
�

Invariants� Frames and Postconditions�

a Comparison of the VDM and B Notations
Juan Bicarregui and Brian Ritchie

Abstract�
VDM and B are two �model�oriented� formal methods�

Each gives a notation for the speci�cation of systems as state
machines in terms of a set of states with operations de�ned
as relations on that set� Each has a notion of re�nement of
data and operations based on the principles of reduction of
non�determinism and increase in de�nedness�
This paper makes a comparison of the two notations

through an example of a communications protocol previ�
ously formalised in ��	� Two abstractions and two rei�ca�
tions of the original speci�cation are given�
Particular attention is paid to three areas where the no�

tations di
er� the use of postconditions that assume the
invariant as opposed to postconditions that enforce it� the
explicit �framing� of operations as opposed to the �minimal
frame� approach� and the use of relational postconditions as
opposed to generalised substitutions�

Keywords�VDM
 B Abstract Machines
 Formal Methods�

I� Introduction

I
N ���� Bruns and Anderson describe a communications
protocol in CCS with value�passing� A data model for

the values is given which is� in e�ect� a model of the state of
the device� This model is de	ned in terms of the usual data
constructors of model�oriented speci	cation� but without
the use of invariants�

The part of the protocol described is a mechanism for
manipulating a series of 
ags that indicate the status of
some shared�memory bu�ers� These 
ags are used to en�
sure that there is no �data�tearing� as multiple processors
simultaneously read and write to the bu�ers� For the op�
erations that update these 
ags� semaphores are used to
ensure that each operation has uninterrupted access to the

ags� Thus this part of the behaviour can be described as
a purely sequential system�

This paper considers some alternative data�models for
the speci	cation 
and rei	cation� of these status 
ags� In
particular� attention is paid to the use of invariants in the
data model and frames of reference in the operation de	ni�
tions� neither of which are available in the data modelling
language of ���� It is argued that these features can play a
key role in describing the system in a �natural� fashion and
can thus help to deepen our understanding of the model�

VDM ��� and B ��� are used for the analysis� and par�
ticular attention is paid to some areas where the notations
di�er� the use of postconditions that assume the invariant
as opposed to postconditions that enforce it� the explicit
�framing� of operations as opposed to the �minimal frame�
approach� and the use of relational postconditions as op�
posed to generalised substitutions� In this small example�

Both authors are with the Rutherford Appleton Laboratory� Ox�
fordshire� UK� E�mail� jcb�inf�rl�ac�uk and br�inf�rl�ac�uk

there is little scope for the e�ective use of structuring of
speci	cations that is one of the major features of the B
method� Familiarity with the basic concepts and notation
of VDM and B is assumed�
The remainder of this 	rst section is an informal descrip�

tion of the application and desired protocol� The second
through 	fth sections present the development in VDM�
Section two presents a formal speci	cation of the system
at a level of abstraction similar to the �abstract� descrip�
tion of ���� Motivated by an analysis of the invariant of
that speci	cation� section three describes two further ab�
stractions that can be made� Section four provides an alter�
native model of the system that makes it possible to write
more useful framing information about the operations� the
	fth section extends this model to the �improved� protocol
of ���� The sixth section considers the development again
using B� presenting those elements of the development that
highlight the di�erences in the notations� The last section
is a discussion of some of the points arising from the exam�
ple and their treatment in the two notations�

A� The Multiprocessor Shared�Memory Information Ex�

change

The Multiprocessor Shared�Memory Information Ex�
change 
MSMIE�� is a protocol that addresses intra�
subsystem communications with �several features which
make it ideally suited to inter�processor communications in
distributed� microprocessor based nuclear safety systems�
���� It has been used in the embedded software of Westing�
house nuclear systems designs�
The protocol uses multiple bu�ering to ensure that no

�data�tearing� occurs� that is� it ensures that data is never
overwritten by one process whilst it is being read by an�
other� One important requirement is that neither writing
nor reading processes should have to wait for a bu�er to be�
come available� another is that �recent� information should
be passed� via the bu�ers� from writers to readers� In the
simpli	cation considered in ��� it is assumed that informa�
tion is being passed from a single writing �slave� processor�
to several reading �master� processors�
The information exchange is realised by a system with

three bu�ers� Very roughly� at any time� one bu�er is avail�
able for writing� one for reading and the third is either in
between a write and a read and hence contains the most
recently written information� or between a read and a write
and so is idle�
The status of each bu�er is recorded by a 
ag which can

take one of four values�
s ��assigned to slave�� This bu�er is reserved
for writing� it may actually be being written



�

at the moment or just marked as available for
writing�
n ��newest�� This bu�er has just been written
and contains the latest information� It is not
being read at the moment�
m ��assigned to master�� This bu�er is being
read by one or more processors�
i ��idle�� This bu�er is idle� not being read or
written and not containing the latest data�

The names of the master processors that are currently read�
ing are also stored in the state�

As mentioned earlier� neither the slave and master pro�
cessors that access the bu�ers in parallel nor the actual
transference of data are modelled here� This analysis
concerns only the operations that modify the bu�er sta�
tus 
ags� These operations are protected by a system of
semaphores which allow each operation uninterrupted ac�
cess to the state and thus their behaviour is purely sequen�
tial�

There are three of these operations�

slave This operation is executed when a write
	nishes� slave sets the status of the bu�er that
was being written to �newest� thus replacing
any other bu�er with this status�
acquire This is executed when a read begins�
The new reader name 
passed as a parameter�
is added to the set of readers and status 
ags
are updated as appropriate�
release Executed when a read ends� this re�
moves a reader from the set and updates 
ags
as appropriate�

The details of the behaviour of these operations are quite
intricate and their precise description is left to the formal
speci	cation in the following section�

It should be noted however that� as it stands� the pro�
tocol could have the undesirable property that information

ow from slave to master can be held up inde	nitely� This
possibility is ruled out in the original system ��� via tim�
ing constraints whereas ��� suggests an improvement to the
protocol 
using a fourth bu�er� that eliminates the possibil�
ity without recourse to timing arguments� This improved
protocol is also examined in later sections�

II� A VDM Specification of MSMIE

The state in ��� is de	ned as

�a set of three pairs 
a� l� where a is the bu�er
status� drawn from fi� s� n�mg� and l is the bu�er
identi	cation� drawn from f�� �� �g� The bu�ers
are given as a set rather than a tuple to enable
pattern matching rules in the description of the
protocol��

The pattern matching rules do indeed give a concise de�
scription of the transitions of the system� in particular� the
associative and commutative properties of sets are used to
good e�ect in order to avoid much repetitive case analy�
sis� However� the present authors found that considerable
e�ort was required to check that the patterns given were

exhaustive and that the e�ects of overlaps between pat�
terns were sensible� This di�culty is exacerbated by the
fact that many of the states in the model are unreachable
but no invariant on the state type is given to exclude them�

The speci	cation given here makes the choice of a se�
quence of three bu�ers for the state description� In addi�
tion� an invariant is used to exclude unwanted values from
the state type�

A� The State

Possible values of the status 
ags are given via an enu�
merated type� the type of the names of master 
reading�
processors is deferred�

types

Status � fs�m� n� ig

MName � token

The state is composed of three bu�er status 
ags and a
set of the names of the currently reading masters� The in�
variant captures the fact that only certain states are reach�
able by the operations� It gives restrictions as to the possi�
ble combinations of status 
ags� namely that there is always
exactly one bu�er assigned to the writing slave� there is at
most one currently being read and at most one with newest
data that is not being read� and the set of reader names
is empty precisely when there is no bu�er being read� The
initial state assigns one bu�er to the slave and records that
the other two bu�ers are idle�

state � of

b � Status�

ms � MName�set

inv mk�� 
b�ms� � len b � � �
count
s� b� � � �
count
m� b� � f�� �g �
count
n� b� � f�� �g �

count
m� b� � � � ms � f g�

init mk�� 
b�ms� � b � �s� i� i� �ms � f g
end

where�

count �Status � Status� �N

count
status� l� � len 
l � status�

A�� A validation condition on the state�

We observe that only four combinations of bu�ers are
allowed by the invariant�

�mk�� 
b�ms��� � fb
��� b
��� b
��gm �
ffs�i�igm � fs�i�ngm � fs�i�mgm � fs�n�mgmg

where we have used f� � �gm as a notation for bags 
multi�
sets�� for example fs�i�igm is the bag containing one �s� and
two �i�s�
Thus the invariant has captured� and brought to the

fore� properties that would otherwise have to be deduced

�Here� range restriction is used on sequences� viewing them as maps
from natural numbers to elements�



�

by looking in detail at the de	nitions of the operations� It
makes it possible to build quickly our intuition of the work�
ings of the speci	ed machine� We know immediately that
there is always one bu�er reserved for writing� at most one
being read� and at most one with newest data not being
read�

B� The Operations

B�� Slave�

The 	rst operation� slave� is executed when a write com�
pletes� It reassigns the status of the bu�er just written�
previously s� to n� thus replacing any other n bu�er� It
also non�deterministically chooses another available bu�er
which is to be the new bu�er reserved for writing and as�
signs to it status s�

slave 
�

ext wr b � Status�

pre true

post �i � f�� �� �g �



�	
b 
i� � s 
 b
i� � n� �



�	
b 
i� � m 
 b
i� � m�

The postcondition may� at 	rst sight� seem to be to lib�
eral� what should happen to any bu�er that had status n

or i� However� in conjunction with the invariant and the
frame� it ensures that no other n bu�er remains� that ex�
actly one new s bu�er is chosen� and that no new m bu�ers
are added� Thus for example we can write the following
validation property for slave which can be proved in order
to increase con	dence in the correctness of the postcondi�
tion�

�	
b 
i� � fn� ig 
 b
i� � fi� sg

Note that all three implications could have been equiva�
lences without changing the operation�

B�� Acquire�

The second operation� acquire� is executed when a read
is about to start� It adds the new reader�s name� passed as
a parameter� to the record of active readers and reassigns
status 
ags as necessary�

If there is a bu�er currently being read then the new read
also begins to read that same bu�er and no status change
is required� Otherwise the new read starts on the bu�er
with newest data� status n� and reassigns the status of that
bu�er to m�

The operation can only be executed in these two situa�
tions and this information is recorded in the precondition
which requires that there is either a status m or status n

bu�er� The precondition also records the fact that the op�
eration is only required to function when the new reader is
not already in the set of readers�

Note that� in selecting which bu�er is to be read� it is
not always possible to choose the bu�er with newest data�
This situation occurs when there are currently bu�ers with
both status m and n� which arises when the data in the n

bu�er has become available since the start of an ongoing

read� that is� when there has been a slave since an acquire

for which there has not yet been a corresponding release�
In this situation� were the new master to begin reading
the n bu�er� there would then be two bu�ers reserved for
reading� Consequently� should another slave now occur�
attempting to preserve this new data would leave no bu�er
being available for another write to start� thus contradict�
ing one of the fundamental requirements of the protocol�
that processors should never have to wait to gain access to
bu�ers� The invariant is designed to prevent this possibil�
ity� by insisting that there is always one 
and precisely one�
bu�er with status s�

acq 
l �MName�

ext wr b � Status�

wr ms � MName�set

pre l �� ms �
�i � f�� �� �g � b
i� � n � b
i� � m

post ms � �	ms 
 flg �
�i � f�� �� �g �

if
�	
b 
i� � n ��	ms � f g then b
i� � m

else b
i� �
�	
b 
i�

It is worth observing that the last line of the postcondition
could have been written as

if
�	
b 
i� � n then b
i� � fn�mg else b
i� �

�	
b 
i�

or simply as
�	
b 
i� �� n �ms �� f g 
 b
i� �

�	
b 
i��

The apparent non�determinism in the alternatives is illu�
sory as the invariant will ensure that there is no real choice
as to what status to assign to any bu�er that previously
had status n� However� the longer and apparently stronger
postcondition is preferred as the shorter versions seem to
be more cryptic�

B�� Release�

The release operation is executed when a reading� master
processor 	nishes its read� The name of the processor is
removed from the set of readers and again� status 
ags
reassigned as required�
If this master is not the last one currently reading� then

no change is required to the status 
ags� However� if this
is the last master currently reading the m bu�er� then this
bu�er must have its 
ag reassigned� There are two possibil�
ities� On the one hand� should there be another bu�er with
status n available at this time� that is if a write has been
completed since the current �chain of reads� began on this
bu�er� then the m bu�er no longer contains the most recent
data and so should now be set to i� On the other hand� if
there has been no write since the chain of reads began� and
hence there is no n bu�er available� the m bu�er contains
the most recent data and its status should be reset to n�

rel 
l �MName�

ext wr b � Status�

wr ms � MName�set

pre l � ms



�

post ms � �	ms 	 flg �
�i � f�� �� �g �

if ms � f g �
�	
b 
i� � m

then b
i� � fn� ig � count
n� b� � �

else b
i� �
�	
b 
i�

Again there is some choice as to how much of the in�
formation that is deducible from the invariant should be
made explicit in the postcondition� For example the 	rst
conjunct of the �then� clause b
i� � fn� ig could have been
omitted as no other possibilities are permitted by the in�
variant� or alternatively� the whole �then� clause could be
replaced by a more explicit form

if �j � f�� �� �g �
�	
b 
j � � n then b
i� � i else b
i� � n

It is debatable which gives the clearer speci	cation�
This speci	cation has given a fairly algorithmic descrip�

tion of which bu�ers are assigned to what status by each
operation� This is a good level of abstraction at which
to reason about whole system safety properties such as
the freshness of the data transferred from slave to mas�
ters which is the focus of ���� Much of the detail of this
speci	cation� however� is undesirable clutter for other pur�
poses and it is interesting to give more �external� views of
the system� as is done in the next section�

III� Two More�Abstract Specifications

In this section we give two formal abstractions of the
above speci	cation� The new speci	cations maintain the
same external behaviour� however the abstract states are
progressively simpler than the one just given� The abstrac�
tions arise by ignoring detail in the state model that is
unnecessary to capture the external behaviour� Retrieve
functions from concrete to abstract states are also given
which are many�to�one thus demonstrating �implementa�
tion bias� in the concrete speci	cation�

As it is usual to give more concrete speci	cations succes�
sively higher numbers� from now on we will use �� to refer
to the state of the speci	cation given earlier�

A� A First Abstraction� Ignoring the Identity of Bu�ers

Taking inspiration from the validation condition on the
state of the above speci	cation� we can give a more abstract
speci	cation where� rather than explicitly giving the status
of each individual bu�er� the state only records which of
the four possible combinations of bu�er the machine is in�

types

Status� � fsii� sin� sim� snmg

state �� of

bs � Status�
ms � MName�set

inv mk���
bs�ms� � ms � f g � bs � fsii� sing

init mk���
bs�ms� � bs � sii �ms � f g
end

operations

slave 
�

ext wr bs � Status�

pre true

post 

�	
bs � fsii� sing 
 bs � sin� �



�	
bs � fsim� snmg 
 bs � snm�

As in the earlier speci	cation of slave� there is no change to
the readers of the m bu�er� thus there is no need to access
ms�

acq 
l �MName�

ext wr bs � Status�
wr ms � MName�set

pre l �� ms � bs �� sii

post ms � �	ms 
 flg �

if
�	ms � f g then bs � sim else bs �

�	
bs

The de	nition of rel is similar to acq and for reasons
of brevity has been omitted from this and all subsequent
speci	cations� The complete speci	cations can be found in
����
The retrieve function from the 	rst� more concrete� spec�

i	cation to this one is simple to de	ne by cases�

retr��� ��� � ��

retr���
mk�� 
b�� b�� b��ms�� �

cases 
count
n� �b�� b�� b���� count
m� �b�� b�� b���� of


�� ��� mk���
sii�ms�

�� ��� mk���
sin�ms�

�� ��� mk���
sim�ms�

�� ��� mk���
snm�ms�
end

This speci	cation abstracts away from the behaviour of
the individual bu�ers and so it does not help us to reason
about the algorithm for updating them� However� it does
exhibit a useful congruence on the original state space and
makes the property of not returning to the sii states very
clear� This observation motivates the following further ab�
straction�

B� A Further Abstraction

In this speci	cation we abstract away from the bu�ers
entirely� their place being taken by a single boolean 
ag
that records whether a write has ever occurred� Although
this speci	cation is consequently extremely simple� it still
exhibits the same external behaviour as the original�

state �� of

b � B
ms � MName�set

inv mk���
b�ms� � b � false 
 ms � f g

init mk���
b�ms� � b � false � ms � f g
end

The operations speci	cations are now very simple�

operations



�

slave 
�

ext wr b � B

pre true

post b � true

acq 
l �MName�

ext rd b � B
wr ms � MName�set

pre b � true � l �� ms

post ms � �	ms 
 flg

The retrieve function is straightforward�

retr��� ��� � ��

retr���
mk���
bs�ms�� � mk���
bs �� sii�ms�

IV� An Alternative View of MSMIE

The above speci	cations are based on the state recording
the status of each bu�er� E�ectively� the state is a map
from each bu�er to its status� Returning to the original
speci	cation� we observe that there is always exactly one
bu�er with status s and at most one with status m or n�
This makes it possible to invert the map and think of the
state as mapping each status to a bu�er�

This leads to a speci	cation that is equivalent to the 	rst
one� but might yield a more e�cient basis for an implemen�
tation� This change also makes it possible to specify the
access constraints more closely�

A� The State

types

BName � f�� �� �g

MName � token

state �� of

s � BName

n � �BName�
m � �BName�
ms � MName�set

inv mk���
s� n�m�ms� � 
m � nil � ms � f g� �
nil�or�di�erent
�s�m� n��

init mk���
s� n�m�ms� � mk�� 
�� nil� nil� f g�
end

where nil�or�di�erent
�s� n�m�� is true if and only if each of
s� n and m are each mapped to distinct BNAME s or nil�

nil�or�di�erent � �BNAME �� � B

nil�or�di�erent
l� �

�i � inds l � l
i� � nil � l
i� �� elems 
i 	� l�

It is perhaps worth noting that an alternative data model
would consist of a single map from Status to BNAME �
However� we have chosen the above because this allows
us to narrow the read and write frames of some of the
operations�

A�� The Retrieve Function�

In this case we give the retrieve function implicitly�
noting however that it is fully determined 
and imple�
mentable��

retr��� 
mk���
s� n�m�ms����� �����

pre true

post let mk���
bs�ms�� � �� in

len bs � � �
�i � f�� �� �g�
s � i 
 bi � s� �


n � i 
 bi � n� �

m � i 
 bi � m� �

i �� fs� n�mg 
 bi � i�

�ms� � ms

B� The Operations

B�� Slave�

slave 
�

ext rd m � �BName�
wr n � �BName�
wr s � BName

pre true

post n � �	s

The interaction between invariant and externals is inter�
esting� Here� read access to m is required although m is
not referred to in the speci	cation� This is because m is
linked to s via the invariant and the value of s which is not
fully determined by the post�condition� any implementa�
tion will need to read m in order to ascertain what value
it is valid to assign to s�
Thus rather than think of the externals clauses as giving

information about the variables mentioned in the speci�ca�
tion� we see them as giving details of what access to state
variables an implementation of that operation can be al�
lowed to make� This distinction separates their semantic
role giving information about access to state variables from
the syntactic role they play in binding the free variables of
the pre� and post�condition�

B�� Acquire�

acq 
l �MName�

ext wr ms � MName�set

wr n�m � �BName�

pre l �� ms � � 
n � nil �m � nil�

post ms � �	ms 
 flg �


�	ms �� f g 
 m ��	m � n ��	n � �

�	ms � f g 
 m ��	n � n � nil�



�

Interestingly� the last conjunct of this postcondition

could be considered to be redundant� When �	ms � f g and

thus �	m is nil� then ms � flg and so m must be assigned a
non nil value� Now� as read access to s is prohibited� the
only bu�er that we can be sure is not already in use is that
previously assigned to n� So any implementation that re�
spects the frames of reference must assign this bu�er to m�
Then the only remaining possible value for n is nil� How�
ever� to hide so much information in the externals clause
seems to be counter�productive�

V� The Improved MSMIE

As mentioned earlier� Bruns and Anderson observe that�
as it stands� the three bu�er MSMIE can exhibit an un�
desirable behaviour� That is� it is possible for a series of
overlapping reads� each beginning before the last ends� to
lock�out inde	nitely the latest data� They suggest an im�
proved protocol that uses a fourth bu�er to eliminate this
possibility�

Surprisingly� although this new protocol exhibits the
same external behaviour as the earlier one� there is no for�
mal re	nement relationship between them� To understand
why this is� we recall that the part of the system modelled
only concerns itself with the assignment of processors to
bu�ers and so does not model the actual transfer of infor�
mation from slave to masters� Thus� the values assigned to
the status 
ags have no externally visible e�ect and all the
machinations of the state can be seen as purely an imple�
mentation bias in the model�

However� the four�bu�er version is a re	nement of the
most abstract speci	cation given earlier� which gives an�
other important reason for considering those abstractions�
In particular� validations of the abstract model will carry
over to both the three and four bu�er versions�

Of course� in this case� it is the internal properties of the
model itself that are of interest� as it is these properties that
in
uence the �freshness� of the data read by the masters�
In this respect� the four bu�er protocol is indeed better
behaved as it would lead to a system where the delay in
information transfer is at worst equal to that of the three
bu�er version�

In the four bu�er version of MSMIE� there is also an
extra status possible for bu�ers� o is used to denote a
bu�er that is still being read but no longer contains most
up�to�date information� Thus�

s as before� is a bu�er that is reserved for writ�
ing
n as before� is a bu�er that contains the latest
data but is not being read 
waiting for read�
m is a bu�er being read� 
and the newest such�
o is a bu�er being read 
but there is also a
newer one being read�
ms is the set of masters reading m

os is the set of masters reading o�

Newmasters are always assigned to the n or them bu�er�
m bu�ers are �demoted� to o status in a way that ensures
that the o bu�er will periodically become idle� In this way

the protocol avoids the �refresh� problems of the three�
bu�er version� Again detailed descriptions of the mecha�
nisms used to achieve this is given accompanying the formal
text�
It might help to think of the status transitions i � s

� n as the write phase of a bu�er and the transitions n
� m � o � i as the read phase� We will see that this
variant of MSMIE always has two bu�ers in write phase
and two bu�ers in read phase�

A� The State

types

BName � f�� �� �� �g

state �� of

s � BName

n � �BName�
m � �BName�
o � �BName�

ms � MName�set

os � MName�set

inv mk���
s� n�m� o�ms� os� �


m � nil � ms � f g� �

o � nil � os � f g� �

ms � os � f g� �

nil�or�di�erent
�s� n�m� o����

m � nil � n � nil 
 o � nil�

init �� � �� � mk���
�� nil� nil� nil� f g� f g�
end

The last conjunct in the invariant� which rules out the
states corresponding to fs�o�i�igm � is the result of the way
that readers of m are released which� as in the earlier spec�
i	cations� ensures that there is always an m or an n bu�er
remaining�

A�� A Validation Property for the State�

The invariant only allows the following states corre�
sponding to the following � combinations of bu�er status�

fs�i�i�igm � fs�i�i�ngm � fs�i�i�mgm �

fs�i�m�ngm � fs�i�m�ogm �

fs�i�n�ogm � fs�m�n�ogm

A�� Retrieve Function�

As stated earlier this version is a data re	nement of the
most abstract model� The retrieve function is straightfor�
ward�

retr��� ��� � ��

retr���
mk���
s� n�m� o�ms� os�� �

mk���
n � nil �m � nil � o � nil�ms 
 os�

B� The Operations

B�� Slave�



�

slave 
�

ext rd m� o � �BName�
wr n � �BName�
wr s � BName

pre true

post n ��	s

As before the implementation will require access to m and
o in order to be able to set a valid s� That is�

s � BName 	 fn�m� og
This access requirement is recorded in the externals even
though the predicates do not mention m and o�

B�� Acquire�

The descriptions of acquire and release� given via case
analysis� are rather unwieldy� As di�erent variables change
in the di�erent cases� the operations have to have wide
write access and hence require clauses saying which vari�
ables do not change in that case� Thus we introduce a
notational shorthand used in postconditions to say that
certain state components are unchanged��

Id �A� � B

Id
l� � �i � inds l � l
i� �
�	
l
i�

acq 
l �MName�

ext wr ms� os � MName�set

wr n�m� o � �BName�

pre l �� ms 
 os � � 
n � nil �m � nil�

post 
ms 
 os � �	ms 
�	os 
 flg��


�	m � nil 
 m � �	n � n � nil � Id
�o� os��� �

�	m �� nil � 
�	o �� nil � n � nil�

 Id
�m� n� o� os��� �

�	m �� nil ��	o � nil � n �� nil


 o ��	m �m � �	n �n � nil�os � �	ms�ms � flg�

Acquire behaves in a manner similar to before� a reader
is assigned to the n or the m bu�er as appropriate� The
only extra consideration is in the case where there is an
n bu�er waiting� and an m bu�er being read� but no o

bu�er� In this case� where previously the new reader would
have been assigned to the m bu�er� it is now possible to
begin the read on the n bu�er� hence the improvement to
the freshness of the data exchanged� The bu�er that was
already being read is marked as o� and correspondingly the
record of processors reading that bu�er� ms� is moved to
os� and the new read begins on the bu�er that was n� thus
making it into a new m and the new reader is recorded in
ms� No more masters will be assigned to the o bu�er until
it has been through the write cycle again�

We have seen 	ve speci	cations which exhibit the same
external behaviour� All except for the most abstract incor�
porate some degree of implementation bias� However� it is

�This should be seen as a syntactic �macro�� rather than an auxil�
iary function�

this very bias that is the subject under investigation� In
��� validation conditions describing some desirable global
properties of the protocol are expressed in the modal ��
calculus� For the purposes of comparison of the two nota�
tions considered in this paper it is su�cient to note that
neither provides a formalism to express such conditions�

VI� The Specification Using B

A similar series of speci	cations and re	nements was con�
structed in B� In preference to presenting this material in
full� we present only those parts that highlight the nota�
tional and stylistic di�erences between VDM and B which
arose in this example�
This development was carried out using the current

alpha�release of the B Toolkit ���� Although this has meant
that the speci	cations have been required to conform ex�
actly to the language supported by the machine�� it has
given us the advantages of automatic consistency checking
that the toolkit provides� In this paper� we present the
B machines as they were entered in the toolkit� though in
some places syntactic sugaring may have made them more
readily digestible�

A� The Two �More�Abstract	 Speci�cations

Figures � and � gives the B text for the two abstract
speci	cations�
The 	rst speci	cation gives the most abstract speci	�

cation of MSMIE as a machine b�� This corresponds to
the VDM speci	cation with state ��� The machine is pa�
rameterised by a set MNAME of master names which is
assumed to be non�empty� The state consists of two vari�
ables b� and ms� Unlike VDM� the typing information for
the state variables is given in the invariant� Here� the 	rst
two clauses of the invariant give �static� 
decidable� typ�
ing� and the third clause gives subtyping information� The
initialisation and operations are given as generalised sub�
stitutions� At this level� the operations are very similar to
the VDM ones presented earlier�
The major syntactic di�erences from VDM are that the

types of the arguments are given explicitly as predicates�
Also� the read and write frames of the machine operations
are implicit� The read frames are the full state of the ma�
chine and the variables written are determined by the gen�
eralised substitution� for example� those that appear on the
left side of a simple substitution� Thus� the operation slave

writes b�� and acquire writes ms� Framing is addressed fur�
ther in the closing discussion�
The 	rst rei	cation b� of b� is presented in Figure � as

a B re	nement� It corresponds to the VDM speci	cation
with state ��� Note that the B method makes a notational
distinction between re	nements and other speci	cations�
The concrete state also has two variables� By repeating

thems variable name� we are saying that this variable is the
same as the one in the abstract speci	cation� Technically�
the new state variables include those of the abstract state

�In the VDM speci	cations� we have tried to follow the draft BSI
standard as far as possible� but have allowed at least one notational
extension in the Id function in the previous section�



	

machine

b�
MNAME �

variables

b��
ms

invariant

b� � BOOL �
ms � P
MNAME � �
b� � FALSE 
 ms �

initialisation

b��� FALSE j j
ms� �

operations

slave b�
b��� TRUE �

acq
l�� b�
pre

l� �MNAME �
b� � TRUE �
l� �� ms

then

ms� � ms 
 fl�g
end�

rel
l�� b� � � �

end

Fig� 
� The Abstract B machine b�

as well any added here� however� the variables from the
abstract state are subject to full hiding and cannot appear
in the de	nition of operations� The relationship between
abstract and concrete variables is given as part of the in�
variant � a coupling relation� as for example in ���� In this
example� the coupling relation appears as the last conjunct
of the invariant� As in b�� the operation de	nitions are
similar to those of the corresponding VDM speci	cation�

B� Three Bu�er Status

Now we proceed with a re	nement b� of b� 
Figure ���
This corresponds to the 	rst VDM speci	cation with state
��� The data model 
including the invariant� is similar to
that of the VDM speci	cation� and the coupling relation
is similar to the retrieve function retr���� Some informal
comments have been added to the formal text�
Non�deterministic choice in a substitution is given by

the notation ��
v��S�� where v is a variable and S a gen�
eralised substitution� Here it is used in conjunction with
guarded substitutions� in the form ��
v��
P
v� �
 S ��
which can be read operationally as� �if there is any v such

refinement

b�
MNAME �

refines

b�

sets

STATUS � fSII � SIN � SIM � SNM g

variables

b��
ms

invariant

b� � STATUS �
ms �� 
b� � fSII � SIN g� �
b� � FALSE � 
b� � SII �

initialisation

b��� SII j j
ms� �

operations

slave b�
b� � fSII � SIN g �
 b��� SIN

��
b��fSIM� SNM g�
b��� SNM�

acq
l�� b�
pre

l� �MNAME �
b� �� SII �
l� �� ms

then

ms� � ms 
 fl�g
j j
if ms � then

b��� SIM

end

end�

� � �

Fig� �� The B re	nement b


that P
v�� then apply the substitution S for one such v��

In this speci	cation� we see a signi	cant di�erence from
the VDM in the presentation of the slave operation� Here�
we have given a de	nition of slave which provides more
explicit algorithmic information than its VDM counter�
part� In particular� it breaks down the operation into seper�
ate substitutions executed sequentially and could take one
bu�er through two changes of status� This style was found
to be convenient here as the one �choice� that might be
available� namely whether to choose the new slave to be
the old newest or an old idle bu�er� a�ects the outcome of
two bu�ers� There is also a syntactic restriction prohibiting
parallel substitutions to the same variable� The resulting
operation de	nition has a far more programatic feel�

A similar change in style is re
ected in the de	nitions
of acquire and release� which for brevity are not included






refinement

b�
MNAME �

refines

b�

sets

STATUSII � fS�� I �� N �� M �g�

variables

b��
ms

invariant

 ! typing ! 
b� � seq
STATUSII � �
ms � P
MNAME � �
 ! subtyping ! 
size
b�� � � �
card
b� � fS�g� � � �
card
b� � fM �g� � f�� �g �
card
b� � fN �g� � f�� �g �
card
b� � fM �g� � �� 
ms �� �
 ! coupling ! 


card
b� � fN �g� � � � card
b� � fM �g� � ��
� 
b� � SII �� �



card
b� � fN �g� � � � card
b� � fM �g� � ��
� 
b� � SIN �� �



card
b� � fN �g� � � � card
b� � fM �g� � ��
� 
b� � SIM �� �



card
b� � fN �g� � � � card
b� � fM �g� � ��
� 
b� � SNM ��

initialisation

b��� �S�� I �� I �� j j
ms� �

operations

slave b�

 ! If there�s a bu�er that�s set to N�

	nd it and set it to I ! 
� z��
z� � f�� �� �g� b�
z�� � N �� �

�
z���
z� � f�� �� �g� b�
z�� � N � �

b� �� 
b� �� fz� �� I �g��

� �
 ! but if you can�t 	nd one that is N�

then don�t worry ! 
� z��
z� � f�� �� �g
 b�
z�� �� N �� �
 skip

��
 ! Then� 	nd a bu�er that was S�

and set it to N 
It�s unique� ! 
�
z���
z� � f�� �� �g � b�
z�� � S� �


b� �� 
b� �� fz� �� N �g��
�

 ! then 	nd an I and set it to S

there are one or two of these� ! 

�
z���
z� � f�� �� �g � b�
z�� � I � �

b� �� 
b� �� fz� �� S�g��

�

Fig� 
� The original three bu�er machine speci	ed in B�

here�

C� The 
Improved MSMIE� Version

The B machine snmo 
Figures � and �� corresponds
to the VDM speci	cation of the ��bu�er MSMIE� 
The ��
bu�er �inverted map� version has been omitted from this
paper� because the same issues arise with this machine��
At this level� the two notations are once again fairly sim�

ilar� One di�erence from the VDM version is that because
the generalised substitutions explicitly indicate which vari�
ables are to be substituted there is no need for the Id

clauses that appear in the VDM version�

VII� Discussion

As stated in the introduction� this example highlights
three areas where the notations encourage di�erent ap�
proaches� This closing section gives a brief discussion of
some of the points that arose from our study of the MSMIE
protocol�

A� Invariants�

In both notations� the invariant is useful for quickly con�
veying an understanding of the reachable values of the
state� However the use of invariants in operation de	ni�
tions di�ers� In B� postconditions 
in the form of gener�
alised substitutions� have to be written so as to ensure the
maintenance of the invariant� In VDM the state invariant
is e�ectively part of the state typing information� and as
such is assumed to be maintained in addition to the post�
condition�
VDM�s implicit maintenance of the invariant led to the

choice discussed earlier of how much of the information in
the invariant is repeated in a postcondition� There was
often some tension between the most concise form that re�
lied on properties of the invariant for its correctness� and a
longer� but more explicit form� that included some redun�
dant information� This choice can be seen as an opportu�
nity to prove the stronger forms from the weaker� Which
form is chosen maymake a signi	cant di�erence to the com�
plexity of the proofs� the form that most clearly conveys
the information may not be the form that will be most us�
able in proofs� Indeed� the stronger form is more likely to
be helpful when the speci	cation is being proved to be a
rei	cation of another� and the weaker form when it is itself
being rei	ed�
In the B notation� on the other hand� one writes opera�

tions so as to imply the preservation of the invariant� This
can encourage a tendency to describe how the invariant is
maintained� which may lead to less abstract speci	cations�

B� Operation De�nitions�

The greater programmatic feel of the B notation is rein�
forced by the use of generalised substitutions� as opposed to
VDM�s relational post�conditions� Although the two forms
have the same expressive power� in some cases 
as for ex�
ample in slave in the b� machine� we found it convenient
to give greater algorithmic detail in the B version� This



��

refinement

snmo
MNAME �

refines

b�

variables

sb� nb� mb� ob�
ms�� os�

invariant

 ! typing ! 
sb � � � � � �
nb � seq
� � � �� �
mb � seq
� � � �� �
ob � seq
� � � �� �
ms� � P
MNAME � �
os� � P
MNAME � �
 ! subtyping ! 
size
nb� � f�� �g �
size
mb� � f�� �g �
size
ob� � f�� �g �
mb � ��� 
ms� �� �
ob � ��� 
os� �� �
�sb� �� nb �
�sb� �� mb �
�sb� �� ob �
nb � mb � 
nb � �� � mb � ��� �
nb � ob � 
nb � �� � ob � ��� �
mb � ob � 
mb � �� � ob � ��� �
mb � �� � nb � ��
 ob � �� �
 ! coupling ! 
ms � ms� 
 os� �
b� � FALSE �


nb � �� � mb � �� � ob � ���

Fig� �� The four bu�er MSMIE �state� as a B re	nement

would appear to imply that the B notation is more useful
for the development of algorithms� Indeed� the process of
operation decomposition has been given greater attention
in the B methodology than for VDM� By contrast� perhaps
VDM�s relational postconditions give a greater facility for
non�algorithmic speci	cations of complex operations�

C� Framing�

As stated earlier� the read and write frames are given
explicitly in a VDM operation� whereas in B the variable
access and modi	cation is implicit in the form of the gen�
eralised substitution�

In VDM operations� the semantic role of the read frame
is often underplayed� Typically� it is interpreted as merely
providing syntactic scoping for variables appearing in the
precondition or postcondition� Alternatively� it could be
interpreted as a constraint on implementations� restricting
which state components can be read� Thus rather than
think of the externals clauses as giving information about
the variables mentioned in the speci�cation� we see them
as giving details of what access to state variables an imple�

initialisation

sb� � � j j
nb� � � � j j
mb� � � � j j
ob� � � � j j
ms��� j j
os���

operations

slave b�
nb� � �sb� j j
sb�� f�� �� �� �g 	 fsbg

	ran
mb�	 ran
ob��

acq
l�� b�
pre

l� �MNAME �
l� �� ms� �
conc
�nb� mb�� �� ��

then

select mb � �� then

mb� � nb j j
nb� � � � j j
ms��� fl�g

when mb �� �� � nb �� �� �
ob � �� then

ob� � mb j j
mb� � nb j j
nb� � � � j j
os��� ms� j j
ms��� fl�g

else

ms��� ms� 
 fl�g
end

end�

Fig� �� The four bu�er MSMIE �operations� as a B re	nement

mentation of that operation can be allowed to make� 
See
�"� and �#� for further discussion of this point��

In B� similar restrictions can be given through the hid�
ing principles inherent in the di�erent forms of machine
structuring� For instance in this example� where we were
able to narrow the read frames in the later VDM speci	ca�
tions� in the B counterparts there is a potential to structure
the overall machine as a B �implementation� in terms of
simpler machines� one for each status 
ag�

In the above we have emphasised three areas where our
experiments have suggested that the notations of VDM and
B encourage di�erent speci	cation styles� Each style may
have its own advantages at di�erent stages of the develop�
ment process� In this example we found that the process
of developing implementation code was better addressed
in B�s abstract machine notation� However� we also found
VDM�s relational postconditions more convenient for ex�
pressing wholly implicit speci	cations of operations� par�



��

ticularly when the data model involved complex interde�
pendencies�

References

�
� G� Bruns and S� Anderson� The Formalization and Analysis
of a Communications Protocol� Formal Aspects of Computing
�
���� �� ���

�� �Previously released as The Formalization of a
Communications Protocol� University of Edinburgh Tech� Rep�
LFCS �
�

� �April 
��
� and as LFCS�Adelard SCCS Tech�
Rep� April �� 
����

��� C�B� Jones� Systematic Software Development Using VDM� sec�
ond edition� Prentice Hall� 
����

�
� J�R� Abrial� Assigning Programs to Meanings� Prentice�Hall� to
appear�

��� L�L� Santoline et al� Multiprocessor Shared�Memory Information

Exchange� IEEE Trans� on Nuclear Science� 
���� 
���� pp�����
�

�

��� J�C� Bicarregui� and B� Ritchie� Invariants� Frames and Postcon�
ditions� A Comparison of Two Formal Speci�cation Notations�
RutherfordAppleton LaboratoryTechnical Report� RAL��
�
���

��
�

��� J�R� Abrial� Introducing B�Technologies� Unpublished� May

����

��� C� Morgan� Programming from Speci�cations� Prentice Hall�

����

��� J�C� Bicarregui� Algorithm re�nement with read and write
frames� In J�C�P� Woodcock and P�G� Larsen �Eds�� FME��
� In�
dustrial Strength Formal Methods� Lecture Notes in Computer
Science ���� Springer�Verlag 
��
�

��� J�C� Bicarregui� Operation Semantics with read and write
frames� In Proc� of BCS FACS Sixth Re	nement workshop� City
University� London� ��� January 
���� To appear in Workshops
in Computing� Springer�Verlag�


