
IST-1999-11748 LIMBER, 17/06/10 1/38

 1

Project ref. no. IST-1999-11748

Project acronym LIMBER

Project full title Language Independent Metadata Browsing of European

Resources

Security (distribution level) Public (report) – Internal (Demonstrator)

Contractual date of delivery M19 July 2001

Actual date of delivery 25 November 2001

Deliverable number D-8.2

Deliverable name LIMBER Server Tools

Type Report & Demonstrator

Status & version
Final

Number of pages 38

WP contributing to the

deliverable

WP8

WP / Task responsible Intrasoft International

Other contributors CLRC

Author(s) Nikos Giannelos, Michael Wilson

EC Project Officer Mr. Kimmo Rossi

Keywords Cross-language information retrieval, multilingual thesaurus,

Thesaurus Management System, TMS, Text Classification

Abstract (for dissemination)
The overall LIMBER system enables multilingual data retrieval

through a data access system by providing a Thesaurus Management

System (TMS) as a basis for translation and searching over a set of

metadata. The first part of this report describes the server side of the

TMS. This is a development from the report in deliverable D8.1

which included the specification and design details.The second part

of this report includes a description of a tool to add keywords from a

thesaurus to the metadata records to promote both mono-lingual and

multi-lingual retrieval of the metadata records, and subsequently the

data itself.

IST-1999-11748 LIMBER, 17/06/10 2/38

 2

1. Contents

1. CONTENTS 2

2. EXECUTIVE SUMMARY 4

3. THE LIMBER THESAURUS MANAGEMENT SYSTEM SERVER. 5

3.1 Introduction 5

3.2 Installation 5

3.3 Using the LIMBER TMS Server – GAIN 5
3.3.1 General Description 5

3.3.2 Queries 8

3.3.3 Tree Views menu 8

3.3.4 Queries menu 10

3.3.5 Retrieval menu 11

3.3.6 Query Result Presentation 12

3.3.7 Column Textual Display 12

3.3.8 Hierarchical Report Display 13

3.3.9 Tree Display 14

3.3.10 Star View 15

3.3.11 Object Card 16

3.4 The web API to the TMS Server 16
3.4.1 Installation 16

3.5 Using the web API 17

THE LIMBER INDEXING TOOL 19

4. INTRODUCTION 19

5. ARCHITECTURE OF THE INDEXER 20

5.1 The General Machine Learning Approach 21

5.2 Reading and preprocessing the document. 22

5.2.1 Flattening the structure of the metadata record. 23

5.2.2 Removing stop words. 23

5.2.3 Stemming (optional). 23

5.3 Indexing the document 23
5.3.1 Term Reduction 24

5.4 Constructing a classifier 25
5.4.1 Probabilistic or Bayesian Methods 25

5.4.2 kth Nearest Neighbour 25

5.4.3 Profiling the input files 26

5.5 Classifier Evaluation 29

IST-1999-11748 LIMBER, 17/06/10 3/38

 3

5.6 Multilingual Indexing 30

6. USING THE INDEXING TOOL 30

6.1 Task Scenarios 30
6.1.1 Creating a classifier 31

6.1.2 Classifying a metadata record 32

6.1.3 Indexing Tool Options 36

6.2 Installation and Use of the Indexing Tool 37

6.3 Conclusion and Future Work for the Indexing Tool 37

REFERENCES. 38

IST-1999-11748 LIMBER, 17/06/10 4/38

 4

2. Executive Summary

The overall LIMBER system enables multilingual data retrieval through a data access

system by providing a Thesaurus Management System (TMS) as a basis for

translation and searching over a set of metadata.

The first part of this report describes the server side of the TMS. This is a

development from the report in deliverable D8.1 which included the specification and

design details.

The second part of this report includes a description of a tool to add keywords from a

thesaurus to the metadata records to promote both mono-lingual and multi-lingual

retrieval of the metadata records, and subsequently the data itself.

IST-1999-11748 LIMBER, 17/06/10 5/38

 5

3. The LIMBER Thesaurus Management System Server.

The purpose of this chapter is to present the functionality and usage of the LIMBER

Thesaurus Management System (TMS).

3.1 Introduction
The LIMBER TMS consists of a tool to develop multilingual thesauri and a

terminology server for cataloguers and for distributed access to heterogeneous

electronic collections. The distinct features of the TMS are its capability to store,

develop and access multiple thesauri and their interrelations under one database

schema, to create any relevant view thereon and to specialize dynamically any kind of

relation into new ones.

The LIMBER TMS graphical user interface (also called Graphical Analysis

Interface - GAIN) allows the unconstrained navigation within and between different

thesauri and the execution of predefined queries and graphical views to identify

concepts for cataloguing or database queries, to identify translations or equivalent

expressions for information access in heterogeneous environments, and to control the

quality and logical consistency of a system of interlined thesauri during the

development.

The LIMBER TMS server can be integrated in a distributed, heterogeneous

environment. As a central, eventually repeated component, it can replace the

cumbersome implementation and population of thesaurus management features in

collection databases and library systems, due to access through its programmatic

interface. It further allows automatic term expansion and translation in distributed

access environment. This use requires consistency of the equivalence relations

established between thesauri.

3.2 Installation
The LIMBER TMS is distributed in a CD. Installation is performed simply, by double

clicking on the “setup.exe” file, located in the CD’s root directory.

