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Abstract

In this paper we describe a possible semantics for a large part of the Unified
Modelling Notation (UML), using structured theories in a simple temporal logic.
This semantic representation is suitable for modular reasoning about UML models.
We show how it can be used to clarify certain ambiguous cases of UML semantics,
and how to justify enhancement or refinement transformations on UML models.

1 Introduction

The semantic model of UML used here is based on the set-theoretic Z-based model of
Syntropy [3]. A mathematical semantic representation of UML models can be given in
terms of theories in a suitable logic, as in the semantics presented for Syntropy in [1] and
VDM** in [6]. In order to reason about real-time specifications the more general version,
Real-time Action Logic (RAL) [6] will be used.

The semantics developed here should complement and be additional to the UML
metamodel and OCL constraints on this defined in [8].

A RAL theory has the form:

theory Name
types local type symbols
attributes time-varying data, representing instance or class variables

actions actions which may affect the data, such as operations, statechart transitions
and methods

axioms logical properties and constraints beltween the theory elements.

Theories can be used to represent classes, instances, associations and general submodels of
a UML model. These models are therefore taken as specifications: they describe the fea-
tures and properties which should be supported by any implementation that satisfies the
model. In terms of the semantics, theory S satisfies theory T if there is an interpretation
o of the symbols of T into those of S under which every property of T holds:
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for every theorem ¢ of T.
In addition to standard mathematical notation such as F for “set of finite sets of”, etc,
RAL theories can use the following notations:

1. For each classifier or state X there is an attribute X : F(X) denoting the set of
existing instances of X'.

2. If @ is an action symbol, and P a predicate, then [a]P is a predicate which means
“every execution of « establishes P on termination”, that is, P is a postcondition of
a.

3. For every action « there are functions T(e,1), |(a,1), «—(a,1) and —(a,1) of i : Ny
which denote the activation, termination, request send and request arrival times,
respectively, of the 1-th invocation of «. These times are ordered as:

Also

Using these we can define concepts such as “every execution of « coincides with an exe-
cution of 3”7 (a calls 3):

adf =
\V/ilNl'EIjiNl'
Ta,i) =1(5,3) A Ue,i) = 1(5.))

This corresponds to 8 being a generalisation of « on a class diagram of signals in UML.

We can also define the times that a given condition G becomes true or false for the i-th
time: (G := true,i) and &(G := false,i), for i : Ny. Temporal operators ¢ (sometime
in the future), O (always in the future) and () (next) are also included.

Although for the sake of conciseness we will use Z-style notation for set comprehension,
set unions, etc [9], the OCL [8] notation could be used instead. A systematic translation
of OCL notation into Z is given in [5].

Temporal logic makes representation and reasoning about dynamic models (state ma-
chines, interaction diagrams, etc) more concise than using a formalism such as pure Z.
However it would be possible to work just in Z, by using sequences of states to represent
the allowed behaviours of objects over time.

We focus on some areas where formalisation helps to clarify the meaning and conse-
quences of certain UML constructs: aggregation, qualification, statecharts and collabora-
tion diagrams.

2 Object Models

A UML class C is represented as a theory of the form given in Figure 1. Fach instance

L Alternative notation for X is ext(X), the extension of X [10].



theory I'c
types C

attributes
C:F(C)
self : C — C
att1 :C — T1

actions
createc(c: C) {C}
killc(c: C) {C}
opi(c:C,x:X41): Y,

axioms

Ve:C -
self(c) =c A
[createc(c)](c_e C) A
[kille(c)](c ¢ C)

Figure 1: Theory of Class C

attribute att; : Tj of C gains an additional parameter of type C in the class theory I'c
2. (lass attributes and actions do not gain the additional
C parameter as they are independent of any particular instance. We can denote att(a)
for attribute att of instance a by the standard OO notation a.att, and similarly denote
actions act(a,x) by alact(x).

and similarly for operations

Similarly each association lr can be interpreted in a theory which contains an attribute
Ir representing the current extent of the association (the set of pairs in it) and actions
add_link and delete_link to add and remove pairs (links) from this set. Axioms define
the cardinality of the association ends and other properties of the association. In partic-
ular, if ab is an association between classes A and B, then ab C A x B, so membership
of ab implies existence for elements of a link.

Normally, subclasses S of a class C are assumed to be static (ie, once an object is
created as a member of S it remains in S for the rest of its life in C):

Ya:C-aeS = D(a€6:>a€§)

This is not assumed for states S in a statechart, or for specifically marked ‘dynamic’
subclasses. OP means that P is true at the present time and always in the future.

?The class theory can be generated from a theory of a typical C instance by means of an A-morphism

[1].



2.1 Aggregation

There are two main forms of aggregation in UML: simple aggregation, represented by
an open diamond at the ‘whole’ end of the aggregation between classes, and composition
aggregation, represented by a filled diamond at the ‘whole’ end, or by physical containment
of the part classes or model elements within the whole, as in Fusion [2].

Simple aggregation is limited only by the constraint that there cannot be aggregation
symbols at both ends of an association. It may also be reasonable to assume that a simple
aggregation cannot be reflexive at the instance level:

Va:A-—((a,a) €T)

where r is an aggregation from A to A.

In [8] a semantics is suggested for composition aggregation, which we will formalise as
follows, using ideas from [3]. If there is a composition aggregation ab from a whole class
A to a part class B, then:

1. parts b cannot be deleted or removed from a whole object a, whilst a continues to
exist:

(a,b)eab = O(a€ A = (a,b) € ab)
2. parts b cannot be moved from one whole to another:
(a,b) cab A o((a/,b)cab) = a'=a
oP means that P is true at the present time or at some time in the future.

Together, these properties mean that a whole may gain new parts but cannot lose or
exchange existing parts.

Transitivity of composition Two composition aggregations can be put together to
produce a third one (Figure 2) because

(a,c) €ab; bc = 3Jb:B-(a,b)cab A (b,c) € bc
((1) = (2)) and
o((a’,c) € ab; bc) = o(Ib':B-(a’,b’) € ab A (b',c) € bc)
((3) = (4)). But then (1) A (3) implies (2) A (4), so by 2 applied to b, ¢ we have b’ = b.
Therefore, applying 2 to a, b we have a’ = a as required.
Also 1f (a,c) € ab; bc then db : B-(a,b) € ab A (b,c) € bc and hence

db:B-0O(a€ A = (a,b)cab)AO(b e B=(b,c)cbc). Butthen Ib:B-O(ac
A = (a,b)cab A (b,c) € be) as required for 2.

Moving Associations into Aggregates Another valid transformation on composition
aggregations is to move an association between two part classes into the aggregation
(Figure 3). This is a valid transformation because the new model has the extra axiom

V(b,c)eT-Ja:A-(a,b) €T A (a,c) €T,

In other words, r can only relate parts of the same aggregate.



Figure 2: Transitivity of Composition Aggregations
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Figure 3: Moving Associations into Aggregates



2.2  Qualifiers

There is a certain ambiguity regarding the meaning of qualifiers on associations. In the
UML notation guide (Version 1.1, page 58) it is stated “an object of the source class
together with a value of the qualifier uniquely select a partition in the set of target class
objects.” Considering the example then given, of an association between banks and people,
qualified by account numbers, we could infer that it is impossible for the same person to
have more than one bank, contradicting the cardinalities given on the diagram.

Instead, we could consider qualification as an abbreviation of a particular form of
association class (Figure 4). That is, the qualification means that each a : A has a

A B
— ¢l r c3

d: X

Figure 4: Qualification as Association Classes

number x of b : B elements associated with it, where x € ¢y:
Va:A -card({b:B|(a,b) €T}) € c;

and
Va:A; x: X -card({b:B|(a,b) €T Ad(a,b) =x}) € c;3

so there is a function f : A x X — P(B) where each f(a, x) has cardinality in the set cs.
This equivalence means that a valid transformation is to introduce the qualification
instead of the explicit association class — this is a useful transformation if c3 is more
restrictive (strictly smaller as a set) than c,.
The stronger interpretation suggested in [8] would require the additional constraint

Vb:B; aj,a;: A; x1,%x,: X -
d(a;,b) =x; Ad(as,b) =x; A (a;,b) €T A (az,b) €T =
a; = Ay /\X1 = X9

in the association class version for the two models of Figure 4 to be equivalent. ¢; could
then be taken as 0.. 1.
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Statecharts

A statechart specification of the behaviour of instances of a class C can be formalised as
an extension of the class theory of C, as follows.

1.

Each state S is represented in the same manner as a subclass of C, and in general,
nesting of state Sy in state S, is expressed by axioms S; C Sy and S; € S, as for
class generalisation.

Each transition in the statechart and each event for which the statechart defines a
response yields a distinct action symbol. Each event e is the abstract generalisation
of the actions tq, ..., t, representing its transitions:

Va:C-alt; Dale A ... A alt, D ale

The axiom for the effect of a transition t from state S; to state S, with label
e(x)[G]/Post ™ Act

where G is the guard condition and Post is some postcondition constraint on the
resulting state, is

Va:C-aGAa€e$S, = [alt(x)(a.PostAhacs,)

The transition only occurs if the trigger event occurs whilst the object is in the
correct state:

Va:C-aeS; AaG = (ale(x) D alt(x))

We assume that distinct transitions from the same source state have non-overlapping
guard conditions.

The generated actions must occur at some future time (after t has occurred):
alt(x) = Oo(alActy Ao(...0oalActy)...)

where Act is a list Acty,..., Acty, of action invocations on objects associated to
a.

Transitions v with labels of the form after(t) from source state S have an alternative
axiom 4 defining their triggering, which asserts that they are triggered t time units after
the most recent entry time &((a € S) := true,j) to state S [7].

Likewise, automatic transitions « from a state S execute as soon as the activity of

that state terminates.
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Figure 5: Source and Target Splitting of Transition

Source Splitting This transformation (Figure 5) can be justified in our semantics as
follows.
The translation morphism o from the old to the new model is:
S — S_1U S_2
t — tl 1 t2
t Mt’ denotes the binary choice between two actions t and t’.
Axioms 1 of the new model are S; € S and S; C S, which are additional to the

existing axioms of the old model.
Axioms 2 of the new model are (for each object)

tlDe A the

Together these establish that t; Mty D e as required.
Axioms 3 of the new model are

(Va:C-a.GAacS, = [alt;(x)](aPost; AaecT)) A
(Va:C-aGAa€S;, = [alty(x)](a.Post, AaeT))

These imply the translation under o of the axiom 3 of the old model because

aGAo(ael) =
aGA(aeS; vaces,;) =
[alti(x)](a.Post; Aa€T) V [alty(x)](a.Posty A a € T)

But by axiom 4 of the new model, ale(x) D alt;(x) in the first case where a € Sy, so, by
the property (a D 3) = ([B]P = [a]P) of D we have [ale(x)](a.Post; Aa€T) in
the first case (ie, if a € S;).
But we already know that t; Mty D e, so [al(t;Mt2)(x)](a.Post; Aa € T) in the
first case, and hence, since Post; = Post, we have [al(t; MMt2)(x)](a.Post A a € T).
By similar reasoning the same holds in the second case. But this means the conclusion
is exactly o of the conclusion of axiom 3 of the original model for e, as required.
Axioms 4 in the new model are:

acS NaG = (ale(x) D alti(x))

acS; AaG = (ale(x)D alty(x))
But because t; D t1 MMty and ty D tq [Mt, this means that ale(x) D al(t; Mty)(x) in
both cases, which establishes the translation of axiom 4 of the old model.



