term, language

dlnk Deletes a relation between two terms Term1, term2, type of relation

The results returned from the web API are converted to graphics by the client and
then presented to the user. However, it is possible to view the HTML format of the
results by using a web browser.

For example, let us assume that the web API resides on the web address:
http://www.TMS.net/webAPl/webapi.exe. If we want to get the star view of the
English term “WAGES”, we would type the following URL on the browser:
http://www.TMS.net/webAPI/webapi.exe?star&term=W AGES &source=En.

The following page is returned:

9957/EARNINGS/UF

11087/PAY (WAGES)/UF
11288/REMUNERATION/UF
11312/REWARDS (WAGES)/UF
11322/SALARIES/UF
5068/AVERAGE EARNINGS/RT
8545/FEES/RT

8549/FRINGE BENEFITS/RT
5168/INCOME DISTRIBUTION/RT
3993/LABOUR (RESOURCE)/RT

17

IST-1999-11748 LIMBER, 17/06/10 18/38

3994/LABOUR ECONOMICS/RT
5243/WAGES POLICY/RT
4076/SALAIRES/LI
4193/SALARIOS/L3

All information about the term “WAGES” is included in this page, but it is not in a
graphical format.

18

IST-1999-11748 LIMBER, 17/06/10 19/38

The LIMBER Indexing Tool

4. Introduction

This chapter describes the design and implementation of the LIMBER indexing tool.
This section briefly summarises, then continues from the section 3 of D8.1 covering
the design of the LIMBER server tools.

This is a tool to generate keywords to be used to index metadata records. The tool is a
generic text categorisation tool.

The indexing tool is used by the metadata indexer after an initial metadata record has
been created for a new archive asset to produce keywords for it.

Collect Data Set
Data Provider

Submit Dataset to Archive

| Create Metadata Entry for Dataset | ‘ Metadata Indexer
| Query Metadata Entries |
Identify Datasets from Metadata
/ Data End User
Download Datasets
| Analyse Datasets Locally |

Make Decision on Basis of Data Analysis

Figure 1. Lifecycle of Data and Metadata for Data archives

The indexing tool is a stand alone tool in the LIMBER architecture, taking a file as
input and generating a file as output. The indexer requires to be trained on a training
set of pre-existing, records already marked up wwith keywords. The tool will select
the keywords for a new record on the basis of correlations with this training set.
Therefore the automatic indexing cannot use any keywords that have not been used
before.

To overcome this limitation, the tool allows the user to add extra keywords to a record
that are not produced automatically. As new records are generated, they can join the
training set, and be used to improve the indexing tool.

19

IST-1999-11748 LIMBER, 17/06/10 20/38

5. Architecture of the Indexer

The Indexer is not considered an end-user application, but is a separate application
that can be used by metadata indexers to use a thesaurus to generate keywords for
fields in the metadata entry for a data set. The consequence of providing this tool is to
de-skill the job of metadata indexers which is currently a bottleneck in the use of
metadata, and therefore cross domain data access. The following architecture is based
on the current indexing procedure use case in section 1.2.1 of the User Requirements
deliverable D1.

Metadata T™MS
Indexer I Thesaurus
End-User
i Interface

Indexing < > Thesaurus
Tool Management

Output
Metadata
File

Input
Metadata
File

Thesaurus
Candidate Ter
list

Figure 4. Architecture of the Indexing Tool

As it can be seen in Figure 4, the indexing tool takes as input and produces as output
the following:

Input

1. A machine readable XML DTD of the metadata file (or XML schema definition
or RDF schema definition as appropriate) — about 200 different fields that can
contain text, about 20 of these can contain keywords, but some (e.g. variables) can
be repeated many times in an actual metadata instance.

2. a machine-readable file containing a metadata representation in the DDI XML
(or XML schema, or RDF) format for metadata. It will contain the text entries for
fields in the natural language and fields to contain keywords. Such a metadata
entry may contain 500 fields from which key words can be extracted.

3. The user will also state the natural language.

20

IST-1999-11748 LIMBER, 17/06/10 21/38

Output

1. The output will be the input-2 metadata document for a dataset, with the
additional inclusion of keywords fields that is appropriate.

2. A machine readable file of a list of terms which are candidates for inclusion in a
thesaurus

The indexing tool should work via the thesaurus server to any particular thesaurus.

Additionally, having used the indexer tool to generate appropriate keywords for a
metadata entry, it would be desirable to present these results back to the indexing
subject expert for inspection. This should also allow the deletion of any keywords
from those suggested by the automatic indexer, and addition of any other appropriate
keywords from the thesaurus, or any other keywords which if not in the thesaurus
should be submitted as candidates for addition to the thesaurus. These changes would
then be fed back to the indexer tool as part of its learning cycle to improve its future
performance.

5.1 The General Machine Learning Approach

The machine learning approach uses a general inductive process to automatically
build a classifier for a category c; by observing the characteristics of a sample set of
documents which have been classified manually by a domain expert. The task of
building the classifier for all of C can then be seen m independent tasks. This method
has the advantage of concentrating the engineering effort on the development of
general methods for building the classifier, which can then be simply adapted to a
new domain of application, or the extension of an existing domain, without the
intervention of a knowledge engineer to construct the new rule set. The domain
expert is only required to provide a set of classified examples for the algorithm to
learn from.