After the completion of the installation, the LIMBER TMS, along with the reduced

HASSET thesaurus, is ready for use.

3.3 Using the LIMBER TMS Server – GAIN

3.3.1 General Description
The Graphical Analysis Interface (hereafter called GAIN) will be described in detail in

the next few chapters. Gain is used to access and manipulate the LIMBER TMS

locally (i.e. from the same computer where the TMS is installed).

IST-1999-11748 LIMBER, 17/06/10 6/38

 6

Figure 1 GAIN main window

GAIN cooperates with the query processor of the LIMBER TMS base. Information

can be retrieved from the TMS, by executing one of a set of built-in queries, which

are offered as a menu of choices by the interface. The query processor extracts data

from the TMS base and displays the result on the screen. The result can be seen in two

ways: graphically, on the window of the graphical subsystem or textually, on a text-

window. There are many types of predefined queries; some of them are graphical

(display the result in graphical mode), while others are textual (display the result in

textual mode). The current selection of the query type is displayed by the query type

field, which is always visible (see Figure 1). A query may have one parameter on

which it operates or may have none. This parameter, referenced in the following as

Query Target, must be an object existing in the TMS base. The Query Target is

always visible and can be changed in multiple ways by the user.

The GAIN main window is divided in three basic areas (see Figure 1):

• the Menu-bar, which provides all the built-in queries and a set of operations

on the visual representation of the query results.

• the Query Info area, which includes the Query Target area and a toolbar for

the most frequently used operations.

• the Query Results area, which displays the results (graphical or textual) of

the queries to the LIMBER base (hereafter referred as “Text Area” and

“Graph Area”)

Except of the main window a number of pop-up windows are triggered by the

menubar or the toolbar selections:

IST-1999-11748 LIMBER, 17/06/10 7/38

 7

• the Object Card window, which displays the textual description of an

object.

• the Global View window, which displays the global view of the graph

presented in the graphical window.

• the Options window, which enables the user to set its preferences for the

fonts, colors and text messages of the user interface area.

• the History window, which includes a list of the last executed queries.

IST-1999-11748 LIMBER, 17/06/10 8/38

 8

3.3.2 Queries
The LIMBER TMS provides three menus of built-in queries: a) the Tree Views, a

menu of queries whose results are displayed in graphical mode, b) the Queries, a

menu of queries whose results are displayed in textual mode and c) the Retrieval, a

menu of queries by classification facets, whose results are displayed in textual mode.

3.3.3 Tree Views menu
The graphical queries are performing search in depth, and they are performed on a

specific target. They provide visual information about connection between objects.

The query StarView is an equivalent graphical representation of an Object Card.

Figure 2 shows the Tree View menu. Figure 3 shows the Global View window, which

displays the global view of the graph presented in the Graph Area in Figure 2.

Figure 2 Tree View menu displays graphical query results

IST-1999-11748 LIMBER, 17/06/10 9/38

 9

Figure 3 Global View window shows which part of the graph is visible.

IST-1999-11748 LIMBER, 17/06/10 10/38

 10

3.3.4 Queries menu
The results of the Queries are displayed in the Text area in columns (see Figure 4).

This menu provides queries about all facets, or all facets by a specific parameter

(QueryTarget). The queries about all facets (do not apply on a specific Query Target)

have the prefix “List All”.

Figure 4 Queries menu displays textual results

IST-1999-11748 LIMBER, 17/06/10 11/38

 11

3.3.5 Retrieval menu
This menu provides queries about all facets by combinations of all others. The user

can "fill" the specified facet from the QueryTarget.

Figure 5 Retrieval menu displays textual results.

IST-1999-11748 LIMBER, 17/06/10 12/38

 12

3.3.6 Query Result Presentation
The LIMBER-TMS provides various presentations for the information retrieved from

the LIMBER base. Selecting a query from the Queries menu or the Retrieval menu

the textual results are displayed in columns, while selecting a query from the Tree

View menu the results are displayed as graphs. A specific Tree View query, called Star

View, presents all the information associated with an object (designated in the Query

Target) in the form of a tree-graph, while the same information is presented in textual

form in a pop-up window, called Object Card.

3.3.7 Column Textual Display
The result of textual queries is the names of the objects existing in the answer set.

This information may be presented in columns, as shown in Figure 6. Each column

corresponds to an attribute of the objects in the answer set. The kind of each attribute

appears as a label above the corresponding column.

Figure 6 Text Area displays the results in columns

IST-1999-11748 LIMBER, 17/06/10 13/38

 13

3.3.8 Hierarchical Report Display
The result of a hierarchical report is the textual representation of a tree graph query

(e.g. Narrower Term Tree) as shown in Figure 7.

When splitting has been done for a node the symbol M is added in front of this node

and the number N (declaring the repetition) is also added in front of the repeated node

(see PIGEONNIER node in Figure 7).

Figure 7 Text Area displays the result of the hierarchy report

IST-1999-11748 LIMBER, 17/06/10 14/38

 14

3.3.9 Tree Display
The choices of the Tree Views menu are recursive queries, displayed as graphs (see

Figure 8). Some of them require a specified kind of target. A checking is performed

when the menu is mapped on screen in order to verify that the given query target is of

the kind that the queries require. All queries that require a different kind of target that

the one presented in the Query Target area automatically become inactive.