Target Splitting Dual to source splitting, we can replace a single transition t from S
to T by two or more transitions for the same event which go to distinct substates of T in
particular cases, and may have additional postconditions and generations (left hand side
of Figure 5).

The refinement mapping in this case is that T is interpreted by Ty U T,, and t by
ty Mts.

4 Sequence Diagrams

There is a mechanical translation of sequence diagrams into assertions on the sending
times «—(m,1) of the i-th instance of a message m, the arrival times —(m,1) of this
message instance, and the initiation T(m,1) and termination |(m,1) times of this message
instance.

For example, Figure 6 translates to the following assertions, where each message exe-
cution lifeline is interpreted by a particular message instance:

Vi:Ny-3j kLI N -
—(Op,i) = T(createci(obl),l)
l(createcy(obl),1) < «(ob3!bar(x),j) = —(ob3!bar(x),j)
< «(ob4ldo(w), k) = —(ob4ldo(w), k)
l(ob4!ldo(w),k) < |(ob3!bar(x),]j)
< l(killgi(obl),lI') = |(Op,1i)

These assertions can then be checked for consistency against detailed implementation level
statecharts.

ob3:C3 ob4:C4
M 1 1
! !
' :

OpQ
v o ob1:C1 | !
(create(obl),l) E
bar (x |
~<—(ob3tbar(x),) ( )V, o |
~<—(ob4!do(w) k) o(w)
*(0b4!do(w).k) S, :
(ob3!bar (x),j) b e e :
i
‘*(OD‘I) ke mmmmmmm N
PN

Figure 6: Example Sequence Diagram with Annotations

5 Collaboration Diagrams

The interaction elements of collaboration diagrams can also be interpreted as constraints
on (generic) instances of objects and action invocations. Fach message label in an in-
teraction corresponds to a particular invocation instance of an action on an object. For



example, a message label; : m;(x;) sent to object obj; yields the association of label;
to an invocation instance (obj;!mi(xy),11) for some iy : Ny. The lexicographical ordering
of labels determines the ordering of the executions of these invocation instances:

1. If label, : ma(x;) sent to object obj, is an immediate successor of the label; mes-
sage, ie: label; = label.x[Name] for some integer x and optional string [Name],
and label, = label.y[Name'] where y > x, then the sending of (obj2!ma(xs),1s)
strictly succeeds that of (obj!my(x1),11):

e(objllml(xl), il) < H(Objg!mQ(XQ), ig)

It the first message send is synchronous, then the second send cannot occur until
the first action instance has terminated:

L(obji!my(x1),i1) < «(obja!lmy(x,),i)

2. If the label; message is the immediate caller of a set of messages including label,,
ie, label; has the form label;.x[Name]| for integer x and optional string [Name],
then if the label; message has procedural control flow (filled solid arrowhead), then
the label; message must terminate before the label; message:

T(obji!my(x1),11) < «—(objalmy(xz),12) A
L(obja!lmy(x2),12) < [(objilmi(xy),11)

However if the control flow of label; is asynchronous or flat (half stick or stick
arrowheads), then the second constraint is replaced by:

L(obji!my(x1),i1) < «(obja!lmy(x,),i)

That is, the calling message terminates (at least from the viewpoint of the caller)
before the subordinate messages are sent.

Synchronisation constraints place additional restrictions on the start time of messages. If
we have a message label;/label : m(x) sent to obj, then this message cannot commence
until the message labelled by label; has terminated:

L(objilm;(x1),11) < «(objlm(x),i)

It we assume that the interaction diagram indicates the expected processing to be
carried out for everyinvocation of a calling message (rather than just providing an example
of what might happen), then for each calling message index i we can assert the existence of
appropriate indecies for the subordinate messages. In addition, for conditional messages,
the condition must be true at the time the message is sent. For example, Figure 7 is
formalised as:

Vi:N;-3i1; 0 Ny-
(T(objlm(x),1) < «(obji;!my(x),11) A
(x > 0)@«—(obji'my(x),i;) A
L(obji!my(x),11) < [(obj'm(x),1))
(T(objlm(x),i) < «(objz!my(x),1i;)
(x <0)@«(objs!my(x),11) A
L(obj2!my(x),11) < [(objlm(x),1))

\%
A



—>
1: m(x) [x>0]1.1: m1(x)

—————————____———’— Obilﬂ:l
——0bj:C

> :
[x<=0]1.1: m2(x) 0bj2:C2

Figure 7: Example Conditional Interaction

Pt denotes that P holds at time t. Time labels can be placed on message arrows as for
sequence diagrams. The label A at the tail of a message arrow indicates the send time
A = —(obj!m(x),1) of the corresponding message instance. The corresponding dashed
label A’ denotes the receive time of this message.

In the case that all message sends in an interaction are procedural, then we can simplify
this semantic representation by translating the interaction into an abstract psuedocode
using composite actions such as «; 3 (sequential composition), if e then « else 3 (con-
ditionals), for all (unordered iteration), etc.

We illustrate this case with a proof of the correctness of the ‘state’ pattern (Figure 8).

[state = typel]1 Codel
R P
——— 9 0bj: C
—\‘\N‘\N‘\“‘~s Code2

[state = type2]2

_________________ f e

bj:

— handle(x) |stateobj:
m(x) . 1 handle(x) | iState P Statel Codel

ELLWIN obj: C : A
stateobj

fi handle(x) |stateobj:

’StateZ —= Code2
Statel State2

Figure 8: Introduction of State Pattern

In the original model we have the behaviour axiom:

obje C =
objlm(x) D
if state = typel
then Codel
else Code2

In the new model we have

obj € C = objlm(x) O obj.stateobj'handle(x)



and
stateobj € Statel = stateobj'handle(x) O Codel

and similarly for State2.
Therefore, interpreting obj.state by

if obj.stateobj € Statel
then typel
else
if obj.stateobj € State2
then type2
else nil

we obtain that the original behaviour axiom is valid in the new model.

The semantics of sequence and interaction diagrams are defined in a similar way.
Indeed there is considerable overlap in the expressiveness of these diagrams, suggesting
that they may not be optimal choices for models of dynamic behaviour.

6 Relationship with Other Work

Representation of UML semantics in 7 has been developed in [4]. This representation
is a formalisation of the UML metamodel, whilst our approach shows how to associate
theories to specific UML models. The set-theoretic models are similar: [4] represents each
class by a set of instances, and each association by a set of links consisting of object
tuples, as in this paper. Our notion of theory satisfaction agrees with the |= relationship
of [4]: if o : I' — 1" is a theory interpretation then every model M of 1" has a reduct
M’ = M, of I' with the interpretation [ C [y of the extension of classes C of I' in M’
being defined as [ o(C) Jm. But this means that I'" = I' in the terms of [4].

It is trivial to show that simple transformations such as adding a class or association
are theory extensions in our formalism. Our approach has been chosen to simplify the
task of proving transformations correct, but could be further formalised and generalised
by using the 7 semantics given in [4].

7 Conclusions

We have proposed an axiomatic semantics of the UML notation, together with examples
where this semantics helps to clarify issues of the meaning of UML constructs. Other
areas which we have addressed elsewhere include dynamic classification (page 69 of [8]),
the meaning of interface specifications and the interpretation of OCL in conventional
mathematical notation [5].

Areas of UML with quite vague and incomplete semantics include Use Cases and
Implementation diagrams. A detailed mathematical semantics would probably be inap-
propriate and irrelevant for such notations, given their roles in development. However the
semantics could be useful to validate models — ie., to check that desired properties are
true in particular models.



Object models and statecharts together seem to be sufficient to provide a fully detailed
model of an implementation of a system, hence sequence and collaboration diagrams
are in a sense redundant. There is also considerable redundancy between the sequence
diagram, interaction and activity diagram notations, and some unification of these would
be potentially beneficial for methods based on the UML.
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