Thus the machine learning approach requires the provision of an initial corpus of
documents D, already categorised with the same categories C. This initial corpus is

typically further subdivided into two:

® A training set T, - the set of example documents used to construct the
classifier.

e AtestsetT, - the set of example documents used to evaluate the
effectiveness of the classifier.

Clearly, for a sensible evaluation of the effectiveness of the classifier, there has to be

a balance between the two sets, and also a good coverage of the categories in the
corpus.

21

IST-1999-11748 LIMBER, 17/06/10 22/38

The machine learning approach to classification relies heavily on the techniques of the
related field of Information Retrieval, which is the study of how information on a
desired topic can be found from within a large corpus of (unstructured or semi-
structured) documents.

Once the classifier has been constructed then there should be an evaluation phase to
make an assessment of the effectiveness of the classifier, using the test set 7,.

Classifier
constructor

Training
document
set

Classifier
evaluation

Test
document
set

0) == [

document Classified
document

Figure 5: The Machine Learning approach to classification
The automatic classification tool for DDI-XML documents will undertake the
following phases: pre-processing, indexing, classifier construction, classifier
evaluation. Each of these is briefly addressed below.

5.2 Reading and preprocessing the document.

Step 1 is to read the set of training documents. This should be done as one batch job
as the construction of the classifier typically is across all the training set at once.

22

IST-1999-11748 LIMBER, 17/06/10 23/38

Whilst reading in the document (whether training, test or production example), it
would be desirable to do some processing on the document as follows.

5.2.1 Flattening the structure of the metadata record.
The metadata records are XML documents marked up according to the DDI. The XML structure
(tags, tag names and attributes) should be stripped from the document, leaving a stream of text for
the classifier to work upon.

5.2.2 Removing stop words.

Having reduced the metadata record to a stream of characters, we want to

reduce it further by removing stop characters, dividing into a sequence of

words and removing stop words.

- Remove white space and punctuation to divide character stream into
words.

- Remove numeric and partial numeric “words”.
Issue: the date of the study is a keyword; this could be added by a separate
analysis.

- Remove “stop” words — that is commonly occurring words, such as “the”
“and”, “then”, which are not domain specific.
Issue: gaining access to and recognising stop words in other languages
(German, French, Spanish).

- Standardising on case.

5.2.3 Stemming (optional).
If possible, we could reduce the number of words, and record them as
occurring more often via stemming, that is reducing grammatical variants of
the same word to their root. E.g. educate, educates, educating, educated all
reduce to the root word, educate.
Issue: obtaining access to stemming algorithms. Stemming algorithms are
freely available in English (e.g. the Porter algorithm[Porter]); language
specific searches may well turn up stemmers in other target languages.
Issue: there is some question in the literature whether stemming adds any
better performance to categorisation methods. It is proposed that the utility of
stemming is tested in the evaluation.

5.3 Indexing the document

The classifier cannot directly handle the documents, but first processes them into a
more efficient internal representation; this process is known as indexing (somewhat
confusingly as in this project we have been using the term indexing to refer to the
whole classification process!). The indexing, which is applied to training documents,
test documents and additional documents in the use of the classifier

The internal representation of documents most commonly used is a vector of weights:

dj =< Wy Wiy > (D).

23

IST-1999-11748 LIMBER, 17/06/10 24/38

Where T is the number of terms (typically, but not always, words') that occur at least
once in the training set, and wy; is the weight of term ; in document dj, roughly

speaking capturing how much the term #; contributes to the document.

The weights w;; are typically set to fall between 0 and 1, and most commonly set
using (a variant of) the #fidf indexing function” from IR, defined as:

[T |
fidf 1.d,) #(t,.d,) log =1 @.
1, bk

where #(1, , dj) is the number of times term #; occurs in document dj (term
frequency) and #Tr(tk) is the number of documents in the training set 7, the term f;

occurs in (document frequency). This captures the notion that a term is more
significant if it occurs many times in a document, but is less discriminating if it is
frequently occurring throughout the training set.

This function is then usually normalised so that it the weight of the term in the
document lies between 0 and 1:

tfidf (¢, .d ;)).
Wiy = 7! :
\/Zs:l (tfidf(ts’dj))2

This means that documents of varying length are treated equally.

5.3.1 Term Reduction

A problem with classification algorithms reported in the literature is that the large
number of terms 7 which need to be considered. In typical applications the size of T
is very large and this causes problems in scaling the classification construction
algorithm. Also, too many terms may lead to a problem of overfitting where
contingent properties are used for classification purposes. For example, give then
training examples of “yellow Porsche”, “yellow Ford” and “yellow Renault” all
leading to a classification under “CAR” may lead the example “yellow banana” to be
classified under “CAR” because of the contingent term “yellow”. Consequently, most
classification methods recommend reducing the number of terms to a smaller set 7" of

the most relevant terms, where |7’ << IT |.

