
Formalising the UML in Structured Temporal TheoriesK. Lano, J. BicarreguiDept. of Computing, Imperial Collegekcl@doc.ic.ac.ukAbstractIn this paper we describe a possible semantics for a large part of the Uni�edModelling Notation (UML), using structured theories in a simple temporal logic.This semantic representation is suitable for modular reasoning about UML models.We show how it can be used to clarify certain ambiguous cases of UML semantics,and how to justify enhancement or re�nement transformations on UML models.1 IntroductionThe semantic model of UML used here is based on the set-theoretic Z-based model ofSyntropy [3]. A mathematical semantic representation of UML models can be given interms of theories in a suitable logic, as in the semantics presented for Syntropy in [1] andVDM++ in [6]. In order to reason about real-time speci�cations the more general version,Real-time Action Logic (RAL) [6] will be used.The semantics developed here should complement and be additional to the UMLmetamodel and OCL constraints on this de�ned in [8].A RAL theory has the form:theory Nametypes local type symbolsattributes time-varying data, representing instance or class variablesactions actions which may a�ect the data, such as operations, statechart transitionsand methodsaxioms logical properties and constraints between the theory elements.Theories can be used to represent classes, instances, associations and general submodels ofa UML model. These models are therefore taken as speci�cations: they describe the fea-tures and properties which should be supported by any implementation that satis�es themodel. In terms of the semantics, theory S satis�es theory T if there is an interpretation� of the symbols of T into those of S under which every property of T holds:S ` �(')

for every theorem ' of T.In addition to standard mathematical notation such as F for \set of �nite sets of", etc,RAL theories can use the following notations:1. For each classi�er or state X there is an attribute X : F(X) denoting the set ofexisting instances of X1.2. If � is an action symbol, and P a predicate, then [�]P is a predicate which means\every execution of � establishes P on termination", that is, P is a postcondition of�.3. For every action � there are functions "(�; i), #(�; i), (�; i) and !(�; i) of i : N1which denote the activation, termination, request send and request arrival times,respectively, of the i-th invocation of �. These times are ordered as: (�; i) � !(�; i) � "(�; i) � #(�; i)Also i � j) (�; i) � (�; j)Using these we can de�ne concepts such as \every execution of � coincides with an exe-cution of �" (� calls �):� � � �8 i : N1 � 9 j : N1�"(�; i) = "(�; j) ^ #(�; i) = #(�; j)This corresponds to � being a generalisation of � on a class diagram of signals in UML.We can also de�ne the times that a given conditionG becomes true or false for the i-thtime: |(G := true; i) and |(G := false; i), for i : N1. Temporal operators � (sometimein the future), 2 (always in the future) and
 (next) are also included.Although for the sake of conciseness we will use Z-style notation for set comprehension,set unions, etc [9], the OCL [8] notation could be used instead. A systematic translationof OCL notation into Z is given in [5].Temporal logic makes representation and reasoning about dynamic models (state ma-chines, interaction diagrams, etc) more concise than using a formalism such as pure Z.However it would be possible to work just in Z, by using sequences of states to representthe allowed behaviours of objects over time.We focus on some areas where formalisation helps to clarify the meaning and conse-quences of certain UML constructs: aggregation, quali�cation, statecharts and collabora-tion diagrams.2 Object ModelsA UML class C is represented as a theory of the form given in Figure 1. Each instance1Alternative notation for X is ext(X), the extension of X [10].

theory �Ctypes CattributesC : F(C)self : C! Catt1 : C! T1: : :actionscreateC(c : C) fCgkillC(c : C) fCgop1(c : C;x : X1) : Y1: : :axioms 8 c : C �self(c) = c ^[createC(c)](c 2 C) ^[killC(c)](c 62 C)Figure 1: Theory of Class Cattribute atti : Ti of C gains an additional parameter of type C in the class theory �Cand similarly for operations2. Class attributes and actions do not gain the additionalC parameter as they are independent of any particular instance. We can denote att(a)for attribute att of instance a by the standard OO notation a:att, and similarly denoteactions act(a;x) by a!act(x).Similarly each association lr can be interpreted in a theory which contains an attributelr representing the current extent of the association (the set of pairs in it) and actionsadd link and delete link to add and remove pairs (links) from this set. Axioms de�nethe cardinality of the association ends and other properties of the association. In partic-ular, if ab is an association between classes A and B, then ab � A�B, so membershipof ab implies existence for elements of a link.Normally, subclasses S of a class C are assumed to be static (ie, once an object iscreated as a member of S it remains in S for the rest of its life in C):8a : C � a 2 S) 2(a 2 C) a 2 S)This is not assumed for states S in a statechart, or for speci�cally marked `dynamic'subclasses. 2P means that P is true at the present time and always in the future.2The class theory can be generated from a theory of a typical C instance by means of an A-morphism[1].

2.1 AggregationThere are two main forms of aggregation in UML: simple aggregation, represented byan open diamond at the `whole' end of the aggregation between classes, and compositionaggregation, represented by a �lled diamond at the `whole' end, or by physical containmentof the part classes or model elements within the whole, as in Fusion [2].Simple aggregation is limited only by the constraint that there cannot be aggregationsymbols at both ends of an association. It may also be reasonable to assume that a simpleaggregation cannot be re
exive at the instance level:8a : A � : ((a;a) 2 r)where r is an aggregation from A to A.In [8] a semantics is suggested for composition aggregation, which we will formalise asfollows, using ideas from [3]. If there is a composition aggregation ab from a whole classA to a part class B, then:1. parts b cannot be deleted or removed from a whole object a, whilst a continues toexist: (a;b) 2 ab) 2(a 2 A) (a;b) 2 ab)2. parts b cannot be moved from one whole to another:(a;b) 2 ab ^ �((a0;b) 2 ab)) a0 = a�P means that P is true at the present time or at some time in the future.Together, these properties mean that a whole may gain new parts but cannot lose orexchange existing parts.Transitivity of composition Two composition aggregations can be put together toproduce a third one (Figure 2) because(a; c) 2 ab; bc) 9b : B � (a;b) 2 ab ^ (b; c) 2 bc((1)) (2)) and�((a0; c) 2 ab; bc)) �(9b0 : B � (a0;b0) 2 ab ^ (b0; c) 2 bc)((3)) (4)). But then (1) ^ (3) implies (2) ^ (4), so by 2 applied to b, c we have b0 = b.Therefore, applying 2 to a, b we have a0 = a as required.Also if (a; c) 2 ab; bc then 9b : B � (a;b) 2 ab ^ (b; c) 2 bc and hence9b : B �2(a 2 A) (a;b) 2 ab) ^ 2(b 2 B) (b; c) 2 bc). But then 9b : B �2(a 2A) (a;b) 2 ab ^ (b; c) 2 bc) as required for 2.Moving Associations into Aggregates Another valid transformation on compositionaggregations is to move an association between two part classes into the aggregation(Figure 3). This is a valid transformation because the new model has the extra axiom8(b; c) 2 r � 9a : A � (a;b) 2 r1 ^ (a; c) 2 r2In other words, r can only relate parts of the same aggregate.

*
A CB

*

*
A CB

*

*

{ ac = ab; bc }Figure 2: Transitivity of Composition Aggregations
A

B C

r1 r2

r

A

B C

r1 r2

rFigure 3: Moving Associations into Aggregates

2.2 Quali�ersThere is a certain ambiguity regarding the meaning of quali�ers on associations. In theUML notation guide (Version 1.1, page 58) it is stated \an object of the source classtogether with a value of the quali�er uniquely select a partition in the set of target classobjects." Considering the example then given, of an association between banks and people,quali�ed by account numbers, we could infer that it is impossible for the same person tohave more than one bank, contradicting the cardinalities given on the diagram.Instead, we could consider quali�cation as an abbreviation of a particular form ofassociation class (Figure 4). That is, the quali�cation means that each a : A has a
r

r

r

A B

A B
c1 c2

c1 c3

d: X

d: X

Figure 4: Quali�cation as Association Classesnumber x of b : B elements associated with it, where x 2 c2:8a : A � card(fb : B j (a;b) 2 rg) 2 c2and 8a : A; x : X � card(fb : B j (a;b) 2 r ^ d(a;b) = xg) 2 c3so there is a function f : A�X! P(B) where each f(a;x) has cardinality in the set c3.This equivalence means that a valid transformation is to introduce the quali�cationinstead of the explicit association class { this is a useful transformation if c3 is morerestrictive (strictly smaller as a set) than c2.The stronger interpretation suggested in [8] would require the additional constraint8b : B; a1;a2 : A; x1;x2 : X �d(a1;b) = x1 ^ d(a2;b) = x2 ^ (a1;b) 2 r ^ (a2;b) 2 r)a1 = a2 ^ x1 = x2in the association class version for the two models of Figure 4 to be equivalent. c1 couldthen be taken as 0 : : 1.

3 StatechartsA statechart speci�cation of the behaviour of instances of a class C can be formalised asan extension of the class theory of C, as follows.1. Each state S is represented in the same manner as a subclass of C, and in general,nesting of state S1 in state S2 is expressed by axioms S1 � S2 and S1 � S2 as forclass generalisation.2. Each transition in the statechart and each event for which the statechart de�nes aresponse yields a distinct action symbol. Each event e is the abstract generalisationof the actions t1, : : :, tn representing its transitions:8a : C � a!t1 � a!e ^ : : : ^ a!tn � a!e3. The axiom for the e�ect of a transition t from state S1 to state S2 with labele(x)[G]=PostaActwhere G is the guard condition and Post is some postcondition constraint on theresulting state, is8a : C � a:G ^ a 2 S1) [a!t(x)](a:Post ^ a 2 S2)4. The transition only occurs if the trigger event occurs whilst the object is in thecorrect state:8a : C � a 2 S1 ^ a:G) (a!e(x) � a!t(x))We assume that distinct transitions from the same source state have non-overlappingguard conditions.5. The generated actions must occur at some future time (after t has occurred):a!t(x))
� (a!Act1 ^ �(: : : � a!Actm) : : :)where Act is a list Act1; : : : ;Actm of action invocations on objects associated toa.Transitions
 with labels of the form after(t) from source state S have an alternativeaxiom 4 de�ning their triggering, which asserts that they are triggered t time units afterthe most recent entry time |((a 2 S) := true; j) to state S [7].Likewise, automatic transitions � from a state S execute as soon as the activity ofthat state terminates.

S T

S1

S2

S

T

t

t1

t2

e(x)[G]/Post

e(x)[G]/Post1

e(x)[G]/Post2

{ Post < Post1, Post < Post2 }

S T
e(x)[G]/Post^Act

t

t2

T

S
t1

e(x)[G1]/Post1^Act1

e(x)[G2]/Post2^Act2

T1

T2

{ Post1 => Post, Post2 => Post,
 Act1 = Act,Act3, Act2 = Act,Act4 }

G => G1 or G2, Figure 5: Source and Target Splitting of TransitionSource Splitting This transformation (Figure 5) can be justi�ed in our semantics asfollows.The translation morphism � from the old to the new model is:S 7�! S1 [S2t 7�! t1 u t2t u t0 denotes the binary choice between two actions t and t0.Axioms 1 of the new model are S1 � S and S2 � S, which are additional to theexisting axioms of the old model.Axioms 2 of the new model are (for each object)t1 � e ^ t2 � eTogether these establish that t1 u t2 � e as required.Axioms 3 of the new model are(8a : C � a:G ^ a 2 S1) [a!t1(x)](a:Post1 ^ a 2 T)) ^(8a : C � a:G ^ a 2 S2) [a!t2(x)](a:Post2 ^ a 2 T))These imply the translation under � of the axiom 3 of the old model becausea:G ^ �(a 2 S))a:G ^ (a 2 S1 _ a 2 S2))[a!t1(x)](a:Post1 ^ a 2 T) _ [a!t2(x)](a:Post2 ^ a 2 T)But by axiom 4 of the new model, a!e(x) � a!t1(x) in the �rst case where a 2 S1, so, bythe property (� � �)) ([�]P) [�]P) of � we have [a!e(x)](a:Post1 ^ a 2 T) inthe �rst case (ie, if a 2 S1).But we already know that t1 u t2 � e, so [a!(t1 u t2)(x)](a:Post1 ^ a 2 T) in the�rst case, and hence, since Post1) Post, we have [a!(t1 u t2)(x)](a:Post ^ a 2 T).By similar reasoning the same holds in the second case. But this means the conclusionis exactly � of the conclusion of axiom 3 of the original model for e, as required.Axioms 4 in the new model are:a 2 S1 ^ a:G) (a!e(x) � a!t1(x))a 2 S2 ^ a:G) (a!e(x) � a!t2(x))But because t1 � t1 u t2 and t2 � t1 u t2, this means that a!e(x) � a!(t1 u t2)(x) inboth cases, which establishes the translation of axiom 4 of the old model.

Target Splitting Dual to source splitting, we can replace a single transition t from Sto T by two or more transitions for the same event which go to distinct substates of T inparticular cases, and may have additional postconditions and generations (left hand sideof Figure 5).The re�nement mapping in this case is that T is interpreted by T1 [T2, and t byt1 u t2.4 Sequence DiagramsThere is a mechanical translation of sequence diagrams into assertions on the sendingtimes (m; i) of the i-th instance of a message m, the arrival times !(m; i) of thismessage instance, and the initiation "(m; i) and termination #(m; i) times of this messageinstance.For example, Figure 6 translates to the following assertions, where each message exe-cution lifeline is interpreted by a particular message instance:8 i : N1 � 9 j;k; l; l0 : N1 �!(Op; i) = "(createC1(ob1); l)#(createC1(ob1); l) � (ob3!bar(x); j) = !(ob3!bar(x); j)� (ob4!do(w);k) = !(ob4!do(w);k)#(ob4!do(w);k) � #(ob3!bar(x); j)� #(killC1(ob1); l0) = #(Op; i)These assertions can then be checked for consistency against detailed implementation levelstatecharts.
Op()

ob1:C1

ob3:C3 ob4:C4

do(w)

bar(x)

(Op,i)

(ob3!bar(x),j)

(ob4!do(w),k)

(ob4!do(w),k)

(ob3!bar(x),j)

(Op,i)

(create(ob1),l)

Figure 6: Example Sequence Diagram with Annotations5 Collaboration DiagramsThe interaction elements of collaboration diagrams can also be interpreted as constraintson (generic) instances of objects and action invocations. Each message label in an in-teraction corresponds to a particular invocation instance of an action on an object. For

example, a message label1 : m1(x1) sent to object obj1 yields the association of label1to an invocation instance (obj1!m1(x1); i1) for some i1 : N1. The lexicographical orderingof labels determines the ordering of the executions of these invocation instances:1. If label2 :m2(x2) sent to object obj2 is an immediate successor of the label1 mes-sage, ie: label1 = label:x[Name] for some integer x and optional string [Name],and label2 = label:y[Name0] where y > x, then the sending of (obj2!m2(x2); i2)strictly succeeds that of (obj1!m1(x1); i1): (obj1!m1(x1); i1) < (obj2!m2(x2); i2)If the �rst message send is synchronous, then the second send cannot occur untilthe �rst action instance has terminated:#(obj1!m1(x1); i1) � (obj2!m2(x2); i2)2. If the label1 message is the immediate caller of a set of messages including label2,ie, label2 has the form label1:x[Name] for integer x and optional string [Name],then if the label1 message has procedural control
ow (�lled solid arrowhead), thenthe label2 message must terminate before the label1 message:"(obj1!m1(x1); i1) � (obj2!m2(x2); i2) ^#(obj2!m2(x2); i2) � #(obj1!m1(x1); i1)However if the control
ow of label1 is asynchronous or
at (half stick or stickarrowheads), then the second constraint is replaced by:#(obj1!m1(x1); i1) � (obj2!m2(x2); i2)That is, the calling message terminates (at least from the viewpoint of the caller)before the subordinate messages are sent.Synchronisation constraints place additional restrictions on the start time of messages. Ifwe have a message label1=label :m(x) sent to obj, then this message cannot commenceuntil the message labelled by label1 has terminated:#(obj1!m1(x1); i1) � (obj!m(x); i)If we assume that the interaction diagram indicates the expected processing to becarried out for every invocation of a calling message (rather than just providing an exampleof what might happen), then for each calling message index i we can assert the existence ofappropriate indecies for the subordinate messages. In addition, for conditional messages,the condition must be true at the time the message is sent. For example, Figure 7 isformalised as:8 i : N1 � 9 i1 : N1�("(obj!m(x); i) � (obj1!m1(x); i1) ^(x > 0)} (obj1!m1(x); i1) ^#(obj1!m1(x); i1) � #(obj!m(x); i)) _("(obj!m(x); i) � (obj2!m2(x); i1) ^(x � 0)} (obj2!m2(x); i1) ^#(obj2!m2(x); i1) � #(obj!m(x); i))

obj:C
obj1:C1

obj2:C2

1: m(x) [x>0]1.1: m1(x)

[x<=0]1.1: m2(x)Figure 7: Example Conditional InteractionP}t denotes that P holds at time t. Time labels can be placed on message arrows as forsequence diagrams. The label A at the tail of a message arrow indicates the send timeA = (obj!m(x); i) of the corresponding message instance. The corresponding dashedlabel A0 denotes the receive time of this message.In the case that all message sends in an interaction are procedural, then we can simplifythis semantic representation by translating the interaction into an abstract psuedocodeusing composite actions such as �; � (sequential composition), if e then � else � (con-ditionals), for all (unordered iteration), etc.We illustrate this case with a proof of the correctness of the `state' pattern (Figure 8).
obj: C

m(x)

Code1

Code2

[state = type1]1

[state = type2]2

:State
obj: Cm(x)

State1 State2

stateobj

stateobj:
Code1

handle(x)

1: handle(x)

stateobj:handle(x)

State1

State2 Code2Figure 8: Introduction of State PatternIn the original model we have the behaviour axiom:obj 2 C)obj!m(x) �if state = type1then Code1else Code2In the new model we haveobj 2 C) obj!m(x) � obj:stateobj!handle(x)

and stateobj 2 State1) stateobj!handle(x) � Code1and similarly for State2.Therefore, interpreting obj:state byif obj:stateobj 2 State1then type1else if obj:stateobj 2 State2then type2else nilwe obtain that the original behaviour axiom is valid in the new model.The semantics of sequence and interaction diagrams are de�ned in a similar way.Indeed there is considerable overlap in the expressiveness of these diagrams, suggestingthat they may not be optimal choices for models of dynamic behaviour.6 Relationship with Other WorkRepresentation of UML semantics in Z has been developed in [4]. This representationis a formalisation of the UML metamodel, whilst our approach shows how to associatetheories to speci�c UML models. The set-theoretic models are similar: [4] represents eachclass by a set of instances, and each association by a set of links consisting of objecttuples, as in this paper. Our notion of theory satisfaction agrees with the j= relationshipof [4]: if � : � ! �0 is a theory interpretation then every model M of �0 has a reductM0 = M� of � with the interpretation [[C]]M0 of the extension of classes C of � in M0being de�ned as [[�(C)]]M. But this means that �0 j= � in the terms of [4].It is trivial to show that simple transformations such as adding a class or associationare theory extensions in our formalism. Our approach has been chosen to simplify thetask of proving transformations correct, but could be further formalised and generalisedby using the Z semantics given in [4].7 ConclusionsWe have proposed an axiomatic semantics of the UML notation, together with exampleswhere this semantics helps to clarify issues of the meaning of UML constructs. Otherareas which we have addressed elsewhere include dynamic classi�cation (page 69 of [8]),the meaning of interface speci�cations and the interpretation of OCL in conventionalmathematical notation [5].Areas of UML with quite vague and incomplete semantics include Use Cases andImplementation diagrams. A detailed mathematical semantics would probably be inap-propriate and irrelevant for such notations, given their roles in development. However thesemantics could be useful to validate models { ie., to check that desired properties aretrue in particular models.

Object models and statecharts together seem to be su�cient to provide a fully detailedmodel of an implementation of a system, hence sequence and collaboration diagramsare in a sense redundant. There is also considerable redundancy between the sequencediagram, interaction and activity diagram notations, and some uni�cation of these wouldbe potentially bene�cial for methods based on the UML.References[1] J C Bicarregui, K C Lano, T S E Maibaum, Objects, Associations and Subsystems: ahierarchical approach to encapsulation, ECOOP 97, LNCS, 1997.[2] D Coleman, P Arnold, S Bodo�, C Dollin, H Gilchrist, F Hayes, and P Jeremaes. Object-oriented Development: The FUSION Method. Prentice Hall Object-oriented Series, 1994.[3] Cook S., Daniels J., Designing Object Systems: Object-oriented Modelling with Syntropy,Prentice Hall, 1994.[4] Evans A., France R., Lano K., Rumpe B., The UML as a Formal Modelling Notation,PUML working group, 1998.[5] Lano K., Bicarregui J., UML Re�nement and Abstraction Transformations, ROOM 2Work-shop, Bradford University, 1998.[6] K Lano, Logical Speci�cation of Reactive and Real-Time Systems, to appear in Journal ofLogic and Computation, 1998.[7] K. Lano, Transformations on Syntropy and UML Models, Technical Report, \Formal Un-derpinnings for Object Technology" project, Dept. of Computing, Imperial College, 1997.[8] Rational Software et al, UML Notation Guide, Version 1.1, http://www.rational.com/uml,1997.[9] M. Spivey, The Z Notation: A Reference Manual, Prentice Hall, 1992.[10] R Wieringa, W. de Jonge, P. Spruit, Roles and Dynamic Subclasses: A Model Logic Ap-proach, IS-CORE report, Faculty of Mathematics and Computer Science, Vrije Universiteit,Amsterdam, 1993.

