
Re�nement through Pictures: Formalising Syntropy Re�nementConceptsK. Lano, J. BicarreguiDept. of Computing, Imperial College, 180 Queens Gate, London, SW7 2BZOctober 31, 1997AbstractThis paper provides techniques for formally justifying the re�nement steps given for the Syntropymethod of Cook and Daniels.It uses a temporal logic formalism, the Object Calculus, to formalise the models of Syntropy inmodules which are theories, linked by theory-preserving morphisms. Re�nements are also characterisedby particular forms of interpretations between theories.The intention is to provide support for a system which allows re�nement steps to be carried out viadiagrammatic descriptions, rather than mathematical formulae, and hence to enhance the usability of aformal approach to object-oriented software development.1 IntroductionSyntropy [4] is a methodology for object-oriented analysis and design similar to OMT [17] with additionalformal speci�cation elements derived from Z [19]. It represents a signi�cant advance over previous object-oriented methods in giving mathematical speci�cations of data models and dynamic behaviour. Conceptsfrom Syntropy have been used in the UML [18], particularly in the development of its object constraintlanguage.Three distinct levels of modelling are used in Syntropy. At each of these three levels, type view diagramsdepict the structure of object classes. Objects have attributes of non-object types. Associations betweenclasses are depicted by connecting lines. Statecharts [9] are also used at each of the three levels. However,di�erent models of communication are used at each level of abstraction.� Essential models describe the problem domain of the application. They describe the system as awhole including the proposed software solution and its environment. They use events and broadcastcommunications to abstract from the localisation of methods in classes.� Speci�cation models abstractly model the requirements of the software application, hence de�ning thesoftware/environment boundary. They decompose a reaction to an external event into a series of eventgenerations and internal reactions by speci�c classes.� implementation models model the required software in detail. In addition, object interaction graphs(termed mechanisms in Syntropy) are used at this level, with object to object message passing.Syntropy adopts a number of mathematical notations, however, a semantics is only indicated for datamodels. In addition, there is no formal de�nition of re�nement between models.There are two main forms of re�nement which arise in the Syntropy method:1. Re�nement which involves a change in granularity of the actions of the system, such as factoring atransition which establishes a complex postcondition into a sequence of internal transitions which eachestablish part of the postcondition.1st BCS FACS Workshop on Making Object-oriented Methods More Rigorous 1



2. Re�nement which involves no change in granularity { essentially a form of subtyping as enumeratedin [4, Chapter 8].We will show how these forms of re�nement can be formally justi�ed in terms of theory interpretationand extension, using the semantics of Syntropy given in [2].An important point is that a direct re�nement from an essential to a speci�cation model will not ingeneral exist: not all entities in the essential model will have interpretations in the speci�cation, if they lieoutside the software system to be constructed. In addition, permission guards in the essential model willonly appear as preconditions in the speci�cation model.2 Syntropy Semantics2.1 The Object CalculusThe Object Calculus [7] is a formalism based on structured �rst order theories composed by morphismsbetween them.An object calculus theory models a component of a system. It consists of a set S of constant symbols,a set A of attribute symbols (denoting time-varying data) and a set G of action symbols (denoting atomicoperations). Axioms describe the types of the attributes and dynamic properties of the actions.A global, discrete linear model of time is adopted (eg. [11]) and axioms are speci�ed using temporallogic operators including:  (in the next state), U (until), 2 (always in the future) and � (sometime in thefuture). The predicate BEG is true exactly at the �rst moment.The temporal operators are also expression constructors. If e is an expression, e denotes the value ofe in the next time interval, etc.In the style of [8], theories are composed by morphisms to yield a modular de�nition of a whole system.The Object Calculus de�nes a notion of locality which ensures that only actions local to a particular theorycan e�ect the value of the local attributes. For each theory we have a logical axiom_ gigi 2 G _ ^ a =aa 2 A\Either some action gi of the theory executes in the current interval, or every attribute a of the theoryremains unchanged in value over the interval."2.2 Interpreting Object TypesFigure 1 depicts a fragment of a Syntropy type view diagram. A single class, A, is de�ned with two attributes,f and g , of (non-object) types T1 and T2 respectively1.f : T1g : T2A . . .... ... . . .Figure 1: Part of a type view diagramSuch a diagram can be understood as a view of a typical object of the type, or it can be interpreted asdepicting the entire class of such objects. To interpret this diagram, we de�ne two Object Calculus theories.1Note object-typed attributes are given via associations, see Section 2.3.2



The �rst, Ai , gives the theory of a single instance of the type, the second, MA, manages the collection ofcurrently existing instances. A number of the former are then combined with the latter to form the theory�A of the class.The signature of a generic instance We de�ne a theory, Ai for a typical object of this class. Thetheory of the instance introduces a sort for the type of each attribute, there are no constant (or function)symbols and, for each attribute, there is an attribute symbol for each attribute. For the present, there areno actions, we will later use information in the statechart to de�ne the actions.S = fT1;T2gA = ff : T1; g : T2gG = f: : :gself A key technique used in OO notations is that an individual object can refer to itself as self whilst it'sexternal identity (its object identi�er) is given by the class. As in [6], we interpret self using A-morphismswhich add the object identi�er as an extra parameter when attributes and actions are globalised.The signature of the class The creation and deletion of instances is accomplished through a classmanager. Class manager and class instances are then combined to form the theory of the class. Thede�nition of the class manager is independent of the structure of A and so is de�ned in terms of a generalclass type X .The class manager theory, M , introduces a sort for identi�ers of objects, @X and no constant symbols.It is convenient to de�ne an attribute, X , to record the �nite set of currently existing instances. In termsof [20], @C is ext(C ) and the value of C at time � is ext�(C ). There are actions of M to create and killobjects of X .S = f @X gA = f X : F@X gG = f create : @X ; kill : @X gNote that creating an instance does not initialise it. Creation and initialisation can be brought togethervia an action new which synchronises them.We cannot create an existing object nor delete a non-existent one2 (pre-create and pre-kill). Creationadds an object to the set of existing objects and deletion removes it (post-create and post-kill). We requirethat objects are only added or removed from the set of existing objects by creation and deletion. These sixconditions can be condensed to:create(x ) , x 62 X ^ x 2 Xkill(x ) , x 2 X ^ x 62 Xwhich concisely characterise the two actions.We may wish to give an initialisation stating, for example, that the set of existing objects is initiallyempty (initialisation):BEG ) X = ?Embedding instances in the class At any point in time, there are a �nite number of living instances.The theories of these are combined with the theory of the class manager via morphisms which name eachinstance according to the identi�er given when it is created (Figure 2).We combine the theory of each instance with the theory of the class via an @A-morphism which adds anextra parameter of type @A to each attribute and action symbol [6]. This is equivalent to de�ning self as aconstant in the instance theory which acts as a (dummy) placeholder for later identi�cation with the objectidenti�ers in the class theory.2In a deontic setting one could use the notion of \permitted" here.3



...... -jAnA0 self ! anself ! a0 M?�A@X ! @AFigure 2: Instance and class manager theories are embedded in the theory of the classThe resultant theory, �A, has an attribute att(a) for each attribute att of each existing instance a. Forexample, for instance ai and attribute f , there is an attribute �i(f ) in the class theory. In e�ect f is a (�nite)partial function from @A to T1. We de�ne a syntactic sugar which names the �i (f ) conveniently:f : @A! T1ai :f = �i(f )So, in A, f is a partial function from @A to T1 which is written in the right. A similar approach is takento the naming of instance actions.2.3 Interpreting AssociationsWe now formalise the notion of an association as depicted in Figure 3. We will interpret the associationwithout any knowledge of the structure of the objects it associates3. Thus we have a generic theory ofassociations. We then use a renamed copy of this theory for each particular association in the model.CFigure 3: A simple associationWe begin with the most general case, a many-many association depicted by the black \blobs" at each endof the connecting line. The same approach will also work for other cardinalities of association by requiringfurther axioms for the constrained cases. For this section we consider only how to interpret associations atthe level of the classes. In some circumstances, such as when the association has attributes of its own, itmay be desirable to make a two level construction as was done for object classes.The association is interpreted as a many-many relation lr between object identi�ers for the class on theleft, @L and the class on the right, @R4. Note that lr plays the same role as X , it is the set of existinglinks in the association. The theory signature is:S = f @L;@R gA = f lr : F(@L�@R) gG = f link : @L� @R; unlink : @L� @R gAs for object classes, we require axioms for adding and removing pairs from the relation and again havean \instance-by-instance" locality requirement which yields a characterisation of the two actions3We do however assume each class theory has been constructed from instance theories and class manager theory as de�nedabove.4This turns out to be considerably more convenient than having a pair of primitive functions r : @L ! F@R and l : @R !F@L, such functions can be de�ned from the relation if required.4



link(l ; r) , (l ; r) 62 lr ^ (l ; r) 2 lrunlink(l ; r) , (l ; r) 2 lr ^ (l ; r) 62 lrAgain, it may be appropriate to add an axiom concerning the initialisation such asBEG) lr = ?There is no axiomatic constraint between link for the association and create for the object classes here.Such constraints are given when the theories of objects and association are brought together. In keepingwith encapsulation, there are no actions to update or inspect the associated object instances directly.Bringing association and objects together Now assume that A and B are associated by C in adiagram D . D is interpreted as the co-limit of the theories for A, B and C . The class manager theoriesfor A and B provide the \glue" which brings theories of objects and associations together. C is \glued" toeach of A and B by identifying @L and @R with @A and @B respectively. Where names would otherwiseclash, they are subscripted by the name of the theory from which they emanate. Purely for convenience, lris renamed to ab in D .Figure 4 shows the hierarchical construction of the theories involved, and how these relate (dashed arrows)to the object model. Notice that D corresponds to a theory of a \subsystem" which includes all of the itemsin the object model.
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Ai ΓA BΓ BiFigure 4: The type view diagram is interpreted as the colimit of the object and association theories.We can now add axioms to D or to C which interpret the particular kind of association or aggregationrequired. Whatever kind of association is required, it can only link existing objects. This can be formalisedby stating that the relation only relates the existing objects:ab � A� BThis property relates the symbols of the association theory with those of the two class manager theories(but not those of the instance theories). These symbols are all available in the colimit of the associationtheory and manager theories and it is therefore meaningful to give it as an axiom of the theory \C" in theabove diagram.The axiom can be written as an extra, trans-theory, postcondition for link :link(a; b) ) a 2 A ^ b 2 Bwhich, due to locality, yields a synchronisation between link and create:link(a; b) ) a 2 A _ a:createAlink(a; b) ) b 2 B _ b:createBOptional unary associations ( ). If the \blob" on the right is white, that is each A isassociated with at most one B , then the relation is a (partial) map from @A to @B :8 a; b1; b2 � (a; b1) 2 ab ^ (a; b2) 2 ab ) b1 = b2This can be interpreted purely in the theory of the association by strengthening the constraints on link :link(a; b) ) a 62 domablink(a; b) ^ link(a; b 0) ) b = b 0Thus this constraint is truly a specialisation of the concept of association, independent of all otherconstructions. 5



Compulsory unary associations ( ). If the blob on the right is missing altogether, that iseach A is associated with exactly one B , then the map is total on A. Again this is a constraint betweenassociation and class manager theories:domab = ANote that we do not require the map to be surjective since an @B can be associated with an empty setof @As.Aggregation can be formalised in a similar way [3, 12].2.4 Interpreting SubclassingSubclassing is represented by a subset relation between the respective sets of object identities. If D is asubclass of C then we haveD � C@D � @CNotice that therefore any attribute of C automatically becomes one of D . Similarly for associations.More precise constraints on the values of attributes att(d ; x ) for d 2 D can be de�ned for subtype classeswithout a�ecting the overall properties of att as an attribute of C . But we cannot change the type of thisattribute to be disjoint from its type as an attribute of C .Exclusive subclasses are represented by assertingD1 \D2 = ?A number of subtle distinctions regarding migration between subclasses can be formalised using this basis[14]. It is reasonable to assume that non-state types cannot experience subclass migration, ie, if at any timein the lifetime of a 2 C it is a member of the non-state subclass A of C , then its lifetime in A and C arethe same:8 a : C � a 2 A )2(a 2 C � a 2 A)An abstract supertype C of subclasses D1, : : :, Dn has C = D1 [ : : :[Dn .2.5 Interpreting StatechartsStatecharts are the most complex and semantically rich notation employed by Syntropy. Based on [9], theydepict the state space of an object, partitioned according to \those states which distinguish the possibleorderings of events" ([4], p.91).State classes, depicted by boxes with a diagonal line in their top left hand corner, represent varying subsetsof the objects of the superclass where an individual instance can move between the subtypes. Statechartsde�ne the transitions which take instances from one state class to another (Figure 5 gives a simple example).In Syntropy, the e�ect of transitions is speci�ed by preconditions and postconditions similar to those usedin Z or VDM. For example, e1[P ]=Q , indicates that transition e1 can only occur if the predicate P holds andthat the two-state predicate Q must then hold between the before and after states of each occurrence of e1.Further semantics is given by Events listed in the textual part at the bottom of the statechart. Eventsare system-wide, but can be targeted at particular objects by the use of parameters and �lters. Typically,events e�ect a state transition in a single object of the class and have the same name as a state transitionin the diagrammatic part of the statechart.We make a syntactic distinction between the event and its associated transitions by capitalising the eventname and indexing the transition names. 6
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B1 B2Figure 5: Typical Syntropy Statechart2.6 Interpreting State Types and EventsThe information in the class diagram is interpreted as above. The statechart de�nes the actions of the classeswhich replace the white box actions of the instance theory. Each arrow in the statechart represents a classof possible state transitions and is interpreted as an action of the instance theory.Several arrows can be used to describe di�erent cases of a particular system event. The event is interpretedas an action in the theory of the subtype/supertype subsystem and is synchronised with the instance actionsthat correspond to the required state changes. For example, in Figure 5, if e1 and e2 are di�erent cases ofthe same event E (a) then e1 and e2 are interpreted as separate actions in the instance theory of A whereasE (a) is interpreted in the theory of the f A;B1;B2 g subsystem and then synchronised with e1 and e2 viaan axiom of the form:E (a)) a:e1 _ a:e2Filters More generally, events are of the form E (p[F ]), where the parameter p is a list of object or valueparameters and the �lter F is a predicate involving the parameters, self and the class constants. Objectinstances that satisfy the �lter will undergo the corresponding transition (depending on their state andprecondition), whereas objects for which a �lter fails to hold ignore the associated event.Interpreting Preconditions Preconditions in the Syntropy essential model are intended to specify thatcertain transitions \cannot occur" in given circumstances. Thus we interpret preconditions as (blocking)guards which prevent execution of the transition they annotate. Consider a transition e1[P ]=Q from stateB1 to state B2. We de�ne a permission axiom in the instance theory:e1 ) Pwhich expresses that e1 can only occur when P holds.Permission axioms are not included in speci�cation or implementation models. Instead guards are usedas additional assumptions in the state-transition axioms.The interpretation of preconditions as permission guards prevents preconditions from being weakened inre�nement, that is, such transformations do not yield theory extensions. Thus subtyping form 5 of Chapter8 of [4] (weakening preconditions) is not valid in essential models5.At the class level, each transition is also guarded by the state from which it occurs, for example, we havea:e1 ) a 2 B1 where C denotes the set of currently existing objects of class C .Postconditions Postconditions are expressed in terms of the change between attribute values of the cur-rent state and those after the transition. Modi�cations to associations which result from postconditionsde�ning a change to one end only are assumed to be made explicit in the postcondition.5In speci�cation models, on the other hand, preconditions are to be interpreted as assumptions: any behaviour is valid if atransition is executed when its precondition is false. So preconditions can be weakened in speci�cation models.7



For the above transition with postcondition, Q , we have the state-transition axiome1 ) Qwhere Q is a predicate in attribute symbols fi and f 0i and we replace f 0i with fi in Q.At the class level, the event additionally moves the targeted instances to state B2:a:e1 ) a 2 B2In speci�cation and implementation models we have:e1 ^ P ) Qand a:e1 ^ a 2 B1 ) a 2 B2In implementation models there are also un-named transitions � which are intended to activate as soonas their source state is entered (automatic transitions).We can specify this behaviour by asserting that no other transition of the object can occur until thisautomatic transition has occurred, once its source state S is entered (there can only be at most one automatictransition executable from a particular source state at any time):a 2 S ) : (a:�1 _ : : : _ a:�n) U a:�S is referred to as an unstable state. States without automatic transitions from them are known as stablestates.Generated actions Generated actions act of e1 (in speci�cation model statecharts) are required to even-tually occur:a:P ^ a:e1 ^ a 2 B1 )(: (ext1 _ : : : _ extk ) U act(a))where the exti are all external actions of the model: this asserts that act(a) must occur before any otherexternal event is detected, that is, it must occur in the samemacro step of the execution of the state machinemodel as a:e1. Additional axioms are used to enforce that the order in which events generated from a singleobject occur is the same as that speci�ed in the generation clause.3 Subtyping and Re�nementThe relationship between the models of Syntropy is not formalised in [4], however a number of examplesof techniques for transformation between models are given, and systematic transformations for subtypingwithin a model level are provided.The theory �M of a model M is the co-limit (e�ectively union) of the �A theories of its classes.We can then formalise re�nement between models by theory morphisms: modelD represents a re�nement(or subtype) of model C if there is an interpretation � of symbols of C into symbols of D which preservesthe theorems of C :�C ` ' implies �D ` �(')where �C is the class theory of C , etc.This de�nition works between essential models, speci�cation models and implementation models, andbetween speci�cation and implementation models. When comparing essential and speci�cation models wedo not expect all elements of the essential model to have an interpretation in the speci�cation model, so �may be partial. In addition, the permission axioms for statechart transitions are not preserved.8



This is because guards in essential models describe when events can physically occur in the completesystem, whilst guards in the speci�cation and implementation models are assertions that the software onlyneeds to have a de�ned response when the guard condition holds. Clearly the software only needs to de�nea response to an event in the situations where it can feasibly occur.Using this de�nition, all the forms of subtyping described in [4] can be shown to be re�nement steps inaddition, with the exceptions that arbitrary rede�nition of generated actions on transitions is not valid, andthat target splitting of transitions is only valid if the target state is unstructured in the abstract model.3.1 Subtyping and Re�nement of Class ModelsIt is clear that placing more constraints on the attributes and associations of a class will yield a strongertheory as the meaning of the more constrained model. In particular, replacing associations by aggregations(`adding more diamonds') will yield a stronger theory.It is also acceptable to add new classes, attributes and associations to the existing model. However allexisting inheritance relationships must be preserved, and disjoint inheritances cannot be modi�ed to becomeindependent inheritances. If C is an abstract superclass partitioned by a set D1, : : :, Dn of subclasses, thenwe cannot add a new element to this family.Constraining attributes and associations also serves to produce a subtype of an individual class. However,it may also render a class inconsistent because it may become impossible for a method of the class to preservethe strengthened constraints. This indicates that additional logical checks would be a useful part of a moreformal version of the Syntropy method. These checks could be based on those used in VDM++ or Z++ [14].An example of a re�nement transformation is a factorisation of one class into two or more superclassesvia inheritance (Figure 6).
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Figure 6: Factorisation of ClassThis transformation is a re�nement because the axioms for att1 and att2 in the initial model will be9



satis�ed by att10 and att20 de�ned from the second model, where:att10 = att1 � Catt20 = att2 � CThese de�nitions are valid because C � C0 and C � C1.A further useful transformation is the elimination of an optional association between A and B (optionalat the B end) by de�ning subclasses of A, one of which represents the domain of this association (Figure 7).