Many methods have been proposed for term reduction, including sophisticated
statistical, probabilistic and information theoretic techniques. Also, term clustering
and semantic indexing techniques attempt to synthesize an alternative term sets to

! Alternatively terms could be phrases from the document, or other semantic units found in the
document. The literature reports that more sophisticated terms may not always have a beneficial affect,
probably because as the term’s complexity increases, its occurrence in documents is likely to decrease.
* Term frequency — inverse document frequency function. There are many variants on this function in
the literature.

24

IST-1999-11748 LIMBER, 17/06/10 25138

index against by analysing the document set to extract phrases, or semantically
meaningful units.

For the purposes of the Limber project, we propose that trials should be undertaken to
determine whether term reduction will be needed, and if so, we propose that the
simplest possible approach is taken, that of document frequency. This is simply to
take into account those terms which occur more than some threshold (typically 2, 3, or
4) number of times in the training set. While simple, and somewhat counter-intuitive
(infrequently occurring terms can be highly indicative of a particular category) the
literature reports that this method is nevertheless highly effective (though perhaps not
as effective as other, computationally and conceptually more complex techniques).

5.4 Constructing a classifier

Two approaches to constructing a classifier have been included in the tool: the Knn
and Bayesian methods.

5.4.1 Probabilistic or Bayesian Methods

Probabilistic methods usually attempt to estimate the probability that a given

P(c))PWd, ¢,
P(d,)
document (vector) falls within a particular category c;. These are usually based on the

well known Bayes’ theorem. These methods usually are usually naive since they
make the assumption that the terms in the documents are independent, so the
simplifying equation can be established as follows:

P(c,1d,)=

P 1c,)=]]Pw,c)

The methods discussed in the literature hinge on the various ways in which the values
of the probabilities can be estimated from the training set.

5.4.2 kth Nearest Neighbour

The kth Nearest Neighbour (kNN) method is a lazy-learner. It does not explicitly
build a classifier, but rather maintains a representation of the training document set
and when it comes to classify a new document it dynamically compares the new
document d; with the training set and makes a judgement as to which training
documents it has seen before are most similar. For some number k& which has to be
decided by experiment, the kK most similar documents are chosen. If the number of
these k documents which are classified under classification ¢, exceeds a threshold,
also empirically chosen, then the new document can be classified under c.

25

IST-1999-11748 LIMBER, 17/06/10 26/38

Formally, classifying a document d; under the category c; using the kNN method
requires computing:

> RSV d;.d,) o, .c,)

d.eTr;(d;)
where RSV is a measure function of the similarity of two documents, such as
d

RSV (dj,dz):‘df‘Tz
J|7 z

where d; vdj is the dot product of the vectors, Id;| the norm (length) of the vector, and

. 1 if d is categorised under c,
dd,,c;)=

0 if d is not categorised under c,

The kNN method is considered in the literature to be a good performer, lacking some
of the problems that linear classifiers have. However, it is more expensive in terms of
data, as the vector representation of the training set has to be maintained, and
computationally more expensive, as the whole training set has to be tested against the
new document. This problem of complexity can be overcome in part by clustering
the training examples, building a linear classifier for each cluster, and then using
those representative examples to decide the classification. While having good results,
this requires the added complexity of a clustering algorithm.

5.4.3 Profiling the input files

In conventional text classification a complete input file would be used to build the
classified, and a the complete file would have keywords associated with it. In the
example of the metadata records used in LIMBER this is not the case, and only
selected fields in the input require to be indexed, and only a range of fields in the
metadata record should be used to construct the classifier. In effect, individual fields
will be treated as though they were separate documents for conventional
classification.

It is necessary to state which parts of an input file should be used to construct the
classifier, and which to be classified. The solution chosen is to define a profile which
operates over the input documents defining these. The profile should be written in one
of the XML languages in order to maintain consistent minimal code implementation.
The language chosen for this is XSLT since this itself will allow a standard processor
to transform the input files.

An example XSLT profile for the DDI DTD is shown below:

<?xml version="1.0"7>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:preserve-space elements="*"/>
<xsl:output indent="yes"/>

26

IST-1999-11748 LIMBER, 17/06/10 27138

<xsl:template match="codeBook">

<!-- N.B. the format of the transformed output XML *must* be flat.
i.e. no nested tags. -->

<sourceDtd
src="http://www.icpsr.umich.edu/DDI/CODEBOOK.TXT"/>
<indexAtomicity type="whole" />
<targetElement elem="stdyDscr/stdyInfo/subject/keyword" />
<!-- TODO eliminate the duplication of this string from above -
->
<xsl:apply-templates select="stdyDscr/stdyInfo/subject/keyword"
mode="keyword"/>
<useElement>
<!-- These select attributes specify the XPaths of the nodes to
be parsed for textual data. -->
<!-- by default, all enclosed tags are also parsed (unless
specified in the below sections).-->
<!-- Those nodes whose children are also parsed are
commented as 'wildcarded' for clarity. -->
<!-- Paths without leading slashes are specified relative to
/codeBook, and those witha -->
<!-- leading // can be found anywhere in the codeBook. The
latter should be avoided, as it -->
<!-- encurs a serious performance hit - crossreferencing with
the codeBook DTD should for -->
<!-- instance show that "//varGrp/labl" would be better written
as "dataDscr/varGrp/label". -->

<xsl:apply-templates select="stdyDscr/citation/titlStmt"/>
<!-- wildcarded -->
<xsl:apply-templates select="stdyDscr/citation/serStmt"/>
<!-- wildcarded -->
<xsl:apply-templates select="stdyDscr/citation/bibICit"/>
<xsl:apply-templates select="//abstract"/>
<xsl:apply-templates
select="stdyDscr/stdyInfo/sumDscr/universe"/>
<xsl:apply-templates select="//nation" />
<xsl:apply-templates select="stdyDscr/othrStdyMat/reIlMat"/>
<xsl:apply-templates
select="stdyDscr/othrStdyMat/re]lMat/citation/titIStmt"/> <!-- wildcarded -->
<xsl:apply-templates
select="stdyDscr/othrStdyMat/re]lMat/citation/serStmt"/> <!-- wildcarded -->
<xsl:apply-templates
select="stdyDscr/othrStdyMat/re]lMat/citation/bibICit"/> <!-- wildcarded -->
<xsl:apply-templates select="//varGrp/labl"/>
<xsl:apply-templates select="//varGrp/txt"/>
<xsl:apply-templates select="//var/labl"/>
<xsl:apply-templates select="//var/qstn/preQTxt"/>

27

IST-1999-11748 LIMBER, 17/06/10 28/38

<xsl:apply-templates select="//var/gstn/qstnLit"/>
<xsl:apply-templates select="//var/gstn/postQTxt"/>
<xsl:apply-templates select="//var/catgryGrp/labl"/>
<xsl:apply-templates select="//var/catgryGrp/txt"/>
<xsl:apply-templates select="//var/catgry/labl"/>
<xsl:apply-templates select="//var/catgry/txt"/>
<xsl:apply-templates select="//var/concept"/>
<xsl:apply-templates select="otherMat/citation/titIStmt"/>
<!-- wildcarded -->
<xsl:apply-templates select="otherMat/citation/serStmt"/>
<!-- wildcarded -->
<xsl:apply-templates select="otherMat/citation/biblCit"/>
<!-- wildcarded -->
</useElement>
<xsl:apply-templates select="stdyDscr/citation/prodStmt/prodDate"
mode="mEK"/>
<xsl:apply-templates
select="stdyDscr/citation/prodStmt/prodDate[@date]" mode="mEKdate"/>
<xsl:apply-templates select="//nation" mode="mEK"/>
<xsl:apply-templates select="//geogCover" mode="mEK"/>
</xsl:template>

<!-- Here, the match attribute list the possible XPaths of the nodes whose
children must not be parsed. -->

<!-- Fully qualified paths (e.g. stdyDscr/citation/biblCit) can be used to
remove ambiguity - although -->

<!-- omitting the full path also can be used as a form of wildcarding. Each
section has to have its own -->

<!-- unique "mode" identifier - set in the mode attribute of the appropriate
xsl:apply-templates and -->

<!-- xsl:template tags.

->

<xsl:template
match="stdyDscr/citation/biblCitlabstractluniversemationlrelMatllablltxtlpreQTxtlgstn
LitlpostQTxtlconcept">
<xsl:value-of select="text()"/>.
</xsl:template>

<!-- and a second similar section for the <makeElementKeyword> nodes -->

<xsl:template match="prodDatelnationlgeogCover" mode="mEK">
<makeElementKeyword>
<xsl:value-of select="text()"/>
</makeElementKeyword>
</xsl:template>

<!-- and finally a special case template for extracting the 'date" attribute from
<prodDate> tags -->

28

IST-1999-11748 LIMBER, 17/06/10

<xsl:template match="prodDate" mode="mEKdate">
<makeElementKeyword>
<xsl:value-of select="@date"/>
</makeElementKeyword>
</xsl:template>

29/38

<!-- the template for keyword tags already present in the source document -->

<xsl:template match="*" mode="keyword">
<keyword>
<xsl:value-of select="text()"/>
</keyword>
</xsl:template>

</xsl:stylesheet>

5.5 Classifier Evaluation

Once a classifier has been constructed it should be evaluated against the test set 7, to

measure its effectiveness as a classifier against the classifications given to the test set
by the human expert. Once the evaluation phase has been carried out, the parameters

of the classification algorithm can be adjusted to generate a new classifier for
evaluation. Thus by this iteration, an improved classifier can be developed.

The standard measures of effectiveness for text classification system are precision and

recall.

precision: if a document d is classified under category ¢, then this decision is

correct,

recall: if a document should be classified under category c, then this decision

is made.

To make an estimate of these values, we test the classifier against the test set 7, and
record:

- FP;— the false positives for category c; ,

- TP;— the true positives for category c; ,

- FN;— the false negatives for category c; , and

- TN, — the true negatives for category c; .
Then precision and recall for category c; can be estimated as:

R TP,
#=——
TP, + FP,
. TP,
& TP, + FN,

These can then be either microaveraged across all categories (summing over all
individual decisions and then calculating precision and recall) , or macroaveraged

29

IST-1999-11748 LIMBER, 17/06/10 30/38

(calculating the precision and recall for each category and then averaging those
results.

Some trade-off between them — depends what you want to do! Is a low level of FN
more important than a low number of FP? Trade off between missing relevant
records and swamping
- short documents (e.g. questions) — may want a higher recall (i.e. false
positives more acceptable) and lower precision
- when searching for whole metadata records, then higher precision may be
preferable at the expense of recall: some entries may be missed so that the
user is not swamped with results.
Again, evaluations on these measures vary and are subject to empirical testing.

5.6 Multilingual Indexing

In principle, both the indexing algorithm and particular methods can be used for
classification over any language. Thus the same machine learning tool should be
applicable to any set of metadata records.

Two components which are needed to support the algorithm in other languages:

Stop word lists (essential).
Stemming algorithms (desirable but not vital)

It is suggested that a Web search (probably in the appropriate language) may well
uncover suitable candidates for both of these.

A more complex problem is the need for a set of pre-classified records for training
and testing. Without such a set the machine learning method will not be able to be
trained. This would require a set of experts in the appropriate language to provide
keywords for records in the suitable language using the appropriate language version
of ELSST. This is a time consuming and expert task.

However, the task may be made easier as it observed that there are a significant
number of studies in common across archives. If these have been indexed in one
language, then it is reasonable to take that set of indexing terms, suitably translated,
into the other language’s record. This could provide an initial set of indexed
documents to start the training process off in the second language. However, case
should be taken that this training set is sufficiently large to be useful, and the results
are carefully monitored by language experts.

6. Using the Indexing Tool

6.1 Task Scenarios

From the user’s perspective two goals exist for which scenarios are described:
creating a classifier, and classifying a metadata record with that classifier.

Additionally, a variety of options are also available for the indexing tool. These are
described in the next three sections.

30

IST-1999-11748 LIMBER, 17/06/10 31/38

6.1.1 Creating a classifier

The goal of creating a classifier is broken down into 7 interaction dialogue steps
between user and system:

Goal - Create a new classifier
File/New Classifier
Dialogue Box - options
Create Button
Dialogue Box - report number of keywords, testset options
Test Button
Dialogue Box - report precision and recall statistics.

Selecting Menu File/New Classifier brings up a dialogue box shown below.

File Edit Classifier Options WWindow Help
DN BE 2B

Hil Create Classifier

=101 x|

MName [Untitied Classifier

WL Profile to be used to parse metadata records
for uze with thiz classifier

|g:Ilimhercndefprnﬂle.xml Browse

Directory containing metadata records to be
used to constract the training set

|g:IIimhercndeidatal‘training Browrse

Stopword list to be used with this classifier

|g:f|imbercnde!stupwnrds.bft Browse

[+ Perform Stemming Term reduction; |1_

This requires the user to enter the locations of three files:

XML profile — a script written in XSL defining which parts of the XML document should be used to
construct indexes, and which parts should have keywords attached to them.

Directory of Metadata Records — the directory where all the records in the training set are to be found
in separate files.

Stopword List — the file to be used as a list of stopwords not to be used in the classification.
Options include:

Perform Stemming — whether words should be stemmed or not.

31

IST-1999-11748 LIMBER, 17/06/10 32/38

Term Reduction: The distance to be used for reducing terms.
Lastly the new classifier will require a name to be used later to call it.
When these items are completed, the user will select create button to create the classifier.

The classifier creation can take 30 minutes to an hour depending on how many files are stored in the
directory of metadata records.

When the classifier has been constructed a classifier report dialogue box appears — shown below.

Hil Limber Indexer M=l E3
File Edit Classifier Options YWindow Help

B % B & BB

=] GILimberCode\datatesttestfile_85.xml 1 [=] E3
<codeBook> =
<docDhacrs Bl TrainingSetkNN1.Ics - Classifier
<ritations=
CritlStmes Marne: |Samp|e kMM Classifer for Smmall Training Set
, fti;DXI{L codeBook for ~Training Set
</titlitmes
<prodstnts Documents |?1 Term R eduction |1 ¥ Stemming
<prodbate date="2001-C | pigorete keywords (1480 Discrete Terms |253
=/proditnts
</citation Profile Filename |g:IIimbercodeIproﬂIe.xml
= /daoch -l "
/docbscr Stopword List |g:Illmbercodeistopwords.bd
<stdyDscr
<citations
<titl¥tmts Madel: [kth Nearest Neighbour |~ |
<titl>Central and East =Y,
1992</titls .
<IDMo agency="THDA">37 k {number of neighbours) |? threshold {d) |3
</titlitmts
<rapitmels
<huthEnty=Reif, K./ Ac o ;
<AuthEnty=Curmingham, Test Classifier |
<othId role="Research s
</rapitnts
=proditmts
<fundicg-Connission of the European Communities</funddos
=/proditnts
<distitmes
<distrbtr abbr="UEDA" affiliation="Tniwversity of Essex, Wivenhoe Park, Colchester, Essex,
England, CO04 350">The Data Archive</distrbtr>
<depositr=Zentralarchiv fuer Empirische Sozialforschung (Koeln)</depositrl

The next step is to test the classifier, by selecting the test classifier button.

This produces a simple report of the performance of the classifier.

6.1.2 Classifying a metadata record

The goal of classifying a metadata record is broken down into 8 interaction dialogue
steps between user and system:

Goal - Classify a document
File/ New Document

dialogue box - Browse, write filename, Open button
Classifier/Name - select the classifier

32

IST-1999-11748 LIMBER, 17/06/10 33/38

dialogue box - set k & n

button - Classify document

classified metadata report - Edit/ Add, Delete, Copy
File/Save document

Firstly the document must be opened with the menu item File/ New Document which
results in the file being presented as shown below:

il Limber Indexer M=l E3
File Edit Classifier Options YWindow Help

Bl 0 B & = @[

=] GILimberCode\datatesttestfile_85.xml 1 [=] E3

<codeBook>
<docDscr>
<citations
<ritlitmrs
<titlz=¥ML codeBook for SN:3777</titl=
</titl3tmes
<proditmts
<prodiate date="2001-02-23">23 February 2001 </prodbhate
</prod3tnts
< oitations
</docDhscr>
<stdyDscr
<citations=
<rtitlitme-
=titlxCentral and Eastern Eurcbarowmeter 3 : Political Disintegration, October-Nowember,
1992/ titls
=<IDMNo agency="UEDA"=3777< /IDNox
</titl3tmes
Srapitmitl
<huthEnty=Reif, K.</duthEntys
<huthEnty=Cunningham, G.</duthEntys
<othId role="Research Initiator"s<p>Commission of the European Communities</pek</othIds
=/rapitnts
“proditmt=
<fundig-Commission of the European Communities</fundides
=/proditnts
<distitmes
<distrbtr abbr="TKDA" affiliation="Tniwversity of Essex, Wiwenhoe Park, Colchester, Essex,
England, CO4 3307">The Data Archiwve</distrbtrs
=depozitr=Zentralarchiv fuer Empirizche Sozialforschung (Koeln)</depositre

33

IST-1999-11748 LIMBER, 17/06/10 34/38

In order to load a classifier, the classifier should be selection with the command:
Classifier/Name

This produces a simple dialogue box stating the classifier to be used — the same
dialogue box used when a classifier is produced. Peramtiers such as k & n can be set
here before the Classify Document button is selected to classify the current document
as shown below.

Hil Limber Indexer M=l E3
File Edit Classifier Options YWindow Help
B0 B & 2 &
=] GILimberCode\datatesttestfile_85.xml 1 [=] E3
<codeBook> =
<docDhacrs Bl TrainingSetkNN1.Ics - Classifier
<ritations=
CritlStmes Mame: |Samp|e kMM Classifer for Small Training Set
, fti;DXI{L codeBook for ~Training Set
</titlitmes
<prodstnts Documents |?1 Term R eduction |1 ¥ Stemming
<prodbate date="2001-C | pigorete keywords (1480 Discrete Terms |253
=/proditnts
</citation Profile Filename |g:IIimbercodeIproﬂIe.xml
</dochscr> Stopword List |g:Ilimbercodeistopwords.bd
<stdyDscr
<citations
<titl¥tmts Madel: [kth Nearest Neighbour |~ |
<titl>Central and East =Y,
1992</titls .
<IDMo agency="THDA">37 k {number of neighbours) |? threshold {d) |3
</titlitmts
<rapitmels
<huthEnty=Reif, K./ Ac o
<AuthEnty=Curmingham, Test Classifier | : i
<othId role="Research s
</rapitnts
=proditmts
<fundicg-Connission of the European Communities</funddos
=/proditnts
<distitmes
<distrbtr abbr="UEDA" affiliation="Tniwversity of Essex, Wivenhoe Park, Colchester, Essex,
England, CO04 350">The Data Archive</distrbtr>
<depositr=Zentralarchiv fuer Empirische Sozialforschung (Koeln)</depositrl

34

IST-1999-11748 LIMBER, 17/06/10

Once the classification has been completed, the tool reports the classification made

for this document, as shown below.

il Limber Indexer

File Edit Classifier Optiohs Window Help

Blw s @[~ & =B
E GiLimberCodewatatesttestfile_85.xml
Wiwvenhoe Park, Colchester, Essex, ;I

England, C04 330"=The Data
Archive</distrbtr> J

<depositr=Zentralarchiv fuer
Empirische 3ozialforschung
(Koeln)</depositrx
<depDate
date="1997-09-29"=29 September
1997 </deplate>
<disthate
date="1897-11-03">3 November 19397
</distlate>
<fdiatitmts
<aerStut>
<serlane> (Central and
Eastern Eurcbarometer Survey
Series)</serNamex

<fFeritnt:
/{l&tium
<stdyInfo>
/ <subject>
Input
. <Heyword-1992< /keyword>
flle <keyuord=AGE< /Eeyword:

<keyword>ALBANIA< /keywords
<keyword: ARMENTAL MR eyumord:
<keymord-BULGARTA /keyuord>
<keyword>BYELARUS /keyuor ds

<keyword-CENTRAL AND
EASTERN EUROPE</keyword:

35/38
Metadata
editor’s
selections

o] /

CIE1=]
Original | Classified | Final
1882 7883 1802 A
AGE ABE AGE
ALBANIA ALBANIA ALBANIA
ARMENIA ARMENIA, ARMENIA
BROADCASTING
BULGARIA BULGARIA BULGARIA
BYELARUS BYELARUS BYELARLS
CENTRAL AND EASTERN EUROPE CENTRAL AND EASTERN EUROPE
CENTRAL GOVERNMENT CENTRAL GOVERNMENT
CHILDREN
CITIZENSHIP CITIZENSHIP
CIVIL AND POLITICAL RIGHTS CIWIL AND POLITICAL RIGHTS
CIVIL SERVANTS CIWIL SERVANTS
COLOUR TELEVISION I~
CRIME CRIME
CULTURAL 300D CULTURAL G0O0ODS
CULTURALLY DISACVANTAGED CULTURALLY DISADYANTAGED
CURRENCIES
CZECH REPUBLIC CZECH REPUBLIC CZECH REPUBLIC
DEFENCE DEFENCE DEFENCE
DEMOCRAGY DEMOCRACY DEMOCRACY

DICTATORSHIP
ECOMOMIC AGREEMENTS
ECOMNOMIC AID

EDUCATIONAL BACKGROUND
EDUCATIONAL INSTITUTIONS
EDUCATIONAL LEVELS

EDUCATIONAL BYSTEMS
ClErTinn

DEVELOPING COUNTRIES DEVELOPING COUNTRIE
DICTATORSHIP
ECONOMIC AGREEMEMT!

ECONOMIC AID

ECONOMIC ARD SOCIAL DEVELOP
ECONOMIC CONDITIONS
EDUCATIOMNAL BACKGROUND

ECONOMIC CONDITIONS

CONOMIC RECESEION
QNOMIC SYSTEMS

EDONCATIONAL BACKGROUND

EDUSETIONAL INSTITUTI
EDUCAIOMNAL LEVELS
EDUCATIMAL SYSTEMS

= Fhic CoTInn

=]

S

ONS

/

T ——
Qcmwm Final | Refresh | Delete |) \
4 N\

/

Any previous
classifications

EJditing Controls

Terms selected for
classification

In this display the different colours of text represent:

Blue: keywords found in the original input document

Purple: keywords proposed by the indexing tool based on the model

Green: keywords added by rules (place and people names).

This stage allows the human editor to use their skill to override the suggestions of the
tool, or to add to them. This shows that the process is not an automatic, but an assisted

indexing of the document.

The human editor can now use the editing controls at the bottom of the panel to move
the terms which are judged to be appropriate into the left hand, final, column; or add
new terms into this column that were not suggested by the classifier.

35

IST-1999-11748 LIMBER, 17/06/10 36/38

6.1.3 Indexing Tool Options

6.1.3.1 Look and Feel Options
The top level Options menu allows the selection of the L.ook and Feel of the window
system to be used for the Indexing Tool. This calls the standard Java Singset2
function to set the look and feel as one of Java, Motif, MS-Windows or Mackintosh.
The last two are only available on the appropriate windowing system.

nber Indexer . oy] |

File Edit. Classifier Window Help
Ble 0 B v

B c:Documents and 9

Metal er'index tooltestitestfile_100.xmi ™ =13

<codeBooks Origing “DEMOtit Classifiad Final
<docDscr> 1998 ® YWindows |
ADMINISTRATIVE AREAS [*1850
<oitations AGE 1004
Al COHOH G NRIMKES *1 Q4R

The purpose of this option is to allow users to set the look and feel to be one that they
are accustomed to; that is as compatible with other tools as possible, and as consistent
with their previous experience as possible to reduce planning errors and execution
slips when using the tool’s user interface.

The two screen images below show the classification dialogue box, and the main
window using two different look and feel settings to illustrate the changes set by the
option.

LI - D= | =18l
Fle_Edt_Classifer_Options Help Fle Et Clssiler Opfions Window Help
B 5| 8
| 0 B & @y
El
. GiLimberCodelataitesttestile_85.xml & E

<docbace>
Name: [Sample KN Claster for Smal Traning Set
<eitation
B % Training <critlsue Name [Uniiled Classifed
4 Documents. 71 TermReduction i ¥ Stemming <titl>XHL codeBook for SH:3777</titls
v
ace="2001-0, | pisrete Keywards [TE55" Discete Tomme. 655 </einiste XML Profile to be used to parse metadata records
EEEBIETTED SRR <prodstucs for use with this classifier
Profile Flename [pimbercoderprafiexm <prodDate date="2001-02-23">23 February 2001 <
Ptmm— o imbe rcoderofie i Browse
Stopword st fpAimbercoderstopwords i1
</d‘/ rrenon Directory containing metadata records to be
Model: [Nearest Neighbour Cocaypecns used to construct the iraining sel
. i>Centrel nd Eesq <eitation [imbe rcodedatartaining Browse
seistue
parsa; | K(umber of neighbours) [7 threshold (a) [3 e
= TURDA"537 <ritl>Central and Esstern Eurcbarometer 3 : Po Siopword lst o be sed wilh this classifier
1982¢/E1t1> e ==
<IDNo agency="UKDA">3777</IDNo> lwimbercodeistopwords st ||| Browse
Test st | [udns perormStomning Tonm ruction: 1]
L <rspsmme
<AuthERtpReit, K.</AuthEnty
<huthEnty> Cunninghan, G.</AuthEntys [[@ |
of the Buropean o <0thId role="Ressarch Initiator">cp>Comnission
</eapsaes
<prodsacs
ty of Easex, Vivenhoe Park, Colchester, Essex, of the European s
</proaseac>

Sozialforschung (Roeln)</deposite>

6.1.3.2 Localisation Options
The menus and dialogue boxes have been designed to be internationalised using the

string budling options in Java. Localisation options are available on the menu to set
the language, number display, currency etc.. to one compatible with the end user.

36

IST-1999-11748 LIMBER, 17/06/10 37/38

il Limber Indexer ' o] 4
File Edit. Classifier geldillyl Window Help

)#8 ‘ = @g | e Language k English
Look & Feel ¥ French

E c:Documents and S

her'lindeg-: tll].l_JI'E(B“S'l'E(B_Stﬁ_IET1 I]I].:-;_n.lll

<oodeBooks Qrigina S Classified Final
<docDscr: 19598 Serrman § |
‘ ADMIMISTRATIVE AREAS 1850 |
Lt AE 1 ana

New localisation files can be added for novel languages/cultures as required.
6.1.3.3 Help
The help menu item on the main window provides four options:

1) About box stating copyright information

2) Pointer to the LIMBER project pages on the web for any latest information

3) A tutorial on using the Indexing tool — effectively the two preceeding sections of
this document.

4) A reference document to the tool — effectively this section on LIMBER in this

document.
il Limber Indexer =10 =]
File Edit. Classifier Options ‘Window Bl
EG) ‘ = BBl « ¥ i | Bf] Tutorial
B c:Documents and Settingsmdw? 3y B oltestitestfile_100.xml
<codeBook> Original _ LIMBER ontheweh |4 Final
<docDscrs 1698 Ahaut «|
ADMINISTRATIVE AREAS sl
Lritations AGE 1994
ALCOHOLIC DRINKS *1 Q595
AR AT OTMERTS =1 898

6.2 Installation and Use of the Indexing Tool
The indexing tool is distributed as a Java Archive, in a Zip archive file.

The Java Archive should be unzipped into a directory. The dependency is on the Java
API for XML parsing. This archive is included in many distributions of Java, but if
not it can be obtained from: http://java.sun.com/xml/jaxp/index.html and included in
the lib/ext directory of your JDK installation.

Double clicking on the archive will activate the programme.

6.3 Conclusion and Future Work for the Indexing Tool

37

IST-1999-11748 LIMBER, 17/06/10 38/38

The indexing tool currently does allow documents to be indexed but it requires
considerable use before we can be confident about guidance on the values to use for K
& N, and for the term reduction values.

Stop lists are provided in several languages (English, French, Spanish, German) but
stemming algorithm is only included for English. Language simplification
mechanisms for other languages should be included.

In theory the indexing tool can be used to index across languages given a common set
of pre-marked up metadata files for the learning phase. This option needs further
investigation and practical use before it can be applied by real users.

References.

Kjersti Aas, and Line Eikvil, Text categorisation - A survey NR report no. 941
ISBN: 82-539-0425-8 June, 1999,
http://www.nr.no/research/samba/tm_survey.ps

C. Peters, (Ed.) Cross-Language Information Retrieval and Evaluation, LNCS 2069,
Berlin:Springer, 2001.

M.F.Porter. An algorithm for suffix stripping, Program, 14 no. 3, pp 130-137, July
1980. http://www.omsee.com/developer/docs/porterstem.html

Fabrizio Sebastiani, A Tutorial on Automated Text Categorisation. In Analia
Amandi and Alejandro Zunino (eds.), Proceedings of ASAI-99, st
Argentinian Symposium on Artificial Intelligence, Buenos Aires, AR, pp. 7-
35, 1999

Fabrizio Sebastiani Machine Learning in Automated Text Categorisation. Revised
version of Technical Report IEI-B4-31-1999, Istituto di Elaborazione
dell'Informazione, Consiglio Nazionale delle Ricerche, Pisa, IT, 2001.
http://faure.iei.pi.cnr.it/~fabrizio/Publications/ ACMCS01/ACMCSO01.pdf
Submitted for publication to ACM Computing Surveys.

Y. Yang, An Evaluation of Statistical Approaches to Text Categorization,
Technical Report CMU-CS-97-127, Computer Science Department, Carnegie
Mellon University, 1997.

38