Figure 8 Tree graph results

IST-1999-11748 LIMBER, 17/06/10 15/38

 15

3.3.10 Star View
By selecting StarView from the menu, a graphical query is executed which displays

the query target as a central object (see Figure 9). The superclasses and subclasses of

the central object are shown top-right and bottom-right respectively. The classes of

which the central object is an instance of, are shown top-left, while if it has instances

a box with the label ``INSTANCES'' appears bottom-left.

Figure 9 Star View result display

IST-1999-11748 LIMBER, 17/06/10 16/38

 16

3.3.11 Object Card

The Object Card of an object contains the textual description for this object. The

object card shows the complete information that is immediately related to this object

(see Figure 10). The Object Card window is popped-up by clicking the right button

on the object (its box in the graph or its name on the display, even on another Object

Card).

Figure 10 Object Card windows

Note: If a user tries to open an already opened object card the previous one closes and

the new one is built.

3.4 The web API to the TMS Server

The functionality of the LIMBER TMS Application Programming Interface (API) has

been detailed in deliverable D8.1. In this chapter we will present the functionality and

usage of the web API, i.e. the module that was developed in order to allow over-the-

web access (HTML) to the TMS.

3.4.1 Installation
The installation of the web API is performed by copying the directory called “web

API” from the CD to a directory of a web server. Since this may also require

adjustments on the web server’s directories, it is advised that only experienced

personnel performs the installation.

right mouse opens an

Object Card

IST-1999-11748 LIMBER, 17/06/10 17/38

 17

After copying the files to the web server, the configuration file called “config.txt”,

which resides in the web API directory, has to be edited. More specifically, the first

line of the configuration file has to include the IP address of the PC where th TMS is

installed.

3.5 Using the web API
The web API functions as a medium between the LIMBER client and the TMS. Each

time the client needs data from the TMS, it issues a request to the web API, passing

the parameters of the request in the URL.

The web API parses the parameters and issues a request to the TMS. This request is

issued using WINDOWS sockets (i.e. it is not over-the-web). As soon as the answer is

received, the web API translates the results to a web page (HTML format) and

forwards it to the client.

In the case of a command that alters the TMS base (i.e. deletion or addition of a term,

etc.), the returned HTML page contains the results of the command.

The following table presents the various commands that may be issued by the client to

the web API, as well as the parameters required.

Command Description Parameters

glst Returns a list of all the hierarchies None

trsl Returns the translation of a term to a number

of languages

Term, source language, list of target

languages

hrch Returns the hierarchy tree of a term Term, source language, levels of the

tree

scpn Returns the scope note of a term Term, source language

star Returns a term’s relations (BT, NT, RT, etc.) Term, source language

newt Creates a new term Term, language, broader term

adlk Creates a new relation between two terms Term1, term2, source languages, type

of relation

renm Renames a term Term, language, new name

dnod Deletes a term Term, language

dlnk Deletes a relation between two terms Term1, term2, type of relation

The results returned from the web API are converted to graphics by the client and

then presented to the user. However, it is possible to view the HTML format of the

results by using a web browser.

For example, let us assume that the web API resides on the web address:

http://www.TMS.net/webAPI/webapi.exe. If we want to get the star view of the

English term “WAGES”, we would type the following URL on the browser:

http://www.TMS.net/webAPI/webapi.exe?star&term=WAGES&source=En.

The following page is returned:

9957/EARNINGS/UF

11087/PAY (WAGES)/UF

11288/REMUNERATION/UF

11312/REWARDS (WAGES)/UF

11322/SALARIES/UF

5068/AVERAGE EARNINGS/RT

8545/FEES/RT

8549/FRINGE BENEFITS/RT

5168/INCOME DISTRIBUTION/RT

3993/LABOUR (RESOURCE)/RT

IST-1999-11748 LIMBER, 17/06/10 18/38

 18

3994/LABOUR ECONOMICS/RT

5243/WAGES POLICY/RT

4076/SALAIRES/L1

4193/SALARIOS/L3

All information about the term “WAGES” is included in this page, but it is not in a

graphical format.

IST-1999-11748 LIMBER, 17/06/10 19/38

 19

The LIMBER Indexing Tool

4. Introduction

This chapter describes the design and implementation of the LIMBER indexing tool.

This section briefly summarises, then continues from the section 3 of D8.1 covering

the design of the LIMBER server tools.

This is a tool to generate keywords to be used to index metadata records. The tool is a

generic text categorisation tool.

The indexing tool is used by the metadata indexer after an initial metadata record has

been created for a new archive asset to produce keywords for it.

Data Provider

Metadata Indexer

Data End User

Collect Data Set

Submit Dataset to Archive

Create Metadata Entry for Dataset

Query Metadata Entries

Identify Datasets from Metadata

Analyse Datasets Locally

Download Datasets

Make Decision on Basis of Data Analysis

Figure 1. Lifecycle of Data and Metadata for Data archives

The indexing tool is a stand alone tool in the LIMBER architecture, taking a file as

input and generating a file as output. The indexer requires to be trained on a training

set of pre-existing, records already marked up wwith keywords. The tool will select

the keywords for a new record on the basis of correlations with this training set.

Therefore the automatic indexing cannot use any keywords that have not been used

before.

To overcome this limitation, the tool allows the user to add extra keywords to a record

that are not produced automatically. As new records are generated, they can join the

training set, and be used to improve the indexing tool.

IST-1999-11748 LIMBER, 17/06/10 20/38

 20

5. Architecture of the Indexer

The Indexer is not considered an end-user application, but is a separate application

that can be used by metadata indexers to use a thesaurus to generate keywords for

fields in the metadata entry for a data set. The consequence of providing this tool is to

de-skill the job of metadata indexers which is currently a bottleneck in the use of

metadata, and therefore cross domain data access. The following architecture is based

on the current indexing procedure use case in section 1.2.1 of the User Requirements

deliverable D1.

Metadata

Indexer

Indexing

Tool

Output

Metadata

File

Input DTD
Input

Metadata

File

Thesaurus

Management

Thesaurus

End-User

Interface

Thesaurus
Candidate Term

list

TMS

Figure 4. Architecture of the Indexing Tool

As it can be seen in Figure 4, the indexing tool takes as input and produces as output

the following:

Input

1. A machine readable XML DTD of the metadata file (or XML schema definition

or RDF schema definition as appropriate) – about 200 different fields that can

contain text, about 20 of these can contain keywords, but some (e.g. variables) can

be repeated many times in an actual metadata instance.

2. a machine-readable file containing a metadata representation in the DDI XML

(or XML schema, or RDF) format for metadata. It will contain the text entries for

fields in the natural language and fields to contain keywords. Such a metadata

entry may contain 500 fields from which key words can be extracted.

3. The user will also state the natural language.

IST-1999-11748 LIMBER, 17/06/10 21/38

 21

Output

1. The output will be the input-2 metadata document for a dataset, with the

additional inclusion of keywords fields that is appropriate.

2. A machine readable file of a list of terms which are candidates for inclusion in a

thesaurus

The indexing tool should work via the thesaurus server to any particular thesaurus.

Additionally, having used the indexer tool to generate appropriate keywords for a

metadata entry, it would be desirable to present these results back to the indexing

subject expert for inspection. This should also allow the deletion of any keywords

from those suggested by the automatic indexer, and addition of any other appropriate

keywords from the thesaurus, or any other keywords which if not in the thesaurus

should be submitted as candidates for addition to the thesaurus. These changes would

then be fed back to the indexer tool as part of its learning cycle to improve its future

performance.

5.1 The General Machine Learning Approach

The machine learning approach uses a general inductive process to automatically

build a classifier for a category ci by observing the characteristics of a sample set of

documents which have been classified manually by a domain expert. The task of

building the classifier for all of C can then be seen m independent tasks. This method

has the advantage of concentrating the engineering effort on the development of

general methods for building the classifier, which can then be simply adapted to a

new domain of application, or the extension of an existing domain, without the

intervention of a knowledge engineer to construct the new rule set. The domain

expert is only required to provide a set of classified examples for the algorithm to

learn from.

Thus the machine learning approach requires the provision of an initial corpus of

documents D0 already categorised with the same categories C. This initial corpus is

typically further subdivided into two:

• A training set Tr - the set of example documents used to construct the

classifier.

• A test set Te - the set of example documents used to evaluate the

effectiveness of the classifier.

Clearly, for a sensible evaluation of the effectiveness of the classifier, there has to be

a balance between the two sets, and also a good coverage of the categories in the

corpus.

IST-1999-11748 LIMBER, 17/06/10 22/38

 22

The machine learning approach to classification relies heavily on the techniques of the

related field of Information Retrieval, which is the study of how information on a

desired topic can be found from within a large corpus of (unstructured or semi-

structured) documents.

Once the classifier has been constructed then there should be an evaluation phase to

make an assessment of the effectiveness of the classifier, using the test set Te.

Figure 5: The Machine Learning approach to classification

The automatic classification tool for DDI-XML documents will undertake the

following phases: pre-processing, indexing, classifier construction, classifier

evaluation. Each of these is briefly addressed below.

5.2 Reading and preprocessing the document.

Step 1 is to read the set of training documents. This should be done as one batch job

as the construction of the classifier typically is across all the training set at once.

Training
document

set

Classifier
constructor

Classifier

Classifier
evaluation

Test
document

set

Classifier

document Classified
document

IST-1999-11748 LIMBER, 17/06/10 23/38

 23

Whilst reading in the document (whether training, test or production example), it

would be desirable to do some processing on the document as follows.

5.2.1 Flattening the structure of the metadata record.
The metadata records are XML documents marked up according to the DDI. The XML structure

(tags, tag names and attributes) should be stripped from the document, leaving a stream of text for

the classifier to work upon.

5.2.2 Removing stop words.
Having reduced the metadata record to a stream of characters, we want to

reduce it further by removing stop characters, dividing into a sequence of

words and removing stop words.

- Remove white space and punctuation to divide character stream into

words.

- Remove numeric and partial numeric “words”.

Issue: the date of the study is a keyword; this could be added by a separate

analysis.

- Remove “stop” words – that is commonly occurring words, such as “the”

“and”, “then”, which are not domain specific.

Issue: gaining access to and recognising stop words in other languages

(German, French, Spanish).

- Standardising on case.

5.2.3 Stemming (optional).
If possible, we could reduce the number of words, and record them as

occurring more often via stemming, that is reducing grammatical variants of

the same word to their root. E.g. educate, educates, educating, educated all

reduce to the root word, educate.

Issue: obtaining access to stemming algorithms. Stemming algorithms are

freely available in English (e.g. the Porter algorithm[Porter]); language

specific searches may well turn up stemmers in other target languages.

Issue: there is some question in the literature whether stemming adds any

better performance to categorisation methods. It is proposed that the utility of

stemming is tested in the evaluation.

5.3 Indexing the document

The classifier cannot directly handle the documents, but first processes them into a

more efficient internal representation; this process is known as indexing (somewhat

confusingly as in this project we have been using the term indexing to refer to the

whole classification process!). The indexing, which is applied to training documents,

test documents and additional documents in the use of the classifier

The internal representation of documents most commonly used is a vector of weights:

>=< jjj wwd ||1 ,...
T

(1).

IST-1999-11748 LIMBER, 17/06/10 24/38

 24

Where T is the number of terms (typically, but not always, words
1
) that occur at least

once in the training set, and wij is the weight of term ti in document dj, roughly

speaking capturing how much the term ti contributes to the document.

The weights wij are typically set to fall between 0 and 1, and most commonly set

using (a variant of) the tfidf indexing function
2
 from IR, defined as:

where #(tk , dj) is the number of times term tk occurs in document dj (term

frequency) and #Tr
(tk) is the number of documents in the training set Tr the term tk

occurs in (document frequency). This captures the notion that a term is more

significant if it occurs many times in a document, but is less discriminating if it is

frequently occurring throughout the training set.

This function is then usually normalised so that it the weight of the term in the

document lies between 0 and 1:

This means that documents of varying length are treated equally.

5.3.1 Term Reduction

A problem with classification algorithms reported in the literature is that the large

number of terms T which need to be considered. In typical applications the size of T

is very large and this causes problems in scaling the classification construction

algorithm. Also, too many terms may lead to a problem of overfitting where

contingent properties are used for classification purposes. For example, give then

training examples of “yellow Porsche”, “yellow Ford” and “yellow Renault” all

leading to a classification under “CAR” may lead the example “yellow banana” to be

classified under “CAR” because of the contingent term “yellow”. Consequently, most

classification methods recommend reducing the number of terms to a smaller set T’ of

the most relevant terms, where |T’| << |T |.

Many methods have been proposed for term reduction, including sophisticated

statistical, probabilistic and information theoretic techniques. Also, term clustering

and semantic indexing techniques attempt to synthesize an alternative term sets to

1 Alternatively terms could be phrases from the document, or other semantic units found in the

document. The literature reports that more sophisticated terms may not always have a beneficial affect,

probably because as the term’s complexity increases, its occurrence in documents is likely to decrease.
2
 Term frequency – inverse document frequency function. There are many variants on this function in

the literature.

)(#

||
log),(#),(

kT

r

jkjk
t

T
dtdttfidf

r

⋅=

∑ =

=
||

1

2)),((

),(

T

s js

jk

kj

dttfidf

dttfidf
w

(2).

(3).

IST-1999-11748 LIMBER, 17/06/10 25/38

 25

index against by analysing the document set to extract phrases, or semantically

meaningful units.

For the purposes of the Limber project, we propose that trials should be undertaken to

determine whether term reduction will be needed, and if so, we propose that the

simplest possible approach is taken, that of document frequency. This is simply to

take into account those terms which occur more than some threshold (typically 2, 3, or

4) number of times in the training set. While simple, and somewhat counter-intuitive

(infrequently occurring terms can be highly indicative of a particular category) the

literature reports that this method is nevertheless highly effective (though perhaps not

as effective as other, computationally and conceptually more complex techniques).

5.4 Constructing a classifier

Two approaches to constructing a classifier have been included in the tool: the Knn

and Bayesian methods.

5.4.1 Probabilistic or Bayesian Methods

Probabilistic methods usually attempt to estimate the probability that a given

document (vector) falls within a particular category ci. These are usually based on the

well known Bayes’ theorem. These methods usually are usually naïve since they

make the assumption that the terms in the documents are independent, so the

simplifying equation can be established as follows:

The methods discussed in the literature hinge on the various ways in which the values

of the probabilities can be estimated from the training set.

5.4.2 kth Nearest Neighbour

The kth Nearest Neighbour (kNN) method is a lazy-learner. It does not explicitly

build a classifier, but rather maintains a representation of the training document set

and when it comes to classify a new document it dynamically compares the new

document dj with the training set and makes a judgement as to which training

documents it has seen before are most similar. For some number k which has to be

decided by experiment, the k most similar documents are chosen. If the number of

these k documents which are classified under classification ci exceeds a threshold,

also empirically chosen, then the new document can be classified under ci.

)(

)|()(
)|(

j

iji

ji
dP

cdPcP
dcP r

r
r

=

∏
=

=
||

1

)|()|(
T

k

ikjij cwPcdP
r

IST-1999-11748 LIMBER, 17/06/10 26/38

 26

Formally, classifying a document dj under the category ci using the kNN method

requires computing:

∑
∈

Φ⋅
)(

),(),(
jkz dTrd

izzj cdddRSV
(

where RSV is a measure function of the similarity of two documents, such as

zj

zj

zj
dd

dd
ddRSV

•
=),(

where di • dj is the dot product of the vectors, |di| the norm (length) of the vector, and

The kNN method is considered in the literature to be a good performer, lacking some

of the problems that linear classifiers have. However, it is more expensive in terms of

data, as the vector representation of the training set has to be maintained, and

computationally more expensive, as the whole training set has to be tested against the

new document. This problem of complexity can be overcome in part by clustering

the training examples, building a linear classifier for each cluster, and then using

those representative examples to decide the classification. While having good results,

this requires the added complexity of a clustering algorithm.

5.4.3 Profiling the input files

In conventional text classification a complete input file would be used to build the

classified, and a the complete file would have keywords associated with it. In the

example of the metadata records used in LIMBER this is not the case, and only

selected fields in the input require to be indexed, and only a range of fields in the

metadata record should be used to construct the classifier. In effect, individual fields

will be treated as though they were separate documents for conventional

classification.

It is necessary to state which parts of an input file should be used to construct the

classifier, and which to be classified. The solution chosen is to define a profile which

operates over the input documents defining these. The profile should be written in one

of the XML languages in order to maintain consistent minimal code implementation.

The language chosen for this is XSLT since this itself will allow a standard processor

to transform the input files.

An example XSLT profile for the DDI DTD is shown below:

<?xml version="1.0"?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:preserve-space elements="*"/>

 <xsl:output indent="yes"/>





=Φ
 under dcategorisenot is if 0

 under dcategorise is if 1
),(

iz

iz

iz
cd

cd
cd

(

IST-1999-11748 LIMBER, 17/06/10 27/38

 27

 <xsl:template match="codeBook">

 <!-- N.B. the format of the transformed output XML *must* be flat.

i.e. no nested tags. -->

 <sourceDtd

src="http://www.icpsr.umich.edu/DDI/CODEBOOK.TXT"/>

 <indexAtomicity type="whole" />

 <targetElement elem="stdyDscr/stdyInfo/subject/keyword" />

 <!-- TODO eliminate the duplication of this string from above -

->

 <xsl:apply-templates select="stdyDscr/stdyInfo/subject/keyword"

mode="keyword"/>

 <useElement>

 <!-- These select attributes specify the XPaths of the nodes to

be parsed for textual data. -->

 <!-- by default, all enclosed tags are also parsed (unless

specified in the below sections).-->

 <!-- Those nodes whose children are also parsed are

commented as 'wildcarded' for clarity. -->

 <!-- Paths without leading slashes are specified relative to

/codeBook, and those with a -->

 <!-- leading // can be found anywhere in the codeBook. The

latter should be avoided, as it -->

 <!-- encurs a serious performance hit - crossreferencing with

the codeBook DTD should for -->

 <!-- instance show that "//varGrp/labl" would be better written

as "dataDscr/varGrp/label". -->

 <xsl:apply-templates select="stdyDscr/citation/titlStmt"/>

 <!-- wildcarded -->

 <xsl:apply-templates select="stdyDscr/citation/serStmt"/>

 <!-- wildcarded -->

 <xsl:apply-templates select="stdyDscr/citation/biblCit"/>

 <xsl:apply-templates select="//abstract"/>

 <xsl:apply-templates

select="stdyDscr/stdyInfo/sumDscr/universe"/>

 <xsl:apply-templates select="//nation" />

 <xsl:apply-templates select="stdyDscr/othrStdyMat/relMat"/>

 <xsl:apply-templates

select="stdyDscr/othrStdyMat/relMat/citation/titlStmt"/> <!-- wildcarded -->

 <xsl:apply-templates

select="stdyDscr/othrStdyMat/relMat/citation/serStmt"/> <!-- wildcarded -->

 <xsl:apply-templates

select="stdyDscr/othrStdyMat/relMat/citation/biblCit"/> <!-- wildcarded -->

 <xsl:apply-templates select="//varGrp/labl"/>

 <xsl:apply-templates select="//varGrp/txt"/>

 <xsl:apply-templates select="//var/labl"/>

 <xsl:apply-templates select="//var/qstn/preQTxt"/>

IST-1999-11748 LIMBER, 17/06/10 28/38

 28

 <xsl:apply-templates select="//var/qstn/qstnLit"/>

 <xsl:apply-templates select="//var/qstn/postQTxt"/>

 <xsl:apply-templates select="//var/catgryGrp/labl"/>

 <xsl:apply-templates select="//var/catgryGrp/txt"/>

 <xsl:apply-templates select="//var/catgry/labl"/>

 <xsl:apply-templates select="//var/catgry/txt"/>

 <xsl:apply-templates select="//var/concept"/>

 <xsl:apply-templates select="otherMat/citation/titlStmt"/>

 <!-- wildcarded -->

 <xsl:apply-templates select="otherMat/citation/serStmt"/>

 <!-- wildcarded -->

 <xsl:apply-templates select="otherMat/citation/biblCit"/>

 <!-- wildcarded -->

 </useElement>

 <xsl:apply-templates select="stdyDscr/citation/prodStmt/prodDate"

mode="mEK"/>

 <xsl:apply-templates

select="stdyDscr/citation/prodStmt/prodDate[@date]" mode="mEKdate"/>

 <xsl:apply-templates select="//nation" mode="mEK"/>

 <xsl:apply-templates select="//geogCover" mode="mEK"/>

 </xsl:template>

 <!-- Here, the match attribute list the possible XPaths of the nodes whose

children must not be parsed. -->

 <!-- Fully qualified paths (e.g. stdyDscr/citation/biblCit) can be used to

remove ambiguity - although -->

 <!-- omitting the full path also can be used as a form of wildcarding. Each

section has to have its own -->

 <!-- unique "mode" identifier - set in the mode attribute of the appropriate

xsl:apply-templates and -->

 <!-- xsl:template tags.

 -->

 <xsl:template

match="stdyDscr/citation/biblCit|abstract|universe|nation|relMat|labl|txt|preQTxt|qstn

Lit|postQTxt|concept">

 <xsl:value-of select="text()"/>.

 </xsl:template>

 <!-- and a second similar section for the <makeElementKeyword> nodes -->

 <xsl:template match="prodDate|nation|geogCover" mode="mEK">

 <makeElementKeyword>

 <xsl:value-of select="text()"/>

 </makeElementKeyword>

 </xsl:template>

 <!-- and finally a special case template for extracting the 'date' attribute from

<prodDate> tags -->

IST-1999-11748 LIMBER, 17/06/10 29/38

 29

 <xsl:template match="prodDate" mode="mEKdate">

 <makeElementKeyword>

 <xsl:value-of select="@date"/>

 </makeElementKeyword>

 </xsl:template>

 <!-- the template for keyword tags already present in the source document -->

 <xsl:template match="*" mode="keyword">

 <keyword>

 <xsl:value-of select="text()"/>

 </keyword>

 </xsl:template>

</xsl:stylesheet>

5.5 Classifier Evaluation

Once a classifier has been constructed it should be evaluated against the test set Te to

measure its effectiveness as a classifier against the classifications given to the test set

by the human expert. Once the evaluation phase has been carried out, the parameters

of the classification algorithm can be adjusted to generate a new classifier for

evaluation. Thus by this iteration, an improved classifier can be developed.

The standard measures of effectiveness for text classification system are precision and

recall.

precision: if a document d is classified under category c, then this decision is

correct,

recall: if a document should be classified under category c, then this decision

is made.

To make an estimate of these values, we test the classifier against the test set Te and

record:

- FPi – the false positives for category ci ,

- TPi – the true positives for category ci ,

- FNi – the false negatives for category ci , and

- TNi – the true negatives for category ci .

Then precision and recall for category ci can be estimated as:

ii

i
i

ii

i
i

FNTP

TP

FPTP

TP

+
=

+
=

ρ

π

ˆ

ˆ

These can then be either microaveraged across all categories (summing over all

individual decisions and then calculating precision and recall) , or macroaveraged

IST-1999-11748 LIMBER, 17/06/10 30/38

 30

(calculating the precision and recall for each category and then averaging those

results.

Some trade-off between them – depends what you want to do! Is a low level of FN

more important than a low number of FP? Trade off between missing relevant

records and swamping

- short documents (e.g. questions) – may want a higher recall (i.e. false

positives more acceptable) and lower precision

- when searching for whole metadata records, then higher precision may be

preferable at the expense of recall: some entries may be missed so that the

user is not swamped with results.

Again, evaluations on these measures vary and are subject to empirical testing.

5.6 Multilingual Indexing

In principle, both the indexing algorithm and particular methods can be used for

classification over any language. Thus the same machine learning tool should be

applicable to any set of metadata records.

Two components which are needed to support the algorithm in other languages:

Stop word lists (essential).

Stemming algorithms (desirable but not vital)

It is suggested that a Web search (probably in the appropriate language) may well

uncover suitable candidates for both of these.

A more complex problem is the need for a set of pre-classified records for training

and testing. Without such a set the machine learning method will not be able to be

trained. This would require a set of experts in the appropriate language to provide

keywords for records in the suitable language using the appropriate language version

of ELSST. This is a time consuming and expert task.

However, the task may be made easier as it observed that there are a significant

number of studies in common across archives. If these have been indexed in one

language, then it is reasonable to take that set of indexing terms, suitably translated,

into the other language’s record. This could provide an initial set of indexed

documents to start the training process off in the second language. However, case

should be taken that this training set is sufficiently large to be useful, and the results

are carefully monitored by language experts.

6. Using the Indexing Tool

6.1 Task Scenarios

From the user’s perspective two goals exist for which scenarios are described:

creating a classifier, and classifying a metadata record with that classifier.

Additionally, a variety of options are also available for the indexing tool. These are

described in the next three sections.

IST-1999-11748 LIMBER, 17/06/10 31/38

 31

6.1.1 Creating a classifier

The goal of creating a classifier is broken down into 7 interaction dialogue steps

between user and system:

Goal - Create a new classifier

File/New Classifier

Dialogue Box - options

Create Button

Dialogue Box - report number of keywords, testset options

Test Button

Dialogue Box - report precision and recall statistics.

Selecting Menu File/New Classifier brings up a dialogue box shown below.

This requires the user to enter the locations of three files:

XML profile – a script written in XSL defining which parts of the XML document should be used to

construct indexes, and which parts should have keywords attached to them.

Directory of Metadata Records – the directory where all the records in the training set are to be found

in separate files.

Stopword List – the file to be used as a list of stopwords not to be used in the classification.

Options include:

Perform Stemming – whether words should be stemmed or not.

IST-1999-11748 LIMBER, 17/06/10 32/38

 32

Term Reduction: The distance to be used for reducing terms.

Lastly the new classifier will require a name to be used later to call it.

When these items are completed, the user will select create button to create the classifier.

The classifier creation can take 30 minutes to an hour depending on how many files are stored in the

directory of metadata records.

When the classifier has been constructed a classifier report dialogue box appears – shown below.

The next step is to test the classifier, by selecting the test classifier button.

This produces a simple report of the performance of the classifier.

6.1.2 Classifying a metadata record

The goal of classifying a metadata record is broken down into 8 interaction dialogue

steps between user and system:

Goal - Classify a document

File/ New Document

dialogue box - Browse, write filename, Open button

Classifier/Name - select the classifier

IST-1999-11748 LIMBER, 17/06/10 33/38

 33

dialogue box - set k & n

button - Classify document

classified metadata report - Edit/ Add, Delete, Copy

File/Save document

Firstly the document must be opened with the menu item File/ New Document which

results in the file being presented as shown below:

IST-1999-11748 LIMBER, 17/06/10 34/38

 34

In order to load a classifier, the classifier should be selection with the command:

Classifier/Name

This produces a simple dialogue box stating the classifier to be used – the same

dialogue box used when a classifier is produced. Peramtiers such as k & n can be set

here before the Classify Document button is selected to classify the current document

as shown below.

IST-1999-11748 LIMBER, 17/06/10 35/38

 35

Once the classification has been completed, the tool reports the classification made

for this document, as shown below.

In this display the different colours of text represent:

Blue: keywords found in the original input document

Purple: keywords proposed by the indexing tool based on the model

Green: keywords added by rules (place and people names).

This stage allows the human editor to use their skill to override the suggestions of the

tool, or to add to them. This shows that the process is not an automatic, but an assisted

indexing of the document.

The human editor can now use the editing controls at the bottom of the panel to move

the terms which are judged to be appropriate into the left hand, final, column; or add

new terms into this column that were not suggested by the classifier.

Input

file

Any previous

classifications
Terms selected for

classification

Metadata

editor’s

selections

Editing Controls

IST-1999-11748 LIMBER, 17/06/10 36/38

 36

6.1.3 Indexing Tool Options

6.1.3.1 Look and Feel Options
The top level Options menu allows the selection of the Look and Feel of the window

system to be used for the Indexing Tool. This calls the standard Java Singset2

function to set the look and feel as one of Java, Motif, MS-Windows or Mackintosh.

The last two are only available on the appropriate windowing system.

The purpose of this option is to allow users to set the look and feel to be one that they

are accustomed to; that is as compatible with other tools as possible, and as consistent

with their previous experience as possible to reduce planning errors and execution

slips when using the tool’s user interface.

The two screen images below show the classification dialogue box, and the main

window using two different look and feel settings to illustrate the changes set by the

option.

6.1.3.2 Localisation Options

The menus and dialogue boxes have been designed to be internationalised using the

string budling options in Java. Localisation options are available on the menu to set

the language, number display, currency etc.. to one compatible with the end user.

IST-1999-11748 LIMBER, 17/06/10 37/38

 37

New localisation files can be added for novel languages/cultures as required.

6.1.3.3 Help

The help menu item on the main window provides four options:

1) About box stating copyright information

2) Pointer to the LIMBER project pages on the web for any latest information

3) A tutorial on using the Indexing tool – effectively the two preceeding sections of

this document.

4) A reference document to the tool – effectively this section on LIMBER in this

document.

6.2 Installation and Use of the Indexing Tool

The indexing tool is distributed as a Java Archive, in a Zip archive file.

The Java Archive should be unzipped into a directory. The dependency is on the Java

API for XML parsing. This archive is included in many distributions of Java, but if

not it can be obtained from: http://java.sun.com/xml/jaxp/index.html and included in

the lib/ext directory of your JDK installation.

Double clicking on the archive will activate the programme.

6.3 Conclusion and Future Work for the Indexing Tool

IST-1999-11748 LIMBER, 17/06/10 38/38

 38

The indexing tool currently does allow documents to be indexed but it requires

considerable use before we can be confident about guidance on the values to use for K

& N, and for the term reduction values.

Stop lists are provided in several languages (English, French, Spanish, German) but

stemming algorithm is only included for English. Language simplification

mechanisms for other languages should be included.

In theory the indexing tool can be used to index across languages given a common set

of pre-marked up metadata files for the learning phase. This option needs further

investigation and practical use before it can be applied by real users.

References.

Kjersti Aas, and Line Eikvil, Text categorisation - A survey NR report no. 941

ISBN: 82-539-0425-8 June, 1999,

http://www.nr.no/research/samba/tm_survey.ps

C. Peters, (Ed.) Cross-Language Information Retrieval and Evaluation, LNCS 2069,

Berlin:Springer, 2001.

M.F.Porter. An algorithm for suffix stripping, Program, 14 no. 3, pp 130-137, July

1980. http://www.omsee.com/developer/docs/porterstem.html

Fabrizio Sebastiani, A Tutorial on Automated Text Categorisation. In Analia

Amandi and Alejandro Zunino (eds.), Proceedings of ASAI-99, 1st

Argentinian Symposium on Artificial Intelligence, Buenos Aires, AR, pp. 7-

35, 1999

Fabrizio Sebastiani Machine Learning in Automated Text Categorisation. Revised

version of Technical Report IEI-B4-31-1999, Istituto di Elaborazione

dell'Informazione, Consiglio Nazionale delle Ricerche, Pisa, IT, 2001.

http://faure.iei.pi.cnr.it/~fabrizio/Publications/ACMCS01/ACMCS01.pdf

Submitted for publication to ACM Computing Surveys.

Y. Yang, An Evaluation of Statistical Approaches to Text Categorization,

Technical Report CMU-CS-97-127, Computer Science Department, Carnegie

Mellon University, 1997.