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s1 s2Figure 7: Elimination of Optional AssociationThis transformation is a re�nement because the axiom8 a : A; b : B �b = r2(a) ^ r2(a) 6= nilB � a 2 r1(b)of the �rst model is also valid in the second, if we interpret r1 by s1 and r2 byr2(a) = if a 2 A2then s2(a)else nilBbecauseb = r2(a) ^ r2(a) 6= nilB )a 2 A2 )b = s2(a) )a 2 s1(b)by the axiom linking s1 and s2 in the re�ned model. Similarly for the other direction.10



4 Subtyping of StatechartsOnly certain transformations on a statechart yield an extension of its theory. Chapter 8 of [4] gives a numberof transformations on statecharts which the authors intend to represent subtypings of the correspondingclasses. We discuss each of these in the following sections.4.1 Expanding a StateTransforming a single state in the abstract model into a state with an enclosed statechart in the concretemodel will produce a theory extension and hence a re�nement.This is the case since introducing nested states does not a�ect existing axioms, and adds new axioms foreach new substate. State-transition axioms for transitions to the state are strengthened because they arenow redirected to the designated initial substate of this state.4.2 Weakening Transition Guards and PreconditionsThis transformation (item 5 in the list of Chapter 8 of [4]) clearly does not yield a theory extension foressential models, since permission axioms would be weakened by it.Intuitively the permission axioms do formalise the assertion that events cannot occur unless there is sometransition available to record their occurrence. This, according to [4], is the essential model interpretation ofa statechart. However the speci�cation and implementation models interpret guards simply as preconditionsin the usual sense of VDM [10] and B [13]: if the precondition fails to hold then the event concerned canstill occur, but the response of the software to the event is not de�ned. In this case weakening transitionguards and preconditions leads to stronger state-transition axioms and hence a re�nement.For concurrent systems Syntropy re-introduces the idea of guards as synchronisation constraints (Chapter10 of [4]), but no graphical representation of these guards is given on the statechart models, only on classmodels. We can interpret these guards as permission constraints, and then require that subtyping of classesyields stronger constraints: so that any behaviour of a subtype object is the possible behaviour of somesupertype object [15].4.3 Splitting and Re-targeting TransitionsA transition t (but not the initialisation) can be re-targeted by changing its target from a state tt to asubstate tti of tt in the new subtype model. tt must be an unstructured state in the original model, ie,we re-target t in combination with dividing tt into new substates. This restriction is not made explicit in[4], and is necessary because otherwise t could be redirected to a substate of tt disjoint from its originaltarget, the designated initial substate of tt . Re-targeting results in a stronger theory for the new model,because the consequent of the state-transition axiom for t will become stronger. Initialisation, nesting anddisjointness axioms are una�ected. Permission axioms are also una�ected, so that this transformation alsoyields a theory extension of class theories.Re-targeting to a state which is not a substate of the original target is clearly not a subtyping under anyof the de�nitions: it violates the state-transition axioms for the transition concerned.A transition can be split either at its source or its target. Figure 8 shows a simple example of a sourcesplitting of transition t . In a source splitting, the original guards, generations and postconditions must berepeated on each of the new transitions, and these can additionally de�ne new generations and postconditionsfor particular cases. The guards cannot be changed. Every substate of ss must become a source for a splitcase of t .The permission axioms for t are preserved by a source-splitting (and indeed, this is the case even if notevery substate of the source state is maintained as a source of a split transition). Initialisation, nesting anddisjointness axioms are una�ected, whilst state-transition axioms for t are strengthened because obj 2 ssimplies that obj 2 ssi for some substate; but then the new model implies that t from ssi establishes all the11
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t[G]/act,act2 Figure 8: Source-splitting a Transitiongenerations and postconditions that t from ss did in the previous model. Obviously state-transition axiomswould not be preserved if we allowed t to not be sourced from every substate of ss. Thus this transformationleads to a theory extension in each of the models.A (non-initial) transition t can be split at its target state tt by breaking the original guard into several(disjoint and exhaustive) cases, assigning these to new transitions for the same event, and giving these targetswithin or at the original target. New generations and post-conditions can be added to each case (Figure 9).Again, tt must be unstructured in the original model.Permission axioms will be preserved in this transformation because each individual split transition willhave a stronger permission axiom than the original. State-transition axioms are preserved because the newtarget states and post-conditions are at least as constrained as for the original transition. In addition, ifthe precondition and guard of the original transition hold, then there must be some valid new transitionwhose guard and precondition hold, because these new conditions partition the old condition. Thus thistransformation leads to a theory extension.4.4 Strengthening PostconditionsThis transformation clearly results in a theory extension in each of the semantic interpretations. Again,inconsistency may be introduced by this transformation, and so should be checked, as indicated in Chapter8 of [4].If new transitions for the same event are added in the subtype statechart, then the old postconditionsfor this event do not need to apply to these new transitions, provided that the new transitions have �ringconditions disjoint from those of any previous case for this event (an example would be the introduction oftransitions for exception cases). The �lter predicate for the transition cannot be weakened.4.5 Rede�ning GenerationsContrary to item 9 in Chapter 8 of [4], we cannot allow generated events to be arbitrarily rede�ned in asubtype. In terms of the subtyping de�nitions of [15] such a rede�nition is invalid because then the behaviourof a subtype object may not be simulatable by any supertype object. Instead, new generations can be added12
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t[G & not(E)]/act,act2Figure 9: Target-splitting a Transitionto any transition, including the initialisation, provided they do not introduce inconsistency due to multipleevent sends to the same receiver.Likewise in the case of entry and exit generations (item 10): new generations can be added but oldgenerations must be maintained, as must their order.5 Transformations Involving a Change of Granularity5.1 Introducing Internal ActionsA typical form of transformation from an essential to a speci�cation model is to replace the simple assertionthat an event � is followed by an event � (� being an input event to the software, � an output, althoughthis distinction is not documented in the essential model), by a model of the software which shows how thisreaction is produced (Figure 10). The transitions will typically be in three di�erent state models.The appropriate theory interpretation � for this re�nement is:Symbol of abstract model Symbol of re�ned model� �� �S S1 �C1 �T1A S2 �C1 �T1 [ S2 � C2 � T1T S2 �C2 �T2The disjointness axioms for the states of the abstract statechart therefore hold. Notice that membershipof A is interpreted to mean \� has happened more recently than �". It covers the period of time when theinternal reaction g to � is in progress.The state-transition axioms for � and � are thus interpreted as:self 2 S1 �C1 �T1 ^ � )(self 2 �(A)) 13
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\If A occurs in state S , the transition labelled � must occur."A more complex form of this transformation can be carried out within the speci�cation model, byreplacing a single internal reaction step by a sequence of two or more steps (Figure 11).
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D2Figure 11: Factoring a Response in Speci�cation ModelThe re�nement approach used in the �rst case can also be used here. We additionally need that theinterpretation of the axiomg ) (: � U �)of the abstract model is true in the re�ned. This follows because we haveg ) (: (� _ �) U f )and f ) (: � U �)in the re�ned model.5.2 Introducing Control FlowIn this section we cover the replacement of an abstract transition by a procedural combination of concretetransitions. This is used for a number of purposes: 15



� Forwarding messages from one object to another, in order to make an event available to all the objectswhich are speci�ed to respond to it in the abstract model;� sending messages to other objects to ensure that speci�cation model invariants which constrain theseobjects are preserved by the current transition and local e�ects;� replacing complex navigation expressions by a sequence of method calls which compute their values;� introducing intermediate results (eg, new temporary variables being used to swap the values of twoother variables), etc.Decomposition into conditionals does not change the granularity of actions and is covered by the target-splitting transformations of [12].5.2.1 ForwardingA standard form of re�nement in Syntropy is to replace broadcast events (in a speci�cation model) bypoint-point message sending in an implementation model (Figure 12).
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e/c2.e[] eFigure 12: Forwarding TransformationThis transformation is valid provided that there is no interference during the execution of the forwardingprocess which corresponds to the abstract e(a) transition.The abstract speci�cation gives the following semantics to an occurrence of e(a):a 2 S1 ^ e(a) ) (a 2 S2)8 y 2 S3 � y :c1 = a ) (y 2 S4)All of these changes occur in the same conceptual execution interval.At the concrete level however we must explicitly require that the forwarded messages to objects of C2are executed within the \secured" part of the execution of a:e, where a is the target object in C1.Otherwise, a could respond to a:e, send e to an associated C2 object b in the relaxed part of the transitionfor e, and enter a new state, di�erent to S2, by the time that this forwarded event is responded to by b.16



If the messages are sent in the secured part, then the concrete e transition in C1 completes with all thegenerated transitions of associated C2 objects, resulting in a state which corresponds (as far as the picturedsubsystem is concerned) with the post-state of the abstract e event.5.2.2 Sequential DecompositionRe�nement steps from the speci�cation to the implementationmodel, and within the implementation model,can involve the replacement of a single transition with a suitable composition of transitions in the same statemodel (in contrast with the transformations of the previous section). Automatic transitions (not triggeredby an event) may be used, or a transition may generate its successor. The simplist case is that of sequentialdecomposition (Figure 13).
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/[A]α Figure 13: Sequential DecompositionA new intermediate state I is introduced, and an automatic transition � leading from this state to thetarget state. Part A of the original postcondition A ^ B is achieved by the re�ned transition for �, and partB is achieved by � (which is enabled as soon as I is entered). The axiom for � is:(1) self 2 I ) : (� _ : : :) U �where all other transitions of the statechart are excluded from occurring until � has occurred. A strongerversion of this axiom isself 2 I ) �Both are su�cient to prove the re�nement.The interpretation of the e�ect axiom for � is:8 x : X � x = v ^ self 2 S ^ � )Abs(self 2 T ^ A[x=v ; v=v 0] ^ B [x=v ; v=v 0])where v : X are the state variables (assumed to be interpreted by themselves in the re�nement).The interpretation AbsP for a predicate P means \at the next initiation time of an action m of Abs, Pholds". But such an m can only occur from the source state T , because no transition of the original modelhas source I in the re�ned model. We could alternatively (and equivalently) interpret AbsP as \in thenext stable state P holds".At such a time point after an occurrence of �, with self 2 S , � must have occurred, and no othertransition can have occurred, because of (1) above. Thus, if the e�ects of � and � in the re�ned model donot interfere, the result follows. 17



An alternative (valid for speci�cation models) would be to introduce a new named transition g insteadof � , and to add the generation of g to the concrete transition �.A more general version of this transformation breaks the original transition into two interfering transitionswhose cumulative e�ect establishes the original postcondition. This requires that8 x : T � P1[x=v 0] ^ P2[x=v ] ) Pwhere P1 is the postcondition of the �rst transition, and P2 the postcondition of � .The interpretation of states is that S maps to S [ I , and T maps to itself. This is valid in the case ofautomatic transitions because the abstract state is assumed not to be changed by the concrete � transitionor by membership of I [4].In the case of the speci�cation model, abstract states are interpreted by themselves, and states such asI correspond to elements of the class C of the statechart which are not in any of the abstract states.5.2.3 Iterative DecompositionIntroducing a loop structure through automatic transitions (at the implementationmodel level) or generatedtransitions (for speci�cation models) also changes the granularity of actions. Figure 14 shows the situationfor implementation models. The proof is closely related to the usual veri�cation process for loops usingweakest preconditions. A predicate I must be found such that
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hold in the re�ned model, where �1 and �2 are the two new automatic transitions introduced in the re�nedmodel.In Syntropy the attributes of an object are assumed to be unchanged by automatic transitions or through-out membership of `unstable' states (states with at least one automatic transition leading away from them).Thus we can simplify the requirements for correctness to be:1. T ) I2. E ^ S ^ I ) I 0 where we assume that only local variables acquire a 0 in I 03. not(E ) ^ I ^ Q ) PAs for sequential decomposition, we interpret the abstract byAbs , so that P is only required to holdat the next initiation time of some transition m from the abstract model after � executes. Again, such asituation implies that a series of iterations of the loop has taken place followed by a single execution of �2.By the choice of I , this establishes the required postcondition P at this time.An example is given in [4] for the clearTo(m) operation of AlarmStore. In this case the abstract transitionhas postcondition P asqueue 0 = clear to(m; queue)where this function removes all elements from the front of queue before the �rst occurrence of m.A local variable tmpQ is introduced to carry out this iteration. The state Searching plays the role of L,postcondition T istmpQ 0 = queuethe invariant I is9 t : seq(Minder) � queue = t a tmpQ ^ m 62 ran(t)Condition E is#tmpQ > 0 ^ m 6= �rst tmpQS is tmpQ 0 = tail tmpQand Q isqueue 0 = tmpQIt can be easily checked that the conditions (1), (2) and (3) above hold in this case.5.3 Replacing Broadcast Communication by Message PassingIn the transition to the implementation model, broadcast communication is replaced by point-to-point mes-sage passing. In the usual case that there is a single target object of a broadcast message, this is a trivialre�nement: a generated event m(x ) where b is the only target object that satis�es the �lter F (b; x ) forthis event at a particular time, can be replaced by an invocation b:m(x ). Both have the same semanticrepresentation in our formalisation of Syntropy.In the case that a collection fc : @C j F (c; x )g of objects passes the �lter for m we can replace thegeneration by an unordered iteration of the individual executions:19
